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Summary The tumor microenvironment is an important determinant of breast cancer progression, but
standard methods for describing the tumor microenvironment are lacking. Measures of microenviron-
ment composition such as stromal area and immune infiltrate are labor-intensive and few large studies
have systematically collected this data. However, digital histologic approaches are becoming more
widely available, allowing high-throughput, quantitative estimation. We applied such methods to tissue
microarrays of tumors from 1687 women (mean 4 cores per case) in the Carolina Breast Cancer Study
Phase 3. Tumor composition was quantified as percentage of epithelium, stroma, adipose, and lympho-
cytic infiltrate (with the latter as presence/absence using a �1% cutoff). Composition proportions and
presence/absence were evaluated in association with clinical and molecular features of breast cancer
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(intrinsic subtype and RNA-based risk of recurrence [ROR] scores) using multivariable linear and lo-
gistic regression. Lower stromal content was associated with aggressive tumor phenotypes, including
triple-negative (31.1% vs. 41.6% in HRþ/HER2-; RFD [95% CI]: �10.5%, [-13.1, �7.9]), Basal-like
subtypes (29.0% vs. 44.0% in Luminal A; RFD [95% CI]: �14.9%, [-17.8, �12.0]), and high RNA-
based PAM50 ROR scores (27.6% vs. 48.1% in ROR low; RFD [95% CI]: �20.5%, [24.3, 16.7]), after
adjusting for age and race. HER2þ tumors also had lower stromal content, particularly among RNA-
based HER2-enriched (35.2% vs. 44.0% in Luminal A; RFD [95% CI]: �8.8%, [-13.8, �3.8]). Similar
associations were observed between immune infiltrate and tumor phenotypes. Quantitative digital im-
age analysis of the breast cancer microenvironment showed significant associations with demographic
characteristics and biological indicators of aggressive behavior.
© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-
ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Classification schema for breast tumors most
commonly emphasize molecular markers detected in
epithelium, and until recently, non-epithelial cancer-
adjacent tissues were not considered as primary drivers of
tumorigenesis and cancer progression. However, the
importance of the immune microenvironment is now
widely recognized, and it is increasingly evident that other
non-immune stromal components in and around the tumor
may also play a role in cancer development and progres-
sion [2e7]. Recent studies have observed associations
between stroma- and immune-associated gene expression
in tumor samples and clinical outcomes among breast
cancer patients [8e10]. Stroma interacts with different
breast cancer subtypes in characteristic ways in cell-based
assays [22e24], suggesting that cells in the stroma play an
understudied role in tumor biology. Simultaneously,
rapidly growing tumor cells may also rapidly overtake
stroma within a tumor, so the empirical observation of
absence of intratumoral stroma may itself be a poor
prognostic feature. With respect to immune cells, triple
negative and HER2þ subtypes have been shown to have
higher immune infiltration by lymphocytes, a pattern
which may predict response to chemotherapy [16]. How-
ever, few large, population-based studies have been able to
systematically evaluate these two important microenvi-
ronment features in cancers. This is in part because visual
estimation of stromal and immune components is time
consuming and largely qualitative.

Application of digital histology methods with curated
features [1,2] has allowed for more facile, quantitative
characterization of tumor composition. We applied quan-
titative digital histology methods to tissue microarrays
(TMA) from the Carolina Breast Cancer Study Phase 3
[3,4], a study that oversampled Black and young women
who are likely to have more aggressive breast cancer. We
hypothesized that the proportion of both stroma and im-
mune infiltrate in the tumor microenvironment may be
associated with clinical and molecular markers of breast
cancer prognosis.
2. Methods

2.1. Study population

The Carolina Breast Cancer Study (CBCS3) Phase 3 is a
population-based, prospective cohort of women with inci-
dent breast cancer in 44 counties of North Carolina. Details
on the recruitment, data collection procedures and molec-
ular characterization of the tumors in CBCS3 have been
described [3,4]. Briefly, cases were identified using a rapid
case ascertainment system developed in collaboration with
the North Carolina Central Cancer Registry. Eligible par-
ticipants included women between the ages of 20 and 74
diagnosed with a first primary invasive breast cancer from
May 1, 2008 to July 31, 2013. Black and young (<50 years
old) women were oversampled to assess heterogeneity of
disease according to population characteristics and to
identify determinants of breast cancer outcome disparities.
The study was approved by the University of North Car-
olina (UNC) School of Medicine Institutional Review
Board and participants provided written informed consent
(IRB number 92e0410).

2.2. Tissue microarrays

Formalin-fixed, paraffin-embedded (FFPE) tumor blocks
were obtained from participating medical centers for par-
ticipants if sufficient tumor tissue remained after clinical
management. Of the 2998 women enrolled in the study,
tumor tissue was obtained from 95% of participants,
including either slides or blocks. For TMA construction in
this analysis, blocks were emphasized, and blocks were
obtained for 1743 women. Up to three tumor blocks per
woman were obtained, with the representative block
selected by the study pathologist. Most women (approxi-
mately 95%) had only one block available. Central review
by a board-certified pathologist identified and annotated
tumor-enriched areas for construction of TMAs. From these
regions, between one and four 1-mm tumor cores were
taken to be embedded in TMAs for immunohistochemistry
and image analysis. Cores were extracted from tumor
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Fig. 1 A representative core section (A) without and (B) with the Genie tissue composition algorithm overlaid. All four components e
epithelium (green), stroma (red), adipose (yellow), and immune infiltrate (blue) e are visible on this slide. An excess ring of adipose
classification is present which will be analytically subtracted from the analysis area (see Fig. 2). (For interpretation of the references to
color in this figure legend, the reader is referred to the Web version of this article.)
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blocks and embedded into TMAs by the UNC-Chapel Hill
Translational Pathology Laboratory (TPL). The TMA
blocks were serially cut into 4 mm-thick sections and
mounted on slides. The top and bottom sections were
stained with hematoxylin and eosin (H&E) to assess tumor
cellularity at both depths. Sections were then scanned at
20� magnification into the Aperio eSlide Manager (Leica
Biosystems) digital slide database at TPL using the Aperio
Scan-Scope XT Slide Scanner (Leica Biosystems).

Quality control (QC) was conducted prior to image
analysis to exclude cores that were of poor quality or that
represented mucinous tumors (n Z 55) that were not
amenable to digital analysis. Poor quality cores included
those with degraded tissue and sections in which red blood
cells, cysts, or necrosis made up a large proportion (>50%)
of the core. Mucinous tumors could not be distinguished
from adipose tissue, so all cores from those patients were
excluded. When low quality cores were identified for other
reasons, only individual cores were excluded and other
cores that passed QC were retained in the dataset. After
core exclusions, a total of 1687 women remained in the
study population, with a median of 8 core sections per
participant.

2.3. Training and testing of the genie algorithm on
CBCS3

An initial set of 10TMAslideswas selected to train a tissue
composition classifier. First, these slides were manually an-
notated in Aperio ImageScope (Leica Biosystems) with
discrete areas of representative of epithelium, stroma, adipose,
and lymphocytic immune infiltrate. The Aperio Genie algo-
rithm (Leica Biosystems) was provided with these training
slides as a feature library, which was then used to build the
classifier [1]. Modifications were made to adjustment
parameters such as maximum or minimum cell size and stain
intensity to improve the algorithm. Visual inspection of tissue
segmentation was evaluated with each parameter adjustment.
Finally, the classifier was applied to all 176 TMA slides
(corresponding to the top and bottom sections from 88 TMA
blocks). A second algorithm was developed using similar
methodology in the Definiens Tissue Studio Software (Bio-
compare) for a subset of 10 TMAs to evaluate consistency
across available tissue segmentation platforms. The second
algorithm developed using Definiens was strongly correlated
with the first (Aperio), with correlations of 0.82 (epithelium),
0.84 (stroma), and 0.83 (adipose). The two classifiers had 73%
agreement for presence/absence of immune infiltrate. Both
algorithms showed some low frequency misclassification of
tumor cells with pyknotic nuclei admixed with lymphocytes
(Fig. 1). The study pathologist interpreted differences be-
tween the algorithms as suggestive of random error and did
not find evidence that either algorithmwas biasedwith respect
to lymphocyte quantification.

To assign histologic composition (area of each tissue
type), analysis was performed separately for every core
(both a top H&E and a bottom H&E, constructed after
sectioning of 10 unstained slides), and individual estimates
were computed as an area-weighted average over all core
images available for the case. First, glass was excluded
from the analysis area for each core. Then, total tissue area
was calculated across all cores for each case. The indi-
vidual tissue components were summed across all cores for
each case, and the percentage of each component was
calculated as the ratio of the area of the tissue component to
the total tissue area times 100. We noted that each core had
a small circumferential area (radial distance of 0.0403 mm)
that was misclassified as adipose (rather than glass), and
this was corrected in final estimates of adipose and total
area by subtraction.



Table 1 Histological, demographic, and clinical character-
istics of the study population (n Z 1687) and full CBCS3
population (n Z 2998).

Study Population
N (%) or
Mean (SD)

Full CBCS3
Population
N (%)
or Mean (SD)

Stroma (continuous) 34.6 (21.3)
Lymphocytic immune infiltrate
<1% 953 (56.5)
�1% 734 (43.5)

Age (continuous) 52.7 (11.1) 51.7 (11.1)
Race
Black 811 (48.1) 1495 (49.9)
Non-Black 876 (51.9) 1503 (50.1)

Stage at diagnosis
I 760 (44.7) 1254 (41.9)
II 687 (41.0) 1205 (40.2)
III 199 (11.9) 427 (14.3)
IV 39 (2.3) 109 (3.6)
Missing 0 3

IHC Subtype
HR þ HER2- 1114 (67.3) 1901 (65.0)
HER2þ 223 (13.5) 441 (15.1)
Triple-negative 317 (19.2) 583 (19.9)
Missing 33 73

PAM50 Subtype
Luminal A 608 (52.1) 692 (47.7)
Luminal B 195 (16.7) 236 (16.3)
HER2-enriched 66 (5.7) 120 (8.3)
Basal-like 275 (23.6) 373 (25.7)
Normal-like 22 (1.9) 29 (2.0)
Missing 521 1548

Risk of Recurrence Score
Low 217 (18.9) 266 (18.7)
Intermediate 700 (60.8) 842 (59.3)
High 234 (20.3) 313 (22.0)
Missing 536 1577

Combined Histologic Grade
Low 333 (19.9) 604 (20.4)
Intermediate 628 (37.5) 1138 (38.4)
High 713 (42.6) 1224 (41.3)
Missing 13 32

Histological Subtype
Ductal 1496 (89.3) 2661 (89.4)
Lobular 180 (10.7) 315 (10.6)
Missing 11 22
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2.4. Statistical analysis

Two histological parameters e percent of area of core
comprised of stroma (continuous) and immune infiltrate
(dichotomized as present (�1%) or absent (<1%)) e were
used as dependent variables in this analysis. Coefficients of
variation (CV) were estimated for each tissue class to
characterize the magnitude of variability. Multivariable
linear models with a Gaussian error distribution were fit to
estimate mean differences and 95% confidence intervals for
the association between percent stroma (as a continuous
variable) and tumor characteristics. Multivariable general-
ized linear regression models with a binomial error distri-
bution and identity link were constructed to estimate
relative frequency differences (RFD) and 95% confidence
intervals for the association between lymphocytic immune
infiltrate (binary variable) and tumor characteristics.

Tumor variables included IHC subtype (HRþ/HER2-,
HER2þ, triple-negative), PAM50 subtype (Luminal A,
Luminal B, HER2-enriched, Basal-like), ROR-PT score
(low/intermediate/high), combined histologic grade (low/
intermediate/high), and histologic subtype (ductal/lobular).
After Bonferroni-Holm adjustment for multiple testing, p-
values were two-sided with an alpha value of 0.05 as a
threshold for statistical significance. All models were
adjusted for binary age (<50, �50 years old) and race
(Black/non-Black) variables.

Finally, as an exploratory analysis, we used a receiver
operating characteristic curve to illustrate the potential
ability of stromal proportion to distinguish Basal-like from
non-Basal-like tumors and, among ER-positive tumors, to
distinguish Luminal A from Luminal B tumors. ROC curve
analysis was performed in R using the pROC package, and
area under the curve (AUC) was calculated.

3. Results

3.1. Study population and digital image analysis

The clinical, demographic and histological data for the
study population are summarized in Table 1. Overall, the
study population had a mean age of 52.7 and approximately
equal proportions of Black (n Z 811) and non-Black
(n Z 876) participants. The majority of tumors were
early stage, intermediate and high-grade, and hormone-
receptor-positive (HRþ) and HER2-negative by immuno-
histochemistry (IHC). The subset of women with available
images did not differ from the full CBCS3 population.

A representative core section with each of the four
histologic classes present is shown in Fig. 1A, while
Fig. 1B presents the same core section with the selected
Genie tissue composition algorithm overlaid. Overall,
epithelium was the most highly represented (and least
variable) histologic class, with a mean proportion of almost
50% in the population, followed by stroma (34%), adipose
tissue (13%), and finally immune infiltrate (3%). The
coefficient of variation was highest for immune infiltrate
(CV Z 2.20) and lowest for epithelium (CV Z 0.46).
3.2. Associations between tissue composition and
tumor characteristics

3.2.1. Stromal composition
Continuousmeasures of stroma proportionwere inversely

associated with aggressive disease phenotypes (Table 2,



Table 2 Associations between continuous measures of stromal proportion and tumor and clinical characteristics of the study
population.

Stromal Proportion (95% CI)a Percent Difference (95% CI)a p-valueb

IHC Subtype
HR þ HER2- 41.6 (39.9, 43.4) REF REF
HER2þ 38.5 (35.4, 41.6) �3.1 (�6.1, �0.2) 0.0391
Triple-Negative 31.1 (28.3, 33.9) �10.5 (�13.1, �7.9) <0.0001

PAM50 Subtypec

Luminal A 44.0 (41.9, 46.1) REF REF
Luminal B 33.5 (29.1, 35.8) �11.5 (�14.7, �8.3) <0.0001
HER2-enriched 35.2 (30.1, 40.3) �8.8 (�13.8, �3.8) 0.0013
Basal-like 29.0 (26.0, 32.1) �14.9 (�17.8, �12.0) <0.0001

ROR-PT Score
Low 48.1 (45.2, 51.0) REF REF
Intermediate 37.8 (35.6, 40.0) �10.3 (�13.4, �7.3) <0.0001
High 27.6 (24.2, 31.0) �20.5 (�24.3, �16.7) <0.0001

Grade
Low 47.7 (45.3, 50.0) REF REF
Intermediate 42.2 (40.3, 44.1) �5.5 (�8.1, �2.9) 0.0001
High 28.4 (26.2, 30.5) �19.3 (�21.9, �16.7) <0.0001

Morphology
Ductal 32.8 (31.7, 33.8) REF
Lobular 49.0 (46.0, 52.0) 16.2 (13.0, 19.4) <0.0001
a Models adjusted for age and race (p < 0.05).
b P-values adjusted for multiple testing using Bonferroni-Holm method.
c Normal-like samples were excluded for the purposes of PAM50 assessment because of small sample size.
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Fig. 2A). Clinically triple-negative (i.e., HR-negative/
HER2-negative by IHC) tumors had the lowest proportion of
stroma (31.1%) of all subtypes. The highest stromal pro-
portion was seen in hormone receptor (HR)-positive, HER2-
negative tumors (41.6%). HER2-positive tumors had a mean
stroma proportion intermediate between HR-positive,
HER2-negative and triple-negative tumors [38.5%; mean
difference Z �3.1 (95% CI: �6.1, �0.2)]. Similar results
were obtained with PAM50-derived intrinsic molecular
subtypes. Basal-like tumors had significantly lower per-
centage stroma than Luminal A tumors which had the highest
stromal proportion (Basal-like stroma: 29.0%, LumA
stroma: 44.0%). Luminal B and HER2-enriched also had
significantly lower percentage stroma [�8.8% (95% CI:
�13.8, �3.8) and �14.9% (95% CI: �17.8, �12.0),
respectively] than Luminal A tumors (Fig. 3). Lower stromal
area also was observed among tumors with high PAM50-
derived risk of recurrence scores (ROR-PT) and high com-
bined histologic grade. When tumors with low versus high
ROR-PTwere compared, themean difference in stromal area
was �20.5% (95% CI: �24.3, �16.7). Tumors with high
combined histologic grade had substantially less stroma than
either low- or intermediate-grade tumors [28.4%, mean dif-
ference (high vs low grade) Z �19.3% (95% CI: �21.9,
�16.7)]. Finally, invasive lobular carcinomas were associ-
ated with substantially more stroma (53.2%) than tumors
with ductal histology [38.1%, mean difference Z �15.1%
(95% CI: �18.3, �12.0)].
3.2.2. Immune infiltrate
The presence of immune infiltrate (�1% of TMA core

area) was associated with aggressive disease phenotypes
(Table 3, Fig. 2B). Among IHC subtypes, immune infiltrate
was least common among HR-positive breast cancers
(33.6%), and more common among triple-negative [53.2%,
RFD Z 19.6% (95% CI: 13.3, 25.8)] and HER2-positive
tumors [41.6%, RFD Z 8.0% (95% CI: 0.1, 15.2)]. Simi-
larly, among PAM50 subtypes, immune infiltrate was least
common in Luminal A tumors (30.2%) and was signifi-
cantly associated with Basal-like tumors [55.2%,
RFD Z 25.0% (95% CI: 17.9, 32.0)]. Associations were
also significant between immune infiltrate and Luminal B
or HER2-enriched tumors. Finally, the presence of an im-
mune infiltrate was associated with both high (49.2%) and
intermediate ROR-PT scores (38.1%) when compared to
tumors with low ROR-PT scores [23.8%, High
RFD Z 25.4% (95% CI: 16.2, 34.4); Intermediate
RFD Z 14.3% (95% CI: 7.1, 21.2)]. Similarly, both in-
termediate and high combined histologic grade were
significantly associated with immune infiltrate. Intermedi-
ate [35.8%, RFD Z 10.5% (95% CI: 4.2, 16.6)] and high-
grade tumors [50.4%, RFD Z 25.1% (95% CI: 18.8, 31.3)]
had high amounts of immune infiltrate relative to low grade
tumors (25.3%). Among histological subtypes, lobular tu-
mors (27.5%) were significantly less likely to contain im-
mune infiltrate than ductal tumors [38.4%, RFD Z 10.9%
(95% CI: 3.4, 18.0)].



Fig. 2 Lower percentages of stroma are associated with more aggressive disease phenotypes such as triple-negative (A) or Basal-like (B)
breast cancer subtype and higher grade (C). The presence of immune infiltrate is associated with more aggressive disease phenotypes such
as triple-negative (D) or Basal-like (E) breast cancer subtype and higher grade (F).
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3.2.3. Stromal composition: Basal-like versus non-Basal-
like tumors

An exploratory ROC analysis was performed to deter-
mine the potential for stromal proportion in TMA cores to
distinguish breast cancer subtypes (Fig. 3). Among all tu-
mors, the stromal proportion yielded an AUC of 0.680 for
distinguishing Basal-like from non-Basal-like tumors, with
a cut-point of <28.4% identifying more Basal-like tumors.
Among all tumors that were classified as HRþ/HER2-by
IHC, the stromal proportion yielded an AUC of 0.662
with an optimal cut-point of 22.0% stroma for dis-
tinguishing Luminal A from non-Luminal A tumors based
on PAM50 results.

4. Discussion

Using an efficient, high-throughput computational algo-
rithm, we found that clinical and molecular characteristics
of breast cancer are associated with distinct tumor
microenvironments. In particular, we observed decreasing
proportions of stromal content and the presence of at least
1% lymphocytic immune infiltrate in more aggressive tu-
mors (Basal-like, triple-negative, high ROR-PT scores, high-
grade). These results were consistent across two digital
image analysis platforms, Aperio Genie and Definiens. The
proportion of stroma was a strong predictor of subtypes of
breast cancer in exploratory ROC analysis. The study pop-
ulation, CBCS, oversamples young and Black women and
therefore we had good sample size to detect features of
aggressive and Basal-like tumors that are more common in
these groups. Given the preponderance of hormone receptor-
positive breast cancer in the general population, the potential
to separate Luminal A versus Luminal B tumor may have the
highest potential clinical impact. Automated methods could
be used to prescreen ER þ tumors for further evaluation for
mitotic counts or genomic testing.

Increasingly, computational pathology methods are
being applied to histopathological images to elucidate



Fig. 3 The percentage of stroma present in a tumor is able to roughly distinguish between Luminal A and Luminal B tumors (A), as well
as between Basal-like and non-Basal-like tumors (B).
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disease heterogeneity and outcomes [8,9]. High-throughput
computational techniques to assess morphological features
may improve upon manual assessment by being more
efficient, objective, and consistent than a human observer
[11,12]. A study by Beck at al [9]. observed that stromal
features extracted from breast cancer TMAs using machine
learning techniques were strongly associated with overall
survival among breast cancer patients. In that study, models
including three of the most predictive stromal features were
stronger predictors of overall survival than epithelial



Table 3 Associations between lymphocytic immune infiltrate (dichotomized as <1% vs � 1%) and tumor and clinical characteristics
in the study population.

Low Immune (<1%)
(n Z 875)
N (%)

High Immune (�1%)
(n Z 705)
N (%)

RFD (95% CI)a p-valueb

IHC Subtype
HR þ HER2- 688 (73.5) 426 (59.3) REF
HER2þ 118 (12.6) 105 (14.6) 8.0 (0.9, 15.2) 0.0843
Triple-Negative 130 (13.9) 187 (26.0) 19.6 (13.3, 25.8) <0.0001
Missing 19 16

PAM50 Subtypec

Luminal A 403 (60.8) 205 (42.6) REF
Luminal B 111 (16.7) 84 (17.5) 8.7 (0.9, 16.7) 0.0843
HER2-enriched 38 (5.7) 28 (5.8) 8.2 (�3.8, 20.7) 0.2001
Basal-like 111 (16.7) 164 (34.1) 25.0 (17.9, 32.2) <0.0001
Normal-like 14 8 NA NA
Missing 278 245

ROR-PT Score
Low 157 (23.5) 60 (12.4) REF
Intermediate 404 (60.6) 296 (61.2) 14.3 (7.1, 21.2) 0.0003
High 106 (15.9) 128 (26.4) 25.4 (16.2, 34.4) <0.0001
Missing 288 250

Grade
Low 239 (25.2) 93 (12.9) REF
Intermediate 384 (40.5) 233 (33.6) 10.5 (4.2, 16.6) 0.0040
High 324 (34.2) 372 (53.5) 25.1 (18.8, 31.3) <0.0001
Missing 8 7

Morphology
Ductal 826 (87.2) 670 (91.9) REF
Lobular 121 (12.8) 59 (8.1) �10.9 (�18.0, �3.4) 0.0134
Missing 8 5
a Models adjusted for age and race (p < 0.05)
b P-values adjusted for multiple testing using Bonferroni-Holm method.
c Normal-like samples were excluded for the purposes of PAM50 assessment because of small sample size.
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features alone [9]. The authors observed that tumors with
larger contiguous areas of stroma were associated with
better prognosis, consistent with our observations that a
higher stromal proportion is associated with HR-positive,
low-grade tumors.

Immune cells are known to be an important component
of the tumor microenvironment [13e15]. Our findings that
immune infiltrates are more common in triple-negative and
HER2-expressing breast cancer subtypes is consistent with
previous findings [16,17]. Previous studies using data from
the Cancer Genome Atlas (TCGA) demonstrated high im-
mune gene expression among Basal-like and HER2-
enriched breast cancers [13]. Furthermore, tumors with
higher proportions of TILs have been shown to be associ-
ated with response to neoadjuvant therapy and survival
among women with triple-negative and HER2-positive
breast cancer [16,18].

Strengths of this study include the diverse collection of
histological specimens in CBCS that allows for compari-
sons across a wide range of disease phenotypes [3]. In
particular, CBCS recruited a large number of Black
women, an often-underrepresented group in molecular and
pathologic studies. The study also included molecular
profiling by RNA-based assays, which allowed assessment
of RNA-based and protein-based tumor features in relation
to tissue composition, as well as clinical pathologic features
[4]. A potential limitation of digital approaches is
misclassification of some image features. However, we do
not anticipate that classification error would vary by tumor
subtype. Similar to Beck et al. [9], we analyzed breast
cancer TMAs, which may result in some differences in
composition estimates relative to what is observed in whole
slides. Cores tend to be sampled centrally in a tumor, and
some studies suggest that immune infiltration is most
common on the tumor periphery [19]. If this is true, we
may have underestimated the association between periph-
eral immune infiltrate and tumor aggressiveness, however
our estimates are likely reliable for assessing intratumoral
infiltrates.

Recent advances in breast cancer immune-oncology and
computational approaches to histologic image analysis
highlight the importance of immune cells and stromal
features in the tumor microenvironment [9,20,21]. Our re-
sults confirmed significant differences in both immune cell
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infiltration and stromal content among breast cancer sub-
types, with increased immune cells and lower stromal
content in tumors with aggressive phenotypes. The inte-
gration of digital image analysis of TMAs with clinical and
molecular data provides a powerful, high-throughput
approach to the study of breast cancer in large,
population-based cohorts.
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