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Abstract

Statistical prediction models inform decision-making processes in many real-world settings. Prior 

to using predictions in practice, one must rigorously test and validate candidate models to ensure 

that the proposed predictions have sufficient accuracy to be used in practice. In this paper, we 

present a framework for evaluating time series predictions that emphasizes computational 

simplicity and an intuitive interpretation using the relative mean absolute error metric. For a single 

time series, this metric enables comparisons of candidate model predictions against naïve 

reference models, a method that can provide useful and standardized performance benchmarks. 

Additionally, in applications with multiple time series, this framework facilitates comparisons of 

one or more models’ predictive performance across different sets of data. We illustrate the use of 

this metric with a case study comparing predictions of dengue hemorrhagic fever incidence in two 

provinces of Thailand. This example demonstrates the utility and interpretability of the relative 

mean absolute error metric in practice, and underscores the practical advantages of using relative 

performance metrics when evaluating predictions.

1 Introduction

Statistical prediction models play a critical role in helping people plan for the future. While 

the merit of evaluating predictions is widely appreciated and understood, methods 

implemented to evaluate predictions vary in practice.

Many statistical prediction models have a goal of predicting a single quantitative outcome, 

e.g. probability of 5-year cancer survival, or the number of wins of a sports team in a given 

season. Statistical models designed to predict the trajectory of a time series face added 

dimensions of complexity. For each observable unit of data (e.g. a time series observed up to 

a specific time), we might ask such models to predict not just one value, but a sequence of 

values. Additionally, if a robust and generalizable model is sought, the model must predict 

not just one time series effectively, but many.
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These new dimensions quickly add complexity to the question of how to evaluate time series 

prediction models. If you are interested in evaluating predictions made at N separate time 

points, each at up to M time steps into the future, for L different time series, you need to 

make N · M · L distinct, if correlated, predictions.

Existing research has worked to identify the pros and cons of different methods for 

evaluating the accuracy of time series predictions. One trend in the literature highlights 

advantages of using relative absolute error metrics (e.g. the relative mean absolute error, or 

the mean absolute scaled error) instead of squared error metrics to reduce the impact of 

outlying observations and to increase interpretability (Hyndman & Koehler 2006, Armstrong 

& Collopy 1992). In this context, several methods have been proposed to facilitate 

evaluation of predictions of seasonal data (see, e.g. the “naïve2” method in Makridakis & 

Hibon (2000)), although these methods do not appear to have been widely adopted. 

Additionally, the measure called “forecast skill”, which relies on a relative mean squared 

error calculation, has been widely used for several decades in the field of weather 

forecasting (Murphy 1988). Another thread of work advocates for the use of proper scoring 

rules for probabilistic forecasts, where the observation is evaluated against the predicted 

distribution (Gneiting & Raftery 2007, Czado et al. 2009, Held & Paul 2012). These 

methods, while having a strong theoretical foundation, are less directly comparable or 

interpretable and require a full predictive distribution.

In this paper, we present a framework for multi-step time series prediction model evaluation 

that emphasizes computational simplicity and an intuitive interpretation to facilitate 

comparisons of model performance across different time series. Specifically, we discuss the 

“relative mean absolute error” metric and show its utility in predicting infectious disease 

incidence. The relative mean absolute error (or relative MAE) is defined as the average of 

the absolute values of the prediction errors from one model, divided by the average of the 

absolute values of the prediction errors from a second model (Hyndman & Koehler 2006).

A strength of the relative MAE metric that we find particularly compelling for use in 

practice is how it enables standardized comparisons of candidate models with reference 

models. This encourages honest evaluation (i.e. a model could have very low error, but a 

simpler model may have similarly low error) and can help identify the strengths and 

weaknesses of prediction models.

Generally speaking, we conceive of reference models as being able to create reasonable, if 

naïve, predictions by analysts without extensive formal quantitative or statistical training. 

Although, we note that in practice any fitted model, simple or complex, could be used as a 

comparative reference. In many fields of research or application, there may be existing 

standard and accepted models that would be suitable as a standard reference model.

For models predicting disease incidence –the example presented in this paper– there is not a 

standard, accepted methodology for creating and evaluating predictions. In part, this reflects 

the wide range of scientific and planning goals in these prediction efforts. Having an 

accepted set of prediction accuracy metrics would enable comparisons across different 

studies and would be a valuable contribution to the field. Appropriate reference models for 
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predicting disease incidence could be as simple as an overall measure of central tendency 

(e.g. mean or median) or, for diseases that follow a seasonal pattern, an historical monthly 

average. For models predicting the timing of different features of an outbreak (duration, 

peak, onset, etc...), reference models could be based on historical trends or trends from other 

nearby locations.

In Section 2, we describe a framework for facilitating comparisons of predictions for time 

series data. In Section 3, we present a detailed evaluation of prediction models using a 

dataset with incidence of dengue fever in Thailand.

2 A generalizable metric for evaluating time series prediction models

We focus our discussion on evaluating the accuracy of time series predictions. Specifically, 

we are interested in summarizing a model's error for each observed value. Predicting other 

features of a time series may also be desirable: for example, predicting the timing of a peak, 

the cumulative counts, or the percentage of predictions that fall within a given percentage of 

the true value, to name a few. The methods defined below may be adapted for these types of 

metrics, although the current work focuses on implementing these methods in the context of 

predicting the value of unobserved observations.

We consider data, y1, . . . , yT from a time series broken into continuous blocks, or sets of 

sequential times, labelled k = 1, . . . , K. We are interested in comparing the performance of 

multiple models for the specific block k*. In a prediction context, block k* might represent 

data un-available at the time of fitting. Assume that we fit a suite of models to data 

excluding block k* and each of these models can be used to generate predictions for any 

given time t. Let  be the (out-of-sample) predicted outcome for time t from model A, 

made at time t – h. In other words, the prediction horizon, or the number of time steps 

forward this prediction was made, is defined as h.

2.1 The relative mean absolute error

For a particular block of observations, the mean absolute error for model A at prediction 

horizon h is defined as , where Nk* is the number of 

observations in block k*. Squared error metrics are commonly used in statistical model 

evaluation but we focus here on absolute errors as the basis for evaluating predictions, due to 

two distinct features of the mean absolute error metric. First, the MAE provides a very easily 

interpretable metric: the average error across all predictions. Interpretability is a significant 

advantage when working with collaborators who are eager to understand and interpret the 

evaluations of the prediction models. Second, squared error metrics are sensitive to outlier 

prediction errors (Hyndman & Koehler 2006, Armstrong & Collopy 1992). It is known that 

the median minimizes expected loss when the loss function is the absolute value. This 

implies that the choice of a prediction model based on mean absolute error is not as likely to 

be influenced by a small number of large prediction errors compared to using the squared 

error.

We define the relative mean absolute error between models A and B at horizon h as
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(1)

This is an extension of the metric proposed by Hyndman and Koehler (2006) to account for 

multi-step predictions, or different prediction horizons (Hyndman & Koehler 2006). 

Additionally, Hyndman and Koehler specifically recommended a special form of the relative 

MAE, that they named the mean absolute scaled error (MASE) for use of evaluating 

predictions across multiple time series with different scales (Hyndman & Koehler 2006). 

They define the MASE as (Hyndman & Koehler 2006):

(2)

Heuristically, this represents the ratio of the average absolute value of the residual from the 

prediction model (the numerator) and the average absolute value of the residual from a 

naïve ”reference” model. The MASE is equivalent to the relative MAE with model B taken 

as a simple stationary auto-regressive lag-1 (AR-1) model where the predicted value of yt, or 

, is simply yt–1 for all values of h. However, the MASE is defined with respect to a fixed 

reference model which becomes meaningless when predictions are evaluated for long time 

horizons, particularly in periodic systems. The relative MAE avoids some of these 

shortcomings.

2.2 Properties of the relative MAE

The relative MAE has several desirable properties. First, the interpretation of the relative 

MAE for a given dataset does not depend on the scale of the data. Second, the relative MAE 

has an intuitive interpretation. Since the relative MAE is a ratio, a value near 1 indicates the 

magnitude of the two errors is approximately equal whereas a value of 2 indicates that the 

magnitude of prediction errors for the candidate model is twice that of prediction errors from 

the reference model. Third, in contrast with other relative error metrics that calculate relative 

errors for each observation, the relative MAE has a summary statistic of baseline model 

errors in the denominator. For example, the median relative absolute error defined by 

Hyndman and Koehler (2006) takes the median of  values. In a situation where 

residuals of each model are Gaussian, the distribution of these relative errors is Cauchy and 

therefore has undefined variance (Hyndman & Koehler 2006). By using a summary of 

baseline model residuals in the denominator, the relative MAE is therefore a more stable 

relative error metric.

Fourth, as defined above, the relative MAE easily accomodates settings with long prediction 

horizons, or when predictions are made many steps ahead into the future. When predictions 

are desired far into the future, the reference model for the original MASE will not evaluate 

the predictions in a meaningful way because it only considers one-step-ahead prediction 

errors. Therefore, the flexibility of the reference model definition in the relative MAE and of 
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the extension to multiple prediction horizons, makes this a more useful and relevant metric 

in evaluating multi-step predictions of time series data. Below, in Section 3, we 

systematically explore the performance of the relative MAE using a time series application 

that requires predictions at multiple steps forward into the future.

Finally, we also observe that the relative MAE lends itself to comparisons between any two 

models, not necessarily just a reference and a set of candidate prediction models. For 

example, a simple but important property of the relative MAE is that

(3)

indicating that as long as a common reference model is used in two model comparisons (e.g. 

A vs. C and B vs. C), the relative MAE can be computed between the two models that were 

not explicitly compared (e.g. A vs. B).

2.3 Using scaled observations with relative MAE

Since data from predictions may be skewed, we discuss briefly the impact of scaling the y 
and  inputs before the calculations are made. (Note: in this section we supress the 

prediction horizon notation for simplicity.) The choice of scaling functions for the MAE 

calculation affects the interpretation of both the MAE and the relative MAE. Simply 

plugging in the data transformations used in model estimation (i.e. using |log y – log μ| in 

the MAE) leads to arbitrary implicit loss functions in the model evaluation. This choice 

should instead be made based on an implicit or explicit loss function and it leads to a 

generalized MAE defined as

(4)

where the function f(·) is some function that transforms both the predicted and observed 

values.

This paper so far considers all errors on the original scale of the data where f is the identity 

function. The loss function implied by this choice is one that emphasizes absolute 

differences. It implies that errors of a given magnitude are of equal importance whether the 

time series observations are near zero or near a large value—cost must be constant 

regardless of the scale.

An alternative cost function might emphasize relative error compared to a practically or 

scientifically meaningful reference point. In this case the cost of an error would decrease 

with distance from the reference point. For example a $5,000 error in the predicted value of 

a $10,000 stock portfolio might be a disaster whereas the same $5,000 error in a million 

dollar portfolio would not be meaningful.
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For an implicit relative cost function with count data, we suggest calculations of the MAE 

on the log-scale. To do this for count data —or for other data with a meaningful baseline 

value— we define f in the MAE calculations as f(x) = log(x − b + 1) where b is the baseline. 

For count data, where b = 0, the modified the calculations of the mean absolute error are

(5)

With this MAE calculation, if either  or , then the mean absolute error for 

that observation will be the same, no matter what yt or μt are. For example, this means that 

(yt + 1, μt + 1) = (100, 110) has the same contribution to the MAE as (yt + 1, μt + 1) = (10, 

11) or (yt + 1, μt + 1) = (11, 10), or any (yt + 1, μt + 1) such that  or . 

Whether this is approriate depends on the application-specific implicit loss function.

3 Case study: Predicting infectious disease incidence

3.1 Prediction models for dengue hemorrhagic fever in Thailand

The spread of infectious disease is a dynamic process driven by many biological and social 

factors. While our knowledge of these biological mechanisms (e.g. infectiousness, pathogen-

on-pathogen and pathogen-environment interactions) and social/behavioral patterns (e.g. 

networks of social contacts and travel) has grown significantly in recent decades, predicting 

infectious disease patterns remains a challenging task.

We reviewed a small, non-random sample of peer-reviewed publications that focused on 

predicting infectious disease outbreaks. This small sample of recent efforts reveal a variety 

of approaches used for comparing predictions to reference models. In short, comparing new 

predictions to predictions from reference models does not yet appear to be standard practice 

in the infectious disease prediction literature. Shaman et al. describe a model used to 

prospectively predict the peak of seasonal influenza outbreaks in the U.S. (Shaman & 

Karspeck 2012, Shaman et al. 2013). Predictions of the peak timing of the outbreak were 

often accurate to within one week. As a reference comparison, they used a model that chose 

resampled historical peaks, and their method outperformed this reference model, with 

increasingly better relative performance as the flu season progressed. In forecasting 

outbreaks of dengue fever, in the Phillipines, Buczak et al. (2012, 2014) followed a rigorous 

train/validate/test evaluation protocol, but they did not compare their results to a reference 

prediction model (Buczak et al. 2012, 2014). Hii et al. (2012) attempted to predict dengue 

outbreaks in Singapore. Their model predicted weekly incidence and their final model had 

very close correlation with the actual data. The authors made no reference model 

comparisons, and among many models fit to the data, featured the results from a single 

model that retrospectively showed good predictive performance.

Dengue is a mosquito-borne virus that causes fever, rash, and in severe cases, internal 

bleeding and organ failure. Around 2.5 billion individuals on the planet live in regions where 

dengue is endemic (World Health Organization 2015). Dengue is carried by mosquitoes that 
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thrive in hot and rainy weather. Therefore, in many regions where dengue circulates it 

exhibits a strong seasonal pattern (Campbell et al. 2013, Johansson et al. 2009).

From the Thailand Ministry of Public Health surveillance system, we obtained incidence 

case reports of dengue hemorrhagic fever (a severe form of dengue) for each of the 72 

provinces in Thailand from January 1, 1968 to December 31, 2010. Data were aggregated 

and/or disaggregated (depending on the reporting scale of the raw data) to biweekly 

intervals. Biweeks represent two week intervals, and are based on consistently defined 14 or 

15 day intervals of time within each year. For the purposes of this prediction exercise, we 

focused on making predictions for just two provinces, Bangkok and Chiang Mai, although 

data from other provinces were considered as possible covariates in the prediction models 

(see details below). The 2010 census estimates for population in those two provinces were 

8,249,117 and 1,708,564 for Bangkok and Chiang Mai, respectively (National Statistical 

Office of Thailand 2011). The total number of reported cases per province over the 43 years 

was 185,927 (Bangkok) and 35,938 (Chiang Mai). We show the complete time series in 

Figure 1.

We implemented relative MAE comparisons using three different reference models and a 

candidate Poisson regression model for dengue hemorrhagic fever in the Thai provinces of 

Bangkok and Chiang Mai.

Poisson model using data from correlated provinces—We define the number of 

cases with onset at time t in province i as Yt,i. Below we adopt the convention of refering to 

Yt,i as the unobserved random variable that is being modeled and yt,i as observed values that 

may be used as covariates in the model. The model assumes that

(5)

where the lag-1 term yt–1,i is treated as an offset in this model. This formulation assumes 

that the model for the expected number of cases at time t can be represented by multiplying 

the number of cases observed at the prior time-step (yt–1,i) by a “reproductive rate” of cases 

(λt,i). The explicit model below for λt,i facilitates an intuitive interpretation: if λt,i < 1 then 

the number of cases is expected to decrease and if λt,i > 1 then the number of cases is 

expected to increase.

We explicitly modeled the expected number of cases as a generalized additive model (i.e. a 

generalized linear model estimated by penalized maximum likelihood) (Hastie & Tibshirani 

1990)

(6)

where fi(t) is assumed to be a province-specific cyclical cubic spline and Ci is the set of the 3 

most correlated provinces with province i (possibly including province i itself) at a one 
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biweek lag across the entire dataset. With λt,i as a function of the lag-1 and lag-2 terms, we 

have adapted the structure of an ARIMA(0,1,0) model, using a difference at 1-lag on the log 

scale. This captures the slope of transmission intensity across several different locations. We 

note that this model is one specific parameterization of a general class of ARIMA-style 

models that consider different numbers of correlated provinces (i.e. not just 3) and different 

numbers of lag-times as predictors of the current incidence in province i at time t. The goal 

of this modeling exercise is to demonstrate the utility of the relative MAE metric in 

evaluating predictions from these and other similar time series modeling examples.

The autoregressive terms in the model for λt,i approximate the reproductive rate for province 

j at time t – 1, and are designed to capture the slope of recent incidence in the correlated 

provinces. The addition of the value 1 in the numerator and denominator ensures that the 

quantities are defined when zero case counts are observed. This method of adjusting for zero 

counts has been discussed at length, with the interpretation of an “immigration rate” added 

to each observation (Zeger & Qaqish 1988).

Auto-regressive lag 1 (AR-1) model—The first reference model was a simple AR-1 

model used in the definition of the mean absolute scaled error, described in Section 2.1. 

When making a h-step ahead prediction for time t using data up to time t – h, the predicted 

value was . Note that this meant that if we were generating a prediction for 13 

biweeks (half a year) into the future, the predicted value was the most recently observed 

value. We observe that for the AR-1 reference model, the predicted value for yt changes 

depending on when the prediction is made. For example, if a one-step-ahead prediction is 

made for time t′ at time t′ – 1, the predicted value for the AR-1 reference model would be 

. A two-step-ahead prediction for the same timepoint would yield a predicted 

value of .

Seasonal medians model—The second reference model predicted a median seasonal 

value, so  = median(ySt). In this model, the median is calculated across all values of t that 

fall in the set St which contains all times in the training data with the same time-of-year as t. 
For example, if the time unit is months and t is defined in calendar years with fractional 

months, then St = {t* : t* mod 12 = t mod 12}. The seasonal reference model is time-

invariant: the predictions for a particular time t′ are the same no matter when the prediction 

occurs.

Overall median model—The third reference model predicted an overall median value, so 

 = median(yt) where the median is calculated across all times in the training data. This 

overall median reference model is time-invariant: the predictions for time t′ are the same no 

matter when the prediction occurs.

3.2 Model training and validation

We implemented a leave-one-year-out cross-validation procedure to create out-of-sample 

predictions for the mean absolute error (MAE) calculations. For all predictions, data from 

1968 through 1999 was included in the training dataset. For each year from 2000 to 2009, a 

single full calendar year of case data was left out in turn from the training dataset and the 
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model was fit to the remaining case data. This ensured that all predictions were made based 

on the same amount of training data (42 years of case data). For every biweek in the year 

that was left out from the training dataset, we made a set of h step-ahead predictions, where 

h ranged from 1 biweek to 13 biweeks (about 6 months). To construct an h step-ahead 

prediction for biweek t, we assumed case data up to biweek t – h were complete. We then 

sequentially predicted case counts for the following h biweeks, up through time t. The 

resulting predicted case counts ( ) were then compared to the final, observed case count yt 

in computing the MAE. Figure 3 shows the MAE calculated on the predictions from the 10 

years of out-of-sample cross-validation.

These models were fit to the data using the mgcv package for the R statistical programming 

language (Wood 2011).

3.3 Results from model comparisons give insight into time series predictions

We evaluated model performance using relative MAE. Based on our previous work and our 

knowledge on this topic, we expected that the candidate Poisson model presented above 

should beat an average prediction model for the seasonal dengue incidence data. For some 

(if not most) provinces, we expected it to provide short- and long-term predictions that 

would be better than just guessing the seasonal mean. For short-term predictions, we 

expected the model to do better in many cases than a simple auto-regressive model. These 

kinds of knowledge and statements about our model informed our choices of reference 

models to compare with our candidate model.

Predictions of dengue fever incidence in Bangkok showed mixed results at different time 

scales. A sample of predictions for time points in 2005 are shown in Figure 2. This plot 

provides a snapshot of how each of the four models performed at one specific timepoint. 

Summaries of the predictions across all years are shown in Figure 3. This plot provides an 

overall evaluation of how the models performed across all timepoints.

The errors for predictions from the AR-1 reference model in both provinces monotonically 

increased as the predicted time point moved further into the future. For Bangkok, the mean 

absolute error for the AR-1 model was 42.9 cases predicting one biweek ahead, and 169.5 

cases predicting six months (13 biweeks) ahead. For Chiang Mai, the mean absolute errors 

for the AR-1 model were 7.8 cases and 44.2 cases for predicting two weeks and six months 

ahead, respectively.

Since the seasonal and overall median predicted values do not depend on recently observed 

values they always make the same prediction for a given timepoint. This results in the 

prediction errors being constant for a specific observation across prediction horizons. In 

Bangkok, the simple seasonal model produced predictions that were on average 51% further 

from the observed value than a model that predicted the median observed value for every 

observation . In Chiang Mai, this pattern was reversed, as the seasonal 

model had predictions that were on average 24% closer to the observed value 

. This is likely reflective of the stronger seasonal patterns of dengue in 

Chiang Mai, visible in Figure 1.
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The Poisson model in each province had nearly equivalent performance to the AR-1 model 

predicting one biweek ahead 

. The Poisson 

models showed much less relative error than the AR-1 model when predicting six months 

ahead .

In Bangkok, across all the years studied, we observed that our Poisson model consistently 

outperformed both the AR-1 and seasonal median reference model, as shown by relative 

MAE scores below 1 for both reference model comparisons at all prediction steps ahead (see 

Figure 3). However, at longer prediction horizons (6 biweeks and above, for Bangkok) 

simply predicting an overall median provided more accuracy than any of the models 

considered. Predicting four biweeks out, the Poisson model achieved its best relative 

performance compared to all models, with predictions at least 8% closer to the truth on 

average than any other model. In Chiang Mai, the Poisson model made better predictions 

than every model only for the first three biweeks, after which the seasonal model made 

better predictions. This analysis shows that while in both locations our candidate Poisson 

models provided marginal improvement in predicting dengue in the medium-term (1-3 

months), these models had equivalent or worse performance than other reference models at 

short and longer prediction horizons.

4 Discussion

We have shown that using the relative mean absolute error framework described above to 

compare prediction models can have several important advantages. First, using metrics that 

do not benchmark performance against a reference model (such as an auto-regressive model, 

or the average of recent observations) can lead to overstating the added value of predictions, 

even when accepted methods for evaluation are used. For example, if a candidate prediction 

model has very low cross-validated mean squared error that is in general a good thing. But if 

a simple auto-regressive model can achieve the same score, then the candidate model may 

not have much value. Second, comparisons against different types of reference models can 

help identify the strengths and weaknesses of prediction models. Third, as shown in our case 

study, using this metric also facilitates comparisons of similar modeling techniques between 

two different time series. This property of the relative MAE makes it particularly conducive 

to comparisons designed to evaluate generalizability of a given modeling approach. Finally, 

these comparisons can demonstrate the value of simple modeling efforts, leading to 

improved predictions at a lower cost. This may be especially true if the methods or data used 

for complex predictions are time- and/or resource-intensive.

In our infectious disease application (see Section 3), we observed similar overall patterns of 

errors and model comparisons for all models but the Poisson when comparing relative MAE 

values calculated using on the log scale and on the original data scale. We observed that 

calculating the MAE on the log-scale reduced the relative error of the Poisson model 

disproportionately among the four models considered. (Data not shown.) This may reflect 

the fact that the model was optimized and estimated on the log scale. This further 
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underscores the importance of understanding the context in which the predictions are being 

made, and choosing a scaling method that reflects the loss functions used by decision 

makers.

Evaluating model predictions against different reference models can provide valuable 

information about model performance, especially at different time-scales. Comparing the 

mean absolute error for different models can tell us which model made better predictions. 

For example, we saw that reference models based on recent observations served as good 

benchmarks for other models when making short-term predictions. When making longer 

term predictions, models that accounted for seasonal trends or longer-term moving averages 

did not always improve our models’ predictive ability.

We see several concrete benefits of using the absolute error instead of the squared error (a 

more traditional choice in statistical error evaluation) as the basis for these comparisons. 

First, as others have observed, the absolute error is less prone to being influenced by several 

outlying points or observations. Second, we find the interpretability of the relative mean 

absolute error to be particularly compelling, especially in a context where the results need to 

be explained to a non-quantitative audience. For example, the relative MAE allows us to say 

that “on average, predictions from model A were p% closer to observed values than 

predictions from model B”. No other metric that we know of provides this intuitive of an 

interpretation.

In the context of larger goals of developing models for infectious disease prediction in the 

era of “big data” (Hay et al. 2013), developing a standardized way of measuring and 

evaluating forecasts may play an increasingly important role. Relative metrics could serve as 

a cornerstone of these efforts, as they enable simple comparisons of prediction accuracy in 

different settings.

While we have focused on the advantages of using the relative mean absolute error as a 

metric to evaluate forecasts, there are some limitations and caveats that we must also 

present. The relative MAE focuses its model evaluation on point predictions. Other methods 

for prediction evaluation (such as scoring rules) allow for evaluation based on a full 

predictive probabilistic distribution, which take into account the uncertainty in the 

predictions. These methods could play an important role in distinguishing between 

prediction models. Additionally, understanding how model or data variability impacts the 

interpretation of the relative MAE would be a valuable contribution to this area of research. 

It would be possible to extend the relative MAE metric to include confidence intervals based 

on the model uncertainty. Finally, while assessing the relative MAE across a set of pre-

selected models may suggest horizons at which particular models perform better than others, 

this approach does not explicitly suggest alternative models.

In conclusion, we recommend the use of the relative mean absolute error metric to evaluate 

and compare time series predictions from both simple and complex models. This approach 

could assist decision makers in a wide range of settings, who need to understand and 

quantify the value of a multiple sets of predictions.
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Figure 1. 
Reported cases of dengue hemmorhagic fever for Bangkok and Chiang Mai between 1968 

and 2010.
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Figure 2. 
Example of cases and prediction errors for Bangkok for a single timepoint. This figure 

shows the predictions made for 1 to 13 biweeks into the future at biweek 7 in 2005. This is 

merely a sample of the predictions made, as predictions like these were made for each 

biweek in 2000 through 2009. Black bars indicate the number of dengue hemorrhagic fever 

cases observed when predictions were made. Grey bars indicate cases that were 

subsequently observed. The four lines represent predictions from the four models: seasonal 

medians (circles), AR-1 (triangles), overall median (squares), and our candidate Poisson 

model (crosses).
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Figure 3. 
Mean absolute error (MAE) and relative mean absolute error (relative MAE) scores for 

Bangkok (left column) and Chiang Mai (right column) based on 10 years of cross-validated 

predictions. These metrics show the errors calculated not just for 2005 (as in Figure 2, but 

for all cross-validated years (2000-2009). The top two sub-figures show the mean absolute 

error for each model. Errors are shown for the candidate Poisson model (crosses), historical 

medians model (circles), AR-1 model (triangles), and overall median model (squares). The 

bottom two sub-figures show the relative MAE values comparing the candidate Poisson 

regression model to the seasonal median, overall median, and AR-1 reference models.
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