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Abstract

The term ‘pathogen emergence’ encompasses everything from novel viruses entering the human 

population to established pathogens invading new populations, to the evolution of drug resistance. 

Mathematical models of emergent pathogens allow forecasts of case numbers, investigation of 

transmission mechanisms, and evaluation of control options. Yet, there are numerous limitations 

and pitfalls to their use, often driven by data scarcity. Growing availability of data on pathogen 

genetics and human ecology, coupled with computational and methodological innovations, are 

amplifying the power of models to inform the public health response to emergence events. Tighter 

integration of infectious disease models with public health practice, and development of resources 

at the ready have the potential to increase the timeliness and quality of responses.

Introduction

Public health emergencies driven by emerging infectious diseases are at the forefront of 

global awareness. From HIV in the 1980s, to Zika virus’ recent invasion of the Americas, 

models that mathematically capture disease processes have played a role in assessing the 

risk and framing the response to emerging pathogens. The most prominent, and perhaps 

most fraught, role of such models is to forecast the course of epidemics (1, 2). Yet, explicit 

representation of mechanisms of spread and persistence can help us to do far more than 

forecast incidence. Models can elucidate the properties of emergent pathogens (3, 4), 

uncover general principles of emergence (5), and compare potential mechanisms of spread 

and persistence (6).

Models are only as good as the data on which they rely. Data scarcity is the norm when a 

novel pathogen emerges, amplifying uncertainty and obscuring key drivers of the epidemic. 

Misrepresentation of core mechanisms can bias inferences and potentially misdirect 

intervention efforts. The strengths of models must be considered in the context of the 

limitations and pitfalls of their use.
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Here, we focus on emergent viruses, both because of the speed with which they can spread 

death and disease, and because the dynamics of viral epidemics exemplify key principles in 

the modeling of infectious diseases. This focus should not, however, detract from the 

importance of non-viral emergence events, nor from the unique issues involved in modeling 

non-viral pathogens.

The ‘classical’ dynamic modeling toolkit

The past decade has seen several viral emergence events, including the 2009 pandemic of 

H1N1 influenza, the emergence of Middle East Respiratory Syndrome associated 

coronavirus (MERS-CoV) in the Arabian peninsula, the West African Ebola outbreak, and 

Zika virus’ (ZIKV) invasion of the Americas. These diseases are very different: pandemic 

H1N1 is spread person-to-person and is closely related to circulating influenza viruses (3); 

since its emergence MERS-CoV has failed to persist outside of the Middle East and the 

epidemic appears to be largely driven by zoonotic infections from camels (though a rapidly 

contained human driven outbreak occurred in South Korea) (6); Ebola is extremely virulent 

and spread mostly through direct contact with very sick or dead cases (7); and ZIKV is a 

mosquito transmitted virus, known for decades but recently discovered to be a cause of 

severe pathogenic disease after emerging in the Americas (8).

Despite these differences, the response to each emerging virus has relied on models 

grounded in the same dynamic principles and key data that have informed the response to 

emerging infections since at least the 1980s (Figure 1). Then, Anderson & May used 

mathematical models to elucidate the key variables required for forecasting the future 

trajectory and impact of the emerging HIV epidemic (11) (Box 1). Although there have been 

significant advances in our ability to assess disease threats, ranging from increased statistical 

rigour enabled by powerful computers, to entirely new methods of inference driven by 

analyses of pathogen genetics (3, 4), the underlying core principles remain the same.

When responding to an emerging virus, perhaps the first priority is measuring the 

distributions of R0 and generation time (Box 1). R0 is of particular interest, as it determines 

if the disease will die out after introduction. For example, early estimates of R0 for MERS-

CoV were well below one (4, 12), while estimates for pandemic H1N1 were in the 

neighborhood of 1.5 (3, 13). The former remains confined to the Arabian peninsula, and 

apparently requires continuous re-seeding into the human population from camels to persist, 

while the latter has established itself globally. Knowing the generation time allows us to 

estimate R0 from the growth in case numbers during the early (exponential growth) phase of 

an epidemic. Likewise, using these two values, relatively accurate short-term forecasts can 

be made early on with simple models (Figure 2).

Moving from forecasting cases to forecasting disease burden requires estimates of the risk of 

severe illness and mortality following infection. Dynamic aspects of both the disease and 

reporting processes, and potentially large numbers of unobserved infections (Figure 1), 

mean that models of both are often necessary to estimate these quantities (14). Biases can go 

both ways; models of the time-course of individual infections have been used to correct for 

under estimates of the case fatality rate for both SARS-CoV and Ebola early in each 
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epidemic (14, 15); while statistical models that account for the structure of reporting have 

been used to adjust for upward biases due to underreporting of less severe cases of MERS-

CoV (16).

Subsequent to characterizing the growth and potential health impact of an emerging 

epidemic, modelling efforts shift to evaluating control measures. The design and 

effectiveness of interventions, such as isolation and quarantine depend critically on the 

distribution of the disease’s incubation period and latent period, as well as the frequency of 

asymptomatic infection (5, 17). More detailed models require more data or assumptions, but 

can be used for strategic evaluation of particular interventions. In response to the Ebola 

epidemic, models were used to compare the impact of case isolation, contact-tracing with 

quarantine, and sanitary funeral practices (18); and to evaluate the impact of travel bans, and 

exit and entry screening at airports (19). Such models may not accurately forecast the exact 

number of cases prevented by each intervention: their value is in providing an assessment of 

relative impact. Importantly, such models rely not only on accurate characterization of the 

epidemic process, but modeling of logistics, health systems and human behaviors.

Information on R0, human demographics, and the distribution and duration of immunity also 

allow us to make general predictions about an emergent pathogen’s long-term impact 

(Figure 2). For instance, basic models of the post invasion dynamics of an immunizing 

infection predict a lull in ZIKV transmission in the Americas starting a few years after its 

introduction, potentially lasting decades (2). The presence of pre-existing immunity can also 

profoundly affect both short- and long-term epidemic patterns, and is a critical, usually 

missing, component when forecasting epidemics.

Limitations of the classical toolkit and pitfalls in model based approaches

Basic infectious disease models can forecast short term incidence, and broadly characterize 

long-term trends (Figure 2); and can do so with increasing accuracy as new data becomes 

available. However, medium-term forecasts may require unattainably detailed information 

about biological, ecological and social systems. Variations in patterns of infectious contact, 

arising from local contact structure to regional variation in mobility are driven by changing 

human behavior. For example, even in the absence of formal directives, people naturally 

change their behavior in the presence of Ebola cases. This phenomenon helped control 

previous outbreaks in the Democratic Republic of Congo and elsewhere, and may have 

contributed to mismatches between pessimistic forecasts of the 2014 West African Ebola 

outbreak and its observed trajectory (20). Control efforts may also change the trajectory of 

an epidemic, invalidating forecasts that leave them out. Variation in environmental suitability 

for transmission at small and large spatial scales may also shape spread in unanticipated 

ways. This is particularly true for vector borne diseases, even when nuances of biological 

mechanism (e.g., the effect of temperature on mosquito survival) are well known (21, 22).

The lack of data that makes mechanistic models essential in the response to an emergent 

pathogen, also handicaps these models. Numerous modeling exercises, and hard experience 

show that appropriate control measures must be implemented early in an emergent epidemic 

to be successful (23, 24). This sets up a Catch-22 scenario because the time when good 
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models are most needed is when they are the hardest to make. The potential to publish high 

profile results and a desire to have a meaningful impact on the public health response can 

lead to an explosion of modeling studies (e.g., a pubmed search for ‘mathematical model 

Ebola’ since 2014 yields over 300 results). These may be based on data and methods of 

varying quality, and are rarely followed by any attempt to synthesize results and reach 

consensus.

Efforts to “get ahead of the game” by collecting data and creating models prior to disease 

emergence may be doomed, as emergent pathogens rarely conform to our expectations. For 

example, despite extensive work preparing for a flu pandemic (e.g., (23, 25, 26)), pandemic 

H1N1 violated model assumptions on nearly every point: it arose in a different part of the 

world, it was the same major subtype as an already circulating strain, and it failed to displace 

all circulating influenza A subtypes. Likewise, prior to the start of the 2014 outbreak, Ebola 

was considered a well-characterized threat, of significant concern in limited parts of East 

and Central Africa, and causing only small epidemics. Though models suggest the size of 

the West African outbreak was not inconsistent with previous knowledge (27), its scale and 

location were completely unanticipated.

One solution to the lack of data is increased reliance on our understanding of biological 

mechanism. However, models, particularly complex models, heavily based on prior 

knowledge or mechanistic assumptions have the potential to be (sometimes spectacularly) 

wrong. Forecasts of the range of ZIKV provide a prime example. Several models driven by 

vector ecology, and in some cases human sexual behavior, suggested a risk of significant 

ZIKV outbreaks in the US outside of the southern-most counties (28–30); a prediction 

inconsistent both with our experience with other arboviruses, and observations from the 

ZIKV epidemic thus far. Models based on assumed mechanism may be useful, revealing 

potential deviations from past experience and galvanizing public health action, but should be 

paired with an examination of the data and explorations of why predictions deviate from 

experience.

Appropriately capturing and communicating uncertainty is a constant challenge when 

modeling emergent pathogens. Classical approaches that rely heavily on systems of 

differential equations are powerful, but can easily neglect to account for statistical 

uncertainties arising from limited data, and uncertainties rising from the role of chance 

events in the epidemic process (i.e., process uncertainty). The best recent work takes 

advantage of methods built on growing computational resources to capture both, and also 

attempts to account for uncertainties driven by knowledge gaps. For instance, early work on 

pandemic H1N1 and MERS-CoV estimated R0 using multiple approaches and assumptions, 

calculating confidence intervals for each, and reporting the full spectrum of results (3, 4). 

Epidemiologists must carefully evaluate which types of uncertainty are critical to capture 

given the goals of their analysis, e.g., process uncertainty may be critical when forecasting 

incidence, but less so when comparing hypothetical interventions.

Communication of results from modeling exercises can be difficult. The media and other 

laypersons tend to focus on a model’s most dire predictions. In the fall of 2014, researchers 

at the CDC projected that, in the absence of control measures, over a half-million Ebola 
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cases would be reported in Liberia and Sierra Leone by early 2015 (1). The actual numbers 

were an order of magnitude lower (7). While these projections may have indeed been unduly 

dire, the fact is that control measures were implemented in the region, and the CDC 

forecasts accounting for the potential impact of interventions (e.g., increasing use of 

specialized Ebola treatment units) were far closer to what actually occurred. However, the 

media almost exclusively focused on the extreme values, contributing to an impression that 

the forecast was a failure (31). A focus on prediction exacerbates the problem; models may 

be successful in their aims of identifying planning scenarios or evaluating hypothetical 

interventions, but still produce unrealistic or unrealized epidemic forecasts. Media headlines 

tend to miss the nuanced difference between forecasts and planning scenarios, as occurred 

with early pandemic H1N1 planning exercises, where attention focussed almost exclusively 

on the high end of the worst case scenarios (32).

Mechanistic models play an essential role in the response to emergence events. However, 

given the unknowns inherent in the situation, accurately characterizing an emerging 

pathogen is hard and always will be. Even when researchers are sensitive to limitations of 

their models, these limitations may be very hard to communicate. A focus on forecasting, 

intended or not, can obscure the broader value of mechanistic approaches: their ability to 

synthesize multiple complex data streams in an informative way, leveraging our 

understanding of biologic and epidemic process to improve situational awareness and reveal 

properties of pathogen transmission.

Improving modeling of emergent pathogens: trends and opportunities

A clear trend over the past decade is the increasing availability of data on pathogen genetics. 

Whole-genome sequencing is ever more affordable, and novel analytic techniques are 

developing a-pace. Phylodynamic methods can characterize the timing of pathogen 

introduction, for example indicating earlier ZIKV introduction into the Americas than 

originally thought (33), and suggesting both the single spillover origin, and subsequent 

determinants of Ebola spread (34). Phylodynamic methods can also be paired with disease 

models to estimate R0 (3, 4), providing an alternative to analysis of case data for estimating 

this important quantity. However, the benefits of obtaining an estimate that is not subject to 

the same biases as case data should not obscure the fact that phylogenetic approaches have 

their own biases and limitations, and are not a panacea.

Modeling of emergent pathogens has also benefitted from the “big data” revolution driven 

by the ever expanding pool of large datasets created through automated data collection. High 

resolution (sub-kilometer) satellite based measures of environmental variables (e.g., land 

surface temperature) is one novel big data stream, that can be combined with other data 

sources via machine learning algorithms to determine, for example, the likely range and 

local transmission intensity of vector borne infections like ZIKV (21, 22). Similar 

approaches have been used to disaggregate census data yielding high-resolution maps of 

population density and demographics (35), thus tackling the perennial problem in 

epidemiology of determining the population at risk. Another trend is increasing availability 

of data-streams characterizing mobility, such as air-travel flows (36). Novel data-streams on 

mobility are also becoming increasingly important: mobile phone-call records yield 
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unprecedented temporal and spatial resolution on human mobility and aggregation (37). As 

ever, potential biases and limitations must be considered carefully, e.g., spatial locations can 

only be mapped when a call is made, and mobile phone ownership is not necessarily 

representative of populations of interest.

Both phylodynamic and ‘big-data’ techniques have been enabled by increasing availability 

of affordable, high-performance computing resources. These resources also allow for 

implementation of statistical and modeling techniques that were once prohibitively 

computationally expensive, and have improved the rigor of models of emergent pathogens, 

particularly the quantification of uncertainty. Computationally intensive techniques that 

integrate across multiple predictive models (e.g., (38)) are leading to clear improvements in 

forecasting of established pathogens, and may provide similar benefits for emergent 

pathogens. Likewise, with new techniques and enough computational power (though 

sometimes more than is currently available), essentially any probabilistic model construction 

can be fit to data. This allows researchers to combine often complex representations of the 

transmission process with techniques of statistical inference to estimate critical transmission 

properties while taking into account the large scale uncertainty in the underlying 

transmission tree (39).

As models become more flexible and easier to fit, there is the promise of updating results in 

‘real time’ as the response to an emerging pathogen develops. Realizing this potential 

requires improvements in the way data flows through health systems, as well as how it is 

combined and processed by models. Data must be updated in a timely manner, and forecasts 

and inferences must be sensibly adjusted as new data arrives and old data is modified. Rapid 

modeling exercises can be critical in making timely decisions and guiding interventions and 

field studies in a rapidly changing environment. For instance, models played a critical role in 

design of vaccine trials during the Ebola outbreak (40). However, such real-time efforts 

remain sporadic and ad-hoc.

The immunological landscape on which a pathogen emerges can have profound effects on its 

spread, with the immunologic imprint of related viruses potentially providing protection (41) 

or increasing disease severity in affected subpopulations (42). Immunological signatures also 

provide a marker of previous exposure, and can reveal whether a pathogen is truly novel, or 

has circulated undetected in human populations before. However, this immunological 

landscape has historically been part of the “dark matter” of epidemiologic information; 

serologic laboratory and analytic techniques have lagged behind developments in the 

molecular analysis of genomic data, and there are few sources of data on the pre-emergence 

immune status of populations. Establishment of a global serum bank, combined with 

improved methods for efficiently testing for a broad range of immunological markers could 

provide an invaluable resource for responding to emergence events (43). However, 

commensurate improvements to how such information is incorporated into disease models is 

also needed.

The ultimate achievement in modeling emergent pathogens would be to develop models of 

sufficient biological and ecological sophistication to identify emergent disease threats before 

they entered the human population. Identifying and sequencing novel viruses is a necessary 
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first step, but “virus hunting” activities are of limited utility without some way to assess 

which viruses pose a threat. We know generalities, for example that viruses are more likely 

to jump between closely related species (44), or that RNA viruses’ rapid rate of mutation 

may make them more prone to emergence events than DNA viruses (45); and we can 

theoretically assess how the relationship between introduction frequency, R0, and the 

number of mutations needed to efficiently transmit among humans impacts emergence rates 

(45). Yet we lack the depth of understanding of the relation between genotype and 

phenotype to assess which viruses will spread and cause disease in the human population, 

and which will not (46). However, our ability to observe “viral chatter” between human and 

animal populations is ever increasing, and may soon lead the breakthroughs needed to 

identify likely emerging threats.

Future emergence events

Global biosecurity depends on our ability to effectively confront emerging infectious disease 

threats. Mechanistic models, which capture our scientific understanding of disease 

processes, will continue to play an important role in assessing and responding to pathogen 

emergence. While these methods have numerous limitations and pitfalls, and it may 

sometimes be difficult to tell good work from bad, they provide vital information to the 

global health response that is unavailable through other means. Continued methodological 

improvements that take advantage of new sources of data will increase the range and 

accuracy of inferences that can be made from leveraging infectious disease models. Tighter 

integration with public health practice and development of resources at the ready may 

increase the timeliness and quality of analyses to inform the public health response.

REFERENCES

1. Meltzer MI et al., Estimating the future number of cases in the Ebola epidemic—Liberia and Sierra 
Leone, 2014−−2015. MMWR Surveill. Summ 63, 1–14 (2014).

2. Ferguson NM et al., EPIDEMIOLOGY. Countering the Zika epidemic in Latin America. Science. 
353, 353–354 (2016). [PubMed: 27417493] 

3. Fraser C et al., Pandemic potential of a strain of influenza A (H1N1): early findings. Science. 324, 
1557–1561 (2009). [PubMed: 19433588] 

4. Cauchemez S et al., Middle East respiratory syndrome coronavirus: quantification of the extent of 
the epidemic, surveillance biases, and transmissibility. Lancet Infect. Dis 14, 50–56 (2014). 
[PubMed: 24239323] 

5. Fraser C, Riley S, Anderson RM, Ferguson NM, Factors that make an infectious disease outbreak 
controllable. Proc. Natl. Acad. Sci. U. S. A 101, 6146–6151 (2004). [PubMed: 15071187] 

6. Cauchemez S et al., Unraveling the drivers of MERS-CoV transmission. Proc. Natl. Acad. Sci. U. S. 
A 113, 9081–9086 (2016). [PubMed: 27457935] 

7. International Ebola Response Team et al., Exposure Patterns Driving Ebola Transmission in West 
Africa: A Retrospective Observational Study. PLoS Med 13, e1002170 (2016). [PubMed: 
27846234] 

8. Lessler J et al., Assessing the global threat from Zika virus. Science, aaf8160 (2016).

9. Müller MA et al., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi 
Arabia: a nationwide, cross-sectional, serological study. Lancet Infect. Dis 15, 559–564 (2015). 
[PubMed: 25863564] 

10. Assiri A et al., Hospital outbreak of Middle East respiratory syndrome coronavirus. N. Engl. J. 
Med 369, 407–416 (2013). [PubMed: 23782161] 

Metcalf and Lessler Page 7

Science. Author manuscript; available in PMC 2019 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



11. May R M And Anderson, R M, COMMENTARY~ Transmission dynamics of HIV infection. 
Nature. 326, 137 (1987). [PubMed: 3821890] 

12. Breban R, Riou J, Fontanet A, Interhuman transmissibility of Middle East respiratory syndrome 
coronavirus: estimation of pandemic risk. Lancet. 382, 694–699 (2013). [PubMed: 23831141] 

13. Yang Y et al., The transmissibility and control of pandemic influenza A (H1N1) virus. Science. 
326, 729–733 (2009). [PubMed: 19745114] 

14. Ghani AC et al., Methods for estimating the case fatality ratio for a novel, emerging infectious 
disease. Am. J. Epidemiol 162, 479–486 (2005). [PubMed: 16076827] 

15. Kucharski AJ, Edmunds WJ, Case fatality rate for Ebola virus disease in west Africa. Lancet. 384, 
1260 (2014).

16. Lessler J et al., Estimating the Severity and Subclinical Burden of Middle East Respiratory 
Syndrome Coronavirus Infection in the Kingdom of Saudi Arabia. Am. J. Epidemiol 183, 657–663 
(2016). [PubMed: 26851269] 

17. Peak CM, Childs LM, Grad YH, Buckee CO, Comparing nonpharmaceutical interventions for 
containing emerging epidemics. Proc. Natl. Acad. Sci. U. S. A 114, 4023–4028 (2017). [PubMed: 
28351976] 

18. Pandey A et al., Strategies for containing Ebola in West Africa. Science. 346, 991–995 (2014). 
[PubMed: 25414312] 

19. Read JM, Diggle PJ, Chirombo J, Solomon T, Baylis M, Effectiveness of screening for Ebola at 
airports. Lancet. 385, 23–24 (2015).

20. Funk S, Knight GM, Jansen VAA, Ebola: the power of behaviour change. Nature. 515, 492 (2014).

21. Alex Perkins T, Siraj AS, Ruktanonchai CW, Kraemer MUG, Tatem AJ, Model-based projections 
of Zika virus infections in childbearing women in the Americas. Nature Microbiology. 1, 16126 
(2016).

22. Messina JP et al., Mapping global environmental suitability for Zika virus. Elife. 5 (2016), doi:
10.7554/eLife.15272.

23. Ferguson NM et al., Strategies for containing an emerging influenza pandemic in Southeast Asia. 
Nature. 437, 209–214 (2005). [PubMed: 16079797] 

24. WHO Ebola Response Team et al., Ebola virus disease in West Africa--the first 9 months of the 
epidemic and forward projections. N. Engl. J. Med 371, 1481–1495 (2014). [PubMed: 25244186] 

25. Ferguson NM et al., Strategies for mitigating an influenza pandemic. Nature. 442, 448–452 (2006). 
[PubMed: 16642006] 

26. Longini IM Jr et al., Containing pandemic influenza at the source. Science. 309, 1083–1087 
(2005). [PubMed: 16079251] 

27. Camacho A et al., Potential for large outbreaks of Ebola virus disease. Epidemics. 9, 70–78 (2014). 
[PubMed: 25480136] 

28. Shacham E, Nelson EJ, Hoft DF, Schootman M, Garza A, Potential High-Risk Areas for Zika 
Virus Transmission in the Contiguous United States. Am. J. Public Health 107, 724–731 (2017). 
[PubMed: 28323468] 

29. Bogoch II et al., Anticipating the international spread of Zika virus from Brazil. Lancet. 387, 335–
336 (2016). [PubMed: 26777915] 

30. Manore CA, Ostfeld RS, Agusto FB, Gaff H, LaDeau SL, Defining the Risk of Zika and 
Chikungunya Virus Transmission in Human Population Centers of the Eastern United States. PLoS 
Negl. Trop. Dis 11, e0005255 (2017). [PubMed: 28095405] 

31. Stobbe M, CDC’s overblown estimate of Ebola outbreak draws criticism. The Seattle Times 
(2015), (available at http://www.seattletimes.com/nation-world/cdcs-overblown-estimate-of-ebola-
outbreak-draws-criticism/).

32. Swine Flu Could Infect Half of U.S., Panel Estimates (2009), (available at http://
www.washingtonpost.com/wp-dyn/content/article/2009/08/24/AR2009082401733.html).

33. Faria NR et al., Establishment and cryptic transmission of Zika virus in Brazil and the Americas. 
Nature (2017), doi:10.1038/nature22401.

34. Dudas G et al., Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature 
(2017), doi:10.1038/nature22040.

Metcalf and Lessler Page 8

Science. Author manuscript; available in PMC 2019 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.seattletimes.com/nation-world/cdcs-overblown-estimate-of-ebola-outbreak-draws-criticism/
http://www.seattletimes.com/nation-world/cdcs-overblown-estimate-of-ebola-outbreak-draws-criticism/
http://www.washingtonpost.com/wp-dyn/content/article/2009/08/24/AR2009082401733.html
http://www.washingtonpost.com/wp-dyn/content/article/2009/08/24/AR2009082401733.html


35. Tatem AJ, WorldPop, open data for spatial demography. Sci Data. 4, 170004 (2017). [PubMed: 
28140397] 

36. Mao L, Wu X, Huang Z, Tatem AJ, Modeling monthly flows of global air travel passengers: An 
open-access data resource. J. Transp. Geogr 48, 52–60 (2015).

37. Wesolowski A et al., Quantifying travel behavior for infectious disease research: a comparison of 
data from surveys and mobile phones. Sci. Rep 4, 5678 (2014). [PubMed: 25022440] 

38. Yang W, Karspeck A, Shaman J, Comparison of filtering methods for the modeling and 
retrospective forecasting of influenza epidemics. PLoS Comput. Biol 10, e1003583 (2014). 
[PubMed: 24762780] 

39. Cauchemez S et al., Role of social networks in shaping disease transmission during a community 
outbreak of 2009 H1N1 pandemic influenza. Proc. Natl. Acad. Sci. U. S. A 108, 2825–2830 
(2011). [PubMed: 21282645] 

40. Camacho A et al., Real-time dynamic modelling for the design of a cluster-randomized phase 3 
Ebola vaccine trial in Sierra Leone. Vaccine. 35, 544–551 (2017). [PubMed: 28024952] 

41. Gostic KM, Ambrose M, Worobey M, Lloyd-Smith JO, Potent protection against H5N1 and H7N9 
influenza via childhood hemagglutinin imprinting. Science. 354, 722–726 (2016). [PubMed: 
27846599] 

42. Dejnirattisai W et al., Dengue virus sero-cross-reactivity drives antibody-dependent enhancement 
of infection with zika virus. Nat. Immunol 17, 1102–1108 (2016). [PubMed: 27339099] 

43. Metcalf CJE et al., Use of serological surveys to generate key insights into the changing global 
landscape of infectious disease. Lancet. 388, 728–730 (2016). [PubMed: 27059886] 

44. Longdon B, Brockhurst MA, Russell CA, Welch JJ, Jiggins FM, The evolution and genetics of 
virus host shifts. PLoS Pathog 10, e1004395 (2014). [PubMed: 25375777] 

45. Antia R, Regoes RR, Koella JC, Bergstrom CT, The role of evolution in the emergence of 
infectious diseases. Nature. 426, 658–661 (2003). [PubMed: 14668863] 

46. Pepin KM, Lass S, Pulliam JRC, Read AF, Lloyd-Smith JO, Identifying genetic markers of 
adaptation for surveillance of viral host jumps. Nat. Rev. Microbiol 8, 802–813 (2010). [PubMed: 
20938453] 

Metcalf and Lessler Page 9

Science. Author manuscript; available in PMC 2019 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Box 1:

Key dynamic quantities estimated early after an emergence event.

There are several key dynamics quantities that determine the course of the epidemic and 

indicate needs for the structure of the response, that should be identified rapidly after 

emergence.

Basic Reproductive Number (R0): The number of cases expected to be directly infected 

by a single index case in an immunologically naive population. Provides an estimate of 

the transmissibility of an emergent pathogen. If R0<1 the emerging pathogen will die out, 

while if R0>1 it can spread widely and cause a major epidemic or pandemic. R0 further 

determines the final size of epidemics in the absence of control measures.

Reproductive number (R): The number of cases expected to be directly infected by a 

single infected individual case in a population where there is some underlying immunity.

Generation Time: The time between a case becoming infected and that case causing 

other infections. Combined with R0, determines the speed at which an epidemic spreads 

through the population.

Incubation period: The time from infection to symptom onset.

Latent Period: The time from infection to becoming infectious.

Infectious period: The length of time that infected individuals can transmit.

Case Fatality Ratio: The proportion of cases that prove fatal.

Hospitalization Rate/Clinical Attack Rate: The proportion of cases where disease is 

sufficiently severe as to result in hospitalization, potentially affecting detection via 

passive surveillance.

Asymptomatic Proportion: The percent of infected individuals that do not develop 

recognizable symptoms.
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Figure 1: Classic Zoonotic Emergence to Human-to-Human Transmission.
Typically, emergence occurs after a pathogen circulating in an animal reservoir enters the 

human population through a zoonotic infection event (A-B). The key to understanding 

whether the pathogen will pose a sustained threat to humans is the average number of cases 

caused by early infections, i.e., the basic reproductive number R0 (C). Generally, models 

assume every human is susceptible, but there may be significant unseen immunity (D, green 

shields) if the pathogen is closely related to a circulating disease (e.g., pandemic H1N1 (3)) 

or in populations with frequent exposure to the animal reservoir (e.g., antibodies to MERS-

CoV in shepherds (9)). The time between subsequent generations of cases, i.e., the 

generation time (E) combined with R0 determine the speed of epidemic growth. 

Asymptomatic and undetected cases (F) and superspreading events (G) can have important 

impacts on disease dynamics and control not obvious from observed aggregate case counts. 

Superspreading events are often associated with health care facilities (as with MERS-CoV 

(10)) or other high contact settings (e.g., funerals in Ebola (7)). Reducing or eliminating 

transmission in these contexts can have a disproportionate impact on reducing R and 

controlling the epidemic. R0 and the generation time combined with the frequency at which 

cases die (H, skulls) or have severe outcomes (I, red crosses indicate hospitalization) 

determine the impact of the disease on the human population. Mechanistic models are both 
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informed and can be used to estimate these values, and the combination of such models with 

pathogen genetic information obtained from biological sampling of a subset of cases (J, test 

tube) can allow for inferences when simple observational data does not. Over the medium- 

to long-term, the reproductive number will change (K) due to depletion of susceptibles, 

interventions and behaviour changes in response to the emerging threat. The latter two are 

hard to predict, adding to the difficulties in forecasting over the medium-term. Spread at the 

global scale (L) may require alternate modeling approaches, with more emphasis on human 

mobility and environmental suitability than drivers local of pathogen dynamics.
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Figure 2: Phases of the emergence process.
(A) Pre-emergence period: can last years to decades, and can feature occasional zoonotic 

transmission events. (B) Short-term post-emergence: the first several generations (lasting 

months to years depending on the pathogen’s generation time), characterized by exponential 

growth. (C) Medium-term post-emergence: patterns driven by hard to predict aspects of 

pathogen ecology and human behavior. (D) Long-term post-emergence period: general 

trends dictated by pathogen properties and basic epidemic theory.
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