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Abstract

We have previously identified associations of 2 circulating secondary bile acids (glycocholenate 

and glycolithocolate sulfate) with atrial fibrillation (AF) risk among 1,919 blacks in the ARIC 

cohort. We aimed to replicate these findings in an independent sample of 2,003 white and black 

ARIC participants, and performed a new metabolomic analysis in the combined sample of 3,922 

participants, followed between 1987 and 2013. Metabolomic profiling was done in baseline serum 

samples using gas and liquid chromatography mass spectrometry. AF was ascertained from 

electrocardiograms, hospitalizations, and death certificates. We used multivariable Cox regression 

to estimate hazard ratios (HR) and 95% confidence intervals (95%CI) of AF by 1 standard 

deviation difference of metabolite levels. Over a mean follow-up of 20 years, 608 participants 

developed AF. Glycocholenate sulfate was associated with AF in the replication and combined 

samples (HR 1.10, 95%CI 1.00, 1.21 and HR 1.13, 95%CI 1.04, 1.22, respectively). 

Glycolithocolate sulfate was not related to AF risk in the replication sample (HR 1.02, 95%CI 

0.92, 1.13). An analysis of 245 metabolites in the combined cohort identified 3 additional 

metabolites associated with AF after multiple-comparison correction: pseudouridine (HR 1.18, 

95%CI 1.10, 1.28), uridine (HR 0.86, 95%CI 0.79, 0.93) and acisoga (HR 1.17, 95%CI 1.09, 
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1.26). In conclusion, we replicated a prospective association between a previously identified 

secondary bile acid, glycocholenate sulfate, and AF incidence, and identified new metabolites 

involved in nucleoside and polyamine metabolism as markers of AF risk.
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INTRODUCTION

Atrial fibrillation (AF), a common cardiac arrhythmia, is a major risk factor for stroke and 

other cardiovascular diseases.1 Application of metabolomics, the systematic investigation of 

all small molecules in a biological system, to the study of AF risk could deepen our 

understanding of AF pathogenic pathways as well as contribute to the discovery of novel 

disease biomarkers.2 To date, however, metabolomic studies in this area have been few and 

limited in sample size. In an analysis of metabolomic data from 1,919 black participants in 

the community-based Atherosclerosis Risk in Communities (ARIC) study, including 183 

who were newly diagnosed with AF, we reported an association of higher circulating levels 

of 2 secondary bile acids, glycolithocholate sulfate and glycocholenate sulfate, with 

incidence of AF, but no replication in independent cohorts was available.3 More recently, a 

report from the mostly European-American Framingham Heart Study including 2,458 

participants with targeted metabolomic profiling, of which 156 developed AF, did not 

identify any molecule significantly associated with AF incidence after adjustment for 

multiple comparisons.4 Additional studies are required to replicate previous findings and 

increase statistical power for novel discoveries. In this manuscript, as a follow-up to our 

previous study in the ARIC cohort, we extend the metabolomic assessment to 2,003 

additional ARIC participants. We aimed to replicate the findings from the prior ARIC 

analysis in the additional ARIC participants and to conduct a new hypothesis-generating 

analysis in the combined sample of 3,922 participants.

METHODS

In 1987–89, the ARIC study examined 15,792 men and women 45–64 years of age recruited 

from 4 communities in the United States (Forsyth County, NC; Jackson, MS; Minneapolis 

suburbs, MN; Washington County, MD).5 Participants were mostly white in the Minneapolis 

and Washington County sites, white and black in Forsyth County, while only black were 

recruited in Jackson. After their baseline exam, participants underwent follow-up visits in 

1990–92, 1993–95, 1996–98, 2011–13, and 2016–17. Participants have been followed up via 

annual phone calls (semiannual since 2012). For the current analysis, we included 3,922 

participants with available metabolomic data and without evidence of AF at baseline. The 

ARIC study has been approved by institutional review boards at all participating institutions. 

Participants provided written informed consent at baseline and follow-up visits.

As previously described, 1,977 randomly selected blacks in the Jackson field center had 

serum metabolomic profiling performed in 2010 in samples obtained at study baseline in 

1987–89.6 The samples had been stored at −80°C and were assayed with an untargeted, gas 
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chromatography/mass spectrometry and liquid chromatography/mass spectrometry-based 

metabolomic protocol by Metabolon, Inc. (Durham, NC). Similarly in 2014, serum samples 

from an additional 2,055 randomly selected participants (76% white, 24% black) collected 

in 1987–89 and stored since then at −80°C were assayed by Metabolon, Inc. using the same 

protocol. Brief methodological details are provided in the online supplement.

We selected a set of 97 samples to measure their metabolome profiles using baseline serum 

samples at both 2010 and 2014. We calculated the Pearson correlation coefficients (r) 

between the 97 pairs for shared metabolites. For the present study, we limited the analysis to 

metabolites detected in both batches (n = 384) with: 1) no more than 25% missing values, 

and 2) Pearson correlation coefficients ≥0.3 between 2010 and 2014 measurements. After 

applying these criteria, 245 named metabolites were included (99 excluded due to >25% 

missing values, and 40 more excluded due to correlation <0.3). To evaluate the stability of 

samples in long-term storage, we compared metabolomic measures done at 2014 and 2016 

with standard clinical laboratory measures done at ARIC baseline (1989) for urea, glucose, 

and cholesterol. All 3 metabolites showed Pearson correlation coefficients ≥0.65.

We have described elsewhere the details about AF ascertainment in the ARIC cohort.7 

Briefly, we identified AF cases through the end of 2013 from 3 sources: electrocardiograms 

(ECG) done at scheduled study visits, discharge diagnosis codes from hospitalizations, and 

death certificates. At all study visits, participants underwent a standard 12-lead 10-second 

ECG, which was transmitted electronically to the ARIC ECG reading center at EPICARE 

(Wake Forest School of Medicine, Winston-Salem, NC) for review and analysis using the 

GE Marquette 12-SL program (GE Marquette, Milwaukee, WI). A computer algorithm 

identified the presence of AF in the ECG, with a cardiologist confirming the diagnosis.

Participants’ hospitalizations during follow-up were identified through phone calls and 

surveillance of local hospitals (response rate >90%). Trained abstractors collected 

information from these hospitalizations, including all discharge codes. We considered AF 

present if ICD-9-CM codes 427.31 or 427.32 were listed as discharge diagnoses in any given 

hospitalization. We excluded AF cases associated with open cardiac surgery. We and others 

have demonstrated adequate validity of this approach for the ascertainment of AF.7,8 Finally, 

we also defined AF from death certificates if ICD-9 427.3 or ICD-10 I48 were listed as any 

cause of death. We provide details about covariate assessment in the online supplement.

We conducted 2 separate sets of analyses. In the first one, we aimed to replicate the findings 

from our prior ARIC publication, estimating the association of glycolithocholate sulfate and 

glycocholenate sulfate with AF incidence in 2,003 participants without AF at baseline not 

included in our published analysis. A 2-tailed p-value of 0.05 was used as threshold for 

statistical significance in the replication analysis. A second analysis combined participants 

from the 2 metabolomic assessment batches (n = 3,922). We used a modified Bonferroni 

correction to determine statistical significance.9 Using this approach, p-values <3.538 × 10−4 

were considered statistically significant for 245 tested metabolites.

For all analyses, the association of individual metabolites with the incidence of AF was 

estimated with Cox proportional hazards regression. Time of follow-up was defined as the 
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time in days from the baseline visit to incidence of AF, death, loss to follow-up or December 

31, 2013, whichever occurred earlier. Metabolites were mean centered and modeled as 

continuous variables in standard deviation units. Missing values were imputed with the 

lowest detected value in each batch. We ran 3 separate models with increasing number of 

covariates. A first model adjusted for age, sex, race, center, and batch (when applicable). A 

second model additionally adjusted for smoking, body mass index, systolic blood pressure, 

hypertension medications, diabetes mellitus, history of heart failure, and history of coronary 

heart disease. A final model additionally adjusted for eGFR. We selected model covariates 

based on prior knowledge of risk factors for AF.10 We assessed effect measure modification 

by race and sex using stratified analysis. The dose-response shape of the association between 

metabolite concentration and AF incidence was evaluated modeling metabolites using a 

restricted cubic spline with 5 knots. To test the robustness of the observed significant 

associations, we conducted a series of sensitivity analyses, adjusting for blood lipids and 

lipid-lowering medications and excluding participants with a prior history of prevalent 

coronary heart disease or heart failure, as well as adjusting for aspartate aminotransferase 

(AST) and alanine aminotransferase (ALT), measured in visit 2 samples, in the analyses of 

bile acids.

We conducted several additional analyses to explore potential mechanisms of the association 

between metabolites and AF incidence. First, we evaluated the association of statistically 

significant metabolites with electrocardiographic endophenotypes of AF risk using linear 

regression (PR duration, in ms) or logistic regression (abnormal P wave axis and elevated P 

wave terminal force in V1). Second, we evaluated the association of statistically significant 

metabolites with 23 single nucleotide polymorphisms (SNPs) associated with AF in a prior 

genome-wide association study (GWAS) from the AFGen consortium, and a genetic score 

calculated by adding the number of risk alleles weighted by the beta coefficient from the 

published genome-wide study.11 Finally, we explored whether variation in rs2272996 in 

gene VNN1, a SNP previously related to circulating concentrations of acisoga (one of the 

metabolites associated with AF incidence in this analysis),12 was associated with AF 

incidence in the latest GWAS of AF.

RESULTS

Of 15,792 participants in the ARIC cohort, the present analysis included 3,922 with 

available metabolomic data and free of AF at baseline, 1,919 of them included in our 

previous publication and 2,003 with newly available data. Participants were followed up for 

a mean (standard deviation) of 20.4 (7.0) years, during which 608 AF events were identified 

(incidence rate, 7.6 cases per 1,000 person-years). Table 1 reports participants’ 

characteristics overall and by AF incidence status during follow-up. As expected, 

participants who developed AF during follow-up were older, had higher systolic blood 

pressure and worse kidney function at baseline. They were also more likely to be white, 

male and have a baseline diagnosis of diabetes, heart failure or coronary heart disease.

In an initial analysis, we aimed to replicate the findings from our previous publication 

showing that higher levels of glycolithocholate sulfate and glycocholenate sulfate were 

associated with increased risk of AF. In an age and sex-adjusted analysis including 2,003 
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participants and 386 incident AF events, higher levels of glycocholenate sulfate but not of 

glycolithocholate sulfate were associated with AF incidence in the replication analysis 

(Table 2, Model 1). The association of glycocholenate sulfate with incidence of AF became 

weaker after multivariable adjustment (Table 2, Model 2). Given the strong attenuation after 

multivariable adjustment, we explored if any individual covariate was responsible for this 

change. Adding each covariate to Model 1 individually did not point to any particular 

variable as responsible for the attenuation (Supplementary Figure 1). The hazard ratio (HR) 

and 95% confidence interval (CI) of AF per 1-standard deviation (SD) difference in 

glycocholenate sulfate in the combined derivation and replication samples was 1.23 (95%CI 

1.14–1.32, p = 9.5 × 10−8) in minimally adjusted models and 1.13 (95%CI 1.04, 1.22, p = 

0.003) after additional adjustment for cardiovascular risk factors. Additional adjustment for 

concentrations of ALT and AST in 3,401 participants with available information on liver 

enzymes did not modify the associations (HR 1.15, 95%CI 1.07, 1.23, p = 2.5 × 10−5). 

Analysis stratified by race and sex showed a weaker association between glycolithocholate 

sulfate and AF in whites compared to blacks (HR 1.04, 95%CI 0.94, 1.16 versus HR 1.19, 

95%CI 1.10, 1.28, p for interaction = 0.05). No other interactions were identified 

(Supplementary Figures 2 and 3).

Subsequently, we performed a metabolome-wide, hypothesis-free analysis combining the 2 

study samples. Of the 245 studied metabolites, 9 were associated with the incidence of AF 

with p-values <0.001 after multivariable adjustment (Table 3, Model 2). These metabolites 

included molecules involved in the metabolism of pyrimidines (pseudouridine and uridine), 

polyamines (acisoga), amino acids (N-acetylalanine and N-acetylthreonine), and bile acids 

(glycoursodeoxycholate and glycochenodeoxycholate), as well as one lysolipid (1-

docosahexaenoylglycerophosphocholine), and a xenobiotic (O-sulfo-L-tyrosine). Pearson 

correlation coefficients for these metabolites between repeated measures in 97 samples as 

well as percentage of observations with missing values are presented in Supplementary 

Table 1. Three of these molecules, pseudouridine, acisoga, and uridine, were significantly 

associated with AF with p-values <3.538 × 10−4. Specifically, higher levels of pseudouridine 

and acisoga were associated with higher rates of AF while higher uridine levels were 

associated with reduced AF rates. Complete results for the 245 metabolites are available as a 

supplementary file. The correlation matrix of the 9 metabolites is shown in Supplementary 

Table 2. Uridine was not correlated with pseudouridine (r = −0.02) or acisoga (r = −0.03), 

though there was a modest association between pseudouridine and acisoga (r = 0.42). 

Associations for pseudouridine and acisoga weakened, but were still present, in a model 

including the 3 metabolites simultaneously (HR 1.16, 95%CI 1.06, 1.26 for pseudouridine, 

HR 1.11, 95%CI 1.02, 1.20 for acisoga). The inverse association between uridine and AF 

risk did not change after adjustment for pseudouridine and acisoga (HR 0.85, 95%CI 0.79, 

0.92). The association remained essentially unchanged after adjustment for blood lipids and 

in those without CVD (Supplementary Table 3). Figure 1 presents the dose-response 

associations of pseudouridine, acisoga, and uridine with AF risk, which were approximately 

linear for the 3 molecules. Multivariable adjustment led to meaningful attenuation in the 

association of pseudouridine with AF. None of the individual covariates in the multivariable 

model seemed particularly responsible for this attenuation, as evaluated by adding each 
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covariate individually to the minimally adjusted model (Supplementary Figure 1). 

Associations were similar across race and sex groups (Supplementary Figures 2 and 3).

To characterize in more detail the association of glychocholenate sulfate, pseudouridine, 

uridine and acisoga with AF, we explored their cross-sectional association with selected 

intermediate phenotypes of AF (PR interval, elevated P wave terminal force in V1, abnormal 

P wave axis) (Table 4). None of the 3 metabolites were associated with the odds of abnormal 

P wave axis or elevated P wave terminal force in V1. The results were suggestive of a 

possible association of higher glycocholenate sulfate, pseudouridine and acisoga with 

shorter PR interval and higher uridine with longer PR interval.

We assessed whether any of the AF-related genetic variants identified in a previously 

published GWAS of AF among individuals of European ancestry were associated with levels 

of glycocholenate sulfate, pseudouridine, acisoga or uridine among white participants with 

genomic data (N = 1421). In this analysis, neither the individual genetic variants nor the 

AFGen genetic risk score predicted serum levels of these 3 metabolites (Supplementary 

Table 4).

Finally, variation in rs2272996 in gene VNN1, previously associated with circulating levels 

of acisoga, was not predictive of AF risk (p = 0.88 in the most recent GWAS from the 

AFGen consortium).

DISCUSSION

In this metabolomic study of 3,922 men and women from a diverse prospective cohort we 

replicated a previously described association of glycocholenate sulfate, a secondary bile 

acid, with the incidence of AF. Also, we identified 3 additional metabolites (2 related to 

pyrimidine metabolism, pseudouridine and uridine, and 1 related to polyamine metabolism, 

acisoga) associated with incidence of AF using a stringent Bonferroni correction. Several 

additional analyses showing lack of association of these metabolites with AF electrical 

endophenotypes and gene variants associated with AF in a previously published GWAS 

suggest that these metabolites may affect AF pathogenesis through alternative mechanisms.

Consistent with our prior analysis of the ARIC cohort,3 we found an association of 

circulating glychocholenate sulfate with increased incidence of AF. The previously 

described association of another secondary bile acid, glycholithocholate sulfate, with AF 

was not replicated in this new analysis. Glychocholenate sulfate is possibly derived from 3-

beta-hydroxy-5-cholenoic acid (cholenate). Prior literature has described elevations of 

cholenate in patients with liver disease.13 Thus, liver injury, which has been associated with 

AF previously, could explain the association of bile acids with incident AF. Alternative 

mechanisms, including the cardiometabolic implications of systemic activation of farnesoid 

X receptor by circulating bile acids14 or changes in the gut microbiota,15 instrumental in bile 

acid metabolism, could underlie the described associations. Our results, together with a prior 

study describing potential arrhythmogenic effects of bile acids,16 provide the rationale for 

future work exploring the impact of bile acids on the development of AF.
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Pseudouridine and uridine are nucleosides involved in RNA synthesis and metabolism. 

Pseudouridine results from enzymatic posttranscriptional modification of uridine in RNA, 

with stress conditions influencing the occurrence of this process.17 In turn, RNA 

pseudouridylation can affect gene expression regulation through mRNA stability and 

proteome diversity.18 Because of its physiological roles, circulating or urinary pseudouridine 

is considered a marker of RNA degradation and cell turnover.19 Prior studies have reported 

higher concentrations of circulating pseudouridine in patients with some cardiovascular 

diseases and impaired kidney function.20,21 The relationships between circulating 

pseudouridine and posttranscriptional pseudouridylation of RNA and what role, if any, 

pseudouridine has in processes contributing to AF risk, requires further investigation.

Uridine is a ribonucleoside potentially involved in modulation of the metabolism of multiple 

systems and critical for cellular function and survival, though its specific targets have not 

been identified.22 Recent studies indicate that plasma uridine plays a key role in energy 

homeostasis and thermoregulation, modulating leptin signaling and potentially affecting 

glucose and insulin metabolism.23 Given the involvement of obesity and diabetes in the 

development of AF, deeper understanding of the physiological role of uridine in 

cardiometabolic disorders is needed. Also, in the Framingham Heart Study, higher 

concentrations of uridine were associated with a nonsignificant lower risk of AF (HR 0.84, 

95%CI 0.70, 1.00, p = 0.05, per 1-standard deviation higher concentrations).4

Acisoga (N-(3-acetamidopropyl)pyrrolidin-2-one) is a catabolic product of spermidine 

formed from N1-acetylspermidine, and involved in the metabolism of polyamines.24 Its 

precise role is unknown, but 2 prior studies have found associations of elevated acisoga 

concentrations with higher body mass index,25,26 and a potential association with the 

incidence of diabetes mellitus in the ARIC study.27 Polyamines are key players in a range of 

processes, including cell-cell interactions, cellular signaling, and ion channel regulation.28 

Acisoga, as an end product of polyamine metabolism, may be a marker of dysregulation in 

this pathway.

Our study has important strengths, including the inclusion of a large and diverse cohort with 

excellent follow-up, an adequate number of AF cases to identify associations, and the 

availability of extensive covariates to reduce confounding. Moreover, we have considered 

only metabolites that passed rigorous quality control criteria. However, the method of AF 

ascertainment—relying predominantly on hospital discharge diagnoses—has probably led to 

missed events, including asymptomatic AF and AF managed exclusively in outpatient 

settings. Other limitations include the risk of false negatives, due to the limited number of 

events, the absence of an independent sample for replication, which may result in false 

positive results, and the extended time between sample collection and metabolomic 

measurements, which could have influenced the concentrations of some metabolites.

In conclusion, this study replicated the association of one bile acid with AF reported in a 

previous study and identified 3 additional metabolites from 2 metabolic pathways associated 

with AF. Our findings suggest that metabolomic approaches in large epidemiologic studies 

can be valuable in biomarker discovery and advancing our understanding of the pathogenesis 

of complex diseases.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Association of concentrations of pseudouridine (top left panel), acisoga (top right panel) and 

uridine (bottom right panel) with incidence of atrial fibrillation presented as hazard ratio 

(HR; solid line) and 95% confidence intervals (CI; shaded area). Results from Cox 

proportional hazards model with metabolites modeled using restricted cubic splines (knots at 

5th, 27.5th,50th, 72.5th, and 95th percentiles), adjusted for age, sex, race, batch, study site, 

body mass index, smoking, diabetes, systolic blood pressure, use of antihypertensive 

medication, prevalent coronary heart disease, and prevalent heart failure. Median value of 

the metabolite was considered the reference (HR = 1). The histograms represent the 

frequency distribution of metabolites levels. ARIC study, 1987–2013
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Table 1.

Selected baseline characteristics by atrial fibrillation (AF) status during follow-up in 3,922 participants with 

available metabolomic data and free of AF at baseline, ARIC study, 1987–89

Baseline Overall Atrial fibrillation

(n = 3,922) No (n = 3,314) Yes (n = 608)

Age (years) 54±6 53±6 56±6

Women 60% 62% 50%

Black 61% 64% 47%

White 39% 36% 53%

Body mass index (kg/m2) 29±6 29±6 30±6

Current smoker 28% 27% 29%

Systolic blood pressure (mmHg) 125±21 124±21 129±22

Anti-hypertensive medication 32% 31% 39%

Diabetes mellitus 14% 13% 19%

eGFR (mL/min/1.73 m2) 99±18 100±18 94±19

Prevalent heart failure 5.1% 4.5% 8.4%

Prevalent coronary heart disease 4.8% 4.0% 9.2%

Values correspond to mean (standard deviation) or percentages. eGFR: estimated glomerular filtration rate
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Table 2.

Association of two secondary bile acids (glycocholenate sulfate and glycolithocholate sulfate) with incidence 

of AF, by analytical batch. Hazard ratios per 1-standard deviation difference. ARIC study, 1987–2013

First batch
(N = 1919; AF = 222)

Second batch
(N = 2003; AF = 386)

Combined sample
(N = 3,922; AF = 608)

HR(95%CI) p-value HR (95%CI) p-value HR(95%CI) p-value

Glycocholenate sulfate

Model 1 1.27 (1.16, 1.39) 1.9 × 10−7 1.21 (1.10, 1.33) 0.0001 1.23 (1.14, 1.32) 9.5 × 10−8

Model 2 1.20 (1.08, 1.33) 0.0006 1.10 (1.00, 1.21) 0.05 1.13 (1.04, 1.22) 0.003

Model 3 1.20 (1.08, 1.33) 0.0006 1.09 (0.99, 1.20) 0.09 1.12 (1.04, 1.21) 0.004

Glycolithocholate sulfate

Model 1 1.22 (1.13, 1.31) 1.4 × 10−7 1.02 (0.93, 1.13) 0.69 1.09 (1.01, 1.17) 0.03

Model 2 1.21 (1.11, 1.31) 5.5 × 10−6 1.02 (0.92, 1.13) 0.67 1.07 (0.99, 1.15) 0.11

Model 3 1.21 (1.12, 1.31) 4.0 × 10−6 1.02 (0.92, 1.13) 0.72 1.07 (0.99, 1.15) 0.10

Model 1 adjusted for age, sex and race, center and batch where applicable. Model 2 additionally adjusted for smoking, body mass index, systolic 
blood pressure, use of antihypertensive medication, diabetes, prevalent heart failure, and prevalent coronary heart disease. Model 3 additionally 
adjusted for estimated glomerular filtration rate
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Table 3.

Association of individual metabolites with incidence of atrial fibrillation, ARIC study, 1987–2013. Hazard 

ratios per 1-standard deviation difference. Only metabolites with an FDR-adjusted p-value <0.05 in the 

multivariable model 2 are shown.

Metabolite Model 1 Model 2 Model 3

HR (95%CI) p-value HR (95%CI) p-value HR (95%CI) p-value

Pseudouridine 1.31 (1.22, 1.41) 4.5×10−13 1.18 (1.10, 1.28) 1.7×10−5 1.16 (1.06, 1.27) 9.6×10−4

Acisoga 1.20 (1.12, 1.30) 1.3×10−6 1.17 (1.09, 1.26) 4.0×10−5 1.15 (1.06, 1.24) 3.7×10−4

Uridine 0.82 (0.75, 0.88) 5.4×10−7 0.86 (0.79, 0.93) 1.3×10−4 0.86 (0.79, 0.93) 1.7×10−4

1-docosahexaenoylglycerophosphocholine 0.82 (0.75, 0.90) 2.2×10−5 0.85 (0.77, 0.93) 3.6×10−4 0.85 (0.77, 0.93) 4.0×10−4

O-sulfo-L-tyrosine 1.18 (1.09, 1.28) 5.4×10−5 1.16 (1.07, 1.25) 4.0×10−4 1.12 (1.03, 1.23) 0.01

Glycoursodeoxycholate 1.15 (1.08, 1.23) 3.0×10−5 1.13 (1.05, 1.20) 5.2×10−4 1.13 (1.05, 1.20) 5.4×10−4

Glycochenodeoxycholate 1.16 (1.08, 1.24) 1.8×10−5 1.13 (1.05, 1.21) 5.8×10−4 1.13 (1.06, 1.21) 4.8×10−4

N-acetylalanine 1.22 (1.14, 1.32) 5.6×10−8 1.14 (1.06, 1.23) 6.0×10−4 1.11 (1.02, 1.21) 0.02

N-acetylthreonine 1.21 (1.12, 1.31) 7.3×10−7 1.14 (1.05, 1.23) 9.2×10−4 1.11 (1.02, 1.21) 0.02

FDR p: False Discovery Rate-adjusted p-values. Model 1: Proportional hazards model adjusted for age, sex, race, study site, and batch. Model 2: 
As Model 1, additionally adjusted for smoking, body mass index, systolic blood pressure, use of antihypertensive medication, diabetes mellitus, 
prevalent heart failure and prevalent coronary heart disease. Model 3: As Model 2, additionally adjusted for eGFR.
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Table 4.

Association of glycocholenate sulfate, pseudouridine, acisoga and uridine with selected ECG measures, ARIC 

study, 1987–1989

PR duration, ms
a Abnormal P wave axis Elevated P wave terminal force in V1

Diff (95%CI) P-value OR (95%CI) P-value OR (95%CI) P-value

Glycocholenate sulfate Model 1 −0.82 (−1.63, −0.01) 0.05 0.98 (0.86, 1.11) 0.72 1.05 (0.97, 1.14) 0.19

Model 2 −0.69 (−1.52, 0.13) 0.10 0.95 (0.83, 1.09) 0.45 1.01 (0.93, 1.10) 0.81

Model 3 −0.69 (−1.52, 0.14) 0.10 0.95 (0.83, 1.09) 0.45 1.01 (0.93, 1.10) 0.81

Pseudouridine Model 1 0.15 (−0.66, 0.97) 0.71 0.86 (0.74, 1.00) 0.04 1.11(1.03, 1.20) 0.01

Model 2 −0.56 (−1.39, 0.27) 0.18 0.92 (0.79, 1.06) 0.25 1.03 (0.94, 1.12) 0.55

Model 3 −0.90 (−1.71, −0.09) 0.03 1.02 (0.89, 1.16) 0.79 1.02 (0.94, 1.11) 0.68

Acisoga Model 1 −0.52 (−1.31, 0.27) 0.19 1.04 (0.92, 1.18) 0.54 1.07 (0.99, 1.16) 0.09

Model 2 −0.81 (−1.60, −0.02) 0.05 1.01 (0.89, 1.15) 0.86 1.03 (0.95, 1.11) 0.51

Model 3 −0.90 (−1.71, −0.09) 0.03 1.02 (0.89, 1.16) 0.79 1.02 (0.94, 1.11) 0.68

Uridine Model 1 0.79 (0.01, 1.57) 0.05 0.92 (0.81, 1.04) 0.17 0.96 (0.88, 1.04) 0.30

Model 2 0.58 (−0.21, 1.37) 0.15 1.00 (0.88, 1.15) 0.95 1.00 (0.92, 1.08) 0.93

Model 3 0.59 (−0.20, 1.38) 0.15 1.00 (0.88, 1.15) 0.96 1.00 (0.92, 1.09) 0.98

Model 1: Adjusted for age, sex, race, study site, and batch. Model 2: As Model 1, additionally adjusted for smoking, body mass index, systolic 
blood pressure, use of antihypertensive medication, diabetes mellitus, prevalent heart failure and prevalent coronary heart disease. Model 3: As 
Model 2, additionally adjusted for eGFR

a
Models additionally adjusted for resting heart rate
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