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Abstract

As with many pathogens, most dengue infections are subclinical and therefore unobserved1. 

Coupled with limited understanding of the dynamical behavior of potential serological markers of 

infection, this observational problem has wide-ranging implications, including hampering our 

understanding of individual- and population-level correlates of infection and disease risk and how 
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they change over time, assay interpretation and cohort design. We develop a framework that 

simultaneously characterizes antibody dynamics and identifies subclinical infections via Bayesian 

augmentation from detailed cohort data (3,451 individuals with blood draws every 91 days, 

143,548 hemagglutination inhibition assay titer measurements)2,3. We identify 1,149 infections 

(95% CI: 1,135–1,163) that were not detected by active surveillance and estimate that 65% of 

infections are subclinical. Post infection, individuals develop a stable setpoint antibody load after 

1y that places them within or outside a risk window. Individuals with pre-existing titers of ≤1:40 

develop hemorrhagic fever 7.4 (95% CI: 2.5–8.2) times as often as naïve individuals compared to 

0.0 times for individuals with titers >1:40 (95% CI: 0.0–1.3). PRNT titers ≤1:100 were similarly 

associated with severe disease. Across the population, variability in the force of infection results in 

large-scale temporal changes in infection and disease risk that correlate poorly with age.

Despite the large body of literature from observational and cohort studies describing dengue 

cases, we still have major difficulties in explaining individual- and population-level 

differences in infection and disease risk. These difficulties largely come from a fundamental 

methodological issue in the research of many pathogens that individual histories of infection 

are difficult to capture. The four dengue virus serotypes (DENV1–4), which are found across 

tropical and sub-tropical regions with an estimated 390 million infections each year, cause a 

range of disease manifestations, from asymptomatic infection to death4,5. High levels of 

subclinical infection mean that even in environments of thorough active surveillance, the 

majority of infections are missed1. This observational problem has wide ranging 

implications as it hampers our ability to estimate the underlying level of infection in the 

community, to characterize individual risk factors for infection and severity but also to 

assess correlates of protection, to dynamically monitor susceptibility at both the population 

and individual level, to define optimal thresholds for the interpretation of serological assays 

or to critically assess cohort design.

Here, we develop an analytical framework that can address this challenge, leading to new 

insights on a broad range of questions. We use it to jointly characterize antibody changes 

following infection and identify infection events missed by surveillance from the analysis of 

longitudinal data from cohort studies. We apply it to data from a school-based cohort study 

in Thailand (N=3,451, mean age at recruitment of 9y, interquartile range 8–11) where blood 

was taken on average every 91 days for up to five years and when illnesses were detected 

through active surveillance2. Active fever and school absence surveillance was conducted 

during June to mid-November when DENV circulation is concentrated2. Hemagglutination 

inhibition (HI) tests were used to measure antibody titers to each serotype in each sample 

(143,548 HI measurements in all). PRNT titers were also measured on a subset of 1,771 

samples. HI titers correlate closely with PRNTs (Pearson correlation of 0.91) and with 

inhibition ELISAs, although titer values differ by laboratory and assay6–9.

To track the evolution of an individual’s measured antibody titers (Figure 1A), we place 

titers on an adjusted log2 scale (titers of 1:10 are given a value of 1, 1:20 of value of 2 etc.). 

There were 274 detected symptomatic DENV infections (Figure 1B); 62 were hospitalized 

(23%), 36 with dengue hemorrhagic fever (DHF) (13%). For those where the infecting 

serotype is known (79% of cases through PCR, Table S1), we observe a sharp rise and 
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subsequent decay in log2-titers following symptom onset (Figure 1C–D). The mean log2-

titer to the infecting serotype was 0.79 (95% CI: 0.74–0.84) times the log2-titer to the non-

infecting serotype in the three months prior to symptom onset compared to 0.94 (95% CI: 

0.93–0.96) times in the six months after symptom onset (Figure 1E). As 86% of 

symptomatic infections had detectable titers to at least one serotype prior to infection, the 

higher antibody titer to non-infecting serotypes likely captures responses to prior 

infections10.

We reconstruct individuals’ antibody trajectories by assuming that infection leads to a rise in 

titers that subsequently decays exponentially11. We also explore biphasic responses 

(Extended Data Figure 1). We allow for variability in antibody kinetics across individuals 

and infections, and for differential rises for the infecting versus the non-infecting serotypes 

for primary infections but undifferentiated responses for subsequent infections. We use data 

augmentation techniques to impute undetected infections (subclinical infections during 

active surveillance or unknown symptom status outside the surveillance windows) and to 

identify the serotype for undetected primary infections3. Instead of relying on fixed cutoffs 

to identify infections, data augmentation allows us to incorporate uncertainty in the 

existence, timing and serotype of unobserved infection events and therefore probabilistically 

assess whether differences in measured titers are due to infections or assay variability.

We find that following post-primary infection there is a mean 5.8 (95% CI: 5.6–5.9) rise in 

log2-titers across serotypes, which declines by 76% after one year. For primary infections 

(i.e., individuals without detectable titers prior to infection) the mean log2-titer rise is 7.6 

(95% CI: 7.4–7.8) for the infecting serotype and 6.6 for the non-infecting serotypes (95% 

CI: 6.4–6.7). The similarity of titers of infecting and non-infecting serotypes coupled with 

assay variability suggests that in a clinical setting individual HI measurements cannot 

reliably determine the infecting serotype. We find that titers largely stabilize one year after 

infection to a set-point (the ‘set-point antibody load’) (Figure 1D). There is significant 

variability between infections: the interquartile range of the log2-titer rise one year after 

infection is 0.7–2.2 across all infections (Extended Data Figure 2A). We find that even after 

accounting for historic infection status, measured DENV-2 titers are systematically lower 

than other serotypes (0.85 lower than DENV1) (Extended Data Figure 2B, Table S2), which 

could point to technical considerations of the DENV2 assay or inherent differences in 

immune responses to DENV2. We estimate the measurement error in the HI assay (i.e., the 

standard deviation in any reading) as 0.49 (95% CI: 0.49–0.50), which is similar with that 

empirically estimated using repeated testing on the same serum and 2.6 times error estimates 

for the plaque reduction neutralization test (PRNT) (Extended Data Figure 2C)12. Despite 

the variability in individual readings, as we use many readings from four serotypes for each 

participant and titers appear to behave in a stable and predictable manner, we can 

nevertheless make robust inferences when considering the ensemble of the measurements.

We probabilistically identify 1,149 undetected infections (95% range across model 

iterations: 1,135–1,163), of which 507 (494–520) occurred during active surveillance 

periods and were therefore subclinical (Figure 1B). Overall, we estimate 35% of infections 

are symptomatic (95% CI: 34–36). The temporal distribution of subclinical infections was 

correlated with that of symptomatic infections (Pearson correlation 0.78, 95% CI: 0.70–
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0.84). Using augmented primary infections where we could confidently assign the infecting 

serotype (same serotype implicated by >50% of iterations), we find that 34% of undetected 

primary infections (and 39% of subclinicial primary infections) were due to DENV-4, 

compared to only 3% of all symptomatic infections (none of which were primary infections) 

(Extended Data Figure 3A–B). We find consistent results using a more stringent cutoff to 

assign the infecting serotype (Extended Data Figure 3C). These findings are consistent with 

a reduced risk of disease from DENV-4 compared to other serotypes resulting in a largely 

silent DENV-4 epidemic. This is supported by a phylogenetic analysis that found DENV-4 

was widespread in Thailand throughout this period (Figure S4 in Salje et al.,13). This 

suggests the serotype distributions from hospital-based or community-based surveillance 

may not be representative of infections in the population and supports previous evidence that 

the transmissibility of a serotype can be delinked from the propensity to cause symptomatic 

and/or severe disease14,15. Further they imply that factors that contribute to transmission 

potential (e.g., viral replication, peak titers or infection length) are not predictive of adverse 

outcomes16.

We find that the underlying probability of infection and the probability of developing disease 

are strongly linked to the mean antibody titer at the time of exposure. Overall, an 

individual’s annual risk of infection was 17%, varying from 21% for individuals with mean 

measured log2-titers <2, to 16% for those with log2-titers of 2–3 and 11% for those with 

log2-titers of >3 (Figure 2A). Using logistic regression, we find that for log2-titers >2, each 

unit increase in log2-titers is associated with a 0.71 times relative risk of infection (95% CI: 

0.67–0.76). The annual probability of having a symptomatic infection varies from 6.4% 

(95% CI: 4.9–8.4) for primary infections to 8.4% (95% CI: 7.8–9.1) for individuals with pre-

existing log2-titers ≤3 (≤1:40 on a linear scale) and 4.0% (95% CI: 3.0–5.0) for those with 

log2-titers >3 (Figure 2B). The annual probability of being hospitalized during a primary 

infection was 1.2% (95% CI: 0.5–2.1), compared to 2.4% (95% CI: 2.1–2.7) during a 

subsequent infection for those with pre-existing log2-titers ≤3 and 0.3% for those with log2-

titers >3 (95% CI: 0.09–0.6) (Figure 2C). Even more stark was the risk for developing DHF, 

which ranged from 0.2% (95% CI: 0.0–0.6) for primary infections compared to 1.5% (95% 

CI: 1.3–1.7) for subsequent infections in those with log2-titers ≤3 and 0.0% for log2-titers >3 

(95% CI: 0.0–0.4) (Figure 2D). Within this study population, an average of 54% of the 

population had detectable log2-titers of ≤3 at any time. Time-varying cox proportional 

hazards models that specifically account for the dependence of titer observations within 

individuals gave similar results (Extended Data Figure 4)17. Using log2-titers to 

probabilistically identify the cohort participants with detectable titers that will develop DHF 

has an AUC of 0.66 (Extended Data Figure 5).

Considering only infected individuals, we observe no difference in the probability of 

subclinical infection by titer; however, the probability of hospitalization and DHF remains 

greatest in those with pre-existing log2-titers of ≤3 (Extended Data Figure 6A–C). Only one 

individual with pre-infection log2-titers >3 developed DHF during surveillance compared to 

146 who did not but had titers at infection within the same range. This suggests that in the 

event that infection takes place, antibodies are not protective of developing symptoms per se 

but, conversely, are associated with the development of severe disease. We observe no 

difference in the risk of disease given infection across years (Table S3) or age (Table S4). 
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Other studies are needed to see if younger age groups than those included here nevertheless 

have increased risk. PRNTs form the basis of current discussions on immune correlates. 

Among those infected, individuals with detectable PRNT log2-titers of ≤4.5 (equivalent to 

approximately ≤1:100) have 7.5 times (95%CI: 2.4–11.6) increased risk of DHF compared 

to previously naïve individuals, compared to 0.0 times for those with higher titers (Extended 

Data Figure 6D–F). Cross-reactive titers that result from exposure to non-DENV flaviviruses 

such as Japanese encephalitis and Zika may be included in these risk estimates.

Our findings suggest that post-infection set-point antibody loads appear important to 

determining individual infection and disease risk. Post infection, we estimate the daily 

probability of a subsequent infection and the development of DHF disease as a function of 

titer dynamics. We demonstrate that the probability of both infection and disease stabilizes 

after 1y (Figure 3). Based on our observation in Figure 2 that individuals with detectable 

titers of ≤3 had increased risk of infection and disease, we explored the temporal evolution 

of risk following infection for those with setpoint antibody loads (i.e., the titer at 1y 

following infection) above and below this threshold. At 1 year, we observe a 2.1 times 

increased risk of infection (irrespective of disease outcome) for those with setpoint antibody 

loads of ≤3 compared to those with greater antibody loads and an 8.9 times increased risk of 

infection that leads to DHF. Overall, we find that three years following infection 34% of 

individuals with setpoint antibody loads of ≤3 suffer a subsequent infection, irrespective of 

severity (95% CI: 33%–35%) compared to 23% for those with greater loads (95%CI: 20%–

26%). After this delay 3.5% of individuals with setpoint loads of ≤3 develop DHF disease 

(2.4%–4.4%) compared to none in those with higher loads. The apparent stability of setpoint 

antibody loads points to an ability to assess an individual’s long-term risk.

Our findings are consistent with low titers generated by some candidate vaccines in 

previously naïve individuals ‘priming’ individuals for severe disease upon their first 

exposure18. A hypothesis supported by previous evidence that primary infections in infants 

with maternal antibodies and secondary infections in older individuals are associated with 

severe disease19,20. Further, a Nicaraguan study found elevated risk of severe disease for 

those with low iELISA titers at prior annual blood draws9. Previously naïve individuals 

given the Dengvaxia vaccine had mean PRNT titers within our risk window (Figure 4D)21. 

Further work is required to understand whether immunity acquired from vaccination and 

natural infection are qualitatively similar and whether the risk window described here is 

relevant for vaccine recipients. T-cell immunity, which is not captured by these assays, might 

compensate for antibody titers in this window. Vaccine studies should carefully assess the 

criteria used to define seroconversion, and how titers correlate with disease risk over time. 

Our work suggests that previously used criteria (PRNT titer >1:10) do not adequately 

correlate with reduction in disease risk and suggest that HI titers >1:40 or PRNT titers of 

>1:100 may provide a starting point for any vaccine in identifying a targeted neutralizing 

antibody response. Placebo arm data from the Dengvaxia vaccine trials also suggests higher 

PRNT titers are linked to protection 22. The targeted vaccination of individuals that have 

pre-existing antibody titers within our zone may be a viable approach to minimize the public 

health burden from dengue by moving individuals away from the risk window (Figure 4D). 

Even in an endemic setting such as our cohort, there is considerable temporal variability in 

the serological status of 9y individuals (Extended Data Figure 7) suggesting that the current 
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WHO guidance surrounding Dengvaxia or similar guidance based on serostatus at 

vaccination will have to carefully consider this variation or specifically screen individuals.

Our approach allows us to consider wider problems concerning drivers of dengue 

epidemiology. The assumption that population-wide immunity varies in time and dictates 

multi-annual dynamics of dengue pervades the literature and dominants current hypotheses 

about what drives large outbreaks of dengue in particular settings18,23–26. More generally, 

the idea that temporally varying population immunity drives temporal dynamics of 

pathogens pervades infectious disease epidemiology27–29. However, quantitative evidence 

that any population varies in dengue immune status over time is largely lacking, as is a link 

between the immune status of a population and the risk of epidemics in empirical data. Here, 

though we have only a short time series, we show that underlying heterogeneity in the size 

of annual epidemics mean the risk of having titers within-the risk zone for different birth-

cohorts are more correlated by epidemic time-point (Figure 4A, mean correlation of 0.70) 

than by age (Figure 4B, mean correlation of 0.23). While both the probabilities of being 

naïve and having log2-titers above the risk-zone are correlated with age, there also exist 

strong birth-cohort effects (Extended Data Figure 7). For example, among 9 year olds, we 

observe up to a two-fold difference in the probability of being naive, depending on the year 

of the study.

Finally, our results can guide the design of cohort studies aiming to characterize 

transmission. Studies typically use a four-fold rise in titers against any serotype as evidence 

of infection, regardless of the timing of sample collection. Using our titer trajectories, we 

find that if blood draws are every 90 days, a four-fold cut-point on measured titers has a 

specificity of >99% and a sensitivity of 87% (Figure 4C, Extended Data Figure 8). The 

sensitivity is reduced to 77% when blood is taken every six months and 62% when blood is 

taken annually, although it may be higher in seasonal settings when samples are taken at the 

season’s end. Using an alternative approach that uses the mean titer across the four serotypes 

and a 1.6-fold cut-point, the sensitivity of the assay improves to 96% when samples are 

taken every six months and to 90% for annual bleeds (specificity >95%) (Extended Data 

Figure 9). We provide the optimum cut-point and estimated sensitivity for these approaches 

and a theoretical one where titers are on a continuous scale (such as PRNT) and where a 

minimum specificity of >99% is required (Extended Data Figure 9).

We demonstrate through simulation that our framework can recover the true number of 

subclinical infections and parameters when only 30% of infections are symptomatic (Table 

S5). Our approach is also robust to a scenario where there are differential rises in titers for 

symptomatic and non-symptomatic infections (Table S6) and where we incorporate school 

specific force of infection parameters (Table S7). In addition, we find the timing (Extended 

Data Figure 10A) and the serotype (Extended Data Figure 10B) of undetected infections 

cluster in the same locations as symptomatic infections. This provides strong support of our 

modeling framework by suggesting that the model can correctly identify spatio-temporal 

clustering of otherwise undetected infections. These findings also support focal 

transmission, irrespective of disease outcome13,30,31. The approach presented here will be 

applicable across disease systems where longitudinal titer data exists, allowing a wide range 

of insights into fundamental questions of disease ecology and risk.
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Methods

1. Cohort study design

Individuals attending 12 different schools in Kamphaeng Phet district, a rural region of 

Northern Thailand were recruited into a dengue cohort study that ran between 1998 and 

2003 as previously described32. All individuals were between seven and 13 years old. Blood 

samples were taken four times a year (in January, June, August and November) with an 

average of 91 days between blood draws. In addition, from the start of June to mid 

November each year, active surveillance was conducted through school-based surveillance. 

Children who missed school due to febrile illness had additional acute and convalescent 

blood draws. Dengue infection was confirmed using RT-PCR on the acute sample, with the 

infecting serotype also recorded or through antibody detection (IgM ELISA values >40 or 

HI rises of over four times between acute and convalescent blood draws), in which case the 

infecting serotype was not known. The date of symptom onset, whether or not the child was 

hospitalized and whether or not they developed DHF was also recorded. Note that the cohort 

study was conducted prior to 2009 when the WHO provided new guidance of the 

characterization of different levels of dengue severity.

2. Antibody measurements

For each individual’s blood draw, antibody titers to each of DENV1, DENV2, DENV3, and 

DENV4 were measured using a hemagglutination inhibition assay. The following two-fold 

dilutions were used: 1:10, 1:20, 1:40, 1:80, 1:160, 1:320, 1:640, 1:1280 and 1:2560. We 

translated each titer onto a log2 scale such that 1:10 was given a value of 1, 1:20 of value of 

2 and so on. Undetectable titers (those with a titer of <1:10) were given a value of 0. For a 

subset of 800 individuals, 1,771 samples were also tested using plaque reduction 

neutralization tests (PRNTs). These samples were either paired samples from individuals 

with symptomatic confirmed infection with one sample taken from a time point prior to 

symptom onset and one sample from post symptom onset (N=75 pairs) or randomly chosen 

sequential blood samples from individuals without a detected symptomatic infection 

between the blood draws.

3. Characterizing how titers change following symptomatic infection

We can understand how titers to both the infecting serotype and to non-infecting serotypes 

change over time prior to and following symptom onset. For all individuals that experienced 

a symptomatic illness where the infecting serotype was identified, we identify all titer 

measurements within each 10-day window from 100 days prior to symptom onset to 600 

days post symptom onset. For each window, we calculate the mean titer to the infecting 

serotype and the average mean titer to the other three serotypes across all individuals that 

had a blood draw within that window.

4. Modeling the dynamics of dengue antibody titers

Previous efforts in malaria have used hidden Markov models to include undetected 

infections in estimates of the transmission intensity using presence/absence of specific 

antibodies in longitudinal data33. While these efforts are able to improve estimates on the 
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force of infection within a community compared to using symptomatic individuals, they do 

not incorporate the changing dynamics of antibody titers over time. By specifically including 

titer dynamics, we can help understand a wide range of issues, including assay error, 

measures of protection and risk and cohort design.

4.1. Notation—We consider an individual i. We denote ni
I(t) the number of times the 

individual was infected prior to time t. Each dengue infection of individual i is labeled by the 

index ψ = 1…ni
I(t). We denote τi, ψ

I  the time of infection number ψ of individual i and si, ψ 

the infecting serotype of infection number ψ of individual i. The history of infection (i.e., 

the timing and serotype of all infections since birth) of individual i up to time t is labeled 

Hi(t). We denote Ni
A the total number of times the individual had blood taken during the 

study. Each blood draw of individual i is labeled by the index π = 1…Ni
A. We denote τi, π

A  the 

time of blood draw π for individual i. We denote Ai, s, π the true antibody titer (see Section 

4.3) and Ai, s, π
∗  the measured antibody titer for individual i for serotype s at blood draw π. 

Λi(t) represents the cumulative force of infection exerted on individual i prior to time t. The 

parameter vector is denoted by θ.

4.2. Hierarchical structure of the model—We can break down the probability of a 

measured antibody titer into three components:

P Ai, s, π = k
∗ Ai, s, π = k

· P Ai, s, π = k τi, ψ = 1
I , …τ

i, ψ = ni
I(t = τi, π = k

A )
I , si, ψ = 1, …s

i, ψ = ni
I(t = τi, π = k

A )
, Ai, s, π = 1,

…Ai, s, π = k − 1

· P Hi(t = τi, π = k
A ) {λ}t

The first part represents the ‘measurement model’, the second part the ‘antibody dynamics 

model’ and the third part the ‘infection model’.

4.3. Measurement model—We model the underlying antibody levels on a continuous 

scale, however, the hemagglutination inhibition assay is a discrete assay, such that in a 

situation of no measurement error or systematic biases, a true antibody titer between any two 

dilutions would be measured as the lower of the two dilutions. So for example, a true titer of 

2.7 would be measured as 2 (assuming there are dilutions performed at 0,1,2,3…). In 

addition, there is also likely to exist measurement error and there may be underlying 

differences by serotype (i.e., serotype-specific biases) in the assay that will impact all 

measurements of antibodies against a particular serotype. We consider a ‘true titer’ to 

represent the underlying (but unmeasured) titer on a continuous scale. A ‘measured titer’ is 

the value that is actually measured by the assay. Conditional on an individual’s history of 
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infection, we assume independence between the measurements of the different serotypes. 

This seems a reasonable assumption as assays are performed separately for each serotype. 

The probability of the measured titers, Ai, s, π = k
∗  is:

P Ai, s, k
∗ Ai, s, k = ∫

Ai, s, k
∗
Ai, s, k

∗ + 1
f (u)du

where f(u) is the density for a normal distribution with mean Ai, s, k + χs and a standard 

deviation parameter, σ. Where:

χs = 0 if s = DENV1
χs = χ2 if s = DENV2
χs = χ3 if s = DENV3
χs = χ4 if s = DENV4

4.4. Antibody dynamics model—If an individual i was never infected by dengue, we 

assume they will have titers of 0 against the four serotypes (this assumes any maternal 

antibodies have disappeared and there is no impact of infections by other flaviviruses). At 

each time point that the individual becomes infected, their antibody titers will rise. We 

assume that the rise can be broken down into a permanent increase (representing antibodies 

that will continue to circulate, long after the infection has passed) and a temporary increase 

(representing the short-lived antibodies generated upon infection).

4.4.1. Permanent rise in titers: The permanent rise in titers Qi, s(ψ), for serotype s from 

infection number ψ in individual i is modeled as:

Qi, s(ψ) = ωi, ψ · K(ψ , s)

where ωi, τ is a random effect that is gamma distributed with mean parameter ωm and 

variance parameter ωv and K(ψ, s) allows differential antibody response by serotype for 

primary infections: K(ψ, s) = η if it is a primary infection (i.e., ψ=1) and s is the infecting 

serotype; K(ψ, s) = 1 otherwise.

4.4.2. Temporary rise in titers: We assume that temporary antibody responses will decay 

exponentially over time:

Ri, s(t ∣ Hi(t)) = γ
i, ψ = ni

I(t)
· exp − t − τ

i, ψ = ni
I(t)

I · δ
i, ψ = ni

I(t)
· K(ψ = ni

I(t), s)

where γ
i, ψ = ni

I(t)
 is a random effect that captures the instantaneous rise in temporary 

antibody titers following the most recent infection (infection ni
I(t)) prior to time t that comes 
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from a gamma distribution with mean parameter γm and variance parameter γv; δ
i, ψ = ni

I(t)
 is 

the rate of decay of the temporary antibodies and comes from a gamma distribution with 

mean parameter δm and variance parameter δv. As with the permanent rise in titers, 

K(ψ = ni
I(t), s) allows differential antibody responses for primary infections: K(ψ, s) = η if it 

is a primary infection (i.e., ψ=1) and s is the infecting serotype; K(ψ, s) = 1 otherwise. 

Additional work is needed to understand if alternative functional forms for the rise and 

decay in antibody titers may further refine how antibodies behave following infection.

4.4.3. Overall trajectory of antibody titers: Under these assumptions, and an additional 

linearity assumption that the temporary and permanent rises are additive, antibody titers at 

blood draw k for serotype s in individual i is:

Ai, s, π, k = Qi, s(ψ = 1) + ⋯ + Qi, s ψ = ni
I(t = τi, π = k

A ) + Ri, s t = τi, π = 1
A ∣ Hi(t = τi, π = k

A ) + ⋯

+ Ri, s t = τi, π = k
A ∣ Hi(t = τi, π = k

A )

4.5. Infection history model—We first assume that both the number of infections and 

the timing of infections are known. This assumption will subsequently be relaxed. We 

assume that each individual can get infected up to four times (once by each serotype). An 

individual’s history of infection depends on seasonality in dengue transmission and 

differences in the force of infection across years. For a particular time t, the force of 

infection is assumed to be:

λ(t) = λ · β ∣ t ∣ · 1 + δ · cos ζ + 2πt
365

where λ̄ is a parameter that represents the mean daily force of infection in 1998 (the first 

year of the study) and β[t] is the mean force of infection in year |t| as compared to that in 

1998.

For an individual i, the contribution to the likelihood for periods prior to any infection the 

probability of their infection history can be broken down into periods of infection and 

periods without infection. Individuals only contribute to the likelihood during their time in 

the study.

For each infection that occurs at time t, the contribution to the likelihood is:

log (1 − exp −λ(t) )

For each individual, each day during which no infection occurs, the contribution to the 

likelihood in respect of serotype s is:

exp(−λ(t)) - where more than 90 days have passed since an infection by any serotype and the individual has not previously been infected by serotype 
s

0 - otherwise, including periods when the individual is not part of the study
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The presence of the 90-day window where no infection can take place avoids there being 

more than one infection event between two blood draws. This period is substantially shorter 

than the estimated period of cross-protection between serotypes of 2 years34.

4.5.1. Context of full observation: In the context of full observation, the probability of the 

history of infection for individual i can be given as:

P Hi(t = τi, π = k
A ) {λ}t = ∏

k = 1

ni
I(Ti)

exp −∫
τi, k − 1
I
τi, k
I

λ(u) du 1 − exp ( − λ(τi, k
I )) · exp −∫

τ
i, ni

I(Ti)
I

Ti
λ(u) du

where τi, 0
I  represents the time of birth and Ti the time point at which individual i leaves the 

study (defined as the day of their final blood draw). We assume the same λ(t) for all 

serotypes.

4.6. Situation of imperfect observation—In practice, we do not know the infection 

history of all individuals. Many infections will have occurred before individuals entered the 

study. In addition, there are likely to be many subclinical infections that would not have been 

detected through active surveillance. In addition, active surveillance only operated 5.5 

months of every year. Infections outside these periods would also have been missed 

(irrespective of symptoms).

4.6.1. Unobserved infections prior to recruitment: For the infection history of individuals 

before they enter into the study, we estimate a baseline titer Ai, s(t0) that represents the titer 

to serotype s one year prior to the first blood draw. As we assume linearity, such that the 

temporary and permanent titers of successive historic infections sum up to give the titer at a 

moment in time, this estimated baseline titer allows us to incorporate the impact of historic 

infection events up one year prior to enrollment but means we do not need to infer infection 

events before that time. Individuals that are naïve at baseline (defined as those with no 

measured titers to any serotype at the first blood draw) are given a baseline titer of 0. For an 

individual with no infection events during the study period, Ai, s(t)= i, s(t0) for all t.

4.6.2. Use of data augmentation for undetected infections or serotype during study: In 

the context of full observation during the study period, each individual would have the 

serotype and time from each infection, {si,ψ, τi,ψ}, known. In the setting of undetected 

infections or detected infections but infecting serotype is unknown (such as when 

symptomatic infections are only detected through IgM ELISA and therefore the serotype is 

unknown), we can use a Bayesian data augmentation framework. In this framework, the 

incompletely observed {si,ψ, τι,ψ} pairs are incorporated and considered as nuisance 

parameters. The joint posterior distribution of the parameters and the augmented data is 

explored via reversible-jump MCMC sampling.
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If we call y = si, ψ
∗ , τi, ψ

∗
i = 1, ..N, ψ = 1, …ni

∗(t = ∞)
 the observed data, z = 

{si, ψ, τi, ψ}i=1, … N, ψ = 1, … ni(t=∞) the full data (made up of the observed data and the 

augmented data), the joint posterior is:

P(z, θ ∣ y) ∝ P(y ∣ z) · P(z ∣ θ) · P(θ)

P(y|z) represents the observation model, P(z|θ) is the titer model outlined above and P(θ) 

gives the prior distribution of the parameters.

The observation model makes sure that the augmented datasets are consistent with the 

observed data by having a value of 1 (if consistent) or 0 (if inconsistent). Consistent 

augmented data have the following characteristics:

i. No individual is infected during the study period by the same serotype more than 

once

ii. No individual is infected more than once during a 90 day period

Note that, as DENV-titer responses to non-DENV flaviviruses such as Zika and Japanese 

encephalitis are likely to be smaller that to DENV infections, such exposures are unlikely to 

be detected by our model and incorporated as measurement uncertainty instead.

4.6.3. Date of symptom onset, date of infection and date of titer rise: For all detected 

(symptomatic) infections, we only detect the date of symptom onset and not the date of 

infection. To obtain the day of infection for symptomatic cases we subtract a fixed period of 

7 days from the day of symptom onset, representing the median incubation period for 

dengue35. Titers may also not rise on the day of symptom onset (due to recall bias in when 

symptoms started or individual level variability). For symptomatic infections, we 

approximate the true, unobserved day of titer rise using augmentation, where we define 

consistent augmented data for which the day of titer rise is within ten days of the reported 

date of symptom onset. For augmented (undetected) infections, we assume that the day of 

titer rise following infection always occurs 11 days after the day of infection, which 

represents an approximate estimate of the time between infection and day of titer rise: 

calculated as the sum of the median incubation period for dengue (seven days) and the 

median time between symptom onset and titer rise for the detected infections (four days).

4.6.4. Impact of uneven data collection through time: This cohort used a rolling 

recruitment approach, which maintained an approximately constant sized population and 

constitutes an important strength compared to cohorts whose size may be strongly affected 

by participant dropout. As individuals only contributed to the likelihood for their period of 

inclusion in the cohort and dropout is not expected to depend on the history of infection, we 

do not expect that the turnover of participants in the cohort will bias parameter estimates. 

This was demonstrated in a simulation study where we were able to recover true parameters 

for a simulated cohort with a similar design (see Section 4.8).
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4.6.5. Prior distributions: We use a log-normal distribution with log-mean 0 and log-

variance of 1 for the parameters: mean and variance in the permanent rise in log2-titers (ωm, 

ωv), mean and variance in the temporary rise in log2-titers (γm, γv), mean and variance in 

the decay in log2-titers per day (δm, δv), difference in rise for infecting vs. non infecting 

serotype (primary infection only) (η), measurement error (σ), DENV2-4 bias (χ2, χ3, χ4), 

daily force of infection in 1998 per serotype (λ), relative force of infections versus 1998 for 

1997 (β0) and 1999–2002 (β2-β5) and the two seasonality parameters (δ and ζ).

4.7. Estimation using MCMC—We develop a Markov chain Monte Carlo approach to 

explore the joint posterior distribution of parameters and the augmented data with the 

following steps:

i. Metropolis-Hastings update for the model parameters θ in turn with the updates 

performed on a logarithmic scale. The step size of the proposals was adjusted to 

obtain an acceptance probability of 20–30%. As the vast majority of infections 

are undetected, when updating the six parameters that determine the rise and 

decay of antibodies (namely ωm, ωv, δm, δv, γm, γv,), we calculate the 

likelihood using only the titers from one month prior to and year post the 

symptomatic (and therefore detected) infections. This approach assumes that the 

rise and fall in titers from all infections come from the same distributions, 

irrespective of symptom status. More work is needed to understand if whether or 

not an infection leads to symptoms changes the titer dynamics following that 

infection.

ii. For the symptomatic cases, as the day of titer rise may not fall exactly at the 

recorded day of symptom onset we use an independence sampler to update the 

day of titer rise. At each iteration, the day of the titer rise was updated for 100 

randomly chosen symptomatic infections. Candidate values were chosen using a 

uniform distribution between 10 days prior to and 10 days post the recorded date 

of symptom onset.

iii. Independence sampler for the identity of the infecting serotype for the 62 

symptomatic infections where the serotype was not identified. At each iteration, 

the serotype for each of these infections is updated with equal probability across 

the four serotypes.

iv. Independence sampler for the identity of the infecting serotype for the 

undetected infections. At each iteration, the serotype for 500 randomly chosen 

undetected infections is updated with equal probability across the four serotypes.

v. Independence sampler for the dates of titer rise for undetected infections. At each 

iteration, the day of infection is updated for 1000 randomly chosen undetected 

infections. For each infection, the proposal is a uniform distribution between one 

year prior to entry into the study and the day of the final blood draw.

vi. Independence sampler for the baseline titers for each individual. At each 

iteration, the baseline titer for one serotype is updated for 1000 randomly chosen 

individuals. The proposal distribution is a random uniform distribution between 0 
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and 10. All individuals that are naïve at baseline (i.e., those with no titers to any 

serotype at the first blood draw) are forced to have a baseline titer to 0 for all 

four serotypes.

vii. Reversible jump –MCMC to add/remove unobserved infection events. As Hi(tj) 
is unobserved, we use a Bayesian data augmentation approach that treats it as a 

nuisance parameter. Rather than attempting to definitively identify whether an 

infection occurred or not, these approaches allow us to incorporate the 

uncertainty of the presence and timing of these events. We use reversible jump 

MCMC (RJ-MCMC) to add and remove infection events. Each step to add 

undetected infections proceeds as follows:

a. Randomly draw individual.

b. Draw a candidate date for the infection event using a uniform 

distribution from 1 year prior to their first blood draw to the day of their 

final blood draw.

c. Draw a candidate serotype of infection with the probability of each 

serotype being 0.25.

d. Update the number, date and serotype of infections for that individual.

For the removal of undetected infections, we use a similar approach:

a. Randomly draw individual.

b. If that individual has undetected infections, randomly select one of their 

infections with equal probability (if they have no infections move to the 

next individual).

c. Update the number, date and serotype of infections for that individual 

by removing that infection.

4.8. Evaluation of model using simulated data—In order to evaluate the ability of 

the model to accurately estimate the parameters in a scenario when only a minority of 

infections are observed, we use the same modelling framework on a random subset of 1,000 

individuals from the study with subsequent changes in titers, We include the actual start date 

and the end date for these individuals (i.e., when they entered and left the cohort). We 

simulate infections in these individuals based on known parameters. We then randomly 

‘unobserve’ 70% of infections to reflect undetected infections. We then estimate the 

parameters using our framework and compare them to the underlying true parameters.

4.9. Sensitivity analysis using school-specific force of infection parameters—
The force of infection exerted on individuals may differ across schools, resulting in non-

independence between individuals attending the same school. To assess the impact of any 

such correlation on our parameters, we performed a sensitivity analysis where we included a 

separate force of infection parameter for each school. In this model the force of infection 

exerted on an individual that attends school sch is:
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λ(t, sch) = λ · β ∣ t ∣ · β ∣ sch ∣ · 1 + δ · cos ζ + 2πt
365

where λ̄ is a parameter that represents the mean daily force of infection in 1998 in school 1, 

β[t] is the mean force of infection in year |t| as compared to that in 1998 and β[sch] is the 

mean force of infection for school sch as compared to school 1.

4.10. Alternative functional forms for the decay in titers—Alternative functional 

forms for the decay in antibody titers exist. In particular, biphasic models that model both 

short-term antibody decay and longer-term antibody decay with different exponential decay 

rates have been shown to work well in other systems, such as malaria36. The biphiasic form 

is captured by:

Titert = θ1 · (θ2 · exp ( − θ3t) + (1 − θ2) · exp ( − θ4t))

where θ1, θ2, θ3 and θ4 capture the decay of the titers. To explore whether this biphasic 

form may further refine how antibodies behave following infection here, we fitted both 

exponential decay and biphasic models to the observed infections using the observed titers 

following detected PCR-confirmed infections and the dates of symptom onset. We found 

largely consistent results in the two models (Extended Data Figure 1). As exponential decay 

is the more parsimonious model, we retained this form for the final analysis. Nevertheless, 

structural uncertainty in the model used for the analysis remains, which will not be 

represented within the confidence intervals for the parameters.

4.10. Estimation of impact on titers on infection and disease

4.10.1. Estimation of impact of mean titers on infection: We use the augmented times and 

serotypes of infection from 100 model iterations to reconstruct the antibody titer trajectories 

for each individual. For each augmented dataset we extract the mean titer across all four 

serotypes for each day and whether they got infected in the following day or not. Person-

time in individuals who were considered not susceptible (i.e., had been infected in the prior 

90 days) was excluded. To explore the relationship between mean titer and the probability of 

infection we conducted logistic regression where we used a polynomial spline of order 2 for 

the mean titer (determined as the optimal model through comparison of different polynomial 

models by AIC). To account for sampling uncertainty, in each reconstructed dataset we use a 

bootstrap approach to sample all individuals with replacement and then re-perform the 

logistic regression each time. We present the mean and 95% confidence intervals from the 

resultant distribution of the logistic model estimates of the probability of infection for each 

titer obtained from across the model iterations.

4.10.2. Estimation of impact of mean titers on disease outcome: We explore the 

relationship between mean titer and the probability of having different disease outcomes. We 

consider three different outcomes: symptomatic infection (irrespective of severity), 

hospitalization and DHF. We use the same approach as in Section 4.9.1. but only consider 

titers during the active surveillance windows and whether or not individuals had an infection 
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the following day that led to the outcome of interest. For each outcome, we conduct logistic 

regression where we use a polynomial spline of order 2 for the mean titer (consistently 

determined as the optimal model through comparison of different polynomial models by 

AIC). We use a bootstrap approach to sample all individuals with replacement and then re-

perform the logistic regression each time and identified the mean and 95% confidence 

intervals from the resultant distribution for the estimates of the probability of having an 

infection that led to the outcome of interest for each titer obtained from across the model 

iterations.

4.10.3. Estimation of impact of mean titers on disease outcome, conditional on being 
infected: For those that became infected during the active surveillance windows, we fit 

logistic models to the mean titers and whether or not the disease outcome occurred. We 

looked at three outcomes: any symptomatic illness, hospitalization and DHF. For each of the 

three outcomes, we compare an intercept only model with models with a polynomial spline 

up to order 2. To account for sampling uncertainty, in each reconstructed dataset we use a 

bootstrap approach to sample all individuals who had an infection during the surveillance 

windows with replacement and then re-perform the logistic regression each time. We present 

the mean and 95% confidence intervals from the resultant distribution of the logistic model 

estimates of the probability of infection for each titer obtained from across the model 

iterations.

4.10.4. Estimation of impact of mean PRNT titers on disease outcome, conditional on 
being infected: PRNT titers are available for a subset of 1,771 blood draws. For those that 

became infected during the active surveillance windows and PRNT titers are available in the 

six months window prior to infection, we fit logistic models to these mean PRNT titers from 

that six-month time frame and whether or not the disease outcome occurred. We looked at 

three outcomes: any symptomatic illness, hospitalization and DHF. For each of the three 

outcomes of interest, we compare an intercept only model with models with a polynomial 

spline up to order 2. To account for sampling uncertainty, in each reconstructed dataset we 

use a bootstrap approach to sample all individuals who had an infection during the 

surveillance windows with replacement and then re-perform the logistic regression each 

time. To account for the fact that individuals and serum samples may not have been 

completely selected at random for PRNT testing (e.g., preferential testing of those with 

symptomatic disease), we adjusted our estimate for the probability of sampling conditional 

on the outcome of interest.

From the logistic regression described above, we can extract the probability of the outcome 

of interest given a particular PRNT titer and that a PRNT was conducted. Using Bayes rule 

we can write down:

P(outcome ∣ titer, PRNT done) = P(PRNT done ∣ outcome, titer)P(outcome ∣ titer)
P(PRNT done ∣ titer)

as the PRNT titer (or the HI titer) was not taken into account in the section process for 

choosing whether or not a PRNT was done, this becomes:
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P(outcome ∣ titer, PRNT done) = P(PRNT done ∣ outcome)P(outcome ∣ titer)
P(PRNT done)

As we are interested in P(PRNT done|outcome), we can reorder this equation to:

P(PRNT done ∣ outcome) = P(outcome ∣ titer, PRNT done)P(PRNT done)
P(outcome ∣ titer)

We therefore multiply our logistic model outcomes by the following adjustment factor:

adj . factor = P(PRNT done)
P(PRNT done ∣ outcome)

P(PRNT done) is calculated as the proportion of all infection events where a PRNT was 

conducted in the prior 6 months from the infection and P(PRNT done|outcome) is calculated 

as the proportion with the outcome of interest where PRNTs were conducted in the prior 6 

months. We present the mean and 95% confidence intervals from the resultant distribution of 

the logistic model estimates of the probability of infection for each titer obtained from 

across the model iterations.

4.10.5. Estimation of impact of year and age on mean titers on disease outcome: We 

used a logistic regression approach to explore the impact of year of infection and the age at 

the time of infection. To explore the impact of year, we take each augmented dataset in turn 

and sample all the individuals with replacement to incorporate sampling uncertainty. We 

then regress the year of infection (as a categorical variable) on whether the outcome Yi, t 

occurred:

logit Yi, t = β0 + β1 · Yeari, t

where Yeari, t is the year (1998, 1999, 2000, 2001 or 2002) within which day t occurred for 

individual i. We conducted separate regression where the outcome was an infection event 

(irrespective of whether the infection led to symptoms), symptomatic infection events 

(irrespective of disease severity), hospitalization and development of dengue hemorrhagic 

fever. For the last three models we only considered data during the active surveillance 

windows, as we do not know the symptom status of infections outside these windows. To 

explore the impact of age, we dichotomized the age of individuals as being less than or 

greater than 9 (the Sanofi Pasteur vaccine is not recommended for individuals under 9). We 

then performed the regression:

logit Yi, t = β0 + β1 · Agei, t

where separate models for the same four outcomes, Yi, t, were peformed. Finally, we built 

multivariable models that also accounted for mean titer using a polynomial of order 2:
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logit Yi, t = β0 + β1 · Agei, t + β2 · Titeri, t + β2 · Titeri, t
2

4.11. Impact of titer on outcome using cox proportional hazard models—In the 

context of small probabilities of an event occurring and short time intervals between 

readings, logistic regression will give consistent results with that from cox proportional 

hazards models that specifically takes the non-independence of titer observations from the 

same individuals into account17. To demonstrate the consistency of the two approaches we 

estimate the impact of titer on our four outcomes (infection, symptomatic infection, 

hospitalized infection and DHF infection) using a time-varying cox proportional hazards 

model, specifically incorporating clustering of observations by individual37. We used 100 

augmented datasets. For each augmented dataset we extract the mean titer across all four 

serotypes for each day and whether they got the outcome of interest in the following day or 

not. For the disease specific outcomes (any symptomatic disease, hospitalized infection and 

DHF infection), we only used time points during the surveillance windows. We then 

calculated the impact of the mean titer (polynomial of order 2) on the relative hazard of 

infection, incorporating a clustering id per individual using the survival package in R37. We 

then calculate the mean effect of titer on the outcome of interest by averaging the estimates 

across the reconstructed datasets.

To compare our results using logistic regression, we multiply the annualized estimate of a 

titer x on the risk of the outcome (calculated as 1-exp(-365x)) by the estimated baseline 

hazard for those with a measured titer of 0 (calculated as the proportion of infections in time 

points with a measured titer of 0). We find that the results are almost identical (Extended 

Data Figure 6). As the logistic model approaches allow us to directly estimate the underlying 

probability of the outcome, it is preferred.

5. Survival analysis

5.1. Annualized probability of infection using titer data only—Over 100 

reconstructed datasets, we initially identify all individuals who experienced an infection 

(irrespective of disease severity). We then identify the setpoint antibody load for that 

infection as the mean titer 1 year following infection as predicted by our model. Individuals 

were divided into two groups, those with a setpoint antibody load ≤3 and those with a load 

>3. For each individual in each titer group, we use the logistic model from 4.9.1 to predict 

the daily probability of a subsequent infection based on the mean titers each day following 

the initial infection. We also calculated the daily probability of experiencing an infection that 

leads to DHF using the logistic model from 4.9.2. We annualize the predicted probabilities 

of subsequent infection by using the conversion 1-exp(-365x) where x is the daily 

probability of infection. We present the mean annualized probabilities across all individuals 

and over all the reconstructed datasets.

5.2. Kaplan-Meier analysis—For individuals who experienced an infection, we calculate 

Kaplan-Meier survival curves for experiencing a subsequent infection (both irrespective of 

disease outcome and for DHF only). Over 100 reconstructed datasets, we identify all 
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individuals who experienced an infection event. We then identify the setpoint antibody load 

for that infection as the mean titer 1 year following infection as predicted by our model. 

Individuals were divided into two groups, those with a setpoint antibody load ≤3 and those 

with a load >3. To incorporate sampling uncertainty we resample all individuals with 

replacement. For each group we then calculate Kaplan-Meier survival curves. We present the 

mean and 2.5 and 97.5 quantiles from the resultant distribution.

6. Prediction of DHF outcome using mean titer

We assess the ability of our logistic model to discriminate between those who developed 

DHF and those who did not using leave one out cross validation.

6.1. DHF outcome among all cohort participants—For each reconstructed dataset, 

taking each DHF case in turn, we initially identified all individuals who were in the cohort at 

the same time as the DHF infection with detectable titers who did themselves not have a 

DHF infection within a 1-year period. We then randomly selected one of those individuals 

and used the titer from that day. Once we had selected a matched control for each DHF case, 

we calculated the ROC using leave one out cross validation. To do this we removed each 

individual in turn from the dataset (including both the cases and the controls) and 

recalculated the relationship between mean HI titer and DHF infection using all the 

remaining titer readings. We then predicted the probability that the held-out case had a DHF 

infection. The ROC was calculated using these probabilities across individuals. We present 

the mean ROC from across 100 reconstructed datasets.

6.2. DHF outcome among all infections—We assessed the ability of our model to 

discriminate between those who did and did not develop DHF following infection. For a 

reconstructed dataset, we identified all individuals with detectable titers prior to infection 

who had a DHF infection and those that did not have a DHF infection (i.e., those with an 

infection during the surveillance windows that did not develop DHF). For each infection 

event, we identified the mean titer the day before infection. We then used leave one cross 

validation as described above to assess our ability to identify those that went on to develop 

DHF from those that did not. We present the mean ROC from across 100 reconstructed 

datasets.

7. Clustering of infections by school

For additional model validation, we explore whether augmented infections occurred in the 

same schools at around the same time as observed cases, despite no information on location 

being provided to the model.

7.1. Clustering of subclinical infections within schools—To explore the clustering 

of subclinical with symptomatic infections in schools, we use the tau clustering statistic 31,38 

to calculate the odds of observing an subclinical infection (irrespective of serotype and 

infection parity) within a set time period (t1, t2) of a symptomatic infection within the same 

school relative to the odds of observing an subclinical infection in a different school within 

the same time window.
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τ (t1, t2) =
π(t1, t2)
π( ∞ )

where:

π(t1, t2) =
∑i = 1

Nsymp ∑ j = 1
Nasymp I(schi j = 1, t1 < ∣ si j ∣ < t2)

∑i = 1
Nsymp ∑ j = 1

Nasymp I(schi j = 0, t1 < ∣ si j ∣ < t2)

where Nsymp and Nasymp are the number of symptomatic and subclinical infections within 

any model iteration, schij is equal to one if individuals i and j go to the same school and 0 

otherwise, sij is the time between infections. We varied the time window between 0–90 days, 

90–180 days and greater than 180 days.

7.2. Clustering of serotypes within schools—We explore whether the augmented 

serotypes that were assigned to subclinical primary infections (serotypes could not reliably 

be assigned in post primary infections due to cross reaction) were consistent with the 

serotypes of the symptomatic infections of individuals within the same school for different 

periods of time.

For augmented primary infections that are consistently of the same serotype (defined as 

>50% of augmented datasets have a primary infection in the same individual caused by the 

same serotype in the same six-month time window), we calculated the odds that an 

augmented primary infection that occurs in the same school and within a fixed time window 

of a PCR-confirmed case is of the same serotype relative to the odds that an augmented 

primary infection that occurs within the same time window in a different school is of the 

same serotype.

τ2(t1, t2) =
π2(t1, t2)
π3(t1, t2)

where:

π2(t1, t2) =
∑i = 1

Nsymp ∑ j = 1
Nasymp I(schi j = 1, t1 < si j < t2, seri j = 1)

∑i = 1
Nsymp ∑ j = 1

Nasymp I(schi j = 1, t1 < si j < t2, seri j = 0)

π3(t1, t2) =
∑i = 1

Nsymp ∑ j = 1
Nasymp I(schi j = 0, t1 < si j < t2, seri j = 1)

∑i = 1
Nsymp ∑ j = 1

Nasymp I(schi j = 0, t1 < ∣ si j ∣ < t2, seri j = 0)

where serij is equal to 1 if i and j go to the same school and 0 otherwise. We varied the time 

window between 0–90 days, 90–180 days and greater than 180 days.
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7.3 Uncertainty—To incorporate sampling uncertainty into our estimates, for each model 

iteration we randomly selected all infection events with replacement before calculating the 

tau estimates. Ninety-five percent confidence intervals were calculated from the 2.5% and 

the 97.5% quantiles of the resultant distribution across all model iterations.

8. Different approaches to identify infections using simple cut-points

To assess the sensitivity and specificity of the current approach to identify infections based 

on titer differences across two blood draws, we simulated titer trajectories where infections 

did and did not take place.

8.1. Simulated titers where infections did take place—We used the following 

algorithm:

i. Randomly draw MCMC iteration

ii. Randomly divide the population of individuals who had at least one infection in 

two: ‘model fit’ individuals and ‘held out’ individuals.

iii. Of the model fit individuals, randomly draw an individual i

iv. Identify the parameters for the antibody dynamics for the first infection for that 

individual (i.e., ψi,τ=1, γi,τ=1, ωi,τ=1) and the baseline titer Ai,s(t0) from that 

MCMC iteration. The true titer for each serotype will be Ai,s(t0).

v. Calculate the measured titer for each serotype using a random draw from a 

normal distribution with mean Ai,s(t0) and standard deviation σ, where σ 
represents the measurement error for the assay. Under scenarios of a discrete 

assay, the measured titer is also rounded down to the nearest integer.

vi. Draw an infection time point using a uniform distribution between 0 and tmax 

where tmax represents the time of the second blood draw.

vii. Calculate the true titer at tmax for each serotype, Ai,s(tmax)

viii. Calculate the measured titer using a random draw from a normal distribution 

with mean Ai,s(tmax) and standard deviation σ. Under scenarios of a discrete 

assay, the measured titer is also rounded down to the nearest integer.

8.2. Simulated titers where infections did not take place

i. Randomly draw MCMC iteration

ii. Randomly divide the population of individuals who had at least one infection in 

two: ‘model fit’ individuals and ‘held out’ individuals.

iii. Of the model fit individuals, randomly draw an individual i

iv. Identify the baseline titer Ai,s(t0) from that MCMC iteration. The true titer for 

each serotype will be Ai,s(t0).

v. Calculate the measured titer for each serotype using a random draw from a 

normal distribution with mean Ai,s(t0) and standard deviation σ, where σ 
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represents the measurement error for the assay. Under scenarios of a discrete 

assay, the measured titer is also rounded down to the nearest integer.

vi. Calculate a second measured titer using a random draw from a normal 

distribution with mean Ai,s(t0) and standard deviation σ. Under scenarios of a 

discrete assay, the measured titer is also rounded down to the nearest integer.

8.3. Different assays

8.3.1. Current approach: The current approach is to see whether there is a four-fold rise 

between blood draws in any of the four serotypes using the discrete HI assay.

8.3.2. ‘Mean’ approach: This approach is to first calculate the mean across the four 

serotypes at each time point and then compare the mean titers across two time points to 

identify whether infections have occurred or not.

8.3.3. ‘Continuous assay’ approach: Some assays give titers on a continuous scale (and not 

discretized like the HAI assay). In this approach, as with the ‘Mean’ approach, we initially 

calculate the mean titer across the four serotypes at each time point and then compare the 

mean titers across two time points to identify whether infections have occurred or not.

8.4. Assessment of the different assays by time between blood draws and 
error in assay—Using the simulation approaches set out above we obtained 10,000 

individuals with pairs of measured titers (with one titer for each serotype) where an infection 

did take place in between the titer measurements and a further 10,000 individuals with pairs 

of measurements where no infection took place. We varied the time between blood draws 

(tmax) between 10 days and 400 days and the error in the assay (σ) between 0.1 and 1. For 

each resultant dataset we used the held-out dataset (i.e., those individuals not included in the 

model fitiing) to calculate the sensitivity and specificity under each of the approaches in 6.3. 

Each time, we also identified the cutpoint that maximized the sensitivity while maintaining 

at least 95% specificity. We performed a separate analysis where we identify cutpoints to 

maximize sensitivity while maintaining 99% specificity.

9. Comparison between PRNT and HI titers

For 1,771 blood draws, both plaque reduction neutralization tests and HIs were conducted. 

We compare the mean PRNT log titer across the four serotypes with the mean HI log titer 

from the four serotypes and fit a line through the two using linear regression. We compared 

different polynomial models up to order 2 and used the best fitting one as determined by 

AIC.

10. Comparison with Sanofi Pasteur vaccine titers

To explore the potential impact of the Sanofi vaccine we extracted the geometric mean 

PRNT titers following vaccination for both seronegative and seropositive individuals who 

were vaccinated in Latin America21. The extracted values for PRNT titer, 28 days after the 

second injection are (see Table S8 in 21) are shown in Table S8.

Salje et al. Page 22

Nature. Author manuscript; available in PMC 2018 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The values 28 days after the third injection are also available and are 81 for those 

seronegative prior to vaccination and 658 for those seropositive prior to vaccination21. We 

plot these values on a plot of the relationship between HI titer and PRNT titer from our 

assays (Figure 4D).

11. Ethical approval

The cohort protocol was approved by the institutional review boards of the Thai Ministry of 

Public Health, the Office of the US Army Surgeon General, and the University of 

Massachusetts Medical School. Informed consent was obtained from participants and their 

parents/guardians. No personally identifiable information was available to the researchers 

for the presented analysis.

12. Code availability statement

c++ code is available from the corresponding author on request.

Extended Data

Extended Data Figure 1. Comparison of biphasic versus exponential decay
Biphasic and exponential decay curves fitted to HI antibody measurements following 

observed symptomatic infections.
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Extended Data Figure 2. Variability in titer responses and measurement error and bias by 
serotype
(A) Variability in titer responses. Violin plots showing median (black square), 25% and 75% 

quantiles (thick black line) and 95% distribution (in grey) of net titer rise at different time 

points following infection (N=1,420) (B) Estimated underlying differences across serotypes 

in the measurement of antibody levels by hemagglutination inhibition assay over and above 

that attributable to infection (DENV1 is reference) with 95% credible intervals (fitted to data 

from 140,612 titer measurements). (C) Mean estimated error in the hemagglutination 

inhibition assay estimated with 95% credible intervals using our model results (grey) and 

empirically derived (blue) from 795 repeated measurements on the same serum compared to 

that previously empirically derived estimated for plaque reduction neutralization tests 

(PRNTs) (blue).

Extended Data Figure 3. Serotype distributions
(A) Distribution of serotypes by year comparing the detected symptomatic infections by 

PCR and the augmented primary infections where we could confidently assign the serotype 

(>50% of model iterations inferring the same serotype). We could confidently assign the 

serotype in 60% of instances. (B) Serotype distribution for detected symptomatic primary 

infections and augmented subclinical primary infections where the infecting serotype could 

be confidently assigned (>50% of model iterations inferring the same serotype). (C) 
Distribution of serotypes by year comparing the detected symptomatic infections by PCR 

and the augmented primary infections using a more stringent cutoff that >75% of model 
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iterations infer the same serotype. In this scenario we could confidently assign the serotype 

in 32% of instances.

Extended Data Figure 4. Cox proportional hazards model versus logistic regression
Comparison of results using time varying cox proportional hazards model (dashed line) with 

that from logistic regression (solid line) for the annualized probability of (A) infection, (B) 
developing any symptoms, (C) being hospitalized and (D) developing DHF as a function of 

the mean measured antibody titer across all serotypes at the time of exposure using titer data 

from all study subjects (N-3,451). The open circles on the left represent primary infections 

(i.e., those with no detectable titers to any serotype prior to exposure). The shaded regions 

represent 95% bootstrap confidence intervals. To calculate probabilities, the relative hazards 

from the cox model are multiplied by the baseline hazard for those with measured titers of 0 

(calculated as proportion of person-time with an infection time among those with measured 

titers of 0).
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Extended Data Figure 5. Receiver Operating Characteristic to identify DHF infections
Ability of modelled relationship between measured HI titer and risk of DHF to identify 

those with DHF using those with DHF compared to randomly selected matched controls 

from individuals in the cohort who had detectable titers at the same time (N=36 with DHF 

with the same number of matched controls).
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Extended Data Figure 6. Probability of disease as a function of HI and PRNT titer
Probability of disease as a function of mean titer across the four types at the time of 

infection. (A) For those infected during the surveillance windows, the probability of 

developing any symptoms as a function of mean titer (N=781). (B) For those infected during 

the surveillance windows, the probability of being hospitalized (N=781). (C) For those 

infected during the surveillance windows, the probability of developing DHF as a function 

of mean titer (N=781). (D) For those infected during the surveillance windows (N=781), the 

probability of developing any symptoms as a function of mean PRNT titer. (E) For those 

infected, the probability of being hospitalized as a function of mean PRNT titer. (F) For 

those infected, the probability of developing DHF as a function of mean PRNT titer. In each 

panel, the open circles on the left represent primary infections. The shaded region represents 

95% confidence intervals.
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Extended Data Figure 7. Population-level distribution of titers by birth cohort and age
(A) Proportion of cohort who are naïve as a function of time. (B) Proportion of cohort who 

are naïve as a function of age. Proportion of cohort with titers above risk zone (i.e., greater 

than 3) as a function of time (C) and age (D).

Extended Data Figure 8. Receiver Operating Characteristic for infection detection under 
different testing protocols
The ROC for different assay approaches and time between blood draws calculated from 

100,000 simulated titer responses. (A) Single serotype assay – if HIs are conducted for just a 

single serotype at two time points. (B) HIs conducted against all four serotypes. Infections 

are considered to occur if the ratio of any of the four titers at time point 2 versus time point 1 

is greater than the threshold value. (C) HIs conducted against all four serotypes. Infections 

are considered to occur if the ratio of the mean of the four titers at time point 2 versus the 

mean at time point 1 is greater than the threshold value.
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Extended Data Figure 9. Performance of assay dependent on time between blood draws and 
measurement error
Optimization of assays in detection of events where specificity is maintained at >95%. We 

explore the performance of three different assay testing protocols: current practice where 

infection events are defined as a rise above a cut-point in any serotype across two blood 

draws (A), ‘mean approach’ where the mean across all serotypes is first calculated before 

comparing across time points (B), ‘mean approach’ where titers are available on a 

continuous scale (C). For each protocol, we identify the optimal cut-point for a range of 

assay measurement errors from 100,000 simulated titers based on the fitted titer responses 

from infections in our study population, that maintains a specificity of >95% (top row). We 

then calculate the sensitivity of the approach for different time intervals between blood 

draws using 50% held out data (bottom row). (D)–(F) Same as (A)–(C) but using a more 

stringent 99% cut-off.
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Extended Data Figure 10. Clustering of symptomatic (N=274) and subclinical cases (mean N=507 
across 100 reconstructed datasets) by school by time and serotype
(A) Probability of observing an augmented subclinical infection (irrespective of serotype) 

occurs at different time intervals within the same school of a detected symptomatic case 

relative to the probability of observing an augmented subclinical infection occurring in a 

different school in that same time interval. (B) For augmented primary infections that are 

consistently of the same serotype (defined as >50% of augmented datasets have a primary 

infection in the same individual caused by the same serotype in the same six-month time 

window). Probability that an augmented primary infection that occurs within a fixed time 

window of a PCR-confirmed case and in the same is of the same serotype relative to the 

probability that an augmented primary infection that occurs within the same time window in 

a different school is of the same serotype. Note that the modelling framework can only allow 

differentiation of serotypes for primary infections. Cross-reaction prevents differentiation in 

post-primary infections. Overall, 60% of primary infections have a consistent serotype for a 

primary infection across augmented datasets. Each boxplot presents the 2.5%, 25%, 75% 

and the 97.5% quantiles of the distribution as well as the mean.
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Figure 1. Titer responses following infection
(A) Measured (dots) and model fit (lines) for three example individuals. Each dot represents 

the mean titer across the four serotypes. The pink shaded regions are periods of active 

surveillance. The solid blue arrows represent confirmed symptomatic dengue infections. The 

open blue arrows represent estimates of timing of subclinical infections from an augmented 

dataset. During the active surveillance windows, these augmented infections represent 

subclinical infections whereas outside the surveillance window, it is unknown if the 

individual had symptoms. (B) Serotype distribution of PCR confirmed symptomatic 

infections (DENV1 – green, DENV2 - blue, DENV3 - maroon, DENV4 – orange, unknown 

serotype – black). The grey bars represent the estimated distribution of infections not 

detected from active surveillance. The periods of active surveillance are in pink (5.5 months 

per year). (C) Model fit (lines) and observed (dots) titers pre and post infection for primary 

infections (infecting serotype in blue, non-infecting serotypes in red) and post-primary 

infections (green). (D) Mean difference between observed log2-titer at different time points 

following infection with that at 1 year for all augmented and observed infections (average of 

1,421 total infections across 100 reconstructed datasets) with 95% confidence intervals. (E) 
Titer ratio of the infecting to the mean of the three non-infecting serotypes before and after 

symptom onset with 95% confidence intervals for the 217 individuals with symptomatic 

infections where infecting serotype detected (N=3,366 total titer measurements).
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Figure 2. Probability of infection and disease as a function of titer
Annualized probability of (A) infection, (B) developing any symptoms, (C) being 

hospitalized and (D) developing DHF as a function of the mean measured antibody titer 

across all serotypes at the time of exposure across all study subjects (N=3,451). The open 

circles on the left represent primary infections (i.e., those with no detectable titers to any 

serotype prior to exposure). The shaded regions represent 95% bootstrap confidence 

intervals.
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Figure 3. Risk of subsequent infection and disease following an infection event (from average of 
1,420 infections across 100 reconstructed datasets)
The probability of survival from subsequent infection (irrespective of disease outcome (A) 
and that lead to DHF (C)) as calculated from Kaplan-Meier for those with setpoint antibody 

titers of ≤3 (red) and >3 (blue) with 95% confidence intervals. The annualized probability of 

a subsequent infection (irrespective of disease outcome (B) and that lead to DHF (D)) at 

different time points following infection for those with setpoint antibody titers of ≤3 (red) 

and >3 (blue).
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Figure 4. Evolution of population risk, implications for vaccine and cohort design
(A) Proportion of study participants who have titers in risk zone (defined detectable log2-

titers ≤3) over the study period for different birth-cohorts (colored lines) and overall (black). 

The epidemic curve of all infections is in grey. (B) Proportion of study participants with 

titers in risk-zone as a function of age for different birth-cohorts (colored lines) and overall 

(black). (C) Performance of current assay testing protocol where infection events are defined 

as a rise above a cut-point in any serotype across two blood draws. (D) Relationship between 

PRNT titer and HI titer where both assays were performed (N=1,771 samples). The boxplots 

show 2.5, 25, 75 and 97.5 quantiles as well as the mean. Superimposed are the results from 

the Denvaxia vaccine for previously seronaive (blue) and seropositive (red) prior (open 

symbols) and post (filled symbols) vaccination.
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