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INTRODUCTION

In the 40 years since “Some Statistical Methods Useful in Circulation Research” was 

published, many of the same battery of statistical tests and concepts, such as t-tests, 

ANOVA, p-values, effect sizes, and standard errors, are still abundantly employed in 

hypothesis-driven research1. Newer methods, too, have emerged to address the challenges of 

big data analysis. Some methods now routinely employed to extract insights from data 

include regression analysis, supervised and unsupervised machine learning for clustering, 

density estimation, and dimensionality reduction (e.g., viSNE), as well as prediction 

modeling and enrichment analyses. Additionally, in basic science research, it is now 

common to encounter hypothesis-free analyses, in marked contrast to traditional statistical 

analyses that begin with an explicit hypothesis. To encourage reproducibility, rigor, 

interpretability, and transparency, many editorial teams, including those of Circulation 
Research and the AHA journals, have developed statistical guidelines for authors. Given the 

rapidly changing data landscape, such guidelines must extend beyond “What statistical test 

should I use?” (a question that often can be addressed by a decision tree diagram in applied 

statistical analysis textbooks), to address higher-level challenges that frequently face authors 

including multiple testing, standards of reporting, robustness to violations of assumptions, 

and the limitations of conventional measures of significance. To better support authors and 

readers, we have assembled some topics that warrant particular attention in basic and clinical 

scientific publications such as those published in Circulation Research. These guidelines are 

intended to complement those outlined by the American Heart Association’s Statistical 

Taskforce in their concurrent “Guidelines for Statistical Reporting in Cardiovascular 

Medicine: A Special Report from the American Heart Association” 2.
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REPORTING

Clear description of the approach used to generate each statistical value.

Key to interpretation and evaluation of any statistical analysis is clear and precise description 

of the methods used, the data under consideration, and the resulting parameters and test 

statistics. In the interest of reproducibility, authors must rigorously describe the approaches 

used to calculate summary values and all test statistics, which commonly include measures 

such as p-values, effect sizes or odds ratios, and z-scores. Often, providing the details of the 

specific statistical tests, the exact sample size, and reporting the exact value of the test 

statistic is sufficient to enable other researchers to reproduce the work. In principle, in 

statistical hypothesis testing, authors should specifically:

• Explicitly state the hypothesis (e.g., there is no difference in measure A between 

treatment groups)

• Describe the statistical assumptions concerning the samples (e.g., state whether 

the samples are assumed to be independent, or if the distribution they are drawn 

from is assumed to be normal)

• State the statistical test employed

• Give the specific test statistic for interpretation

• Describe the distribution of the test statistic under the null hypothesis

• State the predetermined significance threshold (alpha) that determines whether 

the null hypothesis is rejected

• Precisely report the resulting values and the determination on whether the null 

hypothesis is rejected as a consequence of the observations.

P-values.

Despite their importance in biomedical research, it is important to note what p-values are 

not. This has implications for what and how results should be reported:

1. A p-value is not a substitute for the size of an effect.

2. A p-value that meets a threshold (historically p<0.05) is often necessary but not 

sufficient to draw a particular conclusion.

3. A p-value is not interpretable without a transparent study design.

The American Statistical Association defines a p-value as the “probability under a specified 

statistical model that a statistical summary of the data (e.g., the sample mean difference 

between two compared groups) would be equal to or more extreme than its observed 

value.”3 In hypothesis testing, a smaller p-value can indicate how incompatible the data are 

with the specific statistical model and is interpreted as stronger evidence in favor of the 

alternative hypothesis.

In reporting, authors occasionally prefer to present a p-value range (e.g., “p < 0.001”), rather 

than an exact value; however, a range does not provide sufficient information to interpret or 
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reproduce the presented work. Additionally, it is critical to report precise p-values for post-

hoc multiple testing considerations and future meta-analysis. We recommend that p-values 

be reported to a minimum of two significant digits. We note that some software tools have 

limitations and cannot accommodate appropriate statistical tests or provide precise p-values. 

Such limitations should not dictate sound practice to ensure reproducibility and 

transparency. The number of hypotheses tested (e.g., multiple simultaneous comparisons 

within an experiment, each able to generate a “discovery”) should be reported (see section 

on multiple test correction for additional information) and findings presented in an unbiased 

manner. For example, selective reporting of p-values should be based on predetermined 

criteria. All reported p-values should be from two-sided tests unless study design warrants a 

one-sided test.

Effect sizes and confidence intervals.

An effect size is a quantitative value calculated from certain effect statistics (e.g., the value 

of the mean difference between groups, or the value of the correlation coefficient). A 

confidence interval (CI) is defined as the range of values that encompass the true value of 

the effect with a given probability, estimated by an effect statistic4. The value of an effect 

size and its corresponding CI can enable effective assessments of relationships within data 

and capture distinct information from statistical significance. We strongly recommend 

reporting effect sizes with standard errors/CIs for every test, and when reported, effects 

should always be accompanied by a measure of error. Qualitative claims of difference (e.g., 

‘increased’, ‘decreased’, ‘elevated’, ‘reduced’, and so forth) should be quantified and 

statistically evaluated.

Multiple testing correction.

Multiple testing refers to the scenario in which multiple hypotheses are tested 

simultaneously, which can lead to increased type I error (i.e., rejection of a true null 

hypothesis). The more hypotheses are tested, and inferences made, the greater the possibility 

of incorrect inference. For example, when a family of ten hypotheses is tested with a 

significance threshold (alpha) of 0.05, the cumulative risk of observing at least one 

significant association when there is no real difference is as high as 40%5. To control the 

type I error rate, it is often appropriate when testing multiple hypotheses to set a stricter 

significance threshold than when making an individual comparison. A variety of methods 

exist to address the problem of multiple comparisons, such as Bonferroni adjustment to the 

significance threshold, post hoc adjustments of ANOVA tests, and Benjamini Hochberg 

False Discovery Rate (FDR) thresholds. These parameters must be justified, and should 

reflect the number of independent tests performed (it should be clear, for example, if you 

tested all possible pairs or only control versus each experimental condition). When many 

experiments are conducted within a family of hypotheses, the increased likelihood of an 

erroneous inference must be acknowledged, and this multiplicity problem should be 

addressed statistically. When reporting an adjusted p-value, authors must state the method 

used and the number of hypotheses adjusted for, as well as how many were actually tested.
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Sample size.

For reproducibility, transparency, and interpretation, exact sample size must be clearly 

described for every test and group; it is not sufficient, generally, to give range values of 

sample size. Very small sample sizes are inadequate for establishing assumptions of 

normality for parametric statistical tests and offer limited statistical power, and, therefore, 

drawing strong conclusions should be avoided in such a scenario.

Power.

Power calculations should be considered a central element of study design, which may 

inform the necessary sample size to test a particular hypotheses. These calculations should 

account for anticipated multiple testing. The assumptions (e.g., regarding effect size) 

underlying the power analysis should be explicitly stated.

Correlation vs. causation.

Correlation and causation are not synonymous; tests of correlation are not sufficient to 

establish causation, especially in small sample sizes. Strong causal conclusions require 

multiple lines of evidence especially when sample sizes are small.

Data display.

Data visualization should support transparency6. For example, authors will often present 

“representative” images to illustrate a key finding. The procedure used to select such 

representative images for display from the multiple choices should be described, and ideally, 

images from all replicates should be included in the supplementary materials. Similarly, bar 

graphs should not be used to represent continuous data when dot plots and violin plots 

enable clearer representation of the data density and distribution.

Computational tests, code, pipelines, data sharing.

For transparency, to support reproducibility and downstream experiments, we advise making 

all scripts, pipelines, computations, and results available to readers. We also strongly 

encourage making raw or summary data available to readers.

DESIGN

Choice of statistical test or procedure.

The choice of a statistical test depends on the scientific question, the data type (e.g., 

continuous, binary, categorical), the data distribution (e.g., normal, Poisson, unknown), and 

the study design (e.g., paired or unpaired, independent or correlated). Violation of statistical 

test assumptions may lead to incorrect results, diminished power, or increased type I error. 

Common examples of an incorrectly applied statistical test or procedure include violations 

of assumptions (normality, independent sampling). Parametric tests (e.g., t-test, ANOVA) 

assume underlying statistical distributions in the data and can be biased when these 

assumptions are not met. The main tests for evaluation of normality include D’Agostino-

Pearson, Kolmogorov-Smirnov (K-S) test and Shapiro-Wilk test. Although a formal test of 

normality is preferred, when sufficient data are available, visual assessment of normality 
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may suffice if it is provided in supplementary material. Non-independence of samples can 

occur when multiple samples are taken from the same organism (e.g., observing multiple 

tissue samples in the same mouse after treatment/sham).

Another example is the use of multiple pairwise comparisons (e.g., t-tests) when a multiway 

comparison (e.g., ANOVA) is more appropriate. Special consideration should be given to 

characteristics of the data, such as the presence of outliers or skewed data, to which some 

tests may be sensitive. In addition to evaluating whether outliers should be discarded, 

transformation of data or use of an alternative approach that is robust in the presence of 

outliers should be considered.

Control selection.

Selection of controls and the process of assigning samples to experimental groups is 

important to define. In human data, it is important to describe the recruitment and matching 

criteria and to show that controls are recruited from the same population as cases. If the 

cases and controls do not come from similar populations, effects can be detected due to a 

confounding factor (e.g., age) rather than the outcome of interest. For interventional studies, 

the process by which a subject (cellular, animal, or human) is assigned to a treatment or 

control group must be defined.

Claims of no difference or similarity between groups.

When testing a null hypothesis of no difference, a non-significant result implies that one 

cannot reject the null hypothesis, but this is not the same as being able to accept the null 

hypothesis or demonstrating statistically meaningful similarity. For example, in this situation 

it would be correct to report that “after X days of treatment, measurement Y is not 

significantly different between samples” and it would be inappropriate to state, “after X days 

of treatment, measurement Y is the same between samples”. Claims of similarity should be 

accompanied by statistical evidence, using an approach which tests for similarity, such as the 

two one-sided tests (TOST) for equivalence7.

Circular analysis.

Feature selection and subsequent statistical inference on the same data can lead to “double 

dipping.” This problem may yield severely biased estimation and overly optimistic results. 

An example is the use of the entire dataset for training a model and then a subset of the same 

dataset for testing the model8. Another example is selecting a subset of data consistent with 

the effect to be identified. Methodological caution should be taken and may include 

partitioning the data into two independent samples, one for training or exploration and the 

other for testing. More generally, k-fold cross validation may be performed. To quantify the 

uncertainty in a test statistic, bootstrapping, i.e., resampling the data with replacement, may 

be used. In general, validation in an external and independent dataset will avoid the problem 

of circular analysis.

Omics data and analysis.

Omics data are typically generated from high-throughput (molecular) profiling technologies. 

In contrast with traditional (e.g., single gene) studies, omics data can be noisy and therefore 
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must typically undergo a series of extensive quality control steps. In addition, multiple 

hypothesis testing is particularly relevant for these datasets. In omics studies, analysis is 

often conducted on a large number of variables (e.g., variants, genes, proteins) measured in a 

much smaller number of samples (the so-called “n < p” problem). For example, a common 

goal of omics analysis is to identify a set of differentially expressed genes, from among 

many that are assessed, between two conditions. Given the number of statistical hypotheses 

being tested, an omics study should conduct power analyses. The goals of the study should 

be clearly defined and be realistic, as definitive conclusions may not be possible, and authors 

should acknowledge the often-severe limitations given the sample size and power.

Validation and replication.

There have been some concerns about the reproducibility of scientific findings9. To address 

this, authors must consider direct validation and/or replication of their findings. When a 

large number of tests are performed (e.g., in omics), we expect some false associations 

despite correcting for multiple testing. The results can be replicated using an independent 

sample from the same population or validated using a sample from a different population. In 

the case that additional data are not available, other sources of evidence should be 

considered to further strengthen the conclusion. Other sources of evidence may include other 

types of omics data, animal model databases, and functional follow up. When additional 

follow-up is beyond the scope of the current body of work, the need for further validation 

and replication should be acknowledged. Replication may improve robustness (i.e., stability 

of conclusion to a small change in one of the assumptions) and generalizability (i.e., the 

relevance of the conclusion in other contexts).

Conclusions.

The new statistical guidelines are based on the following key principles: reproducibility, 

rigor, interpretability, and transparency. Although these guidelines are focused on frequentist 

inference rather than Bayesian, Bayesian approaches have many benefits and are highly 

relevant. A checklist of specific suggestions for authors based on these guidelines, and 

addressing many issues that commonly arise in review, will be made available on the 

Circulation Research website (https://www.ahajournals.org/res/author-instructions). We 

emphasize that these are guidelines and are not the only acceptable designs and practices, 

and when appropriate will be adjusted to address additional statistical challenges commonly 

encountered in the broad range of impactful publications sent to Circulation Research.
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Nonstandard Abbreviations and Acronyms:

CI confidence interval
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