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a b s t r a c t

In this paper we report the use of the open source Spatiotemporal Epidemiological Modeler (STEM,
www.eclipse.org/stem) to compare three basic models for seasonal influenza transmission. The models
are designed to test for possible differences between the seasonal transmission of influenza A and B.
Model 1 assumes that the seasonality and magnitude of transmission do not vary between influenza
A and B. Model 2 assumes that the magnitude of seasonal forcing (i.e., the maximum transmissibility),
but not the background transmission or flu season length, differs between influenza A and B. Model 3
imulation
ompartmental disease models
redictive validity
pidemics

assumes that the magnitude of seasonal forcing, the background transmission, and flu season length all
differ between strains. The models are all optimized using 10 years of surveillance data from 49 of 50
administrative divisions in Israel. Using a cross-validation technique, we compare the relative accuracy of
the models and discuss the potential for prediction. We find that accounting for variation in transmission
amplitude increases the predictive ability compared to the base. However, little improvement is obtained
by allowing for further variation in the shape of the seasonal forcing function.
ntroduction

In temperate regions, seasonal influenza epidemics occur every
ear, generally peaking in the winter and virtually disappearing
uring summer. Reasons behind the seasonal variation of influenza
re not clearly understood, but factors such as temperature and
bsolute humidity, indoor crowding, and variations in host immune
esponse have been put forward as potential explanations (Lipstich
nd Viboud, 2009; Lowen et al., 2007; Shaman and Kohn, 2009).
ecause influenza virus is constantly adapting through antigenic
rift, immunity is not permanent as it is with some other viral
iseases such as measles (Smith et al., 2004). Individuals typically
ecome at least partially susceptible to new variants of the virus
ithin a few years. Consequently, influenza falls into a category

f diseases that can be studied with a compartmental model repre-

enting the passage of individuals between three states, Susceptible
S), Infectious (I) and Recovered (R), and eventually returning to the
usceptible state as immunity wanes (an SIRS model).

∗ Corresponding author. Tel.: +1 408 927 1766.
E-mail address: edlund@almaden.ibm.com (S. Edlund).

755-4365/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.epidem.2011.04.002
© 2011 Elsevier B.V. All rights reserved.

In this paper we compare three models for influenza based on
10 years of seasonal influenza data collected by the Israeli Cen-
ters for Disease Control for 49 locations in Israel. Over this period,
influenza A was the most frequently isolated strain in 8 of the years
and influenza B was the most frequently isolated strain in 2 of the
years. Each of these models represents a hypothesis about differ-
ences in transmission dynamics between influenza A and influenza
B dominant years. In the first model we consider there to be identi-
cal transmission dynamics in influenza A and influenza B dominant
years. The second model allows peak transmissibility (as char-
acterized by the seasonally forced reproductive number) to vary
between A and B dominant years. The third model also allows
variation in the duration of the influenza season and strength of
seasonality. Each of these hypotheses is captured by the parame-
terization of a deterministic SIRS meta-population (patch) model
representing the population and geography of Israel. Each model
is fit to the 10 years of reference data using a Nelder–Mead sim-
plex (Nelder and Mead, 1965), and compared based upon predictive
performance using cross validation. The epidemiological param-

eters obtained from the best-fit models are compared in detail
with values from the literature. (Anderson and May, 1991; Arino
and van den Driessche, 2003; Colizza et al., 2007; Crépey and

dx.doi.org/10.1016/j.epidem.2011.04.002
http://www.elsevier.com/locate/epidemics
http://www.eclipse.org/stem
mailto:edlund@almaden.ibm.com
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arthémey, 2007; Fulford et al., 2002; Keeling and Rohani, 2008;
en et al., 2009; Longini et al., 2005; Molinari et al., 2007; Riley,
007; Bootsma and Ferguson, 2007; Carrat et al., 2006; Flahault
t al., 1988; Pease, 1987; Hufnagel et al., 2004; Keeling et al.,
001; Longini, 1988; Mills et al., 2004; Rvachev and Longini, 1985;
attenspiel and Dietz, 1995; Sattenspiel and Herring, 1998, 2003).

ethods

ata

The Israel Center for Disease Control (ICDC), Ministry of Health,
perates an ongoing influenza surveillance system that is based on
arious clinical and virological data sources. Maccabi Health Care
ervices, the second largest health maintenance organization in
srael that serves about 25% of the Israeli population (approximately
,700,000 members), provides the ICDC’s surveillance system with
aily data regarding visits of its members to outpatient clinics for
arious diagnoses, including influenza like illness (ILI). Each record
ncludes the patient’s area of residence. The method used to obtain
he data was described previously (Kaufman et al., 2007). For the
urpose of this study, the incidence of influenza was considered
o be proportional to the number of ILI visits reported by physi-
ians in Maccabi Health Care Services. Physician reported ILI visits
ppear to match fairly well to measures of influenza activity based
n virological data gathered since 1996 by the network of sen-
inel community-based clinics operated by ICDC during the winter

onths. This analysis is based upon 10 years of aggregate daily
LI visits. Areas of residence were mapped to 50 “natural regions”
n Israel, one of which, the Dead Sea Region, has essentially zero
opulation and was excluded from analysis. The division of the
tate of Israel into administrative districts, sub-districts, and nat-
ral regions is published by the Israeli Central Bureau of Statistics
CBS, 2008).

The number of visits due to ILI represents only a fraction of
he incidence. We assume that reported ILI represents a constant
roportion (the reporting fraction) of actual influenza incidence.
ince the actual (average) reporting fraction is unknown, we fit the
ggregate data for all of Israel with several reporting fractions in
he range 0.5–5% and compare the resulting estimates of epidemi-
logical parameters to the literature (see the ‘Results’ section). A
eporting fraction on the order of 3% yields parameters consistent
ith the literature and is used throughout subsequent analysis.

The rate of immigration (through birth and otherwise) and the
ate of emigration (through death and otherwise) were estimated
sing data from the Israeli Central Bureau of Statistics (CBS). Immi-
ration and emigration were considered to be constant across the
9 natural regions.

ransmission model

We model influenza transmission using a geographically
xplicit SIR(S) compartmental model with a seasonally modu-
ated transmission coefficient ˇ(t) (Anderson and May, 1991). Eqs.
1a)–(1c) describe the model.

dSj(t)
dt

= −ˇ(t)Sj(t)

∑K
k=1mjkIk(t)∑K
k=1mjkPk(t)

+ ˛Rj(t) + bPj(t) − �Sj(t) (1a)

dIj(t) = ˇ(t)Sj(t)

∑K
k=1mjkIk(t)∑ − �Ij(t) − �Ij(t) (1b)
dt K
k=1mjkPk(t)

dRj(t)
dt

= �Ij(t) − ˛Rj(t) − �Rj(t) (1c)
s 3 (2011) 135–142

where Sj, Ij, and Rj are the size of the susceptible, infectious, and
recovered populations at location j; ˇ(t) is the seasonal transmis-
sion coefficient; Pj is the population at location j; � is the recovery
rate; ˛ is the immunity loss rate; b is the birth rate; � is the death
rate; and mjk is the rate of mixing between locations j and k (when
j = k, mjk = 1).

The seasonal transmission coefficient, ˇ(t), is modeled as
a mixture of Gaussian distributions. We prefer this to the
sinusoidal function often used to model seasonal forcing (e.g.,
ˇ(t) = ˇ1 sin(ωt + �) + ˇ0) because it provides more flexibility in con-
trolling the duration of the flu season. We define ˇ(t) as:

ˇ(t) = ˇi

{∑
i

[
�i + (1 − �i)

g(t − ti, �i)
g(0, �i)

�(t, ti)
]}

(2)

where i is the index of the yearly influenza season; ˇi is the peak
transmission coefficient for season i; (1 − �i) is the fraction by
which transmission varies seasonally in season i (0 < �i < 1.0); ti is
the day of peak transmission for season i; g(x, �i) is the probability
distribution function of a Gaussian distribution with mean 0 and
standard deviation �i; and �(t, ti) is the mixing function. The day
of peak transmission, ti, is defined so that the transmission func-
tion has a period of exactly 1 year, with constant phase, ϕ. That is
transmission peaks ϕ days after January 1 of season i. The joining
function, �(t,ti), smoothly joins adjacent Gaussians so that ˇ(t) is
only dependent upon a single Gaussian during the period of season
i where most transmission occurs (see supplemental material).

Using this transmission model, we can specify our three
hypotheses in terms of ˇi, �i and �i. That is:

• Hypothesis 0: Transmission is identical in both A and B dominant
years (ˇi = ˇ0, �i = �0, �i = �0 for all years).

• Hypothesis 1: Only the maximum rate of transmission varies
between A and B dominant years. That is, ˇi = ˇA in A dominant
seasons, and ˇi = ˇB in B dominant seasons (�i = �0, �i = �0 for all
seasons).

• Hypothesis 2: The maximum rate of transmission and the effect
of seasonal forcing vary between influenza A and influenza B. That
is ˇi = ˇA, �i = �A, �i = �A in A dominant years and ˇi = ˇB, �i = �B,
�i = �B in B dominant years.

The control hypothesis (H0) requires seven independent param-
eters. Hypothesis H1 uses eight parameters, and hypothesis H2
allows two more degrees of freedom (ten independent parameters).

All models are subject to the (clearly false) assumption of cross
protection between influenza A and B. We are unable to fit a full
multi-serotype model that accounts for variations in all of the epi-
demiological parameters for each serotype and tracks the immune
state of the population with respect to each serotype (Murphy and
Clements, 1989). This would require a priori knowledge of cross
strain immunity or data of greater detail than is available at this
time.

The mixing parameter, mjk, represents the fraction of infectious
people in region j that individuals in region k are exposed to (see Eq.
(1)). For the purposes of this study, we assume mixing only occurs
between adjacent regions. Because not all administrative regions
in the geographic meta-population model are the same area, the
mixing rate is scaled by a characteristic mixing distance, ı0, for
each region. This parameter models the distance people travel, on
average, in a day. In this model the fraction of people leaving site j
for any neighboring site k becomes:
mjk∼ min

(
1.0,

ı0√
Aj

)
(3)
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here the characteristic mixing distance, ı0, is determined by
odel fitting.
The differential equations are numerically integrated using

unge Kutta Cash-Karp (RKCK) adaptive step size integration to
precision of 1::10−9 (Cash and Karp, 1990).

odel fitting

For each hypothesis above, we fit the model parameters using
Nelder–Mead Simplex algorithm. The Nelder–Mead algorithm

earches model parameter space to minimize a functional error
easurement, typically the root mean squared error. To make the

rror more easily interpretable across models we use the normal-
zed root mean square error (NRMSE) between the incidence, Is,
redicted by the simulation and the observed incidence, Ir, obtained
rom the historic reference data (Ahlburg, 1992; Hamad, 2006). The
elder–Mead optimization is completely independent of normal-

zation as there is only one normalization constant for the data
et. We calculate the NRMSE as the root mean squared error over
ll time normalized by the difference between the maximum and
inimum observed country-wide incidence.

RMSE(Is, Ir) = 1
maxt

∑
j ∈ LIr,j(t) − mint

∑
j ∈ LIr,j(t)

×

√∑
t ∈ T

(∑
j ∈ LIs,j(t) −

∑
j ∈ LIr,j(t)

)2

|T | (4)

here L is the set of all locations and T is the set of all times for
hich we have observations (∼3650 time steps).

odel comparison

It is not appropriate to compare model performance by compar-
ng the relative NRMSE on the data used to fit the models, as models

ith more free parameters (i.e., H1 and H2) will generally have
ower NRMSE. To compare the performance of the three models
ased upon their performance in predicting data not used in model
tting, we use a cross validation framework (Duda et al., 2001).
ross validation is different from a typical biostatistical approach.
s opposed to using probabilistic measures of statistical fit, cross
alidation is a measure of the deterministic “predictive” power of
model or method that tests how well a model performs against
nseen data.

Each model is fit ten times holding out a different influenza sea-
on each time, fitting the parameters only considering the NRMSE in
he other nine influenza seasons. After each fit, we compare model
redictions against the observed data in the withheld season. We
hen calculate the summary NRMSE for each model as the average
RMSE across the ten predictions. The model with the lowest sum-
ary NRMSE is considered to have the best predictive ability of the

hree and hence represent the hypothesis most supported by the
ata.

patiotemporal Epidemiological Modeler

All models were implemented using the Spatiotemporal Epi-
emiological Modeler (STEM). STEM is an open source framework
or building and evaluating spatiotemporal epidemiological models
Kaufman et al., 2008). STEM has denominator data for the entire
orld, provides users with a choice of solvers, i.e., a fast finite
ifference algorithm or Runge Kutta Cash-Karp (RKCK) adaptive

tep size integration (Cash and Karp, 1990), and implements the
elder–Mead simplex optimization in an automated experiment

eature (Edlund et al., 2009). As an open source project under the
clipse Foundation, STEM is meant to support collaboration within
s 3 (2011) 135–142 137

a community. All the mathematical models used in the creation
of this work are available as open contributions to STEM and can
be freely used and extended. STEM provides a variety of models,
tools for creating models, and analytical components and makes
them available to any researcher interested in studying influenza
or other infectious diseases at www.eclipse.org/stem.

Results

To determine the reporting fraction to use in the subsequent
analysis, we fit the base (H0) SIR(S) model to the aggregate data
for all of Israel with various reporting fractions. We found that a
reporting fraction of 3% led to parameters estimates most consis-
tent with the published literature. The parameter most sensitive
to the assumed reporting fraction was the duration of immunity
(1/˛), which increased with increasing reporting (Table S1). Table 1
summarizes parameter estimates from complete model fits using
a reporting fraction of 3% in comparison to values reported in the
literature.

To explore differences in transmission between influenza A and
B dominant years, we fit each of the three models against all 10
years of historic data using Nelder–Mead optimization (Fig. 1). The
incidence predicted by each model fits the data with a NRMSE less
than 10% in all three cases (Table 2). Model H2 has the lowest
NRMSE. However, in all models incorporating differences between
influenza A and influenza B dominant years, we see off-season
peaks not reflected in the data. In all models we estimate the peak
reproductive number to be in the range 2.6 < R0 < 2.8 with a sea-
sonal modulation of less than 10% (Table 2). Both model H1 and
H2 estimate a lower reproductive number in influenza B years and
model H2 suggests that B seasons are shorter with weaker season-
ality; 1 − � is 6% for B vs. 8% for A (Fig. 1B). The estimated length
of immunity ranges from 4.9 years (model H1) to 5.9 years (model
H0). The mean infectious period is estimated to be 1.1 days in all
models, lower than typical literature values. The characteristic mix-
ing distance is estimated at approximately 55 km in all models,
that is full mixing occurs between neighboring regions less than
552 = 3025 km2 in area and the degree of mixing decreases for larger
regions (Eq. (3)).

Fig. 2 shows a concatenation of the predicted incidence obtained
for the unfitted years only in each of the ten cross validation tri-
als. We found that NRMSE averaged across predictions was 0.244
(range 0.081,0.568) for model H0, 0.238 (range 0.105,0.556) for
model H1, and 0.249 (range (0.085,0.559) for model H2. Based upon
these results, model H1 (variation of only transmissibility between
A and B dominant years) appears to be the best supported by the
data. To ensure that our results were not dominated by prediction
on any particular year, we also compared which model had the low-
est NRMSE in each excluded year. We found that model H1 made
the best prediction in 6 of 10 years, compared to models H0 and H2
each of which performed best in 2 years. The estimated parameters
as well as the NRMSE results for cross validation of all three models
are shown in Table 2.

The NRMSE between the unfitted model years and the reference
is high whenever the predicted epidemic amplitude is incorrect
and/or the timing of the epidemic is phase shifted from the refer-
ence (Fig. 2). If one examines the 2 years where influenza B was
dominant, one can see the model for H2 (green) had the worst
performance.

To assess the value of the spatially explicit model, we com-
pared the parameter estimates obtained from the spatially explicit

model (H1) with a model representing all of Israel as a single
fully mixed population. We found significant differences in the
estimated model parameters between the two approaches (e.g.,
a maximum R0 of 3.0 for influenza A versus 2.8 in the spatially

http://www.eclipse.org/stem
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Table 1
Comparison of estimates from the literature with model estimates for important epidemiological parameters of influenza.

Reported parameter values (literature) Literature Model

Lowest Typical Upper H0 H1(A,B) H2(A,B)

Mean period of infection [days] 1.0a ∼2b 4.8c 1.1 1.1 1.1
Mean period of immunity [years] 1d ∼4–6e 8f 5.9 4.9 5.4
Reproductive number 1.1g 1.5–2.0h ∼20i 2.6 2.8,2.7 2.6,2.6

a Gojovic et al. (2009) includes a latent period of ∼1.5 day.
b Flahault et al. (2009), Truscott et al. (2009), Longini et al. (2005).
c Carrat et al. (2008).
d Xia et al. (2005).
e Koelle et al. (2006), Couch and Kasel (1983).
f Dushoff et al. (2004).
g Basta et al. (2009).
h Halloran et al. (2008), Truscott et al. (2009).
i Mills et al. (2004).

Fig. 1. (A) Actual (black) and estimated (colored) incidence of influenza in Israel; (B) the estimated time varying reproductive number, for each of three hypotheses: Blue
represent hypothesis H0, no variation in transmission between influenza A and B dominant seasons. Red represents hypothesis H1, only the maximum rate of transmission
varies between A and B dominant seasons. Green represents hypothesis H2, the maximum rate of transmission and the effect of seasonal forcing vary between influenza A
and influenza B. The dominant strain for each year is indicated along the top of the figure.

Table 2
The best-fit epidemiological parameters and NRMSE for each hypothesis.

Parameter H0 H1 H2

10 year fit Cross valid range (low, high)

Max R0(t) 2.65 (2.63,2.66) 2.78 (2.64,2.80) 2.63 (2.62,2.78)
Max R0(t) (B) n/a 2.74 (2.59,2.76) 2.58 (2.53,2.73)
Modulation 1 − � 0.077 (0.066,0.086) 0.091 (0.077,0.098) 0.083 (0.078,0.104)
Modulation 1 − � (B) n/a n/a 0.059 (0.049,0.063)
� [years] 0.19 (0.15,0.20) 0.20 (0.19, 0.22) 0.21 (0.20,0.25)
� (B) [years] n/a n/a 0.10 (0.08,0.13)
Length of immunity (1/˛) [years] 5.87 (5.29,6.36) 4.87 (4.74,5.03) 5.39 (4.70,5.74)
Infectious period (1/�) [days] 1.13 (1.11,1.14) 1.13 (1.07,1.14) 1.11 (1.11,1.15)
� = day of peak transmission [day of year] {datea} 100 {Apr10} (95,105) 102 {Apr12} (99,107) 100 {Apr10} (97,106)
Characteristic mixing distance ı0 [km] 49 (50,55) 55 (55,62) 55 (55,62)

NRMSE 0.092 (0.081,0.100) 0.082 (0.077,0.095) 0.083 (0.065,0.081)
NRMSE (cross validation) 0.244b (0.081,0.568) 0.238b (0.105,0.556) 0.249b (0.085,0.559)

The best fit is obtained by fitting all 10 years of historic data. In parentheses the table shows the range of values observed in each of ten cross validation runs (fitting only 9
years of data).

a The phase is shown in terms of day of year (DOY 0 = Jan 1), and as calendar date in the first year.
b The average NRMSE over ten cross validation trials.
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ig. 2. Composite plot of predicted (held out) seasonal epidemics from the cross va
ach hypothesis: H0 = blue, H1 = red, and H2 = green. Reference incidence is shown

xplicit model). Further comparison of the spatial and non-spatial
1 models may be found in the supplemental material.

iscussion

In this paper we compared models based on three hypothe-
es about the effects of the dominant circulating serotype on the
easonal transmission of influenza: identical transmission dynam-
cs in influenza A and B dominant year (H0), differing amplitude
f seasonal forcing in A and B dominant years (H1), and differing
mplitude, width, and modulation of seasonal forcing in A and B
ominant years (H2). The models were optimized against 10 years
f historic ILI data from Israel. Based on its ability to predict with-
eld years in a cross validation experiment, we found Hypothesis
1 to be best supported by our analysis with 24% error (NRMSE) on
verage. That is, our analysis suggests a small reduction (∼2%) in
he peak transmissibility of influenza in B dominant years and no
ther differences in the shape of the seasonal forcing function.

The epidemiological parameters obtained from all three opti-
ized models are within the range expected for seasonal influenza

see Table 1). Reported values for the mean infectious period have
een based on studies of viral shedding as well as measurements of
he average generation time or serial interval for the virus. The gen-
ration time is equivalent to the infectious period if the latent period
s 0 days (the SIRS model approximation). Some authors used an
EIR(S) model with latent periods ∼1.5 days. Flahault et al. (2009)
eport a mean generation time of 2 days; Truscott et al. (2009) find
similar result (2.2 days). Longini et al. (2005) estimate the mean

nfectious period at 1.9 days. Nicholson et al. (1998) observe viral
hedding over 4.1 days; Cauchemez et al. (2004) report 3.8 days;
arrat et al. (2008) find 4.8 days; and Cauchemez et al. (2008) use
.4 days. Ferguson et al. (2005) estimate the period of infection
with 95% confidence) between 2.1 and 3.0 days. Carrat et al. (2006)

odel influenza with an infectivity distribution that begins 0.5 days
fter infection, peaks at 2.5 days, and extends beyond 8 days. In a
tudy of over 10,000 individuals, Gojovic et al. (2009) report that, on
verage, asymptomatic individuals were infectious for 1 day (fol-
owing a 1.5 day latent period) while symptomatic individuals were
nfectious for 1.5 days. Our estimate is at the very low end of this
ange; to the extent that it is inconsistent with laboratory studies
Carrat et al., 2006), it may reflect the approximations inherent in
sing a simple SIR(S) compartmental model. We did explore the use
f an SEIR(S) model as an alternative for this optimization. Intro-
ucing a latent period (of 1.5 days) does not have a significant effect

n the other parameters reported here. Since the latent period is
mall, we decided to conduct the following analysis based on an
IR(S) model to minimize the total number of parameters being
ptimized.
on experiment. This plot combines the ten separate predictions into one graph for
k. Results from fitted years are not shown.

The duration of immunity predicted by all our models is in the
middle of the range found in the literature. The period over which
recovered individuals reenter the susceptible state is in large part
due to influenza strain dynamics and the rate of antigenic drift of
the influenza virus (Smith et al., 2004). Koelle et al. (2006) found
that, between 1968 and 2003, clusters with unique antigenic prop-
erties were replaced on a timescale of 2–8 years. Couch and Kasel
(1983) concluded the average duration of immunity was longer
than 4 years. A case study by Xia et al. (2005) concluded that, after
an initially fast decay (on a timescale of 8–12 months), a low level
of immunity persisted from 4 to 5 years. Dushoff et al. (2004) con-
cluded a reasonable range for the average duration of immunity
was 4–8 years.

The basic reproductive numbers estimated from our models are
at the high end of estimates for seasonal influenza in the litera-
ture. Basta et al. (2009) reports R0 in the range 1.1 < R0 < 1.6 for
seasonal influenza with lower values corresponding to milder sea-
sons. Flahault et al. (2009) report R0 no greater than 1.5 for seasonal
observations in the city of Paris. Halloran et al. (2008) suggest his-
toric values in the range 1.5 < R0 < 1.9, and Cauchemez et al. (2008)
suggest 1.2 < R0 < 1.4. Estimates for pandemic influenza are in a
similar range or slightly higher (Lessler et al., 2007). For exam-
ple, Mills et al. (2004) report estimates for the 1918 flu in the
range of 1.6 < R0 < 20.0. Truscott et al. (2009) estimate the range at
1.7 < R0 < 2.1. Mathews et al. (2007) report R0 ∼ 3 with an effective
reproductive number near 2.0.

Depending on the method used to estimate the reproductive
number, it is not always clear the extent to which it is the basic
reproductive number (R0) or the effective reproductive number (R)
being measured. While our estimates for R0 are high, this reflects
the high levels of population immunity at the time of peak R0(t) pre-
dicted by our models. The effective reproductive number is never
estimated to go above 1.1 in our model and the time at which it
peaks is more consistent with perceptions about when the major-
ity of influenza transmission actually occurs (Fig. 3). The effective
reproductive number is defined as:

Re(t) = s(t) R0(t) (5)

where s(t) is the fraction of the population susceptible. The effective
reproductive number peaks in phase with the susceptible frac-
tion but out of phase with R0(t). Similar behavior is reported by
Mathews et al. (2007) for a simple sinusoidal forcing function. Cer-
tainly the peak Re(t) and the peak incidence must occur where the
basic reproductive number is rising sharply. The late peak of R0(t)
(in early April) and its correspondingly late nadir (early October)

may also reflect an attempt by the model to fit a seasonal forcing
function that is actually more “square” in shape than a Gaussian.
One might expect such a shape if school terms are the dominant
driver of seasonality.
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ig. 3. (A) Variation of the effective reproductive number Re(t) for model H1 (blue
umber for the same model. Note that the peak Re(t) and the peak incidence occur

The Nelder–Mead optimization also provides an estimate for
he characteristic mixing distance, ı0 ∼ 55 km, used to model the
irculation of populations between regions. Conceptually, we can
hink of this parameter as representing the distance people travel,
n average, in a day. Hence, as the area of a patch gets larger
han ı2

0, a smaller fraction of the population will mix with popu-
ations in neighboring patches. It is informative to compare ı0 with
nown geographic distances and commute patterns in the state
f Israel. Residents of Israel often commute between the largest
sraeli cities with in/out commute rates as high as 60% for some
egions (Presman and Arnon, 2006). The driving distance from Haifa
o Jerusalem (131 km) is just over twice the characteristic mix-
ng distance found in this study. The average distance between
el Aviv and all other districts in Israel is ∼63 km (Presman and
rnon, 2006). These numbers are consistent with the derived mix-

ng distance, and with a relatively high circulation of the population
ithin the state of Israel.

Given the high circulation of the population within the state of
srael, it is reasonable to compare the current results with a purely
on-spatial analysis. In the supplemental material we also eval-
ate Hypothesis H0 with a model that treats the entire nation of

srael as a single well mixed region. The Nelder–Mead optimiza-
ion works equally well for the spatial and non-spatial models
tting the data with a NRMSE of 9%. However, when the (fixed) epi-
emiological parameters deduced from the non-spatial analysis are
pplied to each independent region, the prediction fails completely
NRMSE ∼ 30%).

The models used involve several assumptions that may influ-
nce the accuracy of the transmission dynamics implied by this
odel. The Nelder–Mead optimization minimizes an error function
n order to fit model parameters. Given that the period of incuba-
ion for influenza is small, we chose an SIR(S) model instead of an
EIR(S) model to limit the number of free parameters. The seasonal
orcing function may neither be smooth or symmetrical, and it is
the fraction of the population susceptible (red) vs time. (B) The basic reproductive
the basic reproductive number is rising sharply.

unlikely that there is a constant probability of leaving the infectious
or recovered compartments. However, the models to fit the three
hypotheses are subject to the same limitations (in fact Model 3 con-
tains all sub-models), hence major differences in the transmission
dynamics should be apparent despite these limitations. More wor-
risome are possible year-to-year differences in the proportion of
cases detected, whether due to changes surveillance or differences
in symptom severity between years (or between influenza A and
B themselves). Differences in reporting between influenza A and B
could also lead to apparent differences in the reproductive number
between years not reflective of changes in transmission dynam-
ics. Misspecification of the reporting fraction in general would lead
to misestimates of both the reproductive rate and the period of
influenza immunity. Using a 3% reporting fraction (used by Israeli
public health officials) does lead to parameter estimates consistent
with the literature. Finally, the assumption of long term cross-
protection between influenza A and B (and between A/H1N1 and
A/H3N2 for that matter) is clearly incorrect, and some of the differ-
ences seen between A and B positive years may be a function of this
assumption. An obvious next step in this work is to attempt to fit
a full multi-strain model of influenza; however it is unclear if the
available data is adequate to fit such a model.

The modeling paradigm reported here involved optimization of
several models of influenza to a historic data set, and then using
the control model as a standard against which to test hypotheses
and implement improvements. Using this paradigm, we find sup-
port for differences in the reproductive number between influenza
A and B dominant years. However, we do not suggest that any of
the models evaluated are sufficient for influenza forecasting. Rather
we hope to demonstrate a paradigm and a tool for the rapid devel-

opment, fitting, and evaluation of epidemiological models. STEM
provides world-wide denominator data, mechanisms for running
spatially explicit compartmental models, and support for com-
putational experiments making it an excellent starting point for
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uch endeavors. With its use of the Eclipse Equinox Framework
www.eclipse.org), STEM is both customizable and extensible and
s intended to support collaborations in the modeling community.

paradigm that allows a community to develop, test, and compare
pidemiological models in general could accelerate advances in the
eld.
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