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Abstract

Background—Distinctions in the etiology of triple negative versus luminal breast cancer have 

become well-established using immunohistochemical surrogates (notably estrogen receptor [ER], 

progesterone receptor [PR], and human epidermal growth factor receptor 2 [HER2]). However, it 

is unclear whether established immunohistochemical subtypes are the sole or definitive means of 

etiologically subdividing breast cancers.

Methods—We evaluated clinical biomarkers and tumor suppressor p53 with risk factor data from 

cases and controls in the Carolina Breast Cancer Study, a population-based study of incident breast 

cancers. For each individual marker and combinations of markers, we calculated an aggregate 

measure to distinguish the etiologic heterogeneity of different classification schema. To compare 

schema, we estimated subtype-specific case-control odds ratios for individual risk factors and fit 

age-at-incidence curves with two-component mixture models. We also evaluated subtype 

concordance of metachronous contralateral breast tumors in the California Cancer Registry.

Results—ER was the biomarker that individually explained the greatest variability in risk factor 

profiles. However, further subdivision by p53 significantly increased the degree of etiologic 
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heterogeneity. Age at diagnosis, nulliparity, and race were heterogeneously associated with 

ER/p53 subtypes. The ER-/p53+ subtype exhibited a similar risk factor profile and age-at-

incidence distribution to the triple negative subtype.

Conclusions—Clinical marker-based intrinsic subtypes have established value, yet other schema 

may also yield important etiologic insights.

Impact—Novel environmental or genetic risk factors may be identifiable by considering different 

etiologic schema, including cross-classification based on ER/p53.
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Introduction

Numerous studies have evaluated subtypes of breast tumors from an etiologic perspective, 

with many studies suggesting strong heterogeneity in risk factor associations by ER status 

and according to luminal A (ER+/HER2-) versus triple negative (ER-/PR-/HER2- with or 

without positive basal markers) (1–6).In addition to distinct risk factor profiles in 

population-based studies, these clinical marker-based subtype definitions show bimodal age-

at-incidence frequency in large data sources such as Surveillance Epidemiology and End 

Results (SEER), which has been interpreted to signify residual etiologic heterogeneity even 

within defined clinical marker-based subtypes (7–10). Finally, some studies evaluating 

marker concordance of double primary breast cancers have shown that second primaries tend 

to share the ER status or triple negative status of the first cancer occurrence, suggesting both 

cancers arise from the same etiologic milieu (11–13). However, most efforts to understand 

etiologic heterogeneity have focused on clinical markers without considering other markers 

of potential etiologic significance.

The tumor suppressor p53 is mutated in 30–50% of breast cancers and tends to have high 

variant allele frequencies suggestive of monoclonality (14). These findings, together with 

evidence that p53 may define etiologic subtypes of ovarian cancers, have led to interest in 

p53 as a marker for breast cancer subtypes (15, 16). A previous paper used a data driven 

approach to evaluate ER, PR, HER2, p53 and clinical multi-marker schemes for intrinsic 

subtype, and found that a four-group solution best described risk factor segregation (17). The 

cross-classification of ER and p53 was the optimal marker combination for describing these 

four etiologic subgroups. We sought to evaluate these same four markers (ER, PR, HER2, 

and p53) in the Carolina Breast Cancer Study, a large population-based study with rich risk 

factor data, to assess which marker combinations showed greatest evidence for etiologic 

heterogeneity.

Materials and Methods

Study Population

The Carolina Breast Cancer Study (CBCS) is a population-based study conducted in North 

Carolina in three phases (Phase 1: 1993–1996, Phase 2: 1996–2001 and Phase 3: 2008–
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2013); study details and sampling schema have been described previously (18, 19). Briefly, 

cases were women aged 20 – 74 years diagnosed with a first primary invasive breast cancer 

enrolled using rapid case ascertainment. For Phases 1 and 2, controls were identified using 

the Driver’s License and Medicare beneficiary lists. Phase 3 did not enroll controls. Note 

that as a result use of Phase 3 cases in this study is limited to our analyses of age-at-

incidence curves. Black and younger women (age <50) were oversampled to allow sufficient 

sample sizes for subset analyses. Race was determined by self-report and categorized as 

white or black. Less than 2% of non-black participants self-identified as multiracial, 

Hispanic or other race/ethnicities and were classified as white for statistical analyses. Tumor 

characteristics for cases (e.g., tumor size, node status, and stage) were abstracted from 

medical records and pathology reports. The study was approved by the Office of Human 

Research Ethics/Institutional Review Board at the University of North Carolina at Chapel 

Hill, conducted in accordance with U.S. Common Rule, and informed consent was obtained 

from each participant.

Risk factor data

In-person interviews were conducted by trained nurses for both cases and controls to 

measure body mass index (BMI) and collect medical history, family history, and other risk 

factor information (4, 20). BMI was classified as pre-menopausal BMI if the participant was 

pre-menopausal and as post-menopausal BMI if the participant was post-menopausal. The 

set of individual risk factors was restricted to those used in an earlier analysis of etiologic 

heterogeneity in a pooled case-control study population, to facilitate comparison of the 

results (17). We did, however, consider including mammographic density due to its 

importance as a risk factor but unfortunately Breast Imaging Reporting and Data System 

measures were only available for a limited subset of the cases.

Tumor markers and intrinsic subtypes

ER, PR, HER2, and p53 status for cases were determined from formalin-fixed paraffin-

embedded tumor tissue blocks, which were previously sectioned and stained for a panel of 

immunohistochemical (IHC) markers at the Immunohistochemistry Core Laboratory at the 

University of North Carolina, Chapel Hill; details have been described elsewhere (21–23). 

ER, PR, and p53 were considered positive if percent positive cells was ≥ 10%, HER2 

positive was defined as IHC 3+ (24). IHC “intrinsic” subtype was defined as luminal A (ER

+ or PR+ and HER2-), luminal B (ER+ or PR+ and HER2+), HER2-type (ER- and PR- and 

HER2+), or triple negative (ER- and PR- and HER2-).

Statistical analyses

Analysis of etiologic heterogeneity—Our approach relies on a scalar measure, denoted 

D, that captures the extent of etiologic heterogeneity in a set of subtypes. This method has 

been described in detail previously and has been used in applications to kidney cancer, 

breast cancer, and melanoma (17, 25–27). Briefly, a multivariable polytomous logistic 

regression model is fit with a set of subtypes as the outcome and all available established 

risk factors for disease as predictors. Then the scalar measure D is calculated based on 

coefficients of variation and covariation of risk predictions from this model, where a larger 
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D indicates a higher level of etiologic heterogeneity. In essence, D captures the extent to 

which the subtypes differ with respect to the profiles of risk factors. We calculate this 

measure of etiologic heterogeneity for candidate subtypes based on individual IHC tumor 

markers ER, PR, HER2 and p53, as well as candidate subtypes based on combinations of 

these tumor markers, and seek to identify the subtype solution that maximizes D. This 

analysis included cases and controls from phases 1 and 2 of CBCS. To test whether one (or 

more) tumor markers define a statistically significant increase in etiologic heterogeneity, the 

baseline subtypes were fixed and cases were randomly allocated to the additional marker(s) 

in proportion to their relative frequencies. The corresponding D value was calculated based 

on this random allocation. This process was repeated 10,000 times to obtain a null reference 

distribution. The resulting p value is the proportion of these randomly simulated values of D 
that exceed the observed value. Formal statistical comparisons of subtypes of such 

configurations with comparators such as the intrinsic subtypes are not possible since these 

models are not nested.

Case-control comparison—Multivariable binary logistic regression models were used 

to compute case-control odds ratios to compare risk factor associations by subtype, 

including an offset term to account for CBCS sampling schema, allowing estimate 

comparison with other population-based studies. The offset term represents the age- and 

race-based sampling probabilities for women enrolled in CBCS and is defined as the natural 

log of the ratio of the sampling probability for a case in the specific age-race stratum to the 

sampling probability for a control in the same age-race stratum. All risk factors of interest 

were included as predictors and the four ER/p53 subtypes were modeled as the output, with 

adjustment for CBCS study phase 1 versus phase 2. The same analyses were performed for 

the intrinsic subtypes and for subtypes defined solely by the individual IHC markers and 

combinations of markers. Regression parameters for each risk factor were exponentiated to 

obtain odds ratios as a measure of effect size. For both subtype schemes, multivariable 

polytomous logistic regression models without an offset term were used to calculate a p 

value for heterogeneity to test the null hypothesis that each risk factor has the same effect 

across all subtypes.

Age-at-incidence curves—Bimodality in age at incidence has been used as a proxy for 

the hypothesis that cases comprise a mixture of etiologically distinct subtypes (7). Two-

component statistical mixture models were used to estimate the mixing proportion of early-

onset and late-onset peaks within each of the ER/p53 subtypes and intrinsic subtypes for 

cases from all three phases of CBCS, as previously described (7, 28). We tested the 

performance of a single-density model versus the two-component mixture model within 

each subtype. Single-density and two-component mixture models were each evaluated using 

normal density and semi-nonparametric density parameters (adding polynomial component 

to allow for skewness and heavy tails in the distributions), producing a total of four models 

for comparison within each subtype. Models were compared using Akaike information 

criterion (AIC) values, with smaller AIC values indicating a better fit. We identified the top-

ranking single-density model and the top-ranking two-component mixture model, and then 

compared the goodness of fit between these two models using the difference in their AIC 

values (ΔAIC), with ΔAIC >10 indicating a substantial difference in the goodness of fit 
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between the two models. The smooth density curve estimated from the best model is plotted 

for each of the subtypes along with the empirical age-at-diagnosis distribution (i.e. 

histogram).

Double primary data—Etiologic heterogeneity between subtypes can also be detected by 

examining the extent to which the subtypes are similar in pairs of independent tumors from 

the same patient (29). The concordance odds ratio is a suitable measure of the strength of 

association, with higher odds ratios demonstrating higher etiologic heterogeneity. We used 

data from cases of metachronous contralateral breast cancer reported to the California 

Cancer Registry between January 1999 and December 2004, originally reported in Brown et 

al. and evaluated for etiologic heterogeneity by Begg et al (29, 30). This analysis was limited 

to the intrinsic subtypes, which were defined using IHC ER, PR, and HER2 status as above.

Statistical analysis for age-at-incidence curves was conducted in SAS version 9.4 (SAS 

Institute, Cary, NC). All other statistical analyses were conducted in R software version 

3.5.0 (R Foundation for Statistical Computing, Vienna, Austria).

Results

Demographic and tumor characteristics of cases and controls from Carolina Breast Cancer 

Study Phases 1 and 2 can be found in Supplemental Table 1 and baseline risk factor 

prevalence among cases and controls is shown in Supplemental Table 2. Cases had relatively 

higher prevalence of younger age at menarche, nulliparity, younger age at first live birth, and 

never breastfeeding. We evaluated these risk factors, along with BMI, oral contraceptive use, 

and menopausal status.

Evaluating single markers ER, PR, HER2, and p53, we found that ER results in the highest 

D for discerning etiologic heterogeneity (D = 0.078; Table 1). We next considered 4-class 

solutions formed by cross-classifying each of the other markers with ER, and found that 

among 4-class solutions, the highest D resulted from the cross-classification of ER and p53 

(D=0.118). The additional contribution of p53 to ER was statistically significant (p=0.002). 

By contrast, neither PR nor HER2 added significantly to the etiologic heterogeneity 

explained by ER: PR (D=0.103; p=0.190), HER2 (D=0.097, p=0.551). The 4-class IHC 

intrinsic subtypes (luminal A, luminal B, HER2-type, and triple negative) produced a D 
value substantially lower than the ER/p53 configuration (D=0.097). The extent of overlap 

between the ER/p53 and IHC intrinsic subtypes is displayed in Table 2. Luminal A tumors 

are largely p53-, though p53+ was observed in about a third of cases; luminal B tumors are 

evenly split between mix of p53+ and p53- cases, as are HER2 and basal-like cases.

In addition to an aggregated statistical measure of heterogeneity, D, it is informative to 

evaluate how individual risk factor patterns differ for subtype solutions. We estimated odds 

ratios for each of the risk factors used in estimating D, including an offset ratio to allow for 

comparison of effect estimates with other cohorts (Figure 1 and Supplemental Table 3). The 

ER-/p53+ and triple negative subtypes showed similar risk factor profiles, with both 

exhibiting concordant associations with earlier age at menarche, lower post-menopausal 

BMI, positive family history, and black race. ER+/p53- and luminal A subtypes also showed 
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similar risk factor profiles, though with fewer significant associations. We also formally 

tested for heterogeneity across subtypes within each schema (Figure 1). These analyses 

showed that age at diagnosis, nulliparity and race had significant heterogeneity for ER/p53 

subtypes, and age at diagnosis and race had significant heterogeneity for intrinsic subtypes.

To evaluate another metric of etiologic heterogeneity, we plotted age at diagnosis 

distributions and applied two-component mixture models to the ER/p53 schema.Similar to 

the intrinsic subtypes, ER/p53 defined groups were also best fit with a bimodal model 

indicative of residual etiologic heterogeneity within this classification schema. Figures 2A 

and 2B show smoothed density plots for age at diagnosis overlaid with two-component 

mixture models to assess the extent of bimodality in age at diagnosis for the ER/p53 and 

intrinsic subtype schema, respectively. Statistical models comparing single density and two-

component mixture models using AIC values are presented in Table 3. In line with previous 

results, we found that although some subtypes were enriched for either early or late age at 

onset, neither the intrinsic subtypes nor the ER/p53 subtypes captured a truly unimodal 

population. ER+/p53- and ER+/p53+ showed a relatively higher probability of late-onset 

disease, similar to the luminal subtypes, while ER-/p53- and ER-/p53+ were more enriched 

for early-onset disease, similar to HER2-type and triple negative subtypes.

Finally, as a third assessment of etiologic heterogeneity, we assessed the concordance of 

intrinsic subtypes between first and second primary breast cancers. Data on independent 

contralateral primary breast cancers from the California Cancer Registry are displayed in 

Table 4, classified by intrinsic subtype. High odds ratios, indicative of greater etiologic 

heterogeneity, are observed for all subtype pairs except luminal A versus luminal B. These 

results suggest that there is no strong etiologic distinction between luminal A and luminal B 

tumors. Conversely the results suggest strong etiologic heterogeneity between the HER2-

type subtype, the triple negative subtype, and a subtype that is a combination of luminal A 

and luminal B tumors. Unfortunately, p53 data were lacking in this study so it was not 

possible to compare intrinsic subtype results to ER/p53-defined results.

Discussion

We evaluated whether, in addition to intrinsic subtypes defined by ER, PR, and HER2, there 

are other biomarker-based classification schema that have potential value in defining 

etiologic groups. We found that subtypes formed by ER and p53 explained a higher degree 

of etiologic heterogeneity than the widely accepted IHC-defined intrinsic subtypes. Age at 

diagnosis, race, age at first birth, and postmenopausal BMI showed strong associations 

within ER/p53 subtypes, and age, race, and nulliparity exhibited significant heterogeneity 

across ER/p53 subtypes. Age-at-incidence density plots showed a more pronounced early-

onset peak for ER-/p53+ cases, similar to HER2-type and triple negatives, while ER+ cases, 

similar to luminal subtypes, were enriched for late-onset disease.

Our findings are consistent with previous reports on the value of ER status in defining 

etiologic heterogeneity. ER is perhaps the most extensively studied breast cancer biomarker 

and a well-recognized indicator of etiology (1, 35). Our findings also match previous 

analyses using combined data from the Cancer and Steroid Hormone (CASH) and Womens’ 
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Contraceptive and Reproductive Experiences (CARE) cohorts suggesting that ER/p53 cross-

classification described more variation in aggregate risk factor profiles than intrinsic subtype 

(17). These findings may initially seem somewhat surprising given that analyses of p53 as an 

etiologic marker have been mixed and poorly concordant. For example, Furberg et al. found 

p53+ and p53- had largely overlapping risk factors profiles, consistent with findings by Ma 

et al., who reported that reproductive exposure associations did not vary by p53 status in the 

CARE study (36, 37). However, neither of these studies stratified on ER status, thus effects 

within ER-defined groups may have been masked. In contrast, a case-control study of 

environmental exposures and breast cancer risk by Gammon et al. found significant 

heterogeneity in risk for p53+ versus p53- cancer among current cigarette smokers, with 

greater heterogeneity noted for ER+ than for ER- cancers (38). The latter study is consistent 

with our own work, which suggests p53 alone is not a strong etiologic marker and that 

ER/p53 may help elucidate etiologic heterogeneity similar to findings for intrinsic subtypes.

Complementary to our findings, biological data from the Cancer Genome Atlas Project 

(TCGA) has also highlighted p53 mutation as a key event in certain breast cancer subtypes. 

Up to 50% of breast cancers harbored p53 pathway defects in recent TCGA analyses, with 

almost all of the basal-like breast cancers showing a mutation in p53 or another genomic 

defect in the pathway (39). In the Carolina Breast Cancer Study, we have observed that 

while p53 IHC status is not always positive in basal-like breast cancers, almost every basal-

like breast cancer has a multi-gene RNA-based signature reflecting a defect in the p53 

pathway (23). Thus, p53 may be a hallmark event for some intrinsic subtypes. It is also 

known that variant allele frequencies for p53 mutations are high (i.e. a high percentage of 

reads for a given tumor are p53 mutant) and p53 mutations frequently appear in both the 

primary tumor and metastases, suggesting that p53 mutation may be an early event that is 

highly advantageous for the tumor, leading to greater monoclonality (40, 41). Parallel 

implication of p53 as an important etiologic event both in the biological literature and in 

aggregation of breast cancer risk factors suggest that the combination of ER and p53 merits 

further investigation as an etiologic classification scheme. While the associations we found 

among ER/p53 subtypes mirror some of the risk factor differences that have been reported 

for triple negative versus luminal cancer, it is possible that some etiologic factors, such as 

germline variants or novel exposures, may show stronger association with ER/p53 defined 

subtypes than with intrinsic subtypes (1, 4, 31–34).

An informative next step in assessing the validity of joint ER/p53 status as an etiologic 

subtype schema will be to examine tumor subtype concordance among double primaries. As 

has been demonstrated, double primaries provide experimental evidence for risk factor 

heterogeneity among subtypes (29). A major advantage of this approach is that it is risk 

factor agnostic, i.e. it is influenced by all true risk factors but one does not need to observe 

them. We do recognize that the incidence of a second primary can be influenced by 

treatment for the first primary, a phenomenon that is likely to bias observed odds ratios 

towards the null, and so in examining concordance of subtypes in double primaries we must 

focus on strong trends. For example, treatment of an ER positive first primary with hormone 

therapy could reduce the chance of observing an ER positive second primary, lowering the 

corresponding concordance odds ratio for ER positive tumors. Our results still demonstrate 

very large odds ratios between the ER positive cases and the two subtypes defined by ER 
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negative cases. However, there is no obvious reason why the odds ratio distinguishing 

luminal A and luminal B tumors should be affected by this bias, a result that suggests 

luminal A and luminal B tumors are etiologically similar. This finding is concordant with 

our case-control analyses that showed that the risk factor profiles of luminal A and luminal 

B tumors are very similar. This finding is also congruent with our global heterogeneity 

analysis (using the D measure) where we observed that HER2 status, which delineates 

Luminal A and Luminal B IHC subtypes, did not add significantly to the etiologic 

heterogeneity explained by ER. It is possible that HER2 has persisted as an important 

clinical biomarker because it is a therapeutic target but that it is not necessarily an 

informative etiologic marker. ER status has been shown to be highly correlated among first 

and second primary breast cancers, but p53 status has yet to be examined (42–45). Given 

that we have identified the ER/p53 schema on the basis of risk factor variation among 

subtypes, it will be insightful to assess the strength of this classification scheme using this 

risk factor agnostic method.

Our analysis has allowed comparison of the quality and strength of evidence for etiologic 

heterogeneity across multiple methods. Calculation of a single heterogeneity score 

demonstrated that the ER/p53 schema may reveal etiologic associations not captured by 

intrinsic subtypes, resulting in more distinct risk factor profiles. This approach appeared to 

detect subtle differences between ER/p53 and intrinsic subtype schema that were not evident 

using the age-at-incidence approach. The age-at-incidence approach focuses largely on age 

as a key etiologic variable and requires rather large datasets to statistically distinguish 

between two-population and one-population models. The results of these analyses suggest 

that none of the subtypes formed either by the ER/p53 schema or by the intrinsic schema are 

convincingly homogeneous subtypes, suggesting that further refinement of the subtypes will 

ultimately be necessary. The final approach we utilized, involving second primaries, may 

provide the most direct evidence for etiologic heterogeneity. However, this approach is 

limited in that second primaries are relatively uncommon and cannot reasonably account for 

intervening treatment events, including anti-estrogens, which may bias the types of tumors 

that occur as second primaries, thereby affecting conclusions about etiologic heterogeneity. 

Comparison of these three approaches in one study highlights that utilization of multiple 

approaches may provide the greatest weight of evidence in understanding etiologic 

subgroups.

A strength of our results is that they are derived from population-based sources. In the case 

of the CBCS we oversampled young and black women, allowing us to study the influence of 

race and age on etiology with increased power. We also had complete data utilizing a central 

laboratory, with sufficient sample size for ER and p53 to allow consideration of both 

markers. Finally, we used several different approaches to evaluate etiologic heterogeneity. 

Overall, our results are well aligned with recent biological insights implicating p53 as an 

important etiologic marker. However, there are some limitations inherent to our study. Our 

use of D as a measure of intrinsic etiologic heterogeneity is limited by the fact that the 

analysis only takes into account the risk factors available to us. Importantly, this excluded all 

genetic factors in addition to mammographic density. The value and ranking of D across 

schema may well vary with additional risk factors. We did include the major well-

recognized risk factors and found very similar ranking of biomarker schema as the previous 
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published CASH/CARE study, suggesting the results are moderately stable given the current 

set of known breast cancer risk factors (17). The use of double primaries to evaluate 

etiologic heterogeneity has no such limitations, since the aggregation of subtypes in this 

context is driven by all risk factors, both known and unknown.

We acknowledge also that we focused solely on IHC-defined subtypes in this article, as 

opposed to, for example, creating an mRNA-defined intrinsic subtype. This was due to the 

fact that mRNA data were available for only a relatively small subset of our cases (408 

cases). When we examined this limited subset of cases the subtypes defined by IHC and 

mRNA demonstrated almost identical values of the heterogeneity measure D, and both were 

lower than the corresponding measure for the ER/p53 schema (data not shown).

In summary, we applied multiple quantitative strategies for detecting etiologic heterogeneity 

and found that more than one approach shows promise for highlighting etiologic groups. 

Consistent with prior studies, ER/p53 subtyping was robust in capturing etiologic 

distinctiveness among a large population-based cohort of breast cancer cases with detailed 

exposure data. This classification scheme may help identify novel environmental or genetic 

risk factors for breast cancer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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BMI body mass index

IHC immunohistochemical

AIC Akaike information criterion

CASH Cancer and Steroid Hormone

CARE Womens’ Contraceptive and Reproductive Experiences

TGCA Cancer Genome Atlas Project
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Figure 1: 
Case-control odds ratios for ER/p53 and immunohistochemical intrinsic subtypes with p 

heterogeneity values. Odds ratios (dot) with 95% confidence intervals (whiskers) are plotted 

on log scale and estimate the association of each risk factor with each subtype. P 

heterogeneity values test the null hypothesis that each risk factor has the same effect across 

all subtypes.

Benefield et al. Page 13

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Smoothed age at diagnosis frequency distributions by ER/p53 (A.) and intrinsic subtype (B.) 

with two-component statistical mixture models. Smoothed density curve is plotted in black, 

early-onset density is plotted in blue and late-onset density is plotted in green, with dotted 

line representing median age at diagnosis for early- and late-onset density curves. Bar plot 

shows empirical distribution of age at diagnosis. Triple negative subtype and ER-/p53+ are 

more enriched for early-onset breast cancers, while all other subtypes more closely resemble 

bimodal distribution of age at diagnosis.
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Table 1.

D
1
 estimates for individual markers and subtype solutions.

D value

Single markers

ER 0.078

PR 0.061

HER2 0.015

p53 0.014

Four-class solutions

ER/PR 0.103

ER/HER2 0.097

ER/p53 0.118

Intrinsic IHC subtypes 0.097

1
D is calculated based on a multivariable polytomous logistic regression model including age at diagnosis, age at menarche, parity, age at first live 

birth, months of breastfeeding, menopausal status, pre-menopausal and post-menopausal BMI, oral contraceptive use, family history of breast 
cancer, and race.

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2020 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Benefield et al. Page 16

Table 2.

Classification of four-class subtype by immunohistochemical intrinsic subtype.

Subtype
Luminal A

N = 656
Luminal B

N = 134
HER2-type

N = 82
Triple negative

N = 359

ER+/p53+ 199 (30%) 63 (47%) 0 (0%) 0 (0%)

ER+/p53− 383 (58%) 55 (41%) 0 (0%) 0 (0%)

ER−/p53+ 22 (3.4%) 8 (6.0%) 45 (55%) 179 (50%)

ER−/p53− 52 (7.9%) 8 (6.0%) 37 (45%) 180 (50%)
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Table 4.

Concordance odds ratios
1
 (OR) of metachronous first and second primary breast cancers in the California 

Cancer Registry 1999–2004.

Second cancer

Luminal A Luminal B HER2-type Triple Negative

First cancer

Luminal A 208 28 15 32

Luminal B 40
OR 1.5

8 5 5

HER2-type 12
OR 19.6

4
OR 6.8

17 9

Triple Negative 23
OR 7.9

3
OR 14.9

5
OR 10.6

28

1
The concordance odds ratio measures the alignment of the risks of the two subtypes under consideration in individuals at risk.29 For example, if 

the risk of one tumor type is directly proportional to the risk of the other tumor type, this corresponds to an odds ratio of 1, indicating no etiologic 
heterogeneity. Conversely, as the correlation of these risks becomes less strong the concordance odds ratio increases, reflecting increasingly 
divergent etiologies.
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