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Machine learning is gaining prominence in the health sciences, where much of its use has focused on data-
driven prediction. However, machine learning can also be embedded within causal analyses, potentially reducing
biases arising from model misspecification. Using a question-and-answer format, we provide an introduction and
orientation for epidemiologists interested in using machine learning but concerned about potential bias or loss
of rigor due to use of “black box” models. We conclude with sample software code that may lower the barrier to
entry to using these techniques.
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Editor’s note: An invited commentary on this article appears
on page 1483.

Machine learning has recently gained prominence within
epidemiology (1–4) and other fields incorporating data anal-
ysis (5–8). Much of this attention is given to a branch of
machine learning called supervised learning, which uses
algorithms to uncover patterns within the data in hand with
the goal of making accurate predictions for other data (9, 10).
At first blush, such work has a different purpose than causal
epidemiologic research, which uses assumptions derived
from background knowledge about confounding, media-
tion, and effect modification (11) to make inference from
the data in hand. However, in some settings, estimates of
causal effects have been improved by selectively incorpo-
rating machine-learning techniques within a broader esti-
mation framework (12–14). While “machine learning” is
a vast field that defies easy summary, in this commentary
we ponder answers to common questions epidemiologists
have about how machine learning might facilitate causal
research.

THIRTEEN QUESTIONS ABOUT MACHINE LEARNING

What is “machine learning,” really?

Machine learning, broadly, is a discipline focused on de-
riving algorithms that yield optimal predictions or decisions
from data. In our experience, epidemiologists typically use
the term “machine learning” to refer to supervised learning,
the subfield whose methods treat 1 data column as the
“supervisor” and then use algorithms to find patterns in
other data columns to predict it (3). For example, estimating
regression functions, as we do when fitting parametric mod-
els, is a form of supervised learning in which the dependent
variable or outcome is the supervisor.

However, whereas regression functions are typically fitted
via investigator-specified models that are (ideally) chosen
prior to seeing the data, the techniques that are usually
considered machine learning use automated algorithms that
identify which aspects of the data best predict the outcome
using techniques that include but are not limited to auto-
mated variable selection and flexible variable smoothing.
Forward stepwise regression, an algorithmic approach to
progressively adding covariates into a regression model until
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(imperfectly) inferred from data. Often, machine learning is
used not to infer a full statistical model but rather to estimate
the conditional expectation of the outcome given predictors
(sometimes called a “mean model”) with which to predict
outcomes in new data.

In summary, while causal models describe hypothesized
processes and can identify variables as exposures, mediators,
confounders, etc., there are many possible regression models
compatible with a single directed acyclic graph. We there-
fore reference these causal models when we specify statisti-
cal models from which we estimate statistical parameters.
When causal identifiability criteria hold, these statistical
estimates can be interpreted as estimates of causal effect
(24).

When we provide these same confounder variables to
machine-learning algorithms, the algorithms—with limited
additional input from the investigator—can similarly fit a
mean model (sometimes called a nuisance function or nui-
sance model) that can be used to account for confounding.
For example, instead of an investigator deciding whether or
not to include age in a statistical model as 1) a linear term,
2) a categorical variable, 3) a polynomial, or 4) a restricted
cubic spline, a machine-learning algorithm provided with
age in its variable set can decide for itself how best to
relate age to exposure and outcome, potentially selecting
empirically from a wide variety of choices or dropping
age entirely. Given typical loss functions, these data-driven
decisions typically reduce concerns about statistical model
misspecification.

Wait a second! If machine-learning algorithms can drop
variables, what if they drop my exposure??!

Whereas epidemiologists thinking causally specify a con-
trast in a particular treatment or exposure, which elevates the
role of a specific variable and orients model choices around
this variable, machine-learning algorithms that optimize a
bias-variance tradeoff in reference to a loss function (see
“What is machine learning, really?” for technical details
about a loss function) may neglect exposures of interest in
favor of more predictive variables. For example, the least
absolute shrinkage and selection operator (LASSO) regres-
sion technique—a common machine-learning approach—
selects a subset of potential predictors that together min-
imize absolute prediction error (25). In the presence of
strong confounding, a LASSO regression could select a
strong confounder rather than your exposure of interest as
an outcome predictor. If we used this LASSO regression
to estimate counterfactual outcomes as in a conventional
outcome regression model, we might well see no effect of
the exposure (i.e., it would “shrink” all the way to 0).

However, there are several ways to mitigate this concern.
First, many machine-learning approaches, such as general-
ized additive models, do not perform variable selection and
thus are not subject to this phenomenon. Second, with a
large sample size, we can fit machine-learning algorithms
separately within each stratum of the exposure and pre-
dict outcomes separately in each arm, thus bypassing this
problem entirely. Finally, we could select a method that
is not vulnerable to this phenomenon. For example, if we

the addition of covariates no longer improves model fit, is a 
form of machine learning.

Technically, this notion of identifying the “best” model is 
about identifying the model that minimizes a loss function, 
which is a function that assigns a cost to each observation 
in a training data set. The trained parameters of the algo-
rithm can then be used to compute an expected outcome 
given observed predictors, either in the training data or in a 
different set of data (9). Common loss functions include the 
squared difference between the predicted variable and the 
observed target variable (the loss function for ordinary least 
squares regression), the difference in log likelihood (the loss 
function for logistic regression), and the absolute difference 
between prediction and observation.

Doesn’t machine learning answer predictive questions 
but not causal questions?

Much of the present excitement around machine learning 
focuses on predictive modeling, and machine learning is 
useful for questions that don’t focus on cause-effect relation-
ships, including measurement, risk assessment, prognosis, 
and imputation. For example, machine learning has recently 
been used to measure neighborhood conditions from Google 
Street View imagery (Google, Inc., Mountain View, Califor-
nia) (15), to recover unobserved fetal weights (16), and to 
infer gestational age from data available at birth (17). Better 
measures and more accurate imputation remove potential 
biases in causal effect estimates.

It is less widely understood that if careful consideration 
is paid to caveats that we detail below, machine learning can 
also be embedded directly within the process of causal effect 
estimation.

How can I incorporate machine learning into a causal 
analysis?

First, note that causal model misspecification (e.g., im-
properly adjusting for a mediator or collider in a model used 
to estimate a causal effect) and statistical model misspecifi-
cation (e.g., “mean model misspecification,” such as falsely 
specifying that 2 nonlinearly related variables have a linear 
relationship, or “distributional misspecification,” such as 
modeling a log-normally distributed variable with a normal 
distribution) are distinct errors (18). In observational epi-
demiology, we typically use causal models (such as causal 
directed acyclic graphs (19) or single world intervention 
graphs (20)) to decide how to specify and interpret statis-
tical models. Causal models typically cannot be inferred 
from data alone and must be generated from background 
knowledge (21). There exists a branch of machine learning, 
known as causal discovery, that focuses on the conditions 
and assumptions under which causal models can be inferred 
from temporal ordering of changes in data alone (22, 23), 
though the granularity and scale of data currently required 
for these approaches render them unlikely to be useful to 
most epidemiologists in the near term (and so are not the 
focus of this paper).

By contrast, a statistical model—the distributions and 
covariances of variables in multidimensional space—can be



use machine-learning approaches to estimate the score for
a matched propensity score analysis, the observed exposure
serves as the “outcome” of the machine-learning algorithm,
and so the exposure cannot be removed by the algorithm
(though this approach requires caution regarding variable
selection and the bias-variance tradeoff, as detailed below)
(26, 27).

What is this bias-variance tradeoff thing?

The bias-variance tradeoff is a key idea in both statistics
and machine learning and can be confusing to epidemiolo-
gists because its name incorporates familiar words but uses
them to refer to related but subtly different notions. The
“bias” of the bias-variance tradeoff refers to a difference
between the mean value of model predictions computed
from repeated samples and the true value of the parameter
being estimated. The “variance” characterizes the sensitivity
of the predictions to which observations from an underlying
population happen to be in the data set to which the model
was fitted. In general, model-building choices that let a
model fit the observed data more closely (e.g., allowing there
to be more knots in a spline model, which results in less
bias in the observed data) result in models whose final form
is more influenced by the specific data to which the model
is fitted—that is, are higher-variance. Thus, too much bias
results in underfitted models and too much variance results
in overfitted models. Both can make models predict badly.

A number of machine-learning algorithms have “tuning
parameters”—inputs to fitting a given model that optimize
the bias-variance tradeoff—often selected using cross-
validation. Cross-validation is a process in which an analyst
sets aside a portion of their data (the “test set”) and fits
a model to the rest of the data (the “training set”). By
testing how well models that they fit to the training set with
different tuning parameters predict within the test set, they
can empirically identify a tuning parameter that balances
bias and variance to minimize error. The most common
form of cross-validation, K-fold cross validation, repeats
this partitioning K times to cover the full data set.

Cool. So machine learning can help me pick the
covariates to put into my model?

It is again helpful to distinguish between causal models
and statistical models. Machine learning cannot identify the
causal structure giving rise to data: Algorithms cannot in
general distinguish confounders from mediators, nor can
they determine whether key confounders are unmeasured
or whether a variable is a collider. If your data are missing
variables, you would need to meet the causal identifiability
criteria; no amount of machine learning can overcome this.

But given a set of potential (noncollider, nonmediator)
confounding variables to include in a model, machine learn-
ing can help select a subset of those variables that reduce
confounding bias while avoiding model instability due to
multicollinearity and avoiding loss of precision due to exces-
sive variance from including too many predictor variables.
However, be cautious: Automated variable selection can

cause problems. For example, when using machine learning
to compute propensity scores, model selection will favor
instruments of the exposure, which can induce finite sam-
ple bias or magnify uncontrolled confounding from other
sources (26, 28).

Still, if you have enough background knowledge to dis-
tinguish between weak predictors and nonconfounders and
between pure instruments and true confounders, machine
learning can improve variable selection.

How do I know when machine learning will provide a
more correct estimate than a conventional regression
model?

Parametric regression—wherein prespecified covariates
are modeled with a (frequently linear) relationship with the
outcome (or log odds of a dichotomous outcome)—will only
accurately estimate a parameter interpretable as a causal
effect to the extent that the statistical model is correct (21).
Thus, even with an accurate causal model, statistical mis-
specification can lead to incomplete confounding control.

Machine-learning algorithms typically allow more flexi-
ble modeling forms or different modeling assumptions (6).
For example, tree-based methods such as classification
and regression trees or random forests specifically do not
require linearity assumptions. We caution that flexibility
is no panacea; for example, tree-based approaches may be
poorly suited to predicting in contexts where discontinuities
(that is, sharp categorizations) are implausible (29).

Machine learning often identifies covariate patterns that
predict exposure (or outcome) better than an a priori model
(often including linearity and homogeneity assumptions)
would. In many instances, the resulting model is better able
to reduce statistical model misspecification and consequent
residual confounding. Several empirical simulations suggest
that propensity scores generated using machine learning
improve model performance in the presence of 3 or more
product terms in the data-generating model, relative to a
naive linear model (1, 30).

An additional concern regarding data-driven model selec-
tion is that frequentist statistical inference assumes models
are correct and all uncertainty derives from data. As a result,
confidence intervals from an analysis that naively embeds
machine learning may fail to incorporate model uncertainty
and so may be too narrow (13). Fortunately, this problem
may be mitigated by sample splitting, embedding machine
learning in doubly robust estimation techniques such as tar-
geted maximum likelihood estimation (TMLE), or both (12,
13, 31). Whereas the latter approach relies on deriving vari-
ance estimates from the influence curve—a function describ-
ing how the estimator would change if the observed data
were slightly different (32)—the former approach accounts
for model uncertainty by design, because model selection
is performed using distinct data. More broadly, embedding
machine learning in doubly robust estimators may also min-
imize bias resulting from the “curse of dimensionality,”
wherein flexible models fitted with many predictors require
much more data to be statistically consistent, and thus could
result in more biased estimates in practice (33).



estimates are fairly robust to bias from statistical model
misspecification (1).

The field of machine learning is actively developing, how-
ever, and the incremental benefits of flexible model-fitting
may increase as the field matures. When the plausibility
of outcome regression’s linearity assumptions is a strong
concern, machine learning provides a principled approach
to model selection which allows us to more realistically
capture uncertainty about model form and address scenarios
with many potential confounders and limited background
information in order to choose among them.

Could this all backfire, though? Could machine learning
increase bias in my results?

It is unlikely that cautious use of appropriate machine-
learning algorithms will increase bias. If you understand
pitfalls of variable selection, are aware that the bias-variance
tradeoff may not be for the parameter of interest, and can
ensure that your sample is large enough for sample-splitting
to reduce overfitting, you will probably avoid the worst-case
scenarios.

However, machine learning is not just 1 tool, and different
algorithms encode different assumptions about functional
forms. It is possible that, for example, selecting a tree-based
estimator to fit a smooth function could result in greater
misspecification than would result from a typical regression
model. In practice, we would expect that bias arising from
an algorithm’s failing to approximately represent the data-
generating process will often, though not necessarily, result
in artifacts that a careful analyst would notice. For example,
inappropriate selection of an exposure instrument as a con-
founder might result in very large propensity scores (1), or
overfitted predictive models might result in large differences
between training set and test set cross-validation results,
which could be caught as an analysis progresses. Another
way to address model-choice concerns is through the use
of ensemble models, which we discuss in the next question.
Broadly, as in all epidemiology, cautious interpretation of
results is warranted.

Will I get accurate confidence intervals?

Methods for estimating frequentist confidence intervals
typically use math for populations that approach infinite
sizes. This math, known as asymptotic theory, defines 2
terms that are key for estimating confidence intervals: con-
sistency (a point estimate converges to the true value as
sample size grows) and asymptotic normality (the stan-
dardized difference between point estimates and the true
value converges to a normal distribution in very large sam-
ples) (37). For consistent and asymptotically normal estima-
tors (e.g., the sample mean), asymptotic theory gives nice
(and familiar!) estimates of variance and, hence, confidence
intervals.

Informally, asymptotic normality and consistency both
rely on the “information” in the data growing faster than the
number of parameters. Many machine-learning algorithms
prevent overfitting by penalizing parameters (optimizing the

How do I interpret the estimate I get if I use machine 
learning to estimate a causal effect?

The causal interpretation of any effect you estimate is 
determined both by the identifiability assumptions you use 
to link your causal model to data and by the statistical 
procedure you use to estimate the causal parameter (24). For 
example, if you perform an inverse-probability–weighted 
analysis, the statistical parameter you estimate will estimate 
an average treatment effect when causal identification con-
ditions hold. This will be true regardless of whether the 
propensity scores are computed using standard parametric 
models or flexible machine-learning algorithms.

However, the numerical result will typically differ if the 
flexible algorithm chooses a model that differs from the 
standard parametric model. Assuming that the more flexible 
model better approximates the true data-generating process, 
resulting estimates will probably be less biased. This bias 
reduction cannot be verified and is not guaranteed, though—
a flexible model that is overfitted or that incorporates instru-
ments rather than confounders might fail to reduce bias, so 
caution is warranted.

Overfitting sounds bad. Do I need more data to fit a 
model that incorporates machine learning than I would 
need for a conventional regression model?

Holding all else equal, more flexible models need more 
data, and they need to be used cautiously to avoid overfit-
ting. To account for this risk, machine-learning algorithms 
typically split samples when tuning parameter selection, 
effectively using less of the original data while training mod-
els. Nonetheless, more accurate model fit using machine-
learning algorithms can decrease bias and increase precision, 
relative to misspecified parametric models (1). Moreover, 
some machine-learning algorithms, notably including tech-
niques such as LASSO regression, perform well in settings 
with few observations. If you are concerned that you do not 
have enough data, it is wise to consult with machine-learning 
experts who might help you avoid algorithms that could 
more easily overfit your data and develop cross-validation 
plans that can make efficient use of the data you have.

Do I have to learn machine learning? Would all this 
effort benefit my work?

Nothing about using machine learning in causal inference 
changes the core value of epidemiologic thinking, which 
is (in our opinion) framing and formulating questions whose 
answers can improve public health (34, 35), with due consid-
eration to systematic and random errors which may threaten 
the validity of the answers to those questions. The insights 
needed to formulate these questions rest more in conceptual-
izing population-level data-generating processes in order to 
design studies and interpret analytical results than they do in 
fancy estimation techniques (36). Moreover, while flexible 
model-fitting might help to better account for nonlinear 
confounding relationships as detailed above, some empiri-
cal simulations suggest that regression-based causal effect



Table 1. Common Categories of Machine-Learning Algorithms

Category Examples Benefits Drawbacks

Generalized linear models Linear regression, logistic
regression

Familiarity among other
researchers, extensive
software support

Linearity assumptions, sensitivity
to highly correlated variables

Penalized linear regression LASSO, ridge regression, elastic
net regression

Robustness within wide data sets Linearity assumption

Tree-based methods CART, random forest Discontinuous effects, model
f lexibility

Risk of overfitting when
discontinuity is not appropriate

Spline-based methods LOESS smoothed regression,
generalized additive models

Model f lexibility High data requirements,
particularly when interactions
are of interest

Abbreviations: CART, classification and regression trees; LASSO, least absolute shrinkage and selection operator; LOESS, locally weighted
scatterplot smoothing.

bias/variance tradeoff; see “What is this bias/variance trade-
off thing?”), which introduces biases that do not diminish
(or diminish too slowly to produce accurate confidence
intervals (31)) in large samples. This in turn means that 95%
confidence interval estimates may not cover the range that
would include the true value in 95% of infinitely repeated
samples. There is active research exploring how selected
estimators may allow consistent and asymptotically normal
estimators. However, this field is nascent, and no consensus
has been reached about which algorithms will function well
in actual data with small or moderate sample sizes (38, 39).

Given the lack of consensus, the safest option as of 2021
appears to be to use cross-fitting (31, 40), certain forms of
doubly robust estimation (41, 42), or an approach embedding
a higher-order influence function (38, 43). These options
permit computation of confidence intervals supported by
theory at the cost of more intricate programming.

Okay, okay, fine. How do I get started with machine
learning?

There are numerous textbooks, online tutorials, course-
work, and seminars available that provide background infor-
mation on machine learning, and many of these touch on
using machine learning in causal analyses. In particular, we
would point readers to An Introduction to Statistical Learn-
ing (6) for background information on machine learning and
to Targeted Learning in Data Science (44) for more details
on incorporating machine learning into causal analyses.

There are myriad machine-learning algorithms; each has
its own different benefits and drawbacks (6), and some
empirical studies suggest that performance differences be-
tween some popular algorithms are minimal in scenarios
approximating realistic epidemiologic data sets (1, 30, 45,
46). At a minimum, we would recommend familiarizing
yourself with major classes of machine-learning methods
and their benefits and drawbacks (Table 1).

Because some algorithms suit some problems much
better than others, ensemble models that combine multiple
algorithms are a common and defensible choice. Ensemble

methods combine multiple machine-learning algorithms and
are desirable in that they optimize prediction in a way that
typically outperforms individual, component algorithms.
In practice, ensemble methods trade computational time
for flexibility. The best known ensemble methods at the
moment are Super Learner (47–49), random forest (50), and
XGBoost (51), which are flavors of the classes “stacking,”
“bootstrap aggregation,” and “boosting,” respectively (6).

Software for machine learning is improving quickly. As
of May 2021, good general support for starting to work
with machine learning is available in R (the caret package
(52); R Foundation for Statistical Computing, Vienna,
Austria), Python (the scikit-learn package (53); Python
Software Foundation, Beaverton, Oregon), and SAS (46)
(SAS Institute, Inc., Cary, North Carolina). These can help
you if you want to compute propensity scores using machine
learning and then conduct a conventional propensity-score–
matched or inverse-probability–weighted analysis. Web
Appendices 1–3 (available online at https://doi.org/10.1093/
aje/kwab047) contain annotated sample code in R, Python,
and SAS that uses classification and regression trees for
computing propensity scores and inverse probability of
treatment weights and then using the latter in analysis.

If you want an all-in-one package, TMLE features the
most mature software for incorporating machine-learning
approaches into causal inference. There are multiple pack-
ages for TMLE in R, but the tmle package is the simplest
to start with (32). Support in SAS (46) and Stata (StataCorp
LLC, College Station, Texas) is developing but less estab-
lished. Web Appendix 4 contains annotated sample code in
R using TMLE to estimate a causal effect. Code from all
appendices is also available on GitHub (54).

CONCLUSIONS

Machine learning is a useful tool for epidemiologists and
can be used not only to improve descriptive and predictive
tasks such as measurement, imputation, and risk assess-
ment but also in the service of causal effect estimation.
Nonetheless, the core task of epidemiology—understanding
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the abstract principles of inference from data and applying
those principles to answer consequential questions about
population health—is unchanged by the increasing incorpo-
ration of machine learning.
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