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Abstract: This review article presents an appraisal of pioneering technologies poised to revolutionize
the diagnosis and management of aortic aneurysm disease, with a primary focus on the thoracic aorta
while encompassing insights into abdominal manifestations. Our comprehensive analysis is rooted
in an exhaustive survey of contemporary and historical research, delving into the realms of machine
learning (ML) and computer-assisted diagnostics. This overview draws heavily upon relevant studies,
including Siemens’ published field report and many peer-reviewed publications. At the core of our
survey lies an in-depth examination of ML-driven diagnostic advancements, dissecting an array of
algorithmic suites to unveil the foundational concepts anchoring computer-assisted diagnostics and
medical image processing. Our review extends to a discussion of circulating biomarkers, synthesizing
insights gleaned from our prior research endeavors alongside contemporary studies gathered from the
PubMed Central database. We elucidate the prevalent challenges and envisage the potential fusion of
AI-guided aortic measurements and sophisticated ML frameworks with the computational analyses
of pertinent biomarkers. By framing current scientific insights, we contemplate the transformative
prospect of translating fundamental research into practical diagnostic tools. This narrative not only
illuminates present strides, but also forecasts promising trajectories in the clinical evaluation and
therapeutic management of aortic aneurysm disease.
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1. Introduction
1.1. Background

Aortic aneurysm (AA) disease is intractable. There are many different subtypes which
may or may not include a genetic component. The pathology is different based on aneurysm
location. Environmental factors, co-morbidities, and sex all differentially affect aneurysm
formation and progression. Despite advancements in our understanding of the complex
pathobiology of AAs, no efficient method for monitoring exists, and it is becoming clear
that no single diagnostic approach will begin to address the many disparate pathological
consequences.

The discovery of AA most often occurs during evaluations of unrelated problems. This
diagnostic process is inherently sub-optimal, leaving many undiagnosed and at risk for
catastrophic complications such as aortic rupture or dissection. Advancements in imaging
analysis, biomarker discovery/quantification, and machine learning will form the basis for
improved monitoring of patients with AAs.

1.2. Significance

An AA is a localized, progressive dilatation of the aorta that, if unidentified, can result
in catastrophic outcomes. Pathogenesis covers a wide range of idiopathic–degenerative,
congenitally acquired, genetically based, and traumatically induced disorders of the
aorta [1]. Each year in the United States, approximately 10,000 people die from AAs,
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while over 16,000 people die from associated complications, making AA the 18th most
common cause of death in the US, and the 15th most common cause of death in individuals
older than 65 years of age. However, given the predominantly asymptomatic nature of AA,
the incidence can be difficult to estimate and may be much higher than originally expected.

If a patient is fortunate enough to be diagnosed early on, a “watch and wait” surveil-
lance program is initiated until the risk of aortic rupture outweighs the risk of surgical
repair. Aneurysm occurs in both the thoracic (TAA) and abdominal (AAA) regions of
the aorta, the former accounting for 25% of cases, the latter, 75% [2]. As such, regional
differences in the etiology, incidence, and diagnosis of aortic disease in the thoracic versus
abdominal aorta should be carefully considered.

Regardless of location, enhanced proteolysis results in pathological tissue remodeling
and progressive dilation. Analysis of the natural history of AAs revealed that aneurysms
progress at a continuous rate, i.e., 0.1–0.3 cm per year in the thoracic aorta [3]. Moreover,
this analysis also identifies sharp “hinge points”. In the thoracic region, for example, life-
threatening complications are all but guaranteed above 6 cm [3]. Thus, early identification
will mitigate associated morbidity and mortality.

While aortic disease is more prevalent in men, the prognosis is typically worse in
women who, at smaller aortic diameters, are more likely to suffer an aortic dissection or
experience rupture [4]. Aortic pathology is often overlooked and diagnosed later in women;
therefore, they experience higher rates of other associated harms, such as major surgical
complications and hospital readmission [5].

Autopsy studies have revealed that the most common cause of death due to AA is
rupture [6]. This highlights the critical need for developing a standardized screening tech-
nique for early diagnosis to mitigate life-threatening complications. While it is likely that
the degenerative process begins earlier in life, the mean age at diagnosis is approximately
65 years [7]. Previous reports have demonstrated that the prevalence of AA doubled be-
tween 1982 and 2002 [8–10]. Population projections suggest that, as the “Baby Boomer”
generation ages, the number of individuals 65 years and older will double by the year
2030 [11,12]. The number of patients living with AA is sure to rise [13].

In addition to high morbidity and mortality, the treatment of advanced AA disease
is especially resource-intensive. In a recent report published in the Journal of the American
Heart Association, an analysis of the economic burden of AA identified an increasingly
substantial capital commitment by the healthcare sector for a relatively small percentage of
the population [14]. Consequently, AAs represent a disproportionate share of the burden
on hospital resources and expenses; early identification would mitigate this.

At present, diagnosis is dependent on costly advanced imaging techniques, such as
computed tomography (CT) and magnetic resonance imaging (MRI). There are no point-
of-care blood tests available that screen for or follow AA progression to inform optimal
timing for surgical intervention. Indeed, The US Preventive Serves Task Force (USPSTF)
recommends screening for infrarenal abdominal aneurysms with ultrasonography in men
aged 65 to 75 years who have ever smoked [15]. In this case, the necessity for high-
throughput diagnostics is clear: conducting such a large number of ultrasounds will
strain, critically, primary care providers. Importantly, diagnoses of abdominal AA are
missed by ultrasound in 30% of patients [16]. While ultrasonography has been successful
in identifying larger aneurysms in the infrarenal abdominal aorta, as a means of early
detection it is unsuccessful [17]. Additionally, the aortic arch and descending thoracic
aorta are far more difficult to image using surface ultrasonography due to interference and
shadowing from the nearby ribs and air-filled lungs [18]. Ultrasonography is operator-
dependent, and it often underestimates the aortic diameter by 2–5 mm [19,20]. The fact that
there is an urgent need for better, more accurate diagnostic tools is alarmingly clear.
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2. Computer-Assisted Measurement of the Aorta
2.1. Artificial Intelligence and Machine Learning

Diagnostic CT imaging of the aorta is of paramount importance, with centerline
measurements being the gold standard, because imaging is the only way to detect aortic
dilation and cross-sectional imaging is the only means of depicting the entirety of the aortic
arch [21]. Measurement accuracy can be problematic, however. Elefteriades et al. have
asserted that 1–2 mm is insufficient to detect change, and it is unlikely that a measured
change of 3–4 mm is a sufficient diagnostic criterion [13]. Pradella et al. were in agreement
when they investigated inter-observer variability [21]. Ultimately, the two teams concluded
that radiologists’ measurements of aortic diameters from chest CT scans usually involve
impreciseness of up to 3–4 mm [13,21]. It is clear that inter-observer variability must be
minimized to provide better patient care.

Siemens’ artificial intelligence (AI)-Rad Companion (Siemens Healthineers, Erlangen,
Germany) is a decision support tool for the radiological assessment of CT images of the
thorax. The AI-Rad Companion combines AI models and machine learning paradigms,
namely, so-called ‘deep’ learning, reinforcement learning, convolutional and generative
adversarial networks and symmetric convolutional encoder–decoder architecture, image-
to-image masking, and supervised machine learning models. (Written Report WR, Siemens
Healthineers, Erlangen, Germany, Brader, May 2023, “AI-Rad Companion Chest CT” at
Diagnostikum Linz).

Siemens’ algorithm has been trained on over 1250 CT datasets, including native and
contrast-enhanced scans. The aorta analysis pipeline consists of landmark detection, aorta
segmentation, and diameter measurements (WR). The algorithm automatically detects
six aortic landmarks, as per AHA guidelines (Aortic Root, Aortic Arch Center, Brachio-
cephalic Artery Bifurcation, Left Common Carotid) [22]. Accurate measurement of the
aorta in accordance with the guidelines is essential for reporting comprehensive aneurysm
expansion, as this information can impact the choice of interventional repair strategy. The
assistance of AI holds the potential to enhance reporting efficiency and significantly de-
crease inter-reader variabilities among radiologists, thereby improving the accuracy of
diagnostic follow-up [23].

Deep learning, AI, and ML algorithms represent immensely valuable ways to mini-
mize inter-observer variability and save time. Pradella et al. reported no variance in re-
peated deep learning measurements of the same case, constituting perfect preciseness [21].
While centerline-based measurements have been the preferred method for nearly two
decades, evaluation of thoracic aorta dimensions through measurements perpendicular
to the vessel’s centerline remains a time-intensive process, taking about 5–6 min per
case [21]. Marschner et al. reviewed the deep image-to-image network (DI2IN) algorithm
from Siemens, which automatically generates contours without user input, and takes
roughly 30 s [24]. AI assistance can reduce the time it takes to examine and annotate
radiological images.

AI-Rad Companion Chest CT correctly assessed the presence or absence of thoracic
aortic dilatation in 17,691 exams (97%) out of 18,243, including 452 cases with previously
missed dilation independent from contrast protocols [21]. These findings suggest its
usefulness as a secondary reading tool that will improve report quality and efficiency.

The average reading time was also the focus of a study by Rueckel et al., which
included patients with aortic ectasia undergoing follow-up assessments. The average
reading time was reduced by 63%. Moreover, AI assistance reduced total diameter inter-
reader variability by 42.5% [23]. In a study by Yacoub et al., chest CT reading times from
three radiologists were evaluated (N = 390). The mean reading time with AI assistance
was reduced by 22.1% [25]. The average absolute error in aorta diameters was 1.6 mm
across all nine measurement locations and varied between 1.2 mm and 2.2 mm per location
(N = 193) (WR).

Siemens’ AI-Rad Companion is limited currently to the chest and cannot analyze the
abdomen or other body regions. While other open-source software programs do have the



J. Clin. Med. 2024, 13, 818 4 of 11

potential to be leveraged in other areas of the body, at present, they do not have Siemens’
built-in guideline compliance and users must have the baseline technical facility to navigate
programming languages [23].

In addition to Siemens AI-Rad companion, the open-source PyRadiomics platform,
implemented in the Python programming language, can provide similar information assess-
ment and workflows. PyRadiomics works with other open-source, Python-based pipelines,
such as the Insight Toolkit, SimpleITK, PyWavelets, and NumPy and in conjunction with
another open-source technology, 3D Slicer. The PyRadiomics platform extracts radiomic
data from medical imaging modalities such as CT, PET, and MRI, following four main steps:
loading and preprocessing images and segmentation maps, applications of enabled filters,
calculations of features using different feature classes, and returning results.

Loading and preprocessing of medical images, along with the management of seg-
mentation maps, can be carried out using SimpleITK, an open-source Insight Toolkit. To
ensure uniform distances between isotropic and neighboring voxels in all directions for
texture and shape features, various resampling options are available. Filtering can be
applied directly to the image or through built-in options, including wavelet and Laplacian
of Gaussian (LoG) filters, as well as simple filters such as square, square root, logarithm,
and exponential filters. PyWavelets and SimpleITK are employed for the wavelet and LoG
filter, while NumPy is used for the remaining filters.

Feature calculation encompasses five feature classes: first-order statistics, shape de-
scriptors, and texture classes such as the gray-level concurrence matrix, gray-level run
length matrix, and gray-level size zone matrix [26,27]. All statistical and texture classes
support feature extraction from both filtered and unfiltered images. Feature extraction
is applicable to both single-slice (2D) and whole-volume (3D) segmentations. The pyra-
diomics script handles single-image processing, while the pyradiomics batch script handles
batch processing.

2.2. Machine Learning Concepts

This section presents a short list of ML concepts that are commonly used in image
processing, computer vision, and biological computing.

Within the context of machine learning, ‘adversarial’ refers to training two models
concurrently by having them play out a zero-sum game in which a ‘generator’ and ‘dis-
criminator’ compete against one another: the generator generates images in an effort to
fool the discriminator; the discriminator compares the generated images with real ones
defined beforehand as ground truth in order to rightfully discriminate between them [28].

Convolutional neural networks (CNNs) are commonly used for image-to-image pro-
cessing tasks due to their ability to learn hierarchical features from images. The encoder
extracts features from the input image, and the decoder generates the output image based
on these features. Spatial information is preserved with convolutional matrices, skip con-
nections, and weighted values determined during the adversarial, zero-sum game played
by the models and the training process in which pairs of images are fed into the network,
allowing it to learn to minimize the difference between its predictions and the ground truth
defined by radiologists [29].

Image-to-image processing in the context of CNNs or generative adversarial networks
(GANs) involves tasks where the goal is to transform an input image into an output image.
These tasks include various image translation or transformation problems, such as style
transfer, image segmentation, super-resolution, etc. Convolutional encoder–decoder refers
to a neural network architecture commonly used in image processing tasks. The encoder
part extracts features from the input data through convolutional layers; the decoder part
reconstructs the output from these features using up-sampling layers [30].

In this context, feature concatenation refers to the combining or concatenating of
features extracted by the encoder before passing them to the decoder. This can enhance
the information available for the decoding process. Deep supervision networks involve
incorporating supervision signals (e.g., intermediate layer outputs) at multiple levels
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of the network. This can help improve gradient flows during training and potentially
improve convergence. Multi-level blocks indicate that the architecture consists of multiple
hierarchical levels or blocks, possibly with different levels of abstraction. These elements
are commonly used in advanced image processing and analysis tasks to preserve image
features and fidelity and facilitate algorithmic analyses of complex radiomic data [31].

2.3. Considerations Regarding AI Limitations

AI and ML are, of course, not without certain limitations. So-called ‘black box’ lim-
itations refer to ML model predictions that generate results which cannot be explained
or understood [32]. The innerworkings of the model are poorly understood; therefore,
interpreting the reasons for the model’s output is challenging. This limitation is impor-
tant for several reasons. Traditional statistical models operate on interpretable rules and
coefficients that allow users to understand how variables contribute to calculated results;
however, in black-box models, the relationships between inputs and outputs are not easily
understood, making the model’s decision-making process incomprehensible. Moreover,
it can be difficult to trust a model’s predictions, especially in the healthcare sector, if its
reasoning cannot be followed; this lack of transparency also raises concerns about potential
errors and biased or incorrect variable interpretation, and these issues cannot be addressed
if the input errors cannot be identified [32]. While efforts are being made to address these
issues, especially in the field of explainable AI (XAI), there is still much work to be done.

Despite these limitations, however, these findings demonstrate that ML algorithmic im-
age processing, segmentation, and analysis are effective and functional aids for researchers
and clinicians and can significantly improve diagnostic workflows, supplementing a more
holistic approach. Importantly, ML can also be used to analyze and incorporate the data it
generates (or any other tabular datasets) to achieve better personalized medicine generally.
Of course, ML algorithms are not meant to replace trained radiologists, but they can be
valuable tools to aid them. Finally, biochemical monitoring can work in concert with ML to
build better diagnostic tests and criteria.

3. Biochemical Monitoring
3.1. Background

Numerous studies have explored viable alternatives to imaging for detecting aneurysm
disease. Several methods have included analyzing various “pathology” indicators such
as circulating immune cells [33,34], markers of inflammation [35–37], hemostasis [38],
acute-phase proteins [39,40], and plasma homocysteine levels [41–43]. Unfortunately, the
presence of these analytes in the bloodstream can also result from recent surgery and other
disease processes, problematizing diagnostic predictions.

Investigations have largely focused on the discovery of biomarkers for abdominal
AAs. An outstanding review recently published in the Journal of Clinical Medicine provides
an excellent summary of 25 studies that have identified specific “clinically applicable” and
“experimental” biomarkers for AAs [44]. However, conclusions drawn from this retrospec-
tive analysis were somewhat anticipated: “The current literature provides a plethora of
data with conflicting results and firm conclusions cannot be provided”. Given the exist-
ing hurdles in using biomarkers to predict aneurysm expansion in clinical settings—such
as their lack of disease specificity and inability to cover all types of AA—an integrated
prognostic model that combines select circulating markers will offer enhanced clinical
utility [45]. Nevertheless, results consistently demonstrate that circulating biomarkers
can be used to identify aneurysms and form the basis of an individualized surveillance
strategy to discern risk. Although it is evident that these biomarkers signal the progression
of pathology, creating a clinical assay based on them has proven to be challenging.

3.2. Genomic/Proteomic Analysis

In 2007, Wang et al. proposed a 41-panel gene signature array to identify the presence
of TAAs [46]. This study successfully demonstrated that gene expression patterns in circu-
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lating leukocytes could predict the status and subtype of TAAs. More recently, Marshall
et al. found elevated levels of fibrillin fragments in aneurysm patients, with concentrations
varying in different anatomical locations of aneurysm (thoracic vs. abdominal) [47]. Despite
the strengths of these studies, the authors were unable to definitively establish their uses as
monitoring or diagnostic techniques for AAs.

In a separate investigation, proteomic analysis identified several markers for thoracic
aortic aneurysms [48]. Among these, the four and a half LIM domain protein 1 (FHL1)
emerged as the most useful in predicting TAA. FHL-1 was combined with Collagens I,
III, V, and XI in a five-panel marker test, where upregulation of any three by over 50%
successfully identified the presence of TAAs. Although these studies have made significant
contributions, a successful method for biochemically monitoring aortic aneurysm disease
remains obscure. Furthermore, the methodologies used in these past investigations may be
too complex to expand effectively. Implementing quantitative and scalable approaches is
essential for their practicality in a clinical setting.

3.3. Circulating Protein Quantification

Phase I results from the National Registry of Genetically Triggered Thoracic Aortic
Aneurysms and Cardiovascular Conditions (GenTAC) trial revealed that circulating levels
of transforming growth factor beta (TGF-β) are increased in Marfan (MFS) patients with
thoracic AAs [49]. Specifically, the authors demonstrated that circulating TGF-β1 concen-
trations are elevated in MFS and decrease after the administration of losartan, beta-blocker
therapy, or both, and therefore might serve as a prognostic and therapeutic marker in MFS
patients with TAA. Given its pivotal role in vascular pathology and the maintenance of the
extracellular matrix, there is considerable interest in investigating the impact of TGF-β1 on
vascular remodeling. Its immense promise as a biological indicator for tracking pathology
progression further accentuates this interest.

Both intracellular and extracellular mechanisms function to balance matrix deposition
and degradation to maintain structural integrity of the aortic wall. In AAs, this balance
becomes disrupted in favor of enhanced proteolysis, resulting in pathological remodel-
ing, and leading to progressive dilation. Vascular remodeling is an important process
in which a critical family of proteolytic enzymes, the matrix metalloproteinases (MMPs),
actively participate through degradation of the vessel wall and the subsequent release
of sequestered growth factors and cytokines, such as TGF-β [50,51]. This breakdown of
normally long-lasting matrix molecules, such as elastin and collagen, has placed a great
deal of emphasis on the importance of research focusing on the involvement of MMPs in
AA. Multiple studies have demonstrated differential expression profiles of MMPs and their
endogenous inhibitors, the tissue inhibitors of MMPs (TIMPs) in clinical AA specimens
and animal models.

It has been shown that AAs can be identified in plasma by profiling the MMP/TIMP
ratio as it provides a unique metric of aortic wall remodeling [50,51]. These proteolytic
enzymes degrade all components of the vessel wall and are attributed to the development
and progression of AA [52,53]. Alterations in the MMP/TIMP ratio may also be indicative
of AA presence, location, and severity.

The extracellular MMP inducer (EMMPRIN), also called CD147, is a cell surface trans-
membrane glycoprotein that, mainly through interacting with cyclophilin A, is involved in
several cellular processes including the induction of MMPs and the migration, inflamma-
tion, and transport of nutrients [54]. MMPs are known to facilitate pathological remodeling
and EMMPRIN is directly involved in MMP production; thus, it is likely that EMMPRIN
plays an important role in pathology. EMMPRIN is secreted from vascular smooth muscle
cells in AA [55] and its expression is induced by angiotensin II and TGF-β administration
in vitro [55,56].

A study of MFS patients with aortic ectasia found that EMMPRIN levels were markedly
reduced; when compared with healthy controls, this proved predictive of ectasia [57].
This study attested that monitoring circulating EMMPRIN, in combination with current



J. Clin. Med. 2024, 13, 818 7 of 11

diagnostic tools, can effectively track aortic diameters. Importantly, circulating levels of
the aforementioned proteins (MMPs, TIMPs, EMMPRIN, and TGF-βs) are all quantifiable
using the high-throughput, immune-based, multiplexed screening platform: Multiplex
Suspension Array [58].

3.4. Circulating microRNA Quantification

MicroRNAs, a class of small, non-coding RNA, function to regulate translation by inter-
action with the 3′-untranslated region (UTR) of targeted mRNAs [59]. Increasing evidence
supports a direct role for altered microRNA abundance in pathological cardiovascular
remodeling and disease progression. Alterations in microRNA abundance are emerging
as a clear mechanism mediating changes in matrix remodeling pathways associated with
AA. However, measuring microRNAs in blood poses challenges, primarily due to the
absence of consistent, widely accepted protocols. However, by instituting standardized
procedures and robust quality control measures, researchers and clinicians can heighten
the dependability and precision in measuring circulating microRNAs [60]. This endeavor
will bolster swift progress in molecular diagnostics and personalized medicine fields.

Multiple microRNAs are endogenous upstream regulators of many key proteins in-
volved in aneurysm progression, and have been demonstrated to directly regulate cellular
phenotype and extracellular matrix remodeling [61–63]. In combination with MMP and
TIMP concentrations, microRNA levels, when united with multivariable stepwise regres-
sion, have shown significant promise in the algorithmic detection of thoracic AAs: these can
identify and distinguish between etiological subtypes of TAA with an accuracy exceeding
95% [58]. Moreover, a linear correlation exists between circulating levels of several of these
microRNAs and aortic diameters, suggesting that quantification may be used as a predictor
of risk [58,61].

3.5. Circulating Extracellular Vesicle Concentration, Size Distribution, and Cargo Analysis

More circulating targets for AA diagnosis and monitoring are emerging. Wang and
colleagues demonstrated the involvement of extracellular vesicles (EVs) derived from
macrophages in the pathogenesis of abdominal aortic aneurysms [64]. EVs play a crucial
role in cell-to-cell communication, comprising exosomes (sized between 30 and 100 nm)
and microvesicles (ranging from 100 to 300 nm), originating from various cell types. Stud-
ies highlight that circulating EVs harbor MMPs, TIMPs, and microRNAs. Furthermore,
vascular cells release multiple microRNAs in EVs due to disease progression [65]. This
results in altered circulating microRNA profiles, reflecting the origin and location of an
aneurysm, thereby establishing distinct EV contents specific to different types of aortic
aneurysms. In addition to alterations in cargo, EV concentrations and size distributions
are altered in MFS patients with TAA, suggesting that profiling them will establish their
clinical utility as a novel diagnostic [66].

These findings illustrate EVs’ diagnostic potential, but EVs are technically difficult to
examine and analyze; therefore, isolation protocols must be optimized and standardized to
ensure consistent quantification and the accuracy of size-based categorization. Similarly
to assessments of earlier protein and nucleic acid targets, quantifying EVs requires imple-
menting standardized procedures and robust quality control measures [66]. This approach
aims to enhance the reliability and precision of measurements and subsequent downstream
analyses for researchers and clinicians.

4. Conclusions

In pursuit of an innovative frontier in diagnostic modalities, our focus gravitates
towards developing computational tools primed to both generate and meticulously analyze
data. This endeavor takes shape through the comparison of aortic diameter measurements
procured from AI-aided analysis of CT scans, amalgamated with patient-specific data and
biochemical profiles. We intend to harness the potential of supervised and unsupervised
ML methodologies to manipulate, categorize, and visually represent data. The overarching
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objective remains the establishment of a standardized screening technique, a pivotal step
in the identification of aneurysms. This concerted effort aims not only to stratify risk, but
also to mitigate life-threatening aortic complications within the broader population.

An enhanced biochemical monitoring tool designed as a simple blood test holds
immense clinical significance on several fronts. Chiefly, it provides a non-invasive and
easily accessible means of routinely monitoring patients, allowing for frequent assessments
without subjecting individuals to invasive procedures or advanced imaging techniques.
This translates to the more frequent and timely monitoring of aortic aneurysm disease
progression or changes in biochemical markers associated with the condition.

Numerous circulating biomarkers associated with aneurysm disease have been recog-
nized, potentially improving treatment decision making and optimizing precision medicine.
However, their quantitative measurement is crucial for diagnostic purposes. Moreover,
larger prospective trials are needed to establish and evaluate prognostic models that offer
the greatest benefit to the general population.

These tools can significantly improve early detection and risk stratification. By reg-
ularly measuring imaging data and specific biomarkers associated with aortic aneurysm
disease, clinicians can identify patients at higher risk of complications in the disease pro-
cess. Early detection could prompt timely interventions or closer monitoring for those at
higher risk.

Imaging is an invaluable staple modality that will likely always be necessary. AI
implementation will make imaging better and more efficient. Combining ML strategies
with biochemical monitoring will improve diagnostic efficacy. Moreover, the simplicity and
accessibility of better diagnostics for the monitoring of aortic aneurysm disease will have
broader implications for healthcare equity. Simpler, more accessible diagnostics can better
serve marginalized communities, improve overall patient care, and democratize existing
disparities in diverse populations.
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