
RESEARCH ARTICLE

Correlated metabolomic, genomic, and

histologic phenotypes in histologically normal

breast tissue

Xuezheng Sun1☯, Delisha A. Stewart2☯, Rupninder Sandhu3, Erin L. Kirk1, Wimal

W. Pathmasiri2, Susan L. McRitchie2, Robert F. Clark4, Melissa A. Troester1,3,5, Susan

J. Sumner2*

1 Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United

States of America, 2 National Institutes of Health Eastern Regional Comprehensive Metabolomics Resource

Core, Department of Nutrition, University of North Carolina at Chapel Hill, Nutrition Research Institute,

Kannapolis, North Carolina, United States of America, 3 Lineberger Comprehensive Cancer Center,

University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America, 4 Analytical

Chemistry and Pharmaceutics, RTI International, Durham, North Carolina, United States of America,

5 Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill,

North Carolina, United States of America

☯ These authors contributed equally to this work.

* susan_sumner@unc.edu

Abstract

Breast carcinogenesis is a multistep process accompanied by widespread molecular and

genomic alterations, both in tumor and in surrounding microenvironment. It is known that

tumors have altered metabolism, but the metabolic changes in normal or cancer-adjacent,

nonmalignant normal tissues and how these changes relate to alterations in gene expres-

sion and histological composition are not well understood. Normal or cancer-adjacent nor-

mal breast tissues from 99 women of the Normal Breast Study (NBS) were evaluated. Data

of metabolomics, gene expression and histological composition was collected by mass

spectrometry, whole genome microarray, and digital image, respectively. Unsupervised

clustering analysis determined metabolomics-derived subtypes. Their association with

genomic and histological features, as well as other breast cancer risk factors, genomic and

histological features were evaluated using logistic regression. Unsupervised clustering of

metabolites resulted in two main clusters. The metabolite differences between the two clus-

ters suggested enrichment of pathways involved in lipid metabolism, cell growth and prolifer-

ation, and migration. Compared with Cluster 1, subjects in Cluster 2 were more likely to be

obese (body mass index�30 kg/m2, p<0.05), have increased adipose proportion (p<0.01)

and associated with a previously defined Active genomic subtype (p<0.01). By the inte-

grated analyses of histological, metabolomics and transcriptional data, we characterized

two distinct subtypes of non-malignant breast tissue. Further research is needed to validate

our findings, and understand the potential role of these alternations in breast cancer initia-

tion, progression and recurrence.
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Introduction

Breast carcinogenesis is associated with extensive changes in the surrounding microenviron-

ment at molecular, genomic and metabolic levels [1–4]. Our previous analysis using gene

expression profiling of cancer-adjacent, nonmalignant normal tissue has defined two subtypes,

termed Active and Inactive, and showed significant differences in fibrosis, wound response,

and cellular adhesion [3]. Subsequent analyses further linked the Active genomic subtype to

high adipose content and adverse prognosis [4, 5]. These findings underscore that considering

multiple layers of data is an approach for validation, but provides novel insights into the mech-

anistic networks perturbed during tumorigenesis.

Although extensively studied in breast tumors, metabolic changes in surrounding microen-

vironment (primarily composed by histologically, nonmalignant normal breast tissue) have

been less described, and little is known about how these changes relate to other level changes

(e.g. gene expression) and the characteristics of tumor or patient. In this study, we hypothe-

sized that histology, molecular pathways, and metabolic profiles vary, creating distinct niches

for the development and progression of breast cancer. To test this hypothesis, we analyzed

gene expression, metabolic profiles, and histological composition of normal or cancer-adjacent

normal breast tissues from 99 women who participated in the Normal Breast Study (NBS) [6],

particularly aimed to characterize metabolic microenvironments and correlates them to other

level features.

Materials and methods

Study population

The Normal Breast Study (NBS) was a hospital-based study of breast cancer microenviron-

ment and normal breast tissue, including women undergoing breast surgeries (mastectomy,

lumpectomy, excisional biopsy, reduction mammoplasty, or other cosmetic breast surgery) at

UNC Hospitals in Chapel Hill, North Carolina from 2009 to 2013 [6]. Fresh non-neoplastic

normal breast tissues confirmed by pathology assistants at UNC Hospitals were collected at

the time of breast surgery and snap-frozen in liquid nitrogen. Information on clinicopatho-

logic, demographic, and anthropometric factors were collected from medical records and tele-

phone interview. The present analysis included 99 women (16 with reduction mammoplasty,

83 with breast cancer). Written informed consent was obtained from all participants. Study

protocols were approved by the School of Medicine Institutional Review Board at the Univer-

sity of North Carolina at Chapel Hill.

Breast tissue processing

Frozen breast specimens of approximately 100 mg were prepared on dry ice and 20 μm sec-

tions were collected at both ends of the specimen and mounted on glass slides. The two sec-

tions on the ends were used for histological composition annotation, after hematoxylin and

eosin (H&E) staining, and the central tissue portion was used for RNA extraction and whole

genome microarray analysis. Additionally, tissues (50–120 mg) were prepared for metabolo-

mics by gas chromatography-time of flight-mass spectrometry (GC-TOF-MS).

Tissue composition measurement

The details regarding histological composition annotation by high-resolution digital images

using the Aperio Scan-Scope XT Slide Scanner were published previously [5, 6]. Duplicate

slides of same tissue specimen (one section from each end of the sample) were averaged to

Cancer-adjacent, normal breast tissue can be abnormal

PLOS ONE | https://doi.org/10.1371/journal.pone.0193792 April 18, 2018 2 / 11

Funding: This research was supported by the Avon

Foundation for Women (https://www.

avonfoundation.org/grants/, PI-MAT), North

Carolina University Cancer Research Fund (http://

unclineberger.org/ucrf/, PI-MAT), National Cancer

Institute (R01 CA179715, PI-MAT), the National

Institute of Environmental Health Sciences (U01

ES019472, PI-MAT); and NIH Common Fund

award through the National Institute for Diabetes

and Digestive and Kidney Diseases to the NIH

Eastern Regional Comprehensive Metabolomics

Resource Core at UNC-Chapel Hill, Nutrition

Research Institute (1U24DK097193, PI-SJS). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript. The funders provided support in

the form of salaries for authors [XS, DAS, RS, ELK,

WWP, SLM, RC, MAT and SJS], but did not have

any additional role in the study design, data

collection and analysis, decision to publish, or

preparation of the manuscript. The specific roles of

these authors are articulated in the ‘author

contributions’ section.

Competing interests: Dr. Robert Clark is employed

at the not-for-profit, contract research organization

RTI International. His employment and affiliation

with this entity did not impact the design,

experimental conduct, analysis or decision to

publish these results. His affiliation does not alter

our adherence to PLOS ONE policies on sharing

data and materials.

https://doi.org/10.1371/journal.pone.0193792
https://www.avonfoundation.org/grants/
https://www.avonfoundation.org/grants/
http://unclineberger.org/ucrf/
http://unclineberger.org/ucrf/


estimate area percentage of stroma, adipose and epithelium, given high intra-class correlation

coefficients (ICCs) between replicate sections (ICC = ranged from 0.92 = 0.99).

RNA isolation, microarrays, and Active/Inactive subtyping

The central section of fresh-frozen tissues was homogenized using a MagNA Lyser homoge-

nizer (Roche), and RNA was isolated by QIAzol extraction followed by purification on an

RNeasy column as described previously [5]. RNA quality and quantity were assessed on an

Agilent 2100 Bioanalyzer and a ND-1000 NanoDrop spectrophotometer, respectively. Two-

color 4 × 44 K Agilent whole-genome arrays were run on the RNA samples. Data were prepro-

cessed before analytic statistical analyses: lowess-normalization, setting value of the probes

that had a signal less than 10 dpi in either channel as missing, excluding probes that had more

than 20% missing data across all samples, imputing the missing values using k-nearest neigh-

bors’ imputation (with k = 10), and collapsing the duplicate probes by averaging. Microarray

data used in these analyses will be publicly available through the Gene Expression Omnibus

(accession number GSE111601) www.ncbi.nlm.nih.gov/geo/.

Samples were classified as Active or Inactive subtype using the Creighton correlation

method [5]. Briefly, a standard vector corresponding to all genes (n = 3,518) in the Active/

Inactive signature was constructed, with “1” assigned to upregulated genes and “-1” assigned

to downregulated genes. A Pearson correlation coefficient was calculated for this standard vec-

tor versus the vector of median-centered gene expression for each patient. Samples were asso-

ciated with the Active subtype if the Pearson correlation coefficient was greater than zero; and

with the Inactive subtype if the coefficient was less than zero.

Extraction and metabolomics analysis

Tissues were prepared for extractions, metabolomics data collection and preprocessing by

the NIH Eastern Regional Comprehensive Metabolomics Resource Core (ERCMRC). The

details regarding sample extraction, data collection, and quality control by the ERCMRC have

been described previously [7]. Briefly, samples were thawed on ice in a cold room (4˚C) and

extracted using 50% acetonitrile in water and homogenized on a MagNA Lyser to generate 0.1

mg/μL supernatants. Quality control (QC) samples were created by pooling a small aliquot

from all samples (Total Pool 1). A second QC pool sample was created using unequal volumes

of samples (Total Pool 2). Samples were chemically derivatized after a D2O exchange and ana-

lyzed by GC-TOF-MS (Agilent 7890 gas chromatogram and Leco Pegasus 4D time of flight

mass spectrometer). The run order was randomized and samples were analyzed in four batches

over 4 separate days. The Total Pool 1 QC sample was analyzed between every 6 sample injec-

tions in each batch. The Total Pool 2 QC sample was injected multiple times at the beginning

of each batch to condition the column and the system. The GC-MS data from each sample was

normalized to its total signal intensity. Analyte peak variations of the pooled samples were

determined, and those peaks with a coefficient of variation (CV) > 0.3 were removed from

subsequent analysis. As the data was collected over a four-day period, and preprocessing took

account of the day-to-day variability from the GC-TOF-MS by adjusting the peaks from each

sample by the median of the value from that of the same peak in the Total Pool 1 samples

which were run each day. All raw metabolomics data is publicly available at the NIH Common

Fund Metabolomics Data Repository and Coordinating Center website, Metabolomics Work-

bench: http://www.metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=Study&

StudyID=ST000054&StudyType=MS&ResultType=1.

Unsupervised hierarchical clustering analysis (average-linkage) by Cluster 3.0 was used to

determine subgroups based on metabolomics profiles. The results were visualized using Java
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Treeview. The metabolites significantly different across clusters were identified by supervised

multivariate analysis using orthogonal partial least squares discriminant analysis (OPLS-DA)

in SIMCA 13.0 (Umetrics, Umeå, Sweden). Metabolites were library-matched to the Fiehn

library [8] and rank-ordered based on the value of the Variable Influence on Projection

(VIP� 1). Functional pathway mapping of the known (library-matched) important metabo-

lites was performed using GeneGo (MetaCore-Clarivate Analytics, Philadelphia, PA).

Statistical and pathway analyses

Associations of metabolomics subgroup with age (<40 years, 40-<60 years, or� 60 years),

race (white, African American, or others), body mass index (BMI, <30 kg/m2 or�30 kg/m2),

tissue type (cancer-adjacent normal tissue or normal tissue), histological adipose composition

(<51% or�51%, 51% = median), and Active/Inactive genomic subtype were evaluated quali-

tatively by Chi-square test or Fisher’s exact test, and quantitatively by odds ratio and corre-

sponding 95% confidence interval (CI) estimated using logistic regression. For normal

samples from breast cancer patients, the association of metabolomics subgroup with tumor ER

status (negative or positive) and the distance to tumor (near, <1cm; or far,>4cm) were also

assessed. Probability values of less than 0.05 were considered statistically significant. The anal-

yses were performed using SAS version 9.4 (SAS Institute).

Results

Table 1 describes the characteristics of the NBS participants. Normal breast biospecimens

(n = 83) from breast cancer patients equaled 84% and 16% (n = 16) were from non-breast can-

cer patients (reduction mammoplasty). The majority of the participants were white (72%,

n = 68), parous (84%, n = 80), and younger than 60 years (72%, n = 71). The other 41%

(n = 40) were premenopausal and 47% (n = 47) were obese.

Identification and interpretation metabolomics-derived subgroups

Unsupervised hierarchical clustering of 220 differential metabolites grouped the tissue samples

into two metabolomic clusters (Cluster 1, n = 57; Cluster 2, n = 42) (Fig 1). No differences

were detected in biospecimen type (breast cancer-adjacent normal tissue samples: 84% in

Cluster 1, 83% in Cluster 2). Supervised multivariate analysis using SIMCA (OPLS-DA)

showed a clear separation of the two clusters based on metabolic profile (Fig 2A), and identi-

fied 102 metabolites based on VIP� 1, that differentiated Cluster 1 and Cluster 2 (S1 Table)

with 11 known metabolites identified after library-matching to the Fiehn library. The fold-dif-

ference of the known metabolites was calculated and three (threonine minor, 2-hydroxybuta-

noic acid, N-acetyl-L-aspartic acid 1) had a fold change greater than 2, when comparing

Cluster 1 to Cluster 2 (Fig 2B). Enrichment of endogenous pathways were mapped using all 11

library-matched metabolites in GeneGo (MetaCore). Fig 2C pictorially represents the most

significantly enriched pathways, based on the Cluster 1/Cluster 2 fold-change differences and

p-value thresholds listed in S1 Table.

Associations with participant characteristics, the Active/Inactive genomic

signatures and histological adipose composition

Compared with women in Cluster 1, women in Cluster 2 were older (�60 years, OR = 4.33,

95% CI = 1.14–16.36) and more obese (OR = 2.34, 95% CI = 1.40–5.28) (Table 1). Tumors of

breast cancer patients in Cluster 2 tended to be estrogen receptor (ER) positive (OR = 2.09,

Cancer-adjacent, normal breast tissue can be abnormal
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95% CI = 0.68–6.43). No associations were found between metabolomics subtype and race,

menopausal status, parity, or distance to tumor.

Previous research with mRNA and microRNA profiles of these samples demonstrated that

there are two main phenotypes of breast tissue, termed Active and Inactive [4]. We evaluated

the correlation of these two genomic phenotypes and the metabolomics-derived subtypes, and

Table 1. Associations with sample characteristics, the Active/Inactive subtype, and histological composition.

Total

n = 99

Cluster 1

n = 57

Cluster 2

n = 42

OR

(95% CI)

P-value

Age (year)

Age� 60 28 (28) 13 (23) 15 (36) 4.33 (1.14, 16.36) 0.08

40 � Age < 60 52 (53) 29 (51) 23 (55) 2.97 (0.87, 10.19)

Age < 40 19 (19) 15 (26) 4 (10) 1

Menopausal status

Premenopausal 40 (41) 25 (44) 15 (37) 0.74 (0.32, 1.68) 0.47

Postmenopausal 58 (59) 32 (56) 26 (63) 1

Race

African-American 27 (28) 16 (30) 11 (27) 0.87 (0.35, 2.15) 0.76

White 68 (72) 38 (70) 30 (73) 1

BMI (kg/m2)

Obese (BMI� 30) 47 (47) 22 (39) 25 (60) 2.34 (1.40, 5.28) 0.04

Nonobese (BMI < 30) 52 (53) 35 (61) 17 (40) 1

Parity

Nulliparous 14 (15) 10 (19) 4 (10) 0.49 (0.14, 1.69) 0.38

Parous 80 (85) 44 (81) 36 (90) 1

Tissue type

Cancer Adjacent Normal 83 (84) 48 (84) 35 (83) 0.94 (0.32, 2.76) 0.91

Reduction/Prophylactic 16 (16) 9 (16) 7 (17) 1

Composition epithelium�

�median 49 (49) 28 (49) 21 (50) 1.04 (0.47, 2.30) 1.0

< median 50 (51) 29 (51) 21 (50) 1

Composition stroma�

�median 49 (49) 41 (72) 8 (19) 0.09 (0.04, 0.24) <0.01

< median 50 (51) 16 (28) 34 (81) 1

Composition adipose�

�median 50 (51) 14 (25) 36 (86) 18.43 (6.42, 52.86) <0.01

< median 49 (49) 43 (75) 6 (14) 1

Active/Inactive subtype

Active 50 (51) 22 (39) 28 (67) 3.18 (1.38, 7.33) <0.01

Inactive 49 (49) 35 (61) 14 (33) 1

ER status†

Positive 27 (51) 14 (44) 13 (62) 2.09 (0.68, 6.43) 0.20

Negative 26 (49) 18 (56) 8 (38) 1

Distance from tumor†(cm)

<3 34 (59) 17 (61) 17 (57) 0.85 (0.30, 2.41) 0.75

<1 24 (41) 11 (39) 13 (43) 1

�Epithelium Median = 7.2% Stroma Median = 36.2% Adipose Median = 50.9%.
† Among samples from breast cancer patients. 46 patients without ER information and 41 patients with the distance of normal biospecimen to tumor between 1 and 4

cm were not included the ER and distance analysis respectively.

https://doi.org/10.1371/journal.pone.0193792.t001
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found a strong correlation between Cluster 2 and Active subtype (OR = 3.18, 95% CI = 1.38–

7.33, p<0.01) (Fig 1 and Table 1).

Obesity and Active/Inactive gene expression subtype are both associated with tissue compo-

sition [5], so we hypothesized that adipose content would also vary by metabolomics-derived

phenotype. Here, we observed that 86% of the samples in Cluster 2 had high percent adipose

content (defined as� the median of 51%), compared to 25% of the samples in Cluster 1 (OR =

18.43, 95% CI = 6.42–52.86, p<0.01) (Fig 1 and Table 1). Significant reverse association was

observed with stromal contents (OR = 0.09, 95%CI = 0.04–0.24, p<0.01), but not with epithe-

lial content (OR = 1.04, 95%CI = 0.47–2.30, p = 1.00).

Discussion

Using unsupervised clustering analysis, we identified two main metabolic clusters in normal

breast. Cluster 2, in which the identified metabolites are suggested to play a role in cell death

Fig 1. Unsupervised cluster analysis of 220 metabolites across the normal and cancer-adjacent normal breast tissue samples. Pink rectangles represent

the samples that have epithelium percent area below the median (7%) for the data set and purple rectangles represent samples that have percent area at or

above the median. Yellow rectangles represent the samples that have stroma percent area below the median (36%) for the data set and blue rectangles

represent samples that have percent area at or above the median. White rectangles represent the samples that have adipose percent area below the median

(51%) for the data set and green rectangles represent samples that have adipose percent area at or above the median for the dataset. Grey rectangles represent

the samples that have negative correlation with the active genomic signature and orange rectangles represent samples that have a positive correlation with the

active signature.

https://doi.org/10.1371/journal.pone.0193792.g001
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and molecular transport (Fig 2B), was significantly associated with the Active genomic sub-

type, as well as obesity and high adipose content in breast tissue.

By using integrated data we demonstrated that multi-layer biological changes are contribut-

ing to the breast microenvironment. Brauer et al., previously reported metabolic changes in

cancer adjacent normal microenvironment [1]; while in this study, we characterized these

changes by defining two distinct metabolic subtypes, and further linked these subtypes to non-

malignant genomic breast signatures (Active/Inactive) and tissue adipose content. The Troe-

ster lab has previously evaluated the Active/Inactive genomic subtypes for association with

mammographic density (MD) and breast tissue composition, and found strong correlations

among the Active subtype, high tissue adipose content, and low MD [4, 5]. The current study

confirms these previous findings, and extends this correlation circle by adding metabolic Clus-

ter 2 subtype. These consistent findings through integrative data approaches strongly suggest

the existence of two broad microenvironmental types of breast tissue. A further question that

remains to be addressed is how these microenvironment-defined subtypes mediate an associa-

tion between risk/prognostic factors, breast cancer occurrence/recurrence and survival out-

come, which is very important to understand their role in breast cancer etiology and to

identify novel biomarkers to optimize risk prediction and treatment.

Obesity has a dichotomous association with breast cancer, where it has been shown protec-

tive in premenopausal women [9], but is an established risk/prognostic factor of breast cancer

Fig 2. Metabolic Cluster 1 versus Cluster 2. (A) Supervised multivariate analysis (OPLS-DA) of GC-MS generated broad spectrum metabolomics data from non-

malignant/cancer-adjacent normal breast tissues. (B) Fold change differences of 11 library-matched metabolites that significantly distinguish metabolic Cluster 1 from

Cluster 2. (C) Pathway analysis was done in GeneGo, using the known Cluster 1 –Cluster 2 differentiating metabolites to identify important perturbed biological

pathways related to Cluster 1 and Cluster 2 differences.

https://doi.org/10.1371/journal.pone.0193792.g002
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in postmenopausal women, with various mechanisms proposed to explain its effect on tumor

initiation and progression [10–12]. Our data show that obesity affects the breast histological

composition, and is associated with genomic and metabolic changes in histologically normal

breast [5, 13], suggesting that obesity profoundly alters the breast microenvironment. In terms

of metabolomics profiling, we found that the metabolites higher in Cluster 2 compared to

Cluster 1 may be involved in pathways related to lipid metabolism through endocannabinoid-

related systems that can modulate cancer cell growth and proliferation (N-Acylethanolamines

and Anandamide biosynthesis) [14, 15], and more significantly, creating an environment for

increased migratory potential (Thrombospondin 1) [16] (Fig 2C). These findings are in line

with previous data, where broad changes in lipid metabolism during breast carcinogenesis

have been associated with maintaining cell growth, playing a role in cell survival and contrib-

uting to metastasis [17–21]. Our analyses describe the overall correlations of obesity with

metabolic and genomic profiles in the normal and cancer-adjacent normal breast microenvi-

ronment. However, how these changes at each level interact with one another (e.g. network

linkage of specific metabolite(s) to certain gene(s)) needs further study.

Age is the strongest risk factor for breast cancer, and is associated with genomic and histo-

logical alternations [6, 22–24]. In this study we observed a significant association between met-

abolic subtype, when comparing young women (<40 years) and old women (�60 years)

(OR = 4.33, 95% CI = 1.14–16.36). This finding is consistent with the data that age is positively

associated with the Active genomic signature and high adipose content. However, given this

correlation between age and obesity and the limited sample size of our study, these data will

not allow us to test whether their effect on microenvironment is independent, and if not, how

age and obesity interact across microenvironmental changes.

Several studies have evaluated the association between tumor characteristics (such as

molecular subtypes and ER status) and metabolomics profiles of breast tissues. Some investiga-

tors observed a separation between ER positive and ER negative tumors based on metabolo-

mics profiles [7, 17, 25], whereas others showed overlapping patterns between ER positive and

ER negative samples [1, 26]. In the current study, we observed that metabolic Cluster 2

included more women with ER positive tumors (OR = 2.09). However, our findings should be

interpreted with caution in that it was based on univariate analysis (not adjusting for potential

confounders, e.g. obesity), and not statistically significant (p = 0.20).

Our study should be considered in light of limitations and strengths. First, the sample size

of our study may lead to imprecise effect estimates (e.g. OR of adipose composition) and lack

of statistical power for multivariate analyses or stratified analyses. Future studies with larger

sample size are needed to overcome these caveats and validate our findings. Second, although

we detected over a hundred significant compound ions, only 11 could be library-matched to

known metabolites for use in pathway analysis. Therefore, the results of pathway analysis do

not characterize the two metabolic Clusters comprehensively. One important strength of our

study is the use of normal and cancer-adjacent normal breast tissue. Most metabolic studies

are done in the diseased tissue/tumor where the characteristics of the pathologic tissue are

compared to normal tissue in order to understand the variations from normalcy that accounts

for the abnormality manifested as disease/pathology [26, 27]. However, the corresponding

changes in normal versus cancer-adjacent normal tissue are not well understood. In our study,

we used both normal and cancer-adjacent normal breast tissue samples from the Normal

Breast Study (NBS), and provided significant associations between genomic, histologic, and

metabolic profiles within a population of women with histologically normal-appearing breast

tissue. Our results help to increase understanding on how normal tissue responds to breast

cancer risk factor exposures, the adjacent tumor microenvironment, and how these dynamics

may mediate breast cancer risk and outcome.

Cancer-adjacent, normal breast tissue can be abnormal
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To identify targetable pathways to disrupt the process of tumor growth and progression,

future research with sufficient sample size of normal breast tissue is needed to better character-

ize genomic, metabolomic and histological microenvironments, and to understand how these

associated risk factors (e.g. obesity) drive breast tissue microenvironment alterations and ulti-

mately promote disease. In addition, the identification and analysis of additional metabolites

that may have a role in modulating the effect of various risk factors will help to further our

understanding of normal and cancer-adjacent normal breast phenotypes.
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