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Abstract
This paper uses methods drawn from physics to study the life cycle of viruses. The paper

analyzes a model of viral infection and evolution using the "grand canonical ensemble" and

formalisms from statistical mechanics and thermodynamics. Using this approach we enu-

merate all possible genetic states of a model virus and host as a function of two independent

pressures–immune response and system temperature. We prove the system has a real

thermodynamic temperature, and discover a new phase transition between a positive tem-

perature regime of normal replication and a negative temperature “disordered” phase of the

virus. We distinguish this from previous observations of a phase transition that arises as a

function of mutation rate. From an evolutionary biology point of view, at steady state the

viruses naturally evolve to distinct quasispecies. This paper also reveals a universal rela-

tionship that relates the order parameter (as a measure of mutational robustness) to evolva-

bility in agreement with recent experimental and theoretical work. Given that real viruses

have finite length RNA segments that encode proteins which determine virus fitness, the

approach used here could be refined to apply to real biological systems, perhaps providing

insight into immune escape, the emergence of novel pathogens and other results of viral

evolution.

Introduction
Viruses are microscopic subcellular objects that infect cells of living organisms across all six
kingdoms of life [1]. Because viruses require host cellular machinery to replicate [2], a common
set of steps must occur for the reproduction of most viruses. First, the virus must enter the cell,
which can occur through membrane fusion, endocytosis, or genetic injection [3]. During the
replication process, tens to thousands of progeny are produced [2]. While the fidelity of the
replication process varies between viruses, for most, particularly RNA viruses, the mutation
rate is quite high [2]. Finally, progeny exit the cell (via budding, apoptosis, or exocytosis), in
many cases killing the cell in the process [2]. The generally high levels of genetic variability cre-
ated during replication lead to rapid “exploration” of genetic sequence space, allowing the virus
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to evade the host immune system, overcome environmental challenges such as antiviral drugs,
and perhaps even adapt to new host species [4–6]. While even single cell organisms have an
innate immune response, viral evolution becomes particularly important when viruses attempt
to evade the adaptive immune system of humans and other vertebrates [2,7]. Successful viruses
all must survive host defense mechanisms, compete to infect host cells, reproduce, and eventu-
ally pass to other hosts [2,8], though an immense variety of strategies are used to accomplish
these tasks.

Recent technical advances in genome sequencing have revealed the enormous genetic diver-
sity of RNA virus populations during infection [9], which is triggered by large population size
and low replication fidelity. Information about mutation distributions during evolution has
proven to be helpful in assessing the intricate mechanisms of viral reproduction [10,11]. More-
over, new insights into the tradeoff between mutational robustness, loosely defined as the
invariance of the phenotype to genetic insults, and evolvability, the capability of the viral species
to adapt to new environments, are emerging, supported by a wealth of new data [12,13].

However, it may not always be necessary, or even advisable, to capture the full intricacies of
this system in useful models of viral evolution and dynamics. Highly simplified models may
still reveal important principles about the behavior of viral populations. For example, Alonso
and Fort measured thermodynamic observables to analyze a phase transition observed in a
model of RNA virus error catastrophe [14–16]. In analogy to Bose condensation they derive an
order parameter to characterize two phases separated by the error catastrophe phase transition.
The error catastrophe literature demonstrates the importance of mutation rate and reveals a
phase transition due to information loss at large rate [14–22]. Nowak and May consider the
transition from sustained infection to elimination of infection as a function of basic reproduc-
tive ratios for various mutant strains [16]. In the current work we demonstrate a way to com-
pute the steady state solutions for evolving viral quasispecies on a fitness landscape determined
by two independent and competing energy terms, temperature and immunity.

Statistical mechanics allows physicists to describe the macroscopic characteristics of a
multi-particle system based on microscopic properties [23–25]. Given a large collection of mol-
ecules or atomic particles, it is possible to use probability theory to define macroscopic proper-
ties in terms of thermodynamic quantities such as system heat, energy, and entropy [23–25].
These macroscopic properties are determined by an “ensemble” of all “microstates” of the col-
lection, along with the probabilities associated with each microstate. If a simple model of viral
replication, transmission and evolution can be developed that lends itself to such analysis, it
may serve as a foundation on which to develop a powerful theory to describe the general behav-
ior of viral systems using the same key concepts used in statistical mechanics.

Methods
In this paper we present a model of viral replication and evolution within a single host and the
analytic theory required to find steady-state solutions for this system. We then describe the
steps used to solve the analytic equations and the methods used. Finally, we study the thermo-
dynamics and statistical mechanics of the viral evolution model. We calculate thermodynamic
quantities such as entropy, an order parameter, specific heat, energy, and properties of viral
population dynamics such as host cell occupancy and viral load in the environment.

Viral Infection as Energy Barriers
Viruses replicate and transmit by a complex multi-step process. For an influenza virion to
infect a cell and replicate, it must bind to receptors on the cellular membrane; induce endocyto-
sis; release ribonucleoprotein (vRNP) complexes into the cytoplasm; vRNPs must be imported
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into the nucleus where replication can occur; and viral offspring must leave the cell through
viral budding [26]. At each step there is some probability of failure, and the more fit the virus,
the lower this probability [27,28]. We abstract this process as crossing two symmetric barriers,
one for infecting the cell, and one for replication and exit.

The virus has some fitness for crossing these barriers (Fig 1), characterized by a probability
of successes which depends on viral fitness and system “temperature”, and is computed using
an activated Arrhenius form [23]:

ei ¼ expðfi=TÞ ð1Þ

where ei is the probability of successfully crossing the barrier, fi is viral fitness, and T is the sys-
tem temperature. At this point one can view T as a parameter that governs how discriminating
the barrier is between viruses with different numbers of “matches” to some target receptor. In
classical chemistry the barrier height is a function of both reactants and products, while the
temperature is a property of the reactants only (viruses in this case). When there is a distribu-
tion of energies for the reactants, kBT is the average energy of the most probable distribution.
In this model temperature changes the discrimination of the barriers to infection and repro-
duction. At low temperature viruses with a high match to the target are favored. At very high
temperature, virtually all viruses of any match are able to infect and reproduce. As we will see,
raising the temperature increases the fraction of viable virions within a quasispecies distribu-
tion. We will later demonstrate that temperature in this model is not only a tuning parameter,
but also the thermodynamic temperature for the system, providing a distribution of energies
for the viruses, which naturally form quasispecies distributions. We will also derive the effective
Boltzmann constant relating temperature and the observed energy scales [23–26].

In viral entry, a protein creates a receptor on the viral envelope that binds to complementary
receptors on a target cell membrane. We do not intend to model the complex interactions
between these receptors. Instead, we abstract the fitness of a virus by how well the genetic let-
ters (an abstraction of amino acids) in a virus’s genome match an idealized target genetic
sequence. The receptor in a real virus is a sub-region of the binding protein (providing many

Fig 1. Model of an Idealized Virus Life Cycle. The barrier height (BE) is equal to the number of mismatches of virus to a target. Viruses with different
numbers of genetic matches will see barriers of different height. The probability of a virus passing is based on an activated Arrhenius model.

doi:10.1371/journal.pone.0137482.g001
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degrees of freedom). To capture these degrees of freedom we require that a sub-region of a
virus “gene”matches a complementary genetic (receptor) target in the cell. Specifically, we
define a target sequence of 50 letters in length associated with the host cell, and each virus is
assigned a genome of 100 letters (i.e., 300 bases). As with real amino acids, letters are the phe-
notypic representation of a codon of three underlying bases (A,C,G, and U/T) in a redundant
genetic code (see S1 Appendix for details). We definem as the number ofmatches between
host and target sequences at the alignment that minimizes the total number of mismatches
(but still completely overlays the target). This model is not intended to capture the complex
interactions between proteins based on their real shapes. Instead, viral fitness in this abstrac-
tion is completely characterized by the difference between the number of matches and the
length of the genome (i.e., fi = fm = −(50 −m)). Once the number of matches to the target is
determined for a particular virion, it is fixed for the life of that virion.

Then, given Eq (1), the probability of a successful barrier crossing is:

em ¼ expð�ð50�mÞ=TÞ ð2Þ

On each replication there is some probability of mutation in a given base, allowing the distribu-
tion of viruses to change or evolve over time.

The Viral Life Cycle
In our simplified model of viral infection and replication the system of viruses passes through
three stages in discrete generations (Fig 2). Free viruses first infect cells, passing into the post-
infection stage, I. Some proportion of infected cells are then “killed” by the immune system,
and instantly replaced by uninfected cells, and we enter the post-immunity stage, X. Finally,
viruses replicate and exit the cell, and we enter the post-reproduction/pre-infection stage, R.
The system state in each stage can be described completely by two interacting sets of variables:
the occupation of the host cells, and the distribution of “free” viruses in the environment. The
self-consistent (steady state) solution for the virus life cycle is one in which each state remains
unchanged after completing a full cycle.

We denote the probability that a cell in our model has a virus with given number of matches
for each stage asCI(m),CX(m), andCR(m). Before reproduction, each cell is considered to
contain at most a single virion. The number of free viruses is denoted by N and the proportion
withmmatches to the target is denoted as Pm. Both N and Pm are only defined in the post-
reproduction stage, after the free virus population is replenished from those intra-cellular
viruses that survive reproduction. The equations for cell occupancy at each stage are:

cIðmÞ ¼ ð1�
X
m

cRðmÞÞlðNÞ PmemX
m

Pmem
þ cRðmÞ

cXðmÞ ¼ cIðmÞð1� XmÞ
cRðmÞ ¼ cXðmÞð1� emÞp

ð3Þ

where λ(N) is the overall infection rate, Xm is the probability that the host immune response
kills any virus in the cell withmmatches, and p is the probability that a cell infected by a virus
that does not reproduce survives until the next round of replication (cells that reproduce are
considered to die, and all dying cells are considered to be instantly replaced with uninfected
cells). Eq (3) represent the following: First, if the cell is empty, with

probabilityð1�
X
m

cRðmÞÞ, the cell becomes infected. Next, the cell remains occupied if the

virus survives the immune response with probability (1- Xm). Finally, the cell only remains
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occupied if the virus does not reproduce with probability (1-em)p. The virus that remains,
CR(m), continues to occupy the cells when the next round of infection occurs.

In our model there are a finite number of identical target host cells available to infect at any
one time, with the infection process proceeding as follows:

1. At any time at most one virus can infect each cell.

2. Each free virus successively attempts to infect the unoccupied cells with a success probability
of each attempt of em.

3. Competition continues until either all cells are occupied or all free viruses have made an
attempt.

With these criteria we can analytically derive the overall infection rate, λ(N), as a function of
the number of target host cells and the number of free viruses in the environmentN (see below).

The immune responses. Vertebrate hosts defend themselves from viral infections using
both innate and adaptive immune responses [21]. In our model the innate immune response

Fig 2. Virus Life Cycle. The changing states of all viruses must be computed self-consistently over the entire virus life cycle. The figure shows three
important stages of the model virus life cycle: (I) Infection (entering the cell), (Ξ) Immune Clearance, and (R) Reproduction and exiting the cell. Also shown
are the equations for cell occupancy at each stage.

doi:10.1371/journal.pone.0137482.g002
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can be considered to be captured by the barrier that viruses must cross to infect and replicate in
cells, while we explicitly model the adaptive immune response. In an adaptive immune
response, the immune system develops an increasingly strong and specific response to infecting
viruses by producing cells and antibodies which recognize and respond to specific viral epi-
topes (i.e., short sequences of amino acids that identify the virus) [21]. Here we assume that all
parts of the virus are exposed to the immune system. Furthermore, we are interested in a steady
state solution where the immune system has learned to recognize the target epitopes (not the
entire viral genome). In steady state a virus genome matches some part of the target genome.
In analogy to adaptive response to a specific set of epitopes, we use this matching sub-region to
determine efficiency of immune response in steady state. In particular we represent the ability
of the adaptive immune system to kill infected cells as a function of the match between a virion
and the target as:

Xm ¼ A=ð1þ e�ðm�vÞ=2Þ ð4Þ

where 0� A� 1 is the maximum immune response, and v is the number of matching codons
at which the virus achieves 50% efficiency when A = 1. In real viruses, the length of epitopes
targeted by immune effector cells can vary widely, from as few as 3–4 of critical amino acids for
B-cell conformational epitopes, to 8–11 amino acids for T cell epitopes (for example) [29].
Here we chose an intermediate value and ν = 6 as a typical epitope length. The results and con-
clusions are not highly sensitive to this choice.

This abstraction is meant to model the steady state response of an adaptive antibody-medi-
ated immunity. In this paper we explore the full range of A andm. Eq (4), together with Eq (2)
and Eq (3), defines the two dimensional fitness landscape in this model.

Viral reproduction and mutation. Viral offspring differ from their parent through muta-
tion of individual bases during the replication process. The resulting evolution is an important
component of the survival strategy for many viruses, allowing them to evade the immune sys-
tem and respond to changes in their environment (e.g., the introduction of chemotherapeutic
agents). When a virus reproduces, the actual reproductive rate (number of offspring per par-
ent) defines the “fecundity”. In our model replication occurs with a fecundity, φ, and offspring
have one, and only one, codon mutation per offspring. Mutation to the same amino acid is
allowed.

As in the Moran model, single mutation can either reduce the maximal match length by one
(Δm = −1), increase the maximal match length by one (Δm = +1) or leave the maximal match
length unchanged (Δm = 0) [18,19]. Consider a virus with a maximum ofm0 codons matching
the organism target genome. We find the sub-region(s) on the virus genome that contain the
maximum number of matches,m0, to the target by counting matches for each possible align-
ment. For a mutation to decreasem, two conditions must be true. First, the mutation must
occur at a currently matched position in the matching region and must change the expressed
amino acid (i.e., must not be a same-sense or silent mutation). Second, there must not be two
or more alignments with the same maximal match. For a mutation to increasem, it must occur
at a non-matching codon in a maximally matching alignment and result in a change to the
amino acid at that position to one that matches the target.

The mutation operators take the distribution of viruses that survive the immune response
process, and transform it into a distribution of free viruses that exist after reproduction and
mutation (Fig 2). In order to calculate the probability distribution, P(m), for the viral state after
mutation, we need to calculate the general “transition probability" matrix for changes in the
number of matches as a function of m. Assume a virus with a given number of initial matches,
m. To calculate the probability that a mutation on this virus will cause a +1, -1, or 0, change in
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the number of matches we first studied some limiting cases. The transition probability and its
slope can be derived analytically at two limits: no (or few) matches and perfect or near perfect
matches. Depending on the degeneracy of the target, the values for these limiting cases can
vary considerably and have the most variability for viruses with low numbers of matches before
mutation. In the case of a highly degenerate target, that is, one with a very limited number of
distinct or unique codons, the probability of a single mutation keeping the same number of
matches approaches zero in the low initial match limit. Conversely, the probability of a muta-
tion increasing the number of matches goes rapidly (to one) in this limit.

In the opposite case of a target with no repeating codons, the results depend on whether the
alphabet is much larger even than the size of the target, or whether the target uses almost all
the possible codons. If there are a large number of distinct codons possible in the viruses,
beyond the number already in the target, the probability of a mutation keeping the same num-
ber of matches approaches 1 in the low-match limit, while the probability of a mutation
increasing the number of matches is low for all initial numbers of matches. If almost all the
available codons appear in the target, and the viruses contain essentially the same selection of
codons that the target does, then the probabilities for keeping the same number of matches and
increasing the number of matches by 1 become nearly equal at 1/2 each in the low match limit.

The probability that a mutation decreases the number of matches starts at zero for zero ini-
tial matches, and typically rises to a value near 0.5 for a complete match with the target, inde-
pendent of target degeneracy. The probability of a mutation causing no change in the perfectly
matching virus is also near 0.5 regardless of target degeneracy.

These general cases are shown in Fig 3. It should be noted that these results hold for matches
determined by complete overlay of the target binding sites by the virus. We do not consider
alignments where the target extends past the end of the virus giving only partial overlay of
the target binding sites. This alternative method would yield different limiting cases, as well as
different expressions below for the mutation. For clarity, in our model there exist only v-t+1
allowed alignments, where v and t are the length of virus and target, respectively. (This is in

Fig 3. Three Limiting Cases of the Effect of Viral Mutation in a Single Codon. The transition probabilitiy (Pmut) as a function of the number of matches, m
(pre-mutation). Curves labeled ‘+1’ represent the probability of a mutation increasing the number of matches between the virus and target genomes, ‘-1’ the
probability of decreasing the number of matches, and ‘0’ the probability of no change. Given alphabet length ‘a,’ the figure shows the limiting behavior for: (a)
Small a, highly degenerate target; (b) a� target+1, i.e., medium degeneracy; (c) Large a, i.e., low target degeneracy.

doi:10.1371/journal.pone.0137482.g003
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contrast to the ‘extended alignment’method, not implemented here, which has v+t-1 align-
ments.) The limiting cases shown in Fig 3 are derived for the specific choice of a virus genome
segment exactly twice as long as the target segment (our model system).

For specificity, the target genome segment was defined as:
THISISTHEENTRYTARGETFORREGULARCELLSWAYOFENTERINGIT

This example target uses 16 of the 26 possible codons. It has a maximum degeneracy of 7,
and a length of 50. For a virus length of 100, and given this particular target genome segment,
we were able to calculate analytically the behavior near the two end points and numerical con-
tinuation in between. The mutation probabilities are:

PmutðDm ¼ �1Þ ¼ o
m
100

1

1þ e�ðm�10Þ=2

� �

PmutðDm ¼ þ1Þ ¼ o
235:45

ðe4:709ð1�m=50Þ � 1Þ ð5Þ

PmutðDm ¼ 0Þ ¼ 1� PmutðDm ¼ þ1Þ � PmutðDm ¼ �1Þ
where Pmut is the probability that a mutation of a virus with m matches will result in a change
in m of Δm = 0,±1. The variable ω, which we take to be 0.7867, represents the redundancy in
the underlying genetic code due to the multiplicity of three-codon combinations that define an
amino acid.

Note that the sum of the three terms is always one, corresponding to conservation of virus
in the mutation process. We plot these mutation probabilities in Fig 4.

We note that our particular target is at the low degeneracy limit, and is part-way between
the cases using all the available alphabet vs. those using only a small fraction of it. It thus can be
viewed as fairly “challenging” to the virus. We find that changing the length of the virus
genome, changing the length of the target, or changing the degeneracies in the codon “alpha-
bet” (without going into trivial regimes or limiting cases of no degeneracy) only rescales tem-
perature without changing the overall behavior or conclusions. In future work it is
straightforward to explore other cases in detail.

Note also that many viruses not only mutate, but also recombine. Such viruses may infect
individual cells multiple times. This model does not capture these processes. In addition, nei-
ther matches nor mismatches in this model should be interpreted as “replication error.” In con-
trast to the quasispecies model(s) of viral evolution used to study viral error catastrophe [14–
22], evolution in this model is a function of two independent and competing fitness pressures.

Self-Consistent Solutions
We solve self-consistently the probability functions of the virus in the host cells {CI,CX,CR},
the virus distribution in the environment, and the total number of viruses. The 51x51 matrix of
inter-relatedC(m), Eq (3), can be diagonalized analytically to obtain the following:

cIðmÞ ¼ lðNÞ½Pmem=E�
½1þ

X
m0

Km0 �½1� ð1� XmÞð1� emÞp�

cXðmÞ ¼ lðNÞ½Pmem=E�ð1� XmÞ
½1þ

X
m0

Km0 �½1� ð1� XmÞð1� emÞp�
ð6Þ
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cRðmÞ ¼ lðNÞ½Pmem=E�ð1� XmÞð1� emÞp
½1þ

X
m0

Km0 �½1� ð1� XmÞð1� emÞp�

with

Km ¼ lðNÞPmemð1� XmÞð1� emÞp
E½1� ð1� XmÞð1� emÞp�

where E ¼
X

Pmem and all other terms are defined as in Eqs (2–4). Eq (6) give the probability

that a cell is occupied by virus withmmatches at each stage of the life cycle (I, X, and R). The
stable solutions to Eq (6) hold for any given Pm and λ(N), which must also be solved self-
consistently.

Fig 4. Viral Mutation Probabilities. For our model target, the transition probability (Pmut) as a function of the number of matches, m (pre-mutation). The
figure shows the probability, Pmut, of a viral mutation causing an increase, decrease, or stasis in the number of matching codons between the virus and the
actual target genome (Δm = +1,0,-1).

doi:10.1371/journal.pone.0137482.g004
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The limiting case of p = 0 has no virus remaining in the cells after each cycle so it decouples
the solution of the occupation of the virus in the cells from the previous iteration (CI(m) from
CR(m)). IfCR(m) is zero in the equation for the infection rate, the solution of the virus in the
cells becomes trivial. We have analyzed the model represented by the solutions in Eqs (6–10)
for the full range of probability p, from p = 0 to 1. We find that the effect varying p, the proba-
bility that the virus remains in the cell if not cleared by the immune response, is only a slight
rescaling of the temperature parameter, demonstrating universality in the solution described
below. We also note that the addition of p breaks the symmetry between reproduction and
infection but does not change the results. Since a value of p = 1 represents the most strongly
coupled case of interaction between cells and virus, we present those results below.

Solution for the viral genetic states. Eq (6) (solutions to Eq 3) provide the viral occupa-
tion (or load) in the cells as a function of the distribution of virus in the environment. We next
solve for the steady state distribution of virus in the environment. Imposing self-consistency on
the reproduction and mutation processes, we derive the following equation (see S1 Appendix
for details):

MDmPm ¼ Pm

"X
m

DmPm

#
ð7Þ

WhereM is a matrix of probabilities formed from Eq (5) and:

Dm ¼ e2mð1� XmÞ
½1� ð1� XmÞð1� emÞp�

ð8Þ

Solving Eq (7) gives the steady-state viral probability distributions of the system. Eq (7) can be
recognized as an eigenvalue equation where every valid eigenstate Pm of matrixMDm must

have eigenvalue
X
m

DmPm. It can be proven that any eigenvector solution ofMDmPm = λmPm

has an eigenvalue λm equal to
X
m

DmPm as long as the eigenvectors Pm are normalizable as

probability vectors (i.e.,
X
m

Pm ¼ 1) (note that Dm is expressed as a diagonal matrix).

Eq (7) defines a complex effective fitness landscape for the quasispecies population. We
note that this fitness landscape is not purely multiplicative. Tripathi et al. (and references
therein) modeled RNA virus evolution in a non-multiplicative fitness landscape where they
allow for epistatic interactions [20]. However, the landscape considered here cannot simply be
expressed as a sum of independent selection effects with cross terms.

Number of viruses. For each solution Pm of Eq (7), the number, N, of viruses in the envi-
ronment is equal to the total probability that a cell has a virus that successfully reproduces,
times the number of target host cells, c, times the fecundity, φ, defined above:

N ¼ cφ
X
m

emc
XðmÞ ð9Þ

N can then be found as the solution of a pair of coupled transcendental equations, one for N as
a function of the infection rate λ, and the other for λ as a function of N. SubstitutingC X into
Eq (9) from Eq (6), and using the definition of Dm from Eq (8), we obtain:

N ¼ lðNÞ
cφ
X
m

DmPm

E½1þ lðNÞ
X
m

K 0
m�

ð10aÞ
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with

K 0
m ¼ Pmemð1� XmÞð1� emÞp

E½1� ð1� XmÞð1� emÞp�

lðNÞ ¼
Xc

n¼1

n
c
ð1� EÞðc�nÞðN�nÞYn�1

i¼0

ð1� ð1� EÞN�iÞð1� ð1� EÞc�iÞ
ð1� ð1� EÞiþ1Þ YðN � nÞ ð10bÞ

With E, defined in the context of Eq (6), (1-E) is the probability of a cell not being infected
in a single viral pass given the distribution of virus in the environment Pm. Further detail con-
cerning the infection rate, λ(N), in Eq (10b) may be found in S1 Appendix. In the calculations
in this paper, the number of target host cells, c, was taken to be 5 and the fecundity, φ, was 20,
giving a maximum N of 100 viruses replicated from the cells into the environment.

These coupled nonlinear equations were solved using Newton-Raphson methods. It can be
shown that the functional form above results in one and only one solution for N, for each
choice of initial parameters and input viral distribution Pm.

Numerical solutions. There are 51 roots of the eigenvalue Eq (7), corresponding to the
vector size of Pm, (which is indexed by the differentm,m = 0 to 50). More generally, given a
genetic target of length G, there would exist G+1 roots. We employed a number of tests to
determine which of the eigenstates are physical. Each eigenvector element represents a proba-
bility. The eigenvectors should not have imaginary elements, and after normalization they
should not have negative elements. The Perron-Frobenius theorem states that a real square
matrix with positive entries has a unique largest real eigenvalue and that eigenvector has strictly
positive components. Our matrix meets the criteria required by Perron-Frobenius so the all-
positive eigenvector corresponding to the largest eigenvalue provides the equilibrium solution.

The number of viruses corresponding to an eigenstate (Eq 10) must also be greater than or
equal to zero. With these conditions, only one nontrivial physical eigenstate was found for any
set of initial conditions (temperature, immunity, etc.). The trivial zero state (no virus) is always
a stable solution. We looked for dynamic solutions numerically and did not find any for the
system defined in this paper. The dynamic solutions always converged to the analytically
derived steady state result.

Results and Discussion

Evolution of the Virus
The probability of a virus having a given number of matches,m, at a specific temperature and
maximum immune response (Eq 4), A, is the normalized eigenstate, Pm (Fig 5). Each Pm can be
thought of as the steady state quasispecies distribution, the peak of which represents the most
“robust” virus type in the quasistates [14–16,20–22,30]. The width of each distribution reflects
the accessible states and can be viewed as an indicator of evolvability or adaptive genetic diver-
sity [4].

For all temperatures and immunities studied (with the exception of T, A = 0, see below),
only one stable (non-trivial, non-zero) eigenstate was found. At very low temperature, the virus
must closely match the target genome (m ~ 50). As temperature is raised, the mean number of
matches of the quasistate decreases, eventually excluding the perfect match as an important
component of the solution (i.e., the state de-pins fromm = 50). Two distinct behaviors are
observed as a function of immunity. At low immune amplitude (Fig 5A), as T increases, the
mean of the distributions moves smoothly from high match to low match (m~14.5). At higher
immune amplitude (Fig 5B–5D), the quasistates distribution jumps from higher to lowerm
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with increasing T. This is most pronounced in Fig 5D where all eigenstates are found only near
higher or lowerm regions.

At low temperatures the virus must be well adapted to the host as reflected in the high
codon match. Conversely, at very high T, the barrier is less important (i.e., entry into the cell is
thermally “activated”) allowing the viruses to more easily avoid the immune system through
greater genetic variation. We call distributions with mean near the perfect match “ordered
states” of the virus, and distributions with low mean (m<10 in Fig 5D) “disordered states”.
This suggests that the mean of the eigenstate distributions may serve as a measure of an order
parameter for the system, that is:

Menv ¼
1

50

X
m

mPðmÞ ð11Þ

An equivalent order parameter for virus inside the cells is defined in S1 Appendix.
An order parameter,M, near 1.0 represents an ordered state and lowM represents a disor-

dered state. For low values of A, the order parameter decreases smoothly and continuously as
temperature is raised (Fig 6). We will refer to this as the regime of normal replication. For high
values of A, the order parameter jumps discontinuously from high to low as temperature is
raised. This discontinuity suggests a first order phase transition in T at high immunity between
the regime of normal replication and the disordered phase of the virus. The phase transition
reported here reflects the competition between different natural “strategies” to resisting two
different pressures. The first is immune response, and the second is the thermal barrier. Viruses
responding to either of these pressures will have different characteristic energies. A first order

Fig 5. Eigenstates of the System. The figure shows the normalized eigenstates, P(m), vs. the number of matches, m, as a function of temperature and
maximum immune response, A. Each distribution, P(m), represents the quasispecies distribution (i.e. probability of a given number of matches) at fixed A and
temperature. The temperatures shown here are 0.01,0.03,0.05,0.1,0.3,0.5,1,2,3,4,5,10,. . .,100*,110,120,130,140,150,200,250,300 (*step by 5) for each
immunity indicated. Low temperature is represented by the narrow distribution at high match (at far right).

doi:10.1371/journal.pone.0137482.g005
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phase transition occurs, by definition, when these energies cross. This phase transition is differ-
ent from the phase transition that occurs in the Eigen and Schuster model, which reflects a loss
in information associated with low fidelity of replication. It is also different from the very large
literature on viral error catastrophe [14–22]. Error catastrophe is a phase transition that occurs
in a dynamic model as mutation rate is increased past a critical rate. This is distinct from the
phase transition observed above in the current steady state model. The phase transition
observed here is a consequence of two competing energy terms. It is also distinct from the
dynamic transition discussed by Nowak and May as a function of basic reproductive ratios for
various mutant strains [16]. In our model even for increasing immunity in the disordered
phase the viral population does not collapse.

Fig 7 shows the occupancy of the cells after infection and immune response (before virus
reproduction). One can view the occupancy as a measure of viral fitness. The occupancy

Fig 6. Order Parameter. The order parameter,Menv, as determined by sampling virus in the environment to measure the average fraction of matching
codons, as a function of temperature and maximum immune response, A. The order parameter is defined in Eq (11). Sampling virus inside the cells yields
almost exactly the same result (see Figure C in S1 Appendix).

doi:10.1371/journal.pone.0137482.g006
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fraction of the cells is between zero and 1. With zero immunity, A = 0, the cell occupancy is 1.0
for all T. As immunity is raised the occupancy decreases (approximately linearly in A) until
reaching the phase boundary separating the regime of normal replication from the disordered
phase. At high temperature and immune response the virus is in the disordered phase and cell
occupancy plateaus at ~ 50%. These are viruses that never completely clear, but have low occu-
pancy, low match, and evoke low immune response. At low temperature the virus never enters
the disordered phase and cell occupancy decreases linearly with increasing A, eventually falling
to zero. The region of phase space with zero virus (viruses that clear in steady state) appears
small but for an individual with full immunity, it actually extends to T = 16 degrees which is
32% of the maximum mismatch energy (50) scaled by the effective Boltzmann constant. Like-
wise the region of zero virus is bounded by maximum immune response A> = 0.94. In the
regime of large A and low temperature, one would expect a dynamic process with basic repro-
ductive ratio below unity.

Fig 7. Occupancy of Cells. The occupancy of the cells,Ψ Ξ (m), derived from the steady-state solution (Eq 6), is shown as a function of temperature and
maximum immune response, A. The same phase transition observed as in Fig 6 is evident here.

doi:10.1371/journal.pone.0137482.g007
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The discontinuity observed in Figs 6 and 7 is also evident in the order parameter measured
for virus occupying the cells (see Figures C-D in S1 Appendix). These discontinuities suggest
one or more phase transitions.

Thermodynamics and Statistical Mechanics
To understand the possible phase transitions (Figs 6 and 7) we now study the thermodynamics
of the system. To do so we must first define a temperature. So far, we have used parameter T as
an “effective” temperature. At this point we go further and posit that T is in fact the natural
temperature of the system. Systems at finite “natural” temperature do not stay in one equilib-
rium microstate. Rather, they sample all accessible states with a probability based on the Boltz-
mann distribution. We will estimate the effective Boltzmann constant and test the degree to
which T acts as a real temperature below.

In order to determine the correct statistical thermodynamic ensemble of our system, we
must identify the constant thermodynamic variables. In our model, the total number of cells,
the size of the generic alphabet, and the length of the virus and the target genomes are all con-
stant. To do thermodynamics, we need conservation of energy, and for this we need to define
an energy. To be consistent with our definition of temperature, at T = 0 the system must enter
a zero energy “ground state”. In our model, due to the Arrhenius form with temperature in the
denominator of the exponential, at T = 0 the probabilities of infection and reproduction
become delta functions at the maximum number of matches. Only viruses with a perfect match
will successfully reproduce. We thus assign energy E = 50 −m. With this definition, at T = 0,
only the E = 0 state of the virus will be present. Any multiple of E would also serve. A Boltz-
mann constant must relate the energy and temperature scales. That is, with this definition of
energy, our denominator in Eq (3) is actually kBT.

In general, the expectation value of the energy of a viral state with N total viruses in the envi-
ronment at a given temperature and immunity is:

E ¼ N
X50
m¼0

ð50�mÞPðmÞ ð12Þ

We calculate this and find the energy is zero all along the T = 0 axis for all immunities (as
required), and increases monotonically with temperature. For reference, graphs of the expecta-
tion value of the energy and other thermodynamic variables may be found in S1 Appendix.

So far we have discussed our model in terms of viruses in the cells and in the environment.
It is clear that as temperature and immunity are changed, both the energy and the number of
virions change. Energy and number are both conserved only if we imagine that our cells and
environment are both in contact with a third reservoir or bath that includes all possible viruses
in thermal and “chemical” equilibrium with the rest of the system. Chemical equilibrium in
our model requires conservative flow of virus between the reservoir and the system. Classically,
for particle number to have an associated chemical potential, chemical potential of the system
must be conserved during the internal dynamics of the system, and only able to change when
the system exchanges particles with an external reservoir. This is the classic definition of a
macro-canonical or grand canonical ensemble (Fig 8). This ensemble is the natural statistical
ensemble for modeling any system of viruses. It ensures conservation of both number and
energy. Any viruses not in cells or the environment (e.g., those eliminated by immune
response) are in the reservoir, and any new viruses entering the system (e.g., mutated offspring)
are drawn from the reservoir.

Consider an initial (fully occupied) state of the reservoir with no viruses in the cells or the
environment. In this state the bath includes enough copies of all possible virus sequences to
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populate any possible system state. That is for each of the 26100 possible viral sequences there
must be a number of copies equal to fecundity times the number of cells. Reproduction is then
a process of drawing new viruses from the theoretical reservoir constrained by the rules of
mutation. Since the total number of viruses is fixed, the total energy is fixed, thus assuring con-
servation of energy.

Given this ensemble it is possible to use the methodologies of thermodynamics and statisti-
cal mechanics to calculate any thermodynamic quantity of interest. For example, given the
expectation value of the energy, the specific heat, C(T), is defined by:

CðTÞ ¼ dhEi
dT

� �
V

ð13Þ

where the derivative is taken at constant volume (here clearly maintained) and<E> is the
average energy. Measurement of specific heat, or heat capacity, (shown in Figure J in S1 Appen-
dix) is another indicator of the type of phase transition. We observe a sharp maximum in spe-
cific heat (i.e., a latent heat) in the vicinity of the apparent first order phase transition seen in
Fig 6. We do not observe a power law singularity in that part of phase space where the system
smoothly transitions between states, suggesting there is no second order phase transition.

Fig 8. The Grand Canonical Ensemble for a System of Viruses. The three thermodynamic elements of the system are shown. The “Reservoir” of all
possible virus is usually referred to as the “thermal bath”.[23] In this case the bath of possible viral sequences is very large (effectively infinite). Free virus in
the environment, at steady state, is populated from the reservoir with a distribution based on temperature and immunity. In the infection phase, virus that
successfully infect cells are drawn from the environment. Virus that fails to infect are returned to the reservoir. Immunity may remove virus (from the cells
back to the reservoir), and reproduction draws new offspring from the reservoir and repopulates the environment (emptying the cells). The double arrows
indicate population from and return to the reservoir. The curved arrows show the virus life cycle.

doi:10.1371/journal.pone.0137482.g008
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From the specific heat we also calculate entropy, a measure of the number of degrees of free-
dom of the system (Fig 9).

DS ¼
Zb

a

CðTÞ
T

dT ð14Þ

Formally, the entropy is defined as S = kB lnO, where O is the effective number of degrees of
freedom in the system, and kB is the effective Boltzmann constant. Here O is a measure of the
genetic variability of the viruses. One can see from Fig 9, that the number of degrees of freedom
is very large (as large e35 ~ 1015 even for our small genome). The number of degrees of freedom
increases smoothly with decreasing peak immunity, A.

In addition to calculating the entropy, we also obtained the width, σ, of each quasistate as a
function of temperature and maximum immune response, A. As discussed above this width is
a measure of evolvability or adaptive diversity. The order parameter, which corresponds to the
most abundant number of matches in the quasistates is a measure of robustness,mrobust or the
number of amino acids that can change without changing the match number or phenotype. In
Fig 10 we plotmrobust/50 as a function of evolvability for every temperature and immunity.
Interestingly, we find that all of the data collapses onto a single universal curve. The evolvability

Fig 9. Entropy. The figure shows the entropy of virus, S/kB = lnΩ, while in the cells as a function of temperature and maximum immune response, A, where
kB is the effective Boltzmann constant.

doi:10.1371/journal.pone.0137482.g009
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is lowest for values of T and A that lead to quasispecies wheremrobust closely matches the target
as well as for quasispecies where themrobust has almost no matches. The curve has a maximum
formrobust/50 = 0.54. The largest evolvability corresponds to quasistates near the phase transi-
tion where the curve breaks apart.

In Fig 10 the segment in yellow represents the trajectory along the universal curve where
immunity, A, is varied at fixed T (T = 10 degrees). Counterintuitively, as immune pressure is
increased, evolvability decreases and mrobust increases. This behavior provides an explanation
for the phase transition. In this model viruses must survive two types of pressure. Low tempera-
ture selects for phenotypes best adapted to infect the host. Immune response puts pressure on

Fig 10. Robustness vs. Evolvability. The robustness (mrobust/50) as a function of “evolvability”, σ, for each quasispecies, at all studied temperatures and
immunities, A (red points). Here the robustness is defined by the order parameter, or average <m>, for each quasispecies distribution P(m). For a symmetric
distribution this corresponds to the most probable m. The curve is nearly universal, breaking apart only near the phase transition. The colored segments and
the green arrows indicate the trajectories as function of increasing immunity (for temperatures represented).

doi:10.1371/journal.pone.0137482.g010
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phenotypes that most closely match the target. The direction in which quasistate distributions
shift in response to these combined pressures depends on the relative steepness of each energy
term as a function of T and A. In the example at T = 10 degrees, with increasing immunity the
most robust virus shifts to even better match the target thus lowering temperature driven barri-
ers to reproduction. While this leads to a slightly higher immune pressure, the immune
response function has nearly plateaued for matches above 15 codons, so there is diminished
benefit from lowering the match to avoid immune response. As immune pressure is increased
still further, there comes a tipping point where increasing visibility to the immune response
becomes too much for the virus, and there is a jump in population characteristics–the phase
transition–favoring a much lower match to the target. In general, for all of the states in Fig 10,
all trajectories move away from the phase transition observed in Figs 5–8 (as indicated by the
arrows in Fig 10). This behavior is further demonstrated by the shift in eigenstates as a function
of immunity and temperature (see Fig 5 and Figure K in S1 Appendix).

The relationship between viral robustness and evolvability explored in Fig 10 deserves to be
understood more in depth. Viruses, especially RNA viruses, use a number of strategies to pre-
serve genetic information during replication. Neutral (synonymous) mutations, large popula-
tion sizes, co-infections and molecular chaperones are just few of these mechanisms. On the
other hand, adaptation through new mutations to harsh environments is paramount for the
evolution of the virus. The apparent antithetic nature of these two necessary mechanisms
implies the need for a tradeoff between them. Thus, a relationship like the one obtained in Fig
10 may to be necessary for the evolution of the virus. The observation that evolvability is at a
minimum when robustness is very low or very high and at a maximum for intermediate
robustness was first reported by Draghi et al. in a dynamic genotype-phenotype network
model [12]. Stern et al. further confirmed both theoretically and experimentally the relation-
ship between evolvability and robustness and observed this proposed universal behavior in
polio virus [13].

Thermodynamic Temperature
All of the analyses discussed above relate thermodynamic variables to strength of the immune
system and an effective temperature. The question remains: how does our effective temperature
relate to a real thermodynamic temperature? To determine this relationship, we calculate how
the (genetic) states of the virus are distributed in energy.

1

kBTthermo

� b � @lnOðEÞ
@E

ð15Þ

where O (E) is the number of accessible states at energy E. The accessible states represent the
entire cohort of N viruses. In the previous sections we calculated the equilibrium viral state and
its properties as a function of effective temperature (T) and immune strength (A). At a given
effective T and A, each state has a well-defined number of viruses, N, and a probability distribu-
tion, Pm, representing the number of genetic matches (and mismatches) between the virus and
target. While N and Pm are sufficient to calculate average properties (e.g., average energy), in
order to calculate thermodynamic temperature one must enumerate the complete set of reali-
zations of all systems with N viruses, and probability of match distributed as Pm. In order to cal-
culate O (E), we need to do a careful counting of states as a function of energy.

We transform the probability distribution as a function of matches m, Pm, into a probability
of finding a virus at an energy E, P(E), using the definition of Energy in Eq (12). Note that con-
tributions to the probability of a virus at a given energy can be from several different quasis-
tates. Details of how P(E) is calculated appear in S1 Appendix.
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With the determination of P(E), we can define the accessible states in energy as:

lnOðEÞ ¼ lnPðEÞ þ

XnE
j¼1

PjðEÞlnDjðEÞ � PjðEÞlnPjðEÞ

PðEÞ ð16Þ

with

lnDjðEÞ ¼
Xwj

i¼1

nij½lnOoðm ¼ miÞ� ð17Þ

where Oo(m) is the number of distinguishable configurations of the codons for a virus with m
matches. This very large number depends on the number of matches, length of the virus and
target genome length, the size of the alphabet, and the number of codons used (and not used)
in the target. In addition, to be accessible, the states must be connected by permissible muta-
tions. In practice this limits Oo(m) from being the maximal value obtained by permutation
alone. We have computed Oo(m) numerically and find ln Oo(m) ~ 47 for allm, given our defi-
nition of genomes, codon alphabet, and mutations.

In thermodynamics the formal relation between entropy and number of states is:

S ¼ kB lnO ð18Þ

Note that in Eq (17) each contribution to lnO is of the form p lnp, which is the information
theoretic entropy [31]. With these definitions we show below our calculated thermodynamic
temperature as a function of the temperature parameter in our model, Tmodel. From Eq (15) the
effective kBTthermo is the inverse slope derived from a plot of lnO(E) vs. E.

For Tmodel less than the critical temperature (Figs 5 and 6), the system is in a regime of nor-
mal replication. In this phase, Fig 11 demonstrates that the thermodynamic temperature is
defined, positive, and approximately linearly related to Tmodel. The constant of proportionality
is the effective Boltzmann constant. Observe that the temperature scale set by the entropy and
the number of states is tied to the genetic properties of the virus+host target pair. A different
type of virus with a protein receptor of different length or different degeneracy, or a different
target (host) receptor would change the entropy and the energy and therefore the correspond-
ing temperature scale. Lowering temperature can cause some virions to fail to infect any cell (in
a particular host) which might otherwise been able to infect a cell. This is analogous to chang-
ing immunity, which can cause some virions to die, which may not have otherwise died.
Changing temperature changes a virion’s fitness and shifts the steady state quasispecies
distribution.

Viruses compete to infect a finite number of cells. Fitness of a quasispecies distribution is
affected by temperature, immunity, and also the number of possible states at each match.
There are many more virus genetic configurations with 15 matches than there are with 50
matches. So entropy plays a critical role in defining the thermodynamic temperature (and the
steady quasispecies distributions). As illustrated in Fig 5 (A) with near zero immune response
(for example) changing temperature causes the quasispecies distribution to shift.

In the regime of normal replication we find that the effective Boltzmann constant also
depends on the immune strength, A. In the inset to Fig 11,we plot the slope of the thermody-
namic temperature, Tthermo vs Tmodel for the immunities shown in the color legend, and observe
that they all fall on a single line. This suggests that the effective kB decreases linearly with
increasing maximum immune response, A, and shows that immune strength rescales tempera-
ture in the regime of normal replication. This rescaling is approximately linear with kB = -5.5A
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+7.2, where A is maximum immune response. We note with interest that for A = 1 we have
kB~2 implying the thermodynamic and model temperature scales are not far apart.

At the critical temperature, Tc, there is a phase transition and the system switches from the
regime of normal replication to a disordered phase for Tmodel>Tc. For reference, at high tem-
perature and high immunity, the order parameter approaches zero and is nearly flat in the dis-
ordered phase. In fact, temperature is negative in the disordered phase. This negative
temperature phase exists because at sufficiently high Tmodel there is less advantage to configura-
tions with many matching codons, and at high immunity there is a survival penalty for eigen-
states with high matches. Although it is possible to increase Tmodel to arbitrarily large values,
the number of mismatches can never exceed the length of the target genome and the degener-
acy of a state with maximal mismatch is constrained by the finite length codon alphabet. In
classic textbook examples [23], O(E) is a rapidly increasing function of E. In this system, how-
ever, lnO(E) has a maximum near the phase transition and then decreases. This occurs because
as temperature increases past Tc there are actually fewer accessible states in the disordered

Fig 11. Testing for a Thermodynamic Temperature. The figure shows thermodynamic temperature Tthermo vs Tmodel. For Tmodel below the phase transition,
the relationship is linear with slope kB. From Eq (15) the effective kBTthermo is the inverse slope derived from a plot of lnΩ(E) vs. E. Above the phase transition
a negative temperature is observed as expected. In the inset we plot the slope of Tthermo vs Tmodel for the values of maximum immune response, A, shown in
the color legend, and observe that they all fall on a single line. This suggests that the effective kB decreases linearly with increasing immune amplitude, A,
and shows that immune strength rescales temperature.

doi:10.1371/journal.pone.0137482.g011
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phase. This gives rise to a negative slope of lnO(E) vs E and, therefore, a negative temperature
at high Tmodel. Physically, negative temperature occurs any time a finite system has both an
upper and lower bound to the possible energies. This is precisely the case in any system with
finite length genomes and a finite codon alphabet. Theoretically this should also be true of real
biological viruses but it remains to be seen if any examples exist.

Negative temperate defines the highest energy state(s) of a system. The current biologically
inspired model provides an easy to understand example of why a state with negative tempera-
ture is hotter than a state at positive temperature. Temperature is defined not only by a kinetic
energy but also by the total entropy of the system. In an infinite system, entropy increases as
temperature is raised. In this finite biological system, as energy is increased past the critical
point, entropy actually decreases because the number of possible states or configurations with
no matching codons is always less than the number of possible states at lower energy with
(e.g.,) one matching codon. A fully disordered state cannot use any of the codons found in the
target so it has lower entropy. In the limit of very high energy (and negative temperature) the
disordered phase represents a state with a cohort of viruses, some with no codons that match
the target genome. Due to mutation the cohort must contain some offspring in the environ-
ment with some matching codons.

Conclusions
In this paper we explored a simplified model of viruses and their life cycle. Within the model,
the process of viral transmission is characterized by a series of energy barriers. A virus’s ability
to cross these barriers is defined by its genetic similarity to an idealized target sequence for the
host. The genetic properties of the viruses evolve, through natural selection, to a steady-state
distribution of genetic states best adapted to an environment at each fixed temperature and
immune response. The immune response represents the host’s ability to clear a virus based on
both viral genetics and host immune memory. Viral evolution, in this case, is simply an opera-
tion on the genetic code of the multiple offspring of a parent virus.

The diversity of viral sequences in the extant population depends on the temperature of the
system, T, and the strength of the immune response. At each temperature and immunity we
find one stable quasi-state with a diverse distribution of viral sequences. The average of this dis-
tribution has a characteristic number of codons which match the target. This average match
(M) defines an order parameter, and is found in our thermodynamic analysis to be related to
the system energy. The width of the quasi-state distributions is a measure of the diversity (and
evolvability) of the extant population. We find a nonlinear function relating evolvability to
robustness that collapses all data at all temperatures and immune function to a single universal
curve in agreement with previous theoretical and experimental literature [12,13].

We determined all equilibrium states of this model system, as well as the probability distri-
bution describing the matches of those viruses as a function of temperature and immune
response. The stable quasi-states and resulting virus phases as a function of immune response
reflect the “strategies” a virus may take to efficiently infect a host cell while avoiding removal
by the immune system. The order parameter based on the number of matches reveals two
regimes. To understand these regimes we applied the machinery of thermodynamics and statis-
tical mechanics. Enumerating the states of all possible viruses (those able to infect and repro-
duce in cells, off spring found in the environment, and a “reservoir” or “bath” of all remain
states with their respective probabilities) we used the grand canonical ensemble to derive all of
the thermodynamic variables for the system including thermodynamic temperature, immune
suppression, entropy, specific heat, and total energy. The grand canonical ensemble is the natu-
ral statistical ensemble for modeling any system of viruses.
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In response to temperature and immune pressure we observe a phase transition between a
positive temperature regime of normal replication and a negative temperature “disordered”
phase of the virus. In this model viruses must survive two types of pressure. Low temperature
selects for phenotypes best adapted to infect the host. Conversely, immune pressure is strongest
on phenotypes that most closely match the target. The direction in which quasistate distribu-
tion shifts in response to these combined pressures depends on the relative steepness of each
energy term as a function of T and A. At some temperatures and immunities increasing immu-
nity causes the virus quasistates to shift to even better match the target thus lowering tempera-
ture driven barriers to reproduction. As immune pressure is increased still further, there comes
a tipping point where increasing visibility to the immune response becomes too much for the
virus, and there is a jump in population characteristics–a phase transition–favoring a much
lower match to the target.

The phase transition separates a regime of normal reproduction from a disordered regime
with negative temperature. The negative temperature regime requires a scenario wherein a
virus with few matching segments is still able to enter the cell. In real viruses there are many
cases where we see large genetic diversity in individual genes, often those that are important to
the immune response (e.g., surface proteins on hepatitis C virus and influenza). The action of
these genes may be functionally more like a diffusion process, allowing greater diversity in the
genes than would be expected in the regime of normal replication.

We have demonstrated that this simple model of viral replication has a real thermodynamic
temperature linearly related to the effective model temperature where temperature is positive
(thus defining the effective Boltzmann constant). Many important relevant modifications to
the model and its parameters simply rescale the temperature. This suggests that if the model
can be extended to capture the dynamics of true biological systems, complex aspects of such
systems may similarly be understood using the formalisms of thermodynamics and statistical
mechanics, thus greatly simplifying their analysis. Microbiological experiments systematically
measuring the functional sensitivity of particular genes to changes in sequence may help to
define the temperature scale of those genes and serve as an important step in adapting this
model to real systems.

Supporting Information
S1 Appendix. The supplement contains additional derivations and detailed results.
(PDF)
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