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Abstract

Synanthropic filth flies are common where sanitation is poor and fecal wastes are accessible

to them. These flies have been proposed as mechanical vectors for the localized transport

of fecal microbes including antimicrobial resistant (AMR) organisms and associated antimi-

crobial resistance genes (ARGs), increasing exposure risks. We evaluated whether an

onsite sanitation intervention in Maputo, Mozambique reduced the concentration of enteric

bacteria and the frequency of detection of ARGs carried by flies collected in household com-

pounds of low-income neighborhoods. Additionally, we assessed the phenotypic resistance

profile of Enterobacteriaceae isolates recovered from flies during the pre-intervention

phase. After fly enumeration at study compounds, quantitative polymerase chain reaction

was used to quantify an enteric 16S rRNA gene (i.e., specific to a cluster of phylotypes cor-

responding to 5% of the human fecal microflora), 28 ARGs, and Kirby Bauer Disk Diffusion

of Enterobacteriaceae isolates was utilized to assess resistance to eleven clinically relevant

antibiotics. The intervention was associated with a 1.5 log10 reduction (95% confidence

interval: -0.73, -2.3) in the concentration of the enteric 16S gene and a 31% reduction

(adjusted prevalence ratio = 0.69, [0.52, 0.92]) in the mean number of ARGs per fly com-

pared to a control group with poor sanitation. This protective effect was consistent across

the six ARG classes that we detected. Enterobacteriaceae isolates–only from the pre-inter-

vention phase–were resistant to a mean of 3.4 antibiotics out of the eleven assessed.

Improving onsite sanitation infrastructure in low-income informal settlements may help

reduce fly-mediated transmission of enteric bacteria and the ARGs carried by them.
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Introduction

Antimicrobial resistance (AMR) is a serious and growing public health threat, with nearly 1.3

million deaths attributable to AMR annually (2019 estimate) [1]. Research on infection pre-

vention and control has historically focused on clinical settings, where outbreaks of resistant

organisms have frequently resulted in patient deaths [2] and emerging “superbugs” are

increasingly prominent. Animal husbandry has also become an increasing area of focus as

large quantities of antibiotics are often used in livestock production. While these areas are crit-

ical for infection control, water, sanitation, and hygiene (WASH) has been increasingly recog-

nized as a contributor to AMR evolution and dissemination [3–5]. Utilizing a One Health

lens–that considers the overlap between human health, animal health and the environment–

enables a more systems level approach to combat the spread of AMR. Understanding the role

of antimicrobial resistant bacteria (ARB) transmitted by insects–as a direct pathway from

human waste to consumption–is critical to potentially mitigating its spread.

Filth flies–including house flies (Musca domestica) and green bottle flies (e.g., Lucilia seri-
cata)–feed on and can lay their eggs in fecal wastes [6–8]. During feeding, ARB may attach to a

fly’s integument or be ingested into the alimentary canal. The rapid proliferation of flies–a sin-

gle female house fly may lay up to five batches of 100–150 eggs during its one-to-three-month

lifespan [8]–and their frequent feeding produces a high potential for the dissemination of

resistant organisms when they land on food and household surfaces [9]. House flies and bottle

flies frequently vomit and may re-ingest food, because this process helps with digestion.

Where food is plentiful, house flies may defecate as often as every four and half minutes [8].

Flies are also fastidious at preening their wings, legs and abdomen, which may dislodge organ-

isms onto food or surfaces.

Improving sanitation may reduce the environmentally mediated transmission of enteric

pathogens and other fecal microbes via well-defined pathways [10], including flies. First, some

sanitation infrastructure–such as ventilated improved pit latrines and pour flush systems–pro-

vides a physical barrier (e.g., a water seal or a mesh cover over a ventilation pipe) that may

reduce fly breeding and the potential for flies to transport antimicrobial resistant bacteria

(ARB) and their ARGs to the environment. Fewer flies in the living environment may then

reduce the risk of enteric infection among those living nearby [11]. Subsequently limiting the

need for antibiotics which exhibit pressure on microbial communities to acquire or evolve

resistance genes. However, periodic maintenance or replacement of the physical barriers pres-

ent in onsite sanitation systems is necessary to ensure proper performance.

Filth flies are highly prevalent in low-income, informal communities where sanitation

infrastructure is lacking [12, 13]. Studies conducted in Kenya [14], India [15], Bangladesh [16],

and in the United States [17] observed one or more flies at 50–100% of dwellings. Yet, limited

evidence exists on whether and to what extent flies play a role in the transport of fecal bacteria

in such settings via ARB and ARGs. Further, the potential for improved sanitation infrastruc-

ture to reduce ARB and ARGs carried by flies is unclear [18]. Elucidating the relationship

between improved onsite urban sanitation improvements and ARB carried by flies may pro-

vide important evidence to support more effective programs to limit the environmental spread

of AMR via enhanced vector control.

The Maputo Sanitation (MapSan) Trial was a controlled before-and-after trial that evalu-

ated the effects of an urban onsite sanitation intervention on child health and environmental

fecal contamination in Maputo, Mozambique. The trial’s primary, secondary, and other out-

comes have been reported elsewhere [19–28]. The sanitation intervention was not associated

with a difference in any health outcome measured in children (i.e., enteric pathogen carriage,

7-day diarrhea recall, height-for-age, weight-for-age) [21]. However, substantial reductions in
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Shigella and Trichuris infection among children born after the delivery of the intervention

compared to children of similar ages at baseline were observed [21]. Previous MapSan studies

also assessed the impact of the intervention on environmental fecal contamination. Modest

reductions of enteric pathogens in soils and fecal sludges were observed [29, 30], but the inter-

vention was not associated with reductions in fecal source tracking markers from several envi-

ronmental matrices [31]. Environmental AMR has not previously been assessed as part of the

MapSan Trial.

Our research aims were to: (i) assess the clinically relevant ARG profile carried by flies and

the phenotypic profile of Enterobacteriaceae spp. isolates recovered from flies; and (ii) to assess

the impact of an urban onsite sanitation intervention on enteric bacteria and ARGs detected

in flies from low-income neighborhoods in Maputo, Mozambique.

Methods

Maputo sanitation trial

We conducted the Maputo Sanitation Trial in 16 low-income, informal neighborhoods in

Maputo, Mozambique [21]. In study neighborhoods housing and water, sanitation, and

hygiene (WASH) conditions are poor, the burden of enteric disease is high, indiscriminate use

of antibiotics is common, and population density is 15,000–25,000 per square kilometer [21,

29]. A non-governmental organization (NGO) delivered the intervention to compounds,

which were occupied by two or more households that shared sanitation and a common out-

door living space where daily activities occurred (e.g., cooking, cleaning, and children’s play

activities). Intervention systems were built inside the compound boundary and were part of

the households’ living environment. The intervention infrastructure contained physical barri-

ers–including mesh netting over ventilation pipes and water-seal toilets–that reduced the

potential for flies to breed in the fecal sludge in the septic tank. Control compounds were con-

currently enrolled from the same or adjacent neighborhoods as intervention compounds and

continued using existing shared sanitation. Detailed descriptions of the inclusion criteria and

the sanitation intervention are described elsewhere [21, 32].

Data collection

Trained field enumerators visited control and intervention compounds at baseline (i.e., pre-

intervention, April 2015—March 2016) and 12-months post-intervention (April 2016—March

2017). The enumerators consented caregivers of children enrolled into the overall MapSan

trial [21] and administered a survey with the caregiver about household demographics and

behaviors. During household visits enumerators collected a convenience sample of flies at

latrine entrances and food preparation areas. Field workers used paper traps covered in a

sticky material to collect flies at two locations in 50 control and 50 intervention compounds at

baseline and 12-months following delivery of the intervention. Enumerators hung rectangular

blue sticky traps (pre-intervention: non-baited 5” x 7”, Suterra, Bend, Oregon; post-interven-

tion: non-baited 5.5” x 9.5”, Great Lakes IPM, Vestaburg, Michigan) at least 1.5 meters off the

ground and within one meter of the latrine entrance and the food preparation area. The fly

trap model was changed for the 12-month follow-up because the manufacturer discontinued

the product. After passive fly collection for 24 hours, field workers returned and enumerated

the number of flies on each trap. Flies were carefully removed from the trap using tweezers

that were sterilized with 10% bleach and 70% ethanol between compounds but not between

flies to minimize the time spent at people’s homes. All flies caught on a trap were collected into

Whirl-Pak bags (Nasco, Fort Atkinson, Wisconsin) pre-intervention or sterile 15-mL centri-

fuge tubes (VWR, Radnor, Pennsylvania) 12-months post-intervention. Flies were stored on
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ice and transported to the Ministry of Health in Maputo, Mozambique. Samples were depos-

ited into a freezer at -80˚C on the same day as collection and were shipped from Maputo,

Mozambique to Atlanta, Georgia on dry ice (-80˚C) with temperature monitoring for later

molecular analysis.

Nucleic acid extraction

We used the Qiagen DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany) to extract total

nucleic acids from 188 individual flies (S1 Text). First, flies were subjected to a pre-treatment

step that has been used widely to extract DNA from ticks [33–36]. Then, we proceeded with

extraction following the manufacturer’s protocol. For quality control we included two extrac-

tion positive controls with each sample and we included at least one negative extraction con-

trol on each day of extractions [37].

TaqMan array card

We assayed bacterial targets and ARGs using a custom TaqMan Array Card (TAC) (Thermo-

Fisher Scientific, Waltham, MA). The TAC tested for an enteric 16S rRNA gene–described in

Rousselon et al. 2004 [38]–that was designed to detect a cluster of phylotypes, called Fec1, cor-

responding to 5% of the human fecal microflora [38, 39]. The TAC also included 28 genes con-

veying resistance to a combination of agriculturally, anthropogenically, and clinically relevant

genes which had previously been optimized for the TAC platform by Pholwat et al. 2019 (S1

and S2 Tables) [40, 41]. The ARGs corresponded to all eight antimicrobial classes optimized

by Pholwat et al. 2019 [41]. The card included one gene encoding resistance to aminoglyco-

sides (armA), four chloramphenicols (catA1, catB3, cmlA, floR), one colistin (mcr-1), six fluo-

roquinolones (aac6lb_104R, aac6lb_104W, gyrA83L, parC80I, qnrA, qnrB1), two macrolides

(ermB, mphA), two tetracyclines (tetA, tetB), three trimethoprims / sulfamethoxazoles (dfrA17,

sul1, sul2), and nine β-lactams (CTX-M1, CTX-M2-M74, CTX-M8-M25, CTX-M9, NDM,

OXA-1, OXA-9, SHV, VIM). We performed quantitative PCR (qPCR) using a QuantStudio 7

Flex instrument (Thermofisher Scientific, Waltham, MA). We manually set the threshold by

comparing exponential curves and multicomponent plots with the positive control plots (S1

Fig) [29, 42]. Only amplification before a quantification cycle (Cq) of 35 was called as positive

for a target.

Kirby bauer disk diffusion

We performed antimicrobial susceptibility testing according to the Clinical Laboratory Stan-

dards Institute (CLSI), with minor adjustments [43]. We randomly selected previously frozen

flies collected during the pre-intervention phase of the trial to assess phenotypic resistance of

Enterobacteriaceae isolates (there were few flies available post-intervention for phenotypic test-

ing because they were nearly all used for molecular analysis). First, we randomly selected two

house flies, or two green bottle flies, caught from same compound location, crushed each fly

pool in a 15 mL centrifuge tube using a sterile pestle (Kimble Chase, Vineland, NJ), added 12

mL of sterile phosphate buffered saline (PBS, Sigma-Aldrich, St. Louis MO), shook the tube

for two minutes, and then allowed the fly solids to settle for approximately ten minutes. Next,

we diluted the supernatant in 10-fold increments up to 3 log10, transferred 1 mL of the super-

natant from each tube in the dilution series to petri dishes containing violet red bile glucose

agar (Sigma-Aldrich, St. Louis MO) [44], which is specific to Enterobacteriaceae, and then

streaked the plates using a flame sterilized inoculating loop. We repeated this plating step

using violet red bile glucose agar that contained cefotaxime at 4 μg/mL as a pre-screening step

based on the WHO Tricycle Protocol [45]. Following incubation at 37˚C for 24 hours, we
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picked up to three morphologically distinct colonies (S3 Table) per sample from plates with

and without cefotaxime, for a total of up to six isolates per sample using flame sterilized inocu-

lating loops. Colonies were speciated by visual inspection (S3 Table), which deviates from

CLSI guidelines [43].

We placed individual colonies into glass culture tubes containing 5 mL of sterile tryptic

soy broth (TSB, Sigma-Aldrich, St. Louis MO), that did not include antibiotics. Following

incubation at 37˚C for 24 hours, we combined the bacterial culture with 2 mL of sterile

PBS–a deviation from sterile saline used in the CLSI protocol–in a separate glass culture

tube to match the turbidity of a 0.5 McFarland turbidity standard. Then we dipped a sterile

cotton tipped swab into the glass tube containing PBS-diluted culture and streaked the sur-

face of two petri dishes (90mm diameter, VWR, Radnor, PA) containing Muller Hinton

Agar (MHA, Sigma-Aldrich, St. Louis MO). Next, we placed ten antibiotic disks (ciproflox-

acin, streptomycin, levofloxacin, chloramphenicol, colistin, azithromycin, tetracycline, tri-

methoprim-sulfamethoxazole, ampicillin-sulbactam, ceftazidime-avibactam) onto the two

plates and flame sterilized the tweezers between each use. Finally, we incubated the MHA

plates with the antibiotic disks for 24 hours at 37˚C and measured the zones of lysis using

calipers to assess if isolates were susceptible, intermediate, or resistant to each antibiotic

according to CLSI guidelines (S4 Table) [43, 46].

Ethics approval

The MapSan Trial protocol was approved by the Mozambican Comité Nacional de Bioética

para a Saúde (CNBS), Ministério da Saúde (333/CNBS/14), the Research Ethics Committee of

the London School of Hygiene & Tropical Medicine (reference # 8345), and the Institutional

Review Board of the Georgia Institute of Technology (protocol # H15160). No additional per-

mits were required.

Data analysis

The MapSan Trial primary outcome used a difference-in-difference (DID) analysis to assess

the impact of the intervention relative to the control [21]. The DID approach is a quasi-experi-

mental approach that typically uses longitudinal data from control and intervention groups.

This approach relies on the parallel trend assumption, meaning that the initial difference

between the two groups is assumed to remain constant over time. The validity of the parallel

trend assumption was previously found valid and reported in the MapSan trial’s primary out-

come manuscript [21]. Like the main trial outcome, we used a DID approach to assess the

impact of the intervention (i.e., our exposure variable) on our outcomes–that is the prevalence

and concentration of the enteric 16S gene, the total number of ARGs detected out of the 28 we

assessed and the total number of ARGs in each class of antibiotics–compared to the control

group. We used generalized estimating equations (GEE) [47] to fit unadjusted and adjusted

regression models with robust standard errors and an exchangeable correlation structure. For

count-based outcomes (i.e., total number of ARGs) we used Poisson regression and for contin-

uous outcomes (e.g., concentration of the enteric 16S gene) we used linear regression. We

accounted for clustering between compounds because the intervention was implemented at

the compound level [48]. A priori we decided to adjust regression models for fly mass, fly spe-

cies, compound location where the fly was caught, compound-level wealth index [49], and

compound population. We calculated the compound level wealth index using the Simple Pov-

erty Scorecard for Mozambique, using the average wealth score when multiple households

were present [21].

PLOS ONE Sanitation, flies, and AMR

PLOS ONE | https://doi.org/10.1371/journal.pone.0298578 March 20, 2024 5 / 17

https://doi.org/10.1371/journal.pone.0298578


Results

Controls

In total, 12 flies from the 188 analyzed using a custom TaqMan Array Card (TAC) were

excluded because an extraction control did not amplify as expected. Our eight PCR positive

controls–plasmids that contained the primer and probe sequences for each gene target on the

TAC [50]–exhibited a positive amplification signal for each target. We did not observe amplifi-

cation before a Cq of 35 for any target in our 12 negative extraction controls.

Fly prevalence and counts

At baseline–combined from latrine entrances and food preparation areas–we caught a mean of

18 flies per intervention compound (95% confidence interval: 13, 24) and 13 flies per control

compound (95% CI: 9.6, 17). At the 12-month follow-up period we caught fewer flies; the

mean number of flies caught at intervention compounds was 3.2 (95% CI: 1.8, 4.7) and was 4.5

at control compounds (95% CI: 2.8, 6.2). Disaggregated between compound locations, the

intervention reduced mean fly counts at latrine entrances by 69% (adjusted prevalence

ratio = 0.31, [0.13, 0.75]) but had no effect on fly counts at food preparation areas (aPR = 0.92,

[0.33, 2.6]). Fly counts by month can be found in S5 Table and counts divided phase, arm, and

compound location can be found in S6 Table.

Fecal bacteria

We analyzed 176 flies, of which 90% were houseflies (159/176) and 10% were green bottle flies

(17/176). In addition, 66% of flies were caught at food preparation areas (116/176) and 34% at

latrine entrances (60/176). The mean concentration of the enteric 16S rRNA gene was 3.5 log10

copies per fly (standard deviation: 1.4 log10; min: non-detect; max: 7.2 log10; Table 1). The

onsite sanitation intervention was associated with a 14% reduction in the prevalence of the

enteric 16S gene per fly (aPR = 0.86, [0.75, 0.98]) and a 1.5 log10 reduction (95% CI: -0.73, -2.3)

in the concentration of 16S gene copies per fly.

Genotypic resistance

We detected�1 ARG from each (176/176) fly we assessed using TAC (Table 2) and detected

an ARG from each antimicrobial class in�1 flies except for the aminoglycosides (armA) and

colistin (mcr-1). However, these classes only assessed one ARG while other classes assessed

multiple ARGs (Table 2). Most detected ARGs were observed at concentrations between

104−108 gene copies per fly (S2 Fig).

Table 1. Fecal bacteria in flies.

Target Trial Arm Baseline 12-month Unadjusted DID estimate Adjusted DID estimate

log10 reduction (95% CI)

enteric 16S gene concentration* Control 3.5 (1.2) 3.8 (1.3) -1.7 (-0.97, -2.5) -1.5 (-0.73, -2.3)

Intervention 4.0 (1.1) 2.7 (1.0)

PR (95% CI) aPR 95% (CI)

enteric 16S gene* Control 98% (55/56) 98% (52/53) 0.85 (0.73, 0.99) 0.86 (0.75, 0.98)

Intervention 100% (34/34) 85% (28/33)

Note: Bold indicates p < 0.05.

*Enteric 16s rRNA gene from Rousselon et al. 2004 [38].

https://doi.org/10.1371/journal.pone.0298578.t001
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We observed a linear correlation between the concentration of the enteric 16S gene and the

number of ARGs detected (Fig 1A), as well as between the fly mass and the number of ARGs

detected (Fig 1B). While flies with�1 bacterial pathogen gene detected in Capone et al. 2023

Table 2. Summary of the detection of antimicrobial resistance genes at baseline and the 12-month follow-up in flies.

Target Study Arm Baseline Mean

(IQR)

12-Month Mean

(IQR)

Unadjusted DID estimate PR

(95% CI)

Adjusted DID estimate aPR

(95% CI)

β-lactamases (out of 9) Control 1.5 (2) 1.5 (2) 0.64 (0.35, 1.2) 0.60 (0.33, 1.1)

Intervention 2.2 (4) 1.4 (2)

Trimethoprim-sulfonamides (out

of 3)

Control 2.5 (1) 2.5 (1) 0.85 (0.74, 0.98) 0.86 (0.74, 0.99)

Intervention 2.7 (1) 2.3 (1)

Tetracycline (out of 2) Control 1.3 (1) 1.5 (1) 0.65 (0.45, 0.95) 0.71 (0.49, 1.0)

Intervention 1.6 (1) 1.2 (1)

Macrolides (out of 2) Control 1.2 (1) 1.3 (1) 0.54 (0.37, 0.81) 0.58 (0.40, 0.86)

Intervention 1.6 (1) 0.94 (1)

Fluoroquinolones (out of 6) Control 1.4 (1.3) 1.7 (1) 0.58 (0.34, 0.98) 0.63 (0.37, 1.1)

Intervention 1.7 (1) 1.2 (2)

Chloramphenicol (out of 4) Control 2.2 (2) 2.3 (1) 0.65 (0.50, 0.93) 0.69 (0.51, 0.95)

Intervention 2.8 (2) 2.0 (2)

Total number of ARGs (out of 28) Control 10 (7) 11 (7) 0.67 (0.50, 0.89) 0.69 (0.52, 0.92)

Intervention 13 (5) 9.0 (5)

Note: ARGs encoding colistin and aminoglycoside resistance were not detected; DID = difference-in-difference; aPR = adjusted prevalence ratio; CI = confidence

interval; IQR = interquartile range; bold indicates p < 0.05

https://doi.org/10.1371/journal.pone.0298578.t002

Fig 1. Genotypic resistance carried by flies. Note: In Fig 1A points to the left of the dotted red line are non-detects.

Reported p-values from T-tests. Detection of pathogen genes described in Capone et al. 2023 [24].

https://doi.org/10.1371/journal.pone.0298578.g001
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[24] had a greater number of ARGs detected compared to flies with no bacterial pathogen

genes detected (Fig 1C), we observed no difference in the number of ARGs detected in flies

caught at different compound locations (Fig 1D) or between fly species (Fig 1E).

Phenotypic resistance

We assessed the phenotypic resistance of 79 Enterobacteriaceae isolates from 24 pairs of flies,

which were all caught during the pre-intervention phase. We assessed the phenotypic resis-

tance profile of 30 isolates that were resistant to cefotaxime (mean = 1.3 isolates visually identi-

fied and screened per pair of flies, range = 0 to 3 isolates per pair of flies) and 49 isolates that

were susceptible (mean = 2.0 isolates visually identified and screened per pair of flies,

range = 1 to 3 isolates per pair of flies) (S3 Fig). All pairs of flies had at least one morphologi-

cally distinct colony on violet red bile glucose agar without cefotaxime, while most pairs of

flies (16/24) had at least one morphologically distinct colony on violet red bile glucose agar

that contained cefotaxime. The combined 79 isolates were resistant to a mean of 3.4 antibiotics

out of the eleven assessed (Fig 2), with 57% (n = 44/79) expressing multi-drug resistance (�3

antibiotic classes).

Normalizing the results per pair of flies assessed, as some isolates may have been the same

species, we found that isolates (mean = 3.3 per pair of flies, range = 1–6 per pair of flies) from

Fig 2. Phenotypic resistance of isolates to eleven antibiotics.

https://doi.org/10.1371/journal.pone.0298578.g002
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each pair of flies were resistant to a mean of 5.6 antibiotics out of the eleven assessed (i.e., the

ten assessed via disk diffusion and cefotaxime). Further, 83% (n = 20/24) of the combined iso-

lates per pair of flies expressed multi-drug resistance (�3 antibiotic classes).

Impact of the intervention on AMR

From baseline to the 12-month follow-up the mean number of ARGs detected in flies

increased from ten to eleven among control compounds but decreased from thirteen to nine

among intervention compounds. Using Poisson regression analysis, we found that the inter-

vention was associated with a 31% reduction in the mean number of ARGs per fly (aPR = 0.69,

[0.52, 0.92]) compared to controls (Tables 2 and 3). The directionality of this effect remained

consistent for the six classes of ARGs that were detected; intervention compounds were associ-

ated with a reduction in the mean number of β-lactamases (aPR = 0.60, [0.33, 1.1]), trimetho-

prim-sulfonamides (aPR = 0.86, [0.74, 0.99]), tetracyclines (aPR = 0.71, [0.49, 1.0]), macrolides

(aPR = 0.58, [0.40, 0.86]), fluoroquinolones (aPR = 0.63, [0.37, 1.1]), and chloramphenicols

(aPR = 0.69, [0.51, 0.95]).

Discussion

We found evidence that improved onsite sanitation reduced fly counts at latrine entrances,

enteric bacteria gene concentrations in flies and the number of ARGs in filth flies from the liv-

ing environment, though the mean number of ARGs detected per fly remained high

12-months following the delivery of the intervention. This same onsite sanitation intervention

did not reduce diarrhea among children nor a range of specific enteric infections [21] so it is

unlikely the reduction in ARGs was due to a decrease in antibiotic usage among compound

members, though we don’t have data on antibiotic usage to confirm this. The first comprehen-

sive assessment of the global burden of AMR found the highest burden in low-income settings

and argued that sanitation infrastructure is likely fundamental to combat the spread of AMR

[1]. Our results offer promising empirical evidence that improving onsite sanitation in infor-

mal settlements may reduce AMR carried by flies, which is mediated by reductions in enteric

bacteria [1]. However, we were unable to directly connect our results with human health out-

comes, nor did we observe any difference in fly counts in food preparations areas, which is

more exposure relevant than latrine entrances.

The protective effect we observed may be because the intervention served as a physical bar-

rier between flies and human waste. The sanitation intervention included a pour flush toilet

and ventilation pipe covered by mesh netting. Physical barriers at intervention compounds

may have prevented flies from feeding on fecal wastes, which contain enteric bacteria that may

possess ARGs. While we lack observational data on water seals and ventilation pipe screens

during the 12-month follow-up, we infrequently observed ventilation pipe covers (n = 13/48)

among a small subset of intervention compounds two to three years following delivery of the

intervention [26]. As pipe covers were part of the intervention this observation indicates that

degradation occurred. Degradation of the intervention’s physical barriers would have reduced

the intervention’s ability to separate flies from fecal waste and possibly the efficacy of the inter-

vention. In addition, these species of flies are highly mobile and have a potential range of sev-

eral kilometers in a single day [7, 8]. The sanitation intervention was delivered to clusters of

households and not community wide, meaning that intervention and control compounds

were present in the same neighborhoods and sometimes were even adjacent. Given the tran-

sience of flies it is even more striking that we observed a protective effect, and it is possible that

community wide interventions may have a larger impact than we observed.
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Table 3. Detection of individual ARGs at baseline and the 12-month follow-up in flies.

Baseline 12-month Baseline 12-month

Aminoglycoside Tetracycline

armA tetA
Control 0% (0/56) 0% (0/53) Control 71% (40/56) 85% (45/53)

Intervention 0% (0/34) 0% (0/33) Intervention 88% (30/34) 76% (25/33)

Chloramphenicol tetB
catA1 Control 59% (33/56) 62% (33/53)

Control 38% (21/56) 38% (20/53) Intervention 71% (24/34) 39% (13/33)

Intervention 50% (17/34) 24% (8/33) Trimethoprim / Sulfamethoxazole

catB3 dfrA17
Control 27% (15/56) 42% (22/53) Control 45% (25/56) 55% (29/53)

Intervention 68% (23/34) 24% (8/33) Intervention 71% (24/34) 36% (12/33)

cmlA sul1
Control 70% (39/56) 64% (34/53) Control 100% (56/56) 96% (51/53)

Intervention 71% (24/34) 76% (25/33) Intervention 100% (34/34) 97% (32/33)

floR sul2
Control 84% (47/56) 83% (47/53) Control 100% (56/56) 98% (52/53)

Intervention 91% (31/34) 73% (24/33) Intervention 100% (34/34) 100% (33/33)

Colistin Β-lactam

mcr-1 CTX-M1
Control 0% (0/56) 0% (0/53) Control 7.1% (4/56) 19% (10/53)

Intervention 0% (0/34) 0% (0/33) Intervention 27% (9/34) 6.1% (2/33)

Fluoroquinolone CTX-M2-M74
aac6lb_104R Control 16% (9/56) 19% (10/53)

Control 11% (6/56) 9.4% (5/53) Intervention 32% (11/34) 24% (8/33)

Intervention 12% (4/34) 6.1% (2/33) CTX-M8-M25
aac6lb_104W Control 18% (10/56) 11% (6/53)

Control 55% (31/56) 76% (40/53) Intervention 24% (8/34) 18% (6/33)

Intervention 79% (27/34) 58% (19/33) CTX-M9
gyrA83L Control 11% (6/56) 13% (7/53)

Control 20% (11/56) 21% (11/53) Intervention 21% (7/34) 15% (5/33)

Intervention 8.8% (3/34) 6.1% (2/33) NDM
parC80I Control 0% (0/56) 0% (0/53)

Control 0% (0/56) 3.8% (2/53) Intervention 5.8% (2/34) 0% (0/33)

Intervention 2.9% (1/34) 0% (0/33) OXA-1
qnrA Control 32% (18/56) 43% (23/53)

Control 14% (8/56) 15% (8/53) Intervention 44% (15/34) 33% (11/33)

Intervention 8.8% (3/34) 18% (6/33) OXA-9
qnrB1 Control 0% (0/56) 7.5% (4/53)

Control 38% (21/56) 45% (24/53) Intervention 5.8% (2/34) 6.1% (2/33)

Intervention 59% (20/34) 33% (11/33) SHV
Macrolide Control 61% (34/56) 34% (18/53)

ermB Intervention 56% (19/34) 36% (12/33)

Control 80% (45/56) 77% (41/53) VIM
Intervention 91% (31/34) 55% (18/33) Control 0% (0/56) 0% (0/53)

mphA Intervention 0% (0/34) 0% (0/33)

Control 43% (24/56) 55% (29/53)

Intervention 71% (24/34) 39% (13/33)

https://doi.org/10.1371/journal.pone.0298578.t003
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Flies are effective mechanical vectors that may transport microbes on their outer body and

in their alimentary canal, where some bacteria can multiply [51, 52]. Their capacity to quickly

disperse large quantities of these organisms–including pathogens–throughout the living envi-

ronment demonstrates a critical need for fly control. Controlled feeding studies have demon-

strated flies are capable of transferring >105 CFU E. coli to common food items in a 30-minute

period [53]. In rural Bangladesh Ercumen et al. 2017 found a 1-log10 increase in E. coli carried

by flies caught in the living environment was associated with a 0.21 log10 increase in E. coli
concentration in child food [54]. The high concentration and prevalence of ARGs we detected,

as well as a high prevalence of resistant isolates, offers evidence that flies may act as a mechani-

cal vector of AMR transmission. Improved sanitation may then serve a dual public health pur-

pose by reducing the environmental transmission of enteric pathogens and AMR.

In Capone et al. 2023 we evaluated enteric pathogens carried by flies using the same samples

as this study [24]. We detected genes specific to enteropathogenic E. coli (21%, 37/176), enter-

oaggregative E. coli (19%, 33/176), enterotoxigenic E. coli (15%, 27/176), Shigella / enteroinva-

sive E. coli (4.0%, 7/176), Vibrio cholerae (2.8%, 5/176), shiga-toxin producing E. coli (1.7%, 3/

176), and Campylobacter jejuni/coli (1.1%, 2/176) in flies, but did not detect Salmonella spp. or

Clostridium difficile. The prevalence of�1 bacterial pathogen gene remained constant in the

control group from baseline (39%, 22/56) to the 12-month follow-up (40%, 21/53), but

decreased in the intervention group from 47% (16/34) at baseline to 24% (8/33) 12-months

later. While the intervention was associated with a 42% reduction (aPR = 0.58, [0.25, 1.3]) in

the detection of�1 bacterial pathogen gene in flies, the confidence interval was wide, which

indicates the intervention may have had no effect or even increased the prevalence of�1 bac-

terial pathogen gene in flies.

Previous assessments of community wide fly control measures found similar reductions in

fly counts and observed improvements in health outcomes. A crossover study of residual

dichlorodiphenyltrichloroethane (DDT) application to public areas (e.g., fields, barns, and

latrines) in rural Texas during the 1940s observed a 90% reduction in fly counts and observed

a reduction in Shigella infections among community members [11]. Though even in the 1940s

insect resistant to insecticides was observed [55], as well as a growing recognition of DDT’s

deleterious environmental and health effects [56, 57]. Studies conducted in the 1990s in rural

Pakistan and the Gambia found that community-scale insecticide application reduced child-

hood diarrhea by 23% and 24%, respectively [58, 59]. A study of US military bases found inten-

sive fly control via baited traps reduced clinic visits attributable to diarrhea by 42% and

Shigella seroconversion by 76% [60]. A 2016 systematic review of onsite sanitation interven-

tions–which are typically implemented at the household level–found evidence that onsite sani-

tation was associated with reductions in fly counts [61]. Our study complements these

previous assessments by providing suggestive evidence that onsite sanitation may reduce

enteric bacteria and antimicrobial resistance genes carried by flies.

Widespread use of antibiotics in Maputo may be driving AMR emergence and spread. Antibi-

otics can be purchased without a prescription from pharmacies and in informal markets [62].

Among those who purchased antibiotics without a prescription in Maputo, Mate et al. 2019

reported that only 10% completed the full course [62]. Multiple context specific factors drive

individuals to self-medicate with antibiotics, including the poor quality of care at health care

facilities and long wait times, advice from pharmacists, and previous positive experiences taking

antibiotics [63]. While not systematically collected, Torres et al. 2019 reported that Maputo phar-

macists frequently dispense amoxicillin, azithromycin, tetracycline, and trimethoprim/sulfa-

methoxazole [64]. This usage aligns with our genotypic and phenotypic results; we observed the

highest prevalence of resistant Enterobacteriaceae isolates for trimethoprim/sulfamethoxazole

and the corresponding ARGs (i.e., sul1 and sul2) were detected in nearly all flies. Reducing the
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spread of AMR in Mozambique–and similar contexts–will require multi-faceted interventions.

Limiting the use of antibiotic when not necessary for human and animal health is fundamental.

Other key interventions will also be necessary, including hospital-based control programs, pre-

venting infections through vaccination, and functional sanitation infrastructure [1].

Our study had several limitations. First, we only assessed phenotypic resistance at the pre-

intervention time point, which prevented us from evaluating if the intervention reduced phe-

notypic resistance of isolates in addition to genotypic resistance. Further, we cultured isolates

from frozen flies, which may have resulted in die-off that could have been differential between

species. Second, we tested multiple isolates per pair of flies for phenotypic resistance, but only

differentiated them based on morphology and without confirmation that these isolates were

different strains. It is possible some of the isolates we picked from pairs of flies were the same

species. In addition, some bacterial species are also intrinsically resistant to some antibiotics,

which limited our scope to describing the phenotypic resistance profile of the isolates assessed.

Third, we did not include an antibiotic in the TSB media used to grow isolates, which may

have resulted in the loss of plasmid mediated resistance and caused us to underestimate phe-

notypic resistance. Fourth, the intervention was not randomly allocated, but we accounted for

this via the controlled before-and-after study design [21]. Fifth, our methods were limited to

pre-specified PCR assays and did not assess the entire resistome. Sequencing methods may

have identified other ARGs, such as genes encoding resistance to colistin which we did not

detect via PCR but were observed in our phenotypic assays. In addition, we sterilized tweezers

between compounds and not individual flies, which may have led to contamination between

flies from the same compound. Sixth, due to manufacturer discontinuation, we were forced to

change fly traps between the baseline and 12-month assessment. Different sticky fly traps may

work better or worse at catching flies and may be better suited at catching certain species of

flies. However, our approach was applied equally across study arms, which reduces the bias

that may have resulted from using different traps. Seventh, we did not identify flies beyond

visual classification as a house fly or green bottle fly. Fly species often vary in their preferred

feeding material and fly control recommendations may depend on the specific species of inter-

est [7, 8, 65]. Finally, we may have underestimated the impact on AMR in flies because we esti-

mated the reduction in ARGs per individual fly, but we also observed a large reduction in fly

counts at latrine entrances and fly counts were not considered in the ARG regression model.

Conclusions

AMR is a threat to global public health whose scope and increasing burden merits better monitor-

ing and evaluation to assess trends and develop strategies to reduce its spread [66]. We observed a

high level of genotypic resistance among flies and phenotypic resistance among Enterobacteriaceae
isolates, but also found that a shared onsite sanitation intervention (that included basic fly control)

was associated with a reduction in the ARGs carried by flies compared to a control group not

receiving sanitation upgrades. Fly control strategies are well established, including physical barri-

ers (e.g., pour flush systems, drop hole covers, and ventilation pipe covers) and insecticide spray-

ing [58]. These results–alongside previous work on flies in other low- and middle-income

countries [15, 67]–offers evidence that the contribution of flies to the transmission of sanitation-

related microbes and AMR may be under-recognized. The design of sanitation infrastructure and

accompanying services should include sustained and effective fly control measures.
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62. Mate I, Come CE, Gonçalves MP, Cliff J, Gudo ES. Knowledge, attitudes and practices regarding antibi-

otic use in Maputo City, Mozambique. Budhathoki SSeditor. PLoS One. 2019; 14: e0221452. https://

doi.org/10.1371/journal.pone.0221452 PMID: 31437215

63. Torres NF, Solomon VP, Middleton LE. “Antibiotics heal all diseases”; the factors influencing the pra-

tices of self-medication with antibiotics in Maputo City, Mozambique. J Public Health (Bangkok). 2021.

https://doi.org/10.1007/s10389-020-01416-7

64. Torres NF, Solomon VP, Middleton LE. Patterns of self-medication with antibiotics in Maputo City: a

qualitative study. Antimicrob Resist Infect Control. 2019; 8: 161. https://doi.org/10.1186/s13756-019-

0618-z PMID: 31649818

PLOS ONE Sanitation, flies, and AMR

PLOS ONE | https://doi.org/10.1371/journal.pone.0298578 March 20, 2024 16 / 17

https://doi.org/10.1128/jb.84.2.381-381.1962
https://doi.org/10.1128/jb.84.2.381-381.1962
http://www.ncbi.nlm.nih.gov/pubmed/14476554
https://doi.org/10.1186/s12874-016-0127-1
http://www.ncbi.nlm.nih.gov/pubmed/26956373
https://doi.org/10.1128/JCM.05987-11
https://doi.org/10.1128/JCM.05987-11
http://www.ncbi.nlm.nih.gov/pubmed/22170926
https://doi.org/10.4269/ajtmh.1999.61.625
http://www.ncbi.nlm.nih.gov/pubmed/10548298
https://doi.org/10.1128/iai.2.6.800-809.1970
https://doi.org/10.1128/iai.2.6.800-809.1970
http://www.ncbi.nlm.nih.gov/pubmed/16557919
https://doi.org/10.14252/foodsafetyfscj.2018013
http://www.ncbi.nlm.nih.gov/pubmed/31998583
https://doi.org/10.1021/acs.est.7b01710
http://www.ncbi.nlm.nih.gov/pubmed/28686435
https://doi.org/10.2105/ajph.40.5.561
http://www.ncbi.nlm.nih.gov/pubmed/15410913
https://doi.org/10.1016/s0140-6736%2898%2903366-2
https://doi.org/10.1016/s0140-6736%2898%2903366-2
http://www.ncbi.nlm.nih.gov/pubmed/10023946
https://doi.org/10.1016/S0140-6736%2898%2909158-2
https://doi.org/10.1016/S0140-6736%2898%2909158-2
http://www.ncbi.nlm.nih.gov/pubmed/10227221
https://doi.org/10.1016/0140-6736%2891%2992657-n
https://doi.org/10.1016/0140-6736%2891%2992657-n
http://www.ncbi.nlm.nih.gov/pubmed/1673210
https://doi.org/10.1016/j.ijheh.2016.09.021
http://www.ncbi.nlm.nih.gov/pubmed/27720133
https://doi.org/10.1371/journal.pone.0221452
https://doi.org/10.1371/journal.pone.0221452
http://www.ncbi.nlm.nih.gov/pubmed/31437215
https://doi.org/10.1007/s10389-020-01416-7
https://doi.org/10.1186/s13756-019-0618-z
https://doi.org/10.1186/s13756-019-0618-z
http://www.ncbi.nlm.nih.gov/pubmed/31649818
https://doi.org/10.1371/journal.pone.0298578


65. Emerson PM, Simms VM, Makalo P, Bailey RL. Household pit latrines as a potential source of the fly

Musca sorbens- a one year longitudinal study from The Gambia. Tropical Medicine and International

Health. 2005; 10: 706–709. https://doi.org/10.1111/j.1365-3156.2005.01432.x PMID: 15960710

66. Pruden A, Vikesland PJ, Davis BC, de Roda Husman AM. Seizing the moment: now is the time for inte-

grated global surveillance of antimicrobial resistance in wastewater environments. Curr Opin Microbiol.

2021; 64: 91–99. https://doi.org/10.1016/j.mib.2021.09.013 PMID: 34655936

67. Farag TH, Faruque AS, Wu Y, Das SK, Hossain A, Ahmed S, et al. Housefly Population Density Corre-

lates with Shigellosis among Children in Mirzapur, Bangladesh: A Time Series Analysis. Kosek M, edi-

tor. PLoS Negl Trop Dis. 2013; 7: e2280. https://doi.org/10.1371/journal.pntd.0002280 PMID:

23818998

PLOS ONE Sanitation, flies, and AMR

PLOS ONE | https://doi.org/10.1371/journal.pone.0298578 March 20, 2024 17 / 17

https://doi.org/10.1111/j.1365-3156.2005.01432.x
http://www.ncbi.nlm.nih.gov/pubmed/15960710
https://doi.org/10.1016/j.mib.2021.09.013
http://www.ncbi.nlm.nih.gov/pubmed/34655936
https://doi.org/10.1371/journal.pntd.0002280
http://www.ncbi.nlm.nih.gov/pubmed/23818998
https://doi.org/10.1371/journal.pone.0298578

