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Abstract

Background

Although COVID-19 infection has been associated with a number of clinical and environ-

mental risk factors, host genetic variation has also been associated with the incidence and

morbidity of infection. The CRP gene codes for a critical component of the innate immune

system and CRP variants have been reported associated with infectious disease and vacci-

nation outcomes. We investigated possible associations between COVID-19 outcome and

a limited number of candidate gene variants including rs1205.

Methodology/Principal findings

The Strong Heart and Strong Heart Family studies have accumulated detailed genetic, car-

diovascular risk and event data in geographically dispersed American Indian communities

since 1988. Genotypic data and 91 COVID-19 adjudicated deaths or hospitalizations from 2/

1/20 through 3/1/23 were identified among 3,780 participants in two subsets. Among 21 can-

didate variants including genes in the interferon response pathway, APOE, TMPRSS2,

TLR3, the HLA complex and the ABO blood group, only rs1205, a 3’ untranslated region var-

iant in the CRP gene, showed nominally significant association in T-dominant model analy-

ses (odds ratio 1.859, 95%CI 1.001–3.453, p = 0.049) after adjustment for age, sex, center,

body mass index, and a history of cardiovascular disease. Within the younger subset, asso-

ciation with the rs1205 T-Dom genotype was stronger, both in the same adjusted logistic

model and in the SOLAR analysis also adjusting for other genetic relatedness.
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Conclusion

A T-dominant genotype of rs1205 in the CRP gene is associated with COVID-19 death or

hospitalization, even after adjustment for relevant clinical factors and potential participant

relatedness. Additional study of other populations and genetic variants of this gene are

warranted.

Introduction

The ongoing pandemic of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)

infections has taken a devastating toll on American Indian, Alaskan Native (AI/AN) popula-

tions, with hospitalization and death rate ratios for COVID-19 (compared with White ethnic-

ity) reported as 2.5 fold; and 2.1 fold, respectively [1].

A number of demographic and clinical characteristics, such as male gender, socio-eco-

nomic deprivation, diabetes, cardiovascular disease and obesity, have been identified as risk

factors for COVID-19 associated morbidity and mortality [2]. The hypothesis that this

increased burden of COVID-19 morbidity and mortality among ethnic minorities is due to

the increased prevalence of these co-morbidities in many populations, has been considered;

but the proportion of effect attributable to clinical co-morbidities may be small [2]. In spite of

considerable interest in possible host genetic factors that influence the severity of COVID-19

among all patients, there have been few reliably replicating studies in specific racial/ethnic

groups [3].

The expectation that ethnic disparities in COVID-19 outcomes are primarily driven by

population specific behavioral or clinical burden of disease may have resulted in less interest in

investigating genetic susceptibility among AI/AN communities. This is of importance for the

possible identification of therapeutic targets and prevention strategies assisting AI/AN as well

as other populations.

The Strong Heart Study (SHS) and allied Strong Heart Family Study (SHFS), comprise the

largest, ongoing prospective epidemiological cohort study among American Indians in 12 dif-

ferent Tribal communities located in Arizona, North and South Dakotas, and in Oklahoma.

These cohorts have the requisite genetic datasets and ongoing surveillance of medical records

for cardiovascular disease (CVD) and risk factors, including COVID-19, to also assess genetic

contributions to COVID-19 death and morbidity risks. The present results derive from a case/

cohort analysis of SNPs reported associated with COVID mortality or morbidity in other

populations.

Materials and methods

Participants and cohorts

The SHS/SHFS methodology and design has been described previously [4,5]. While SHS/

SHFS medical record surveillance of participants originally focused on ascertainment of out-

come events related to CVD, in early 2020 ascertainment for COVID-19 was begun, with the

recognition of a bidirectional relationship between CVD and COVID-19 infection.

Inclusion criteria:

* All SHS/SHFS participants alive and under surveillance for CVD events between 2/1/20

and 3/1/23
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* Any death or hospitalization wherein the physician reviewer identified COVID-19 infec-

tion as a defining or contributing factor was considered a COVID-19 outcome

Exclusion criteria:

* Any death or hospitalization wherein COVID-19 was considered incidental to the CVD

event under review

Covariates included in the analysis, such as diabetes and hypertensive status were defined

as previously; [6] and the dichotomous CVD covariate indicates any history of myocardial

infarction, coronary artery disease, congestive heart failure, and atherosclerotic stroke and

peripheral vasculature disease [7].

Rationale for genetic variants selected

A PubMed literature search for candidate variants previously reported to be associated with

COVID-19 pathogenesis or clinical outcomes found previously implicated genes in the inter-

feron response pathway, [8,9] APOE, [10] TMPRSS2, [11] TLR3, [9] ACE, [12] FURIN [13]

and the human leukocyte antigen (HLA) [14,15] regions. We also included ABO blood group

polymorphisms which have been among the most consistently identified host factors influenc-

ing the COVID-19 phenotype [16–18]. The top 17 "hits" of the Covid-19 Host Genetics Initia-

tive Browser, round 7 identified additional variants of interest [19].

Thus our literature search developed a total of 73 plausible candidate variants and resulted

in 21 polymorphisms that were available from the genetic resources of the SHS, albeit within

two subsets of participants that were genotyped in SHS/SHFS substudies. The candidate SNPs

and identifying, published references are found in Table 1.

Although genotypes were derived from extensive microarray sources, no attempt was made

to screen or identify variants of interest on the basis of genome-wide analysis of SHS microar-

ray data.

The only exception to the qualification of previously identified association was the choice of

CRP polymorphisms as explained below. This was felt to be justified due to the central role of

CRP in the innate immune system and dramatic elevation during COVID-19 and other viral

infections [43].

C-reactive protein (CRP) levels are typically thought of as a biomarker for inflammatory

response and not as a pathogenetic factor, although inherited CRP variants have been associ-

ated with, and thus possibly a modifying factor in some infections [22,23] response to vaccina-

tion, [26] as well as other conditions such as cancer [44,45] and pre-eclampsia [46,47]. For this

reason, we selected 4 available variants related to CRP expression for our analysis.

Laboratory methods and considerations

Clinical, anthropometric and laboratory measures are reported as obtained from the most

recent SHS exam prior to the study period. Laboratory methodology for determination of

serum creatinine, [48] HgbA1c [49] and high sensitivity C-Reactive Protein (hsCRP) [50] have

been reported previously.

The SHFS [5] participants were genotyped with the Illumina Human Cardio-Metabo Bead-

Chip microarray (Illumina, San Diego, CA), incorporating approximately 200,000 single

nucleotide polymorphisms (SNPs) in loci previously identified as significantly associated with

metabolic and CVD traits [51]. These genotypes were generated exclusively from SHFS partici-

pants without diabetes mellitus during exams between 1997–2003. Further details related to

quality filters and data preparation have been published [50].

The SHS participants were genotyped using the Illumina Infinium Multi-Ethnic Global-8

vs1. Quality control included filtering variants with call rates <95% and duplicated QC
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samples. The CRP rs1205 variant was genotyped from both the SHFS (N = 1,666) and SHS

(N = 2,114) participants, providing a total of (N = 3,780) rs1205 genotypes. This is presented

graphically in Fig 1. Except for rs1205 and rs8176746, genotypic data from other variants were

available from either the SHFS or the SHS participants (Table 1).

Although two different genotyping platforms were used for the SHS and SHFS participants,

the genotyping for both was conducted in the same laboratory at Texas Biomedical Research

Institute in San Antonio, Texas. All 121 participants genotyped for rs1205 and the ABO variant

rs8176746 on both platforms and meeting the criteria for inclusion in the study had concor-

dant genotyping.

Statistical analysis methods

Descriptive statistics presented counts and percentages for discrete variables and means with

standard deviations for continuous variables. Between-group comparison of continuous vari-

ables used T-tests and assumed independent samples. Discrete variables utilized Pearson chi-

square comparisons between groups.

Logistic regression models were developed for both univariate and multivariate analysis of

COVID-19 associated death or hospitalization during the observation period (2/1/20 through

Table 1. Variants genotyped, (associated genes) and allele frequency (AF), when the genotype is available.

Variant (gene) RISK ALLELE SHFS

AF of risk allele

SHS

AF of risk allele

Literature citation

rs16944971 (FURIN) C 0.01 NA* [13,20]

rs7412 (APOE) C 0.02 NA [3,21]

rs1205 (CRP), alternate allele = T C 0.49 0.46 [22–25]

rs3091244 (CRP) G 0.31 NA [26–28]

rs3093068 (CRP) G NA 0.01 [29,30]

rs1800947 (CRP) C NA 0.02 [23,25,29,31]

rs201253322 (IRF7) C NA <0.001 [3,9]

rs116302758 (DPP4) T NA 0.02 [11]

rs56179129 (DPP4) C NA 0.002 [11]

rs12329760 (TMPRSS2) C NA 0.20 [11,13,32]

rs150892504 (ERAP2) C NA 0.001 [33,34]

rs1800795 (IL-6) G NA 0.08 [23,35,36]

rs1799752 (ACE) Insertion NA 0.26 [3,13]

rs8176719 (ABO, O allele) Insertion NA 0.76 [16,37]

rs8176746 (ABO, B allele) G 0.02 0.02 [38,39]

rs10735079 (OAS3) A NA 0.13 [40,41]

rs1405655 (NR1H2) G NA 0.45 [42]

rs1886814 (FOXP4-AS1) A NA 0.41 [40]

rs2109069 (DPP9) G NA 0.22 [41,42]

rs9380142 (HLA-G) A NA 0.32 [40,41]

rs111837807 (CCHCR1) A NA 0.20 [42,43]

rs2071351 (HLA-DPA1) A NA 0.08 [40]

rs529565 (ABO, intron variant) A NA 0.23 [40]

rs10774671 (OAS1) A NA 0.13 [40]

rs61667602 (LINC02210-CRHR1) A NA 0.06 [42]

* NA, Not available in this cohort.

https://doi.org/10.1371/journal.pone.0302464.t001
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3/29/22). Only a single COVID-event was counted for each participant. To select covariates

included in the final multivariate model, BMI and any history of CVD were chosen on the

basis of apparent independent association (p<0.05) when all available covariates (sex, body

mass index (BMI), hypertension, diabetes mellitus (DM), impaired fasting glucose (IFG) or

normal fasting glucose (NFG), history of CVD event, (tobacco (current, ever, never), serum

creatinine, and hemoglobin A1c (HgbA1c)) were considered jointly. Age, sex and center were

deemed important, standard adjustments and therefore kept in models. The covariate related

to diabetes and dysglycemia was not independently associated with COVID-19 when included

with BMI (as seen in the first section of Table 5), so was not retained in the final logistic

model. The serum hsCRP was not included as a covariate, given we were testing CRP genetic

variants with known effects on serum levels. Significance was accepted at a p-value of 0.05,

since the genetic variants were chosen on the basis of a priori evidence of potential association

with COVID-19 as well as recognizing the hypothesis driven nature of the presented analysis.

The SHFS cohort enrolled large families, and therefore we accounted for the relatedness

using random effects of pedigree relationships (established with participants at recruitment) in

generalized linear mixed models implemented in SOLAR [52,53]. For discrete phenotypes

such as affection status, SOLAR employs a classic liability model [54]. Briefly: the unmeasured,

presumed multifactorial, basis of liability to disease is modeled as a standard normal distribu-

tion (mean = 0, SD = 1), with affected individuals represented by an upper tail of the distribu-

tion that has the same density as the incidence of affection status in the general population.

For this study we used the mean weekly incidence of COVID-19 in the US population during

the study period (217.72 cases/100,000 population, 0.218%) [55] Heritability of liability is esti-

mated from genetic correlations between relatives [56] and the effects of measured factors

(age, sex, etc., as well as measured genotypes) are estimated as deviations of the liability thresh-

old from the population incidence.

Fig 1. Final pace.

https://doi.org/10.1371/journal.pone.0302464.g001
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Ethics statement

All participants in this study have provided written, informed consent to allow genetic and

other research related to CVD and its risk factors. Consent was obtained at least once in all

cases since the first participant was recruited in Phase I of SHS on 5/18/1989, and in most

instances has been renewed during each the 6 subsequent phases through the present consent-

ing process for Phase VII. Consenting of minors occurred during two phases of the study and

in all cases, parental consent was also obtained. Approval has been obtained from the following

institutional review boards (IRB) of record: Arizona Area Indian Health Service IRB, MedStar

Health Research Institute IRB, Great Plains Area Indian Health Service IRB, Oglala Sioux

Tribe Research Review Board, University of Oklahoma Health Sciences IRB, and Oklahoma

Area Indian Health Service IRB. In addition to these formal, IRB approvals, all of the partici-

pants’ Tribal governments have approved the conduct of the SHS/SHFS studies for these pur-

poses. The close association between CVD (especially stroke) and COVID-19 infection, often

in a bidirectional manner, justified IRB approval for this substudy.

Results

Table 1 shows the genotyped variants selected, their associated genes and allele frequencies in

the SHFS or SHS cohorts. The characteristics of both the SHS and SHFS cohorts are summa-

rized in Table 2.

Unadjusted results limited to the primary variant of interest from the SHFS, the SHS cohort

or combined SHFS/SHS cohorts, using additive and dominant models based on risk or non-

risk alleles are shown in Table 3.

Results for the remaining variants are found in Supplemental S1 Table. For variants with

low frequency, logistic models were often unstable and not reported. Analyses in the SHFS

cohort showed nominally significant associations for the rs1205 T allele dominant (T-Dom)

genotype in the combined SHFS/SHS cohort and both additive and T-Dom models in the

SHFS cohort).

Table 4 shows the distribution of COVID-19 cases among recruitment centers, highlighting

the relatively larger number of cases identified in the Dakota center compared to other centers,

and provides the allelic prevalence of rs1205 by center. Among the combined SHFS/SHS

cohorts, the prevalence of the rs1205 T allele was 0.525 (95% CI 0.51–0.54).

Multivariate logistic regression model findings for the primary SNPs of interest are

reported in Table 5. Results of the rs1205 T-Dom model is attenuated after adjustment for

covariates, but retains nominally significant association (OR 1.859, 95% CI 1.001–3.453,

p = 0.049) with COVID-19 in in the combined SHS/SHFS cohorts. Within the younger SHFS

cohort, the same model showed an odds ratio of 2.857, 95%CI 1.108–7.362, p = 0.030.

In the SHFS analysis, using a generalized linear threshold model in SOLAR to adjust for the

random effect of family relatedness, and adjusting for fixed effects of sex, age, BMI, CVD, and

center, either fatal or non-fatal COVID-19 was significantly associated with the fixed effect of

the rs1205 T allele-dominant genotype (p = 0.0003). The regression beta for this association

was negative (= -0.50 standard deviations), indicating a tendency to increase the affected

upper tail of the liability distribution (thus confirming rs1205-T Dom genotype as a risk

allele).

While those with rs1205 T-Dom genotypes trended toward lower mean hsCRP levels at

baseline than others (p = 0.087 excluding levels over 15 mg/L to avoid spurious elevations due

to intercurrent infections), mean hsCRP levels were not significantly different between

COVID-19 cases or controls (S2 Table).
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Discussion

We present previously unreported evidence of association between a common human variant

(rs1205) and the clinical impact of the SARS-CoV-2 virus causing COVID-19. While our

study has a modest number of cases, these results derive from a large cohort of American

Indian individuals who are being followed longitudinally using standardized, physician review

of medical records [4] The rs1205 variant has been recognized as functionally affecting serum

Table 2. Demographic and clinical measures stratified by enrolled cohort.

SHFS SHS Total P value

Participants, N (%) 1666 (44.1) 2114 (55.9) 3780 (100)

Male Sex, N (%) 660 (39.6) 916 (43) 1576 (42) .021*
Mean Age (SD), years on 2/1/2020 52.0 (14.8) 83.9 (8.4) 69.8 (19.7) < .001**
Mean Age (SD), years at last clinical exam 41.7 (14.6) 62.9 (8.7) 53.6 (15.7) < .001

Diabetes status, N, (%) < .001

Diabetes Mellitus (DM) 214 (13) 1001 (49) 1215 (33)

Impaired fasting glucose tolerance (IFG) 347 (21) 500 (24) 847 (23)

Normal fasting glucose tolerance (NFG) 1080 (65) 563 (27) 1643 (44)

Hypertension, N (%) 470 (28) 1110 (53) 1580 (42) < .001

Cardiovascular disease***
N, (%)

169 (10) 870 (41) 1039 (28) < .001

Mean BMI (SD), kg/m2 32.3 (7.7) 30.3 (6.5) 31.2 (7.1) < .001

Current smoker N (%) 644 (39) 618 (30) 1310 (35) 0.657Δ

Ever smoker, N (%) 391 (24) 749 (37) 1140 (31) < .001ΔΔ

Never smoker, N (%) 619 (37) 618 (29) 1237 (34)

Mean serum creatinine (SD), mg/dL 0.87 (0.36) 1.14 (1.22) 1 (0.90) < .001

Mean % HgB A1c (SD) 6.36 (1.6) 7.10 (2.22) 6.90 (2.10) < .001

Mean hsCRP (SD)**** 4.12 (3.58) 4.35 (3.31) 4.23 (3.45) .074

COVID-19 any case, N (%) 48 (2.9) 43 (2.0) 91 (2.4) 0.09

COVID-19 death,

N (%)

21 (1.3) 26 (1.2) 47 (1.2) 0.93

Participants with either fatal or non-fatal COVID

SHFS SHS Total P value

Male sex, N (%) 18 (37) 15 (35) 33 (36) 0.796

Mean Age (SD), years on 2/1/2020 61.9 (14.7) 78.1 (5.0) 69.6 (13.8) <0.001

DM/IFG/NFG, N (%) 19/5/23 (40.4,10.6,48.9) 17/13/13 (39.5,30.2,30.2) 36/18/36 (40.0, 20.0,40.0) 0.043

HTN, N (%) 22 (45.8) 21 (48.8) 43 (47.3) 0.774

CVD, N (%) 13 (27.1) 25 (58.1) 38 (41.8) 0.003

Mean BMI (SD) 36.07 (9.10) 31.04 (6.64) 33.7 (8.38) 0.001

Smoking

Current/ever/never (%)

15/15/18 (31.3,31.3,37.5) 14/11/18 (32.6,25.6,41.9) 29/26/36 (31.9,28.6,39.6) 0.828

Serum Creatinine (SD), mg/dL 0.85 (0.20) 1.12 (1.86) 0.98 (1.27) 0.362

Mean HgbA1c (SD), % 7.44 (2.14) 6.65 (1.74) 7.00 (1.95) 0.191

Mean hsCRP (SD), mg/L**** 5.00 (3.78) 4.48 (3.40) 4.76 (3.60) 0.715

Values are mean (SD) or N (%).

* Pearson chi square test for count data.

**T-test for mean (SD) data

*** Any history of coronary heart disease, stroke, congestive heart failure, or other cardiovascular disease Δ smoking "current" vs smoking "never" ΔΔ smoking "ever" vs

smoking "never"

**** hsCRP values >15mg/L excluded.

https://doi.org/10.1371/journal.pone.0302464.t002
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levels of CRP, [25,28,29] in several populations and, in the present SHFS population as well

[50]. CRP is an important component of the innate immune system, thus supporting a role of

the gene and this variant’s potential effects on the pathophysiology of COVID-19. A genome-

wide association meta-analysis has reported an intron variant (rs67579710) associated with

COVID-19 hospitalization among 24,741cases and 2,835,201controls [42]. This variant is

4.5Mb from rs1205 [57] and within the thrombospondin3 gene, thus it may play a role in the

thrombosis associated with COVID-19, rather than inflammatory pathways.

Table 3. Primary results of interest, rs1205: Univariant associations with either fatal or non-fatal COVID-19.

Cohort SNP Risk allele Model Chi-square

p value*
OR** 95% CI P value

SHS rs1205 C Add 0.564 0.922 0.603–1.411 0.709

SHS rs1205 C C-DOM 0.815 1.084 0.553–2.124 0.815

SHS rs1205 T T-DOM 0.368 1.452 0.642–3.285 0.370

SHFS rs1205 C Add 0.039 0.599 0.396–0.906 0.015

SHFS rs1205 C C-DOM 0.099 0.609 0.336–1.104 0.102

SHFS rs1205 T T-DOM 0.016 2.976 1.171–7.565 0.022

SHS/SHFS rs1205 C Add 0.066 0.743 0.553–0.998 0.049

SHS/SHFS rs1205 C C-DOM 0.332 0.804 0.516–1.251 0.333

SHS/SHFS rs1205 T T-DOM 0.020 2.038 1.105–3.758 0.023

* Pearson chi-square, asymptotic significance, two-sided.

** OR: Univariate logistic regression odds ratio.

https://doi.org/10.1371/journal.pone.0302464.t003

Table 4. Combined SHFS/SHS participant and SNP results from adjusted analysis by recruitment center.

Center* AZ DK OK p value analysis

N 488 1705 1587

Age mean (SD) 70.65 (19.48) 68.39 (20.29) 71.13 (19.05) <0.001 1

Male sex N (%) 184 (38) 734 (43) 658 (41) 0.104 2

BMI mean (SD) 34.78 (9.88) 30.25 (6.36) 31.15 (6.55) <0.001 1

ANY CVD_YN N(%) 119 (24) 547 (32) 373 (23) <0.001 2

SHFS cohort N(%) 165 (34) 698 (44) 803 (47) <0.001 2

Fatal/non-fatal

COVID-19

N (% of total)

11 (12.1) 62 (68.1) 18 (19.8) <0.001 2

Risk of outcome

% (95% CI)

2.25%

(0.94–3.57)

3.64%

(2.75–4.52)

1.13%

(0.61–1.66)

3

rs1205,% C alleles

(95% CI)

0.48

(0.45–0.51)

0.58

(0.56–0.59)

0.48

(0.47–0.50)

<0.001 4

rs1205 T-Dom

(95% CI)

0.72

(0.68–0.76)

0.81

(0.79–0.83)

0.73

(0.71–0.75)

<0.001 2

rs1205 T-Dom

p value

0.254 0.333 0.147 5

* AZ = Arizona, DK = Dakotas, OK = Oklahoma centers.

1 = Independent samples, T-test.

2 = between center Pearson chi-square p value, 3X2 table.

3 = within center binomial confidence interval on proportion.

4 = between center Pearson chi-square p value, 3X3 table.

5 = within center COVID fatal/non-fatal outcome via logistic regression adjusted for age, sex, BMI, ANY_CVD.

https://doi.org/10.1371/journal.pone.0302464.t004
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There are ample theoretical reasons that heritable genetic variation could affect SARS-CoV-

2 infection, beginning with the viral requirement for surface receptors to gain entry to the

cytoplasm [58] and running through multiple immune response pathways generating the

"cytokine storm" which has been prominently noted in the pathogenesis of COVID-19 [59]. A

number of genetic variants have been associated with morbidity and mortality, including vari-

ants in the angiotensin converting enzyme 1 (ACE1) gene, [60] the TMPRSS2 gene, [61] the

IL-6 gene [62] and others extensively reviewed by Ishak et al. [63] The COVID-19 Host Genet-

ics Initiative, a massive ascertainment of nearly 50,000 cases from 19 countries has identified

13 genome-wide loci related to either initial infection, or morbidity [64].

The rs1205 variant is a C/T single nucleotide polymorphism in the 3’ untranslated region of

the C-reactive protein gene (CRP), with a prevalence of the C allele ranging from ~ 0.67 in

European populations, to ~ 0.40 in Asian populations, [65] and 0.51 to 0.54 in the present

study. The 4 CRP variants were chosen for their role in the innate immune system and avail-

ability in the SHS dataset, but no literature was found that examined CRP variants related to

COVID-19 severity, perhaps because CRP has traditionally been viewed as a biomarker and

not as a potential causal factor. There are, however, reports of CRP variants associated with the

clinical outcomes of other infections [22,23] and the response to vaccination [26]. Addition-

ally, reduced expression of serum CRP is consistently reported associated with the rs1205 T

allele, with the beta coefficient for each additional T allele ranging between -0.17 and -0.27;

[25,28,29] and estimated at -0.23 in the SHS Dakota center [50]. As noted in S2 Table the

mean serum CRP level is lower in the present study, among those with the rs1205 T-Dom

genotype compared with those homozygous for the C allele, although the difference is not

significant.

Table 5. Results of multivariate adjusted models evaluating the composite outcome of either fatal or non-fatal COVID-19 within the combined SHFS and SHS

cohorts.

SHFS and SHS COMBINED

95% CI

Multivariate model including: N OR Lower Upper P value

Age 3780 0.999 0.987 1.012 0.923

Sex 3780 0.817 0.527 1.267 0.367

AZ center 3780 Indicator variable

DK center 3780 2.132 1.064 4.272 0.033

OK center 3780 0.649 0.296 1.423 0.280

BMI 3780 1.050 1.023 1.079 <0.001

ANY CVD (Y/N) 3780 1.871 1.153 3.036 0.011

SHFS COHORT

95% CI

SNP* model N OR Lower Upper P value

rs1205 C-Add 1647 0.587 0.381 0.905 0.016

rs1205 T-DOM 1647 2.857 1.108 7.362 0.030

SHS COHORT

rs1205 C-Add 2042 1.057 0.683 1.634 0.804

rs1205 T-DOM 2042 1.243 0.541 2.860 0.608

SHFS and SHS COMBINED

rs1205 C-Add 3689 0.799 0.592 1.078 0.142

rs1205 T-DOM 3689 1.859 1.001 3.453 0.049

* Genetic variant included in model adjusted for age, sex, center, BMI, and ANY CVD.

https://doi.org/10.1371/journal.pone.0302464.t005
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Although the prevalent view of COVID-19 pathophysiology implicates a hyperactive

immune response (often characterized by increased CRP serum levels as well as coordinated

production of other cytokines), it also seems plausible that a relative, baseline insufficiency of

an innate immune factor, particularly in the early phase of exposure, could also result in

increased morbidity.

CRP genotypes correlating with increased baseline CRP levels have been positively associ-

ated with risk of pre-eclampsia [46,47,66] and conversely, as in the current study, CRP geno-

types (including rs1205 T-Dom) correlated with lower CRP levels have been associated with

increased infectious burden [22–24]. These divergent effects invite speculation that CRP poly-

morphisms may have experienced balanced selection during evolution.

Our multivariate logistic regression results are in accord with prior studies that showed the

contribution of commonly reported clinical factors, such as age, [67] BMI [64] and pre-exist-

ing CVD, [68,69] which negatively impact COVID-19 outcomes. Although the mean BMI of

the SHFS is somewhat greater than the SHS cohort, it should be noted that the SHFS cohort

has a low prevalence of DM (13%) and is younger than the SHFS, due to selection for that sub-

study of those without diabetes at baseline. Perhaps this allows a clearer genetic (vs an acquired

clinical or environmental) association to become apparent.

The small number of cases when stratified by Center suggests cautious interpretation, but is

presented since the number of cases from the Dakota Center is considerably higher than from

the comparable Oklahoma center. Although the possibility of population stratification con-

founding our results is present, we believe the fact that all 3 centers show an effect of the

T-Dom genotype in the same direction, including the Arizona Center, which is likely to be

most distant in their genetic background, suggests genetic background effects are not likely.

The statistical significance of the center covariate could be due to various differences in

regional, environmental factors, such as household density, weather, and accessibility of medi-

cal care.

The lack of significant results in the other SNPs is not surprising, given the number of these

variants with low allele frequencies and the small number of COVID-19 cases. Further surveil-

lance of the SHS cohort will likely identify new cases and improve the power for other variants

(eg rs111837807 and rs2109069).

The limitations of this analysis are chiefly related to the relatively small number of cases

obtained to this point. The morbid case ascertainment is subject to undercounting since the

choice of medical records for review is based primarily on CVD outcomes. This does not affect

ascertainment of mortal cases, since all deaths are reviewed and recorded as soon as possible.

The possibility of population stratification is noted, although seems unlikely for reasons noted

above. P values have not been adjusted for multiple testing.

The study’s strengths include a robust physician assignment of outcomes using medical rec-

ords and comprehensive analysis of genetic variabilities as well as adjustment for relatedness

between individuals.

It is clear that race/ethnicity is a valid and critical risk marker for other underlying condi-

tions affecting the complexity of COVID-19 disease, such as structural racism, discrimination

and socioeconomic status, [70] lack of health care access, [71] and exposure to infectious

agents related to high risk and service industry occupations [72]. Although one can never be

confident that all confounding factors have been adjusted properly, Williamson et al [2]

showed that ethnicity among a very large cohort in England was associated with COVID-19

outcomes, even after adjusting for socioeconomic factors. Thus, even though we are commit-

ted to improving our understanding of the complex social and behavioral factors influencing

COVID-19 disease landscape among Tribal communities we also believe that investigating the

potential influence of common genetic variants among the high risk American Indian/Alaska
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Native populations may provide opportunities for therapeutic or preventive options. Although

severely impacted by COVID-19, [73,74] Tribal communities are, at times, excluded from sci-

entific studies due to their smaller proportion in the U.S. population and various socio-politi-

cal factors.

In conclusion, a statistically significant association was found between the rs1205 T-Dom

genotype and risk of COVID-19 death or hospitalization among American Indian participants,

employing chi-square tests, logistic regression models adjusting for age, sex, center, BMI and

prior history of CVD, and SOLAR software analysis also adjusting for relatedness within the

SHFS cohort. The direction of effect suggests a lower level of CRP during early phases of infec-

tion may increase the risk of subsequent complications, a novel finding we will continue to

investigate further as the pandemic continues and our samples size tragically continues to

increase.
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