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Abstract. Malaria transmission is dependent on the density and distribution of mosquito vectors, but drivers of
vector abundance have not been adequately studied across a range of transmission settings. To inform intervention
strategies for high-burden areas, further investigation is needed to identify predictors of vector abundance. Active
household (HH) surveillance was conducted in Nchelenge district, Luapula Province, northern Zambia, a high-transmission
setting with limited impact of malaria control. Between April 2012 and July 2017,mosquitoeswere collected indoors during
HH visits using CDC light traps. Demographic, environmental, and climatological correlates of vector abundance were
identified using log-binomial regressionmodelswith robust standard errors. The primarymalaria vectors in this settingwere
Anopheles funestussensustricto (s.s.) andAnophelesgambiae s.s.Anopheles funestuspredominated inboth seasons,with
a peak in the dry season. Anopheles gambiae peaked at lower numbers in the rainy season. Environmental, climatic,
and demographic factors were correlated with HH vector abundance. Higher vector counts were found in rural areas
with low population density and among HHs close to roads and small streams. Vector counts were lower with in-
creasing elevation and slope. Anopheles funestuswas negatively associated with rainfall at lags of 2–6 weeks, and An.
gambiae was positively associated with rainfall at lags of 3–10 weeks. Both vectors had varying relationships with
temperature. These results suggest that malaria vector control in Nchelenge district should occur throughout the year,
with an increased focus on dry-season transmission and rural areas.

INTRODUCTION

Malaria transmission is dependent on the density and
distribution of competent anopheline mosquito vectors, and
vector control has been identified as a key intervention to
reduce the global malaria burden.1,2 Current strategies for
vector control include improved coverage of long-lasting
insecticide-treated bed nets (LLINs), expanded indoor re-
sidual spraying (IRS), and larval source management, with
the aim to manage insecticide resistance using sustainable
and evidence-based policies.2–5 In conjunction with rapid
diagnostic testing, artemisinin combination therapies (ACTs),
and intermittent preventive treatment of pregnant women and
children, these strategies have led to substantial reductions in
themalariaburden throughout sub-SaharanAfrica.1,4However,
progress has occurred disproportionately in regionswith lowor
moderate malaria transmission, with less success in high-
transmission areas despite implementation of control activities.1,6

Increasing vector resistance to insecticides further threatens
to reverse progress in vector control across epidemiologic
settings.5,7,8

To guide successful vector control in high-burden areas,
there is a need to investigate malaria vector dynamics and
bionomics in these settings. The distribution and abundance
ofmalaria vectors is known to vary by timeandspace; however,
little research has been conducted to identify correlates of
vector abundance.9,10 Among the few existing studies, in-
door vector counts have been associated with household
(HH) construction, HH occupancy, environmental features,
and climate, although results differ by locale and species.

Higher vector counts have been found inHHs located in rural
areas, in closer proximity to breeding sites, at lower eleva-
tions, and with natural roofing and open eaves.11–15 Higher
numbers of HH residents have been associated with in-
creased vector counts.13,14,16 Counts of Anopheles gam-
biae species tend to be positively associated with rainfall,
whereas Anopheles funestus counts have been negatively
associated with rainfall and positively associated with
temperature and humidity.11,12,16–21

Zambia is a country of particular interest to identify optimal
vector control strategies. Despite nation-wide scale-up of
malaria control activities, there was a resurgence of cases in
2009 after almost a decade of steady decline.22 Cases in
Zambia have increased nearly every subsequent year, and
the country reported 3.1 million cases and 7,000 deaths in
2016, an increase of nearly a million cases from 2010.1 This
resurgence was largely driven by provinces northeast of the
border with the Democratic Republic of the Congo (DRC) and
Copperbelt Province, whereas parasite prevalence in Lusaka,
Eastern, and Southern Provinces continued to fall.23–25 The
heterogeneity of malaria transmission under this compre-
hensive vector control strategy and the growing burden of
disease in the north indicate a need to further investigate
drivers of vector abundance across transmission settings in
Zambia.
The primary malaria vectors in Zambia are members of

the An. funestus and An. gambiae complexes. Studies have
identified that Anopheles arabiensis is the predominant vector
in the south, with some isolated pockets of An. funestus sensu
stricto (s.s.), whereas An. funestus s.s. and An. gambiae s.s.
predominate in the north and east of the country.22,26–30 Both
An. funestus and An. gambiae are highly anthropophilic
(feed on humans), endophagic (bite indoors), and endophilic
(rest indoors).31,32 Because of their indoor biting and resting
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behaviors, these speciesmay be vulnerable to indoor vector
control interventions, including LLINs and IRS. However,
increasing resistance in Zambia to pyrethroids, organo-
chlorines, and carbamate insecticides has reduced the ef-
ficacy of these interventions.24,26

Drivers of vector abundance in Zambia have not been
comprehensively investigated. Nchelenge district, Luapula
Province, in the north is a priority site to investigate barriers to
malaria control due to the persistently high transmission in
this setting. A vector bionomics study from 2012 to 2014 in
this region identified season, HH water source, open eaves,
and proximity to Lake Mweru as correlates of HH vector
abundance.28 This analysis builds on these results to further
determine correlates of HH malaria vector abundance by
species over a 5-year period in northern Zambia, with the aim
of guiding malaria interventions.

MATERIALS AND METHODS

Study site. This study was conducted in Nchelenge district,
Zambia, by the Southern and Central Africa International Cen-
ters of Excellence for Malaria Research.23,33 Nchelenge
district is located in the marshlands east of Lake Mweru and
the Luapula River, one of the early tributaries of the Congo
River. This river forms the border with the DRC to the west,
with a land border to the north. There is a single rainy season
from approximately October to April, followed by a dry sea-
son with little to no rainfall. The inland area has an extensive
stream network leading to the lake, and the lakeside and
riverbank regions include swamplands that remain in-
undated with water throughout the year.
This environment supports both An. funestus s.s. and

An. gambiae s.s. with differing ecologic patterns and distri-
butions throughout the year, resulting in year-round malaria
transmission.Anopheles funestus is themost abundant vector,
with high numbers collected from HHs throughout the year
and a peak in the dry season.27,28 Anopheles gambiae peaks
with smaller numbers during the rainy season, particularly in
the areas near the lake.27,28 Both vectors are strongly
anthropophilic and have relatively long adult life spans (mean
of 23 days for An. gambiae, 28 days for An. funestus under
laboratory conditions), which can facilitate rapid and wide-
spread malaria transmission.31,34,35 The cumulative ento-
mologic inoculation rate is estimated to be 80–140 infective
bites per year in Nchelenge.28,36 Household construction in
this region is generally rudimentary, with most people living
in huts with natural flooring and walls, thatch roofs, and open
eaves, and a smaller number living in finished housing with
metal roofs and concrete walls.
The study site in Nchelenge district represents high malaria

transmission with limited impact of control efforts. As per
Zambia’s National Malaria Strategic Plan, malaria control
strategies in this region include freemalaria rapid testing and
treatment with ACTs, LLIN distribution in antenatal and
vaccination clinics, and yearly IRS in selected areas using
pyrethroid (2008–2010), carbamate (2011–2012), and organo-
phosphate insecticides (Actellic®300CS formulationofpirimiphos-
methyl, 2014 to present [Syngenta, Basel, Switzerland]).37,38

Despite these activities, this region continues to experience
holoendemic transmission, with a resurgence of cases since
2009 and an averagemalaria prevalence of approximately 70%
in children younger than 17 years.24,39

Data collection. Households were selected for active
surveillance through a modified cluster sampling design.
QuickBird™ satellite images of the study areas were pur-
chased (DigitalGlobe Services, Denver, CO), and a 1 × 1 km
grid was overlaid on the study area in ArcGIS version 10.2
(ESRI, Redlands, CA). Households were enumerated, and
grid quadrants were selected using spatially balanced ran-
dom sampling to ensure inclusion of the full range of ecology
in the region. Each month, 25–30 HHs were randomly se-
lected using probability proportional to population size
sampling, with between one and six HHs selected per grid
quadrant.40 If all HHs in a grid quadrant had already been
sampled, an adjacent grid quadrant was selected, and the
same random samplingmethodwas used. Households were
recruited into either cross-sectional or longitudinal cohorts
with alternating bimonthly frequency to examine different
outcomes of malaria transmission among HH residents.
Longitudinal HHs were visited every other month for 1 year
and then replaced with a new longitudinal cohort. Cross-
sectional HHs were visited once and replaced with new HHs
for each cross-sectional data collection.
At each HH visit, mosquitoes were collected using CDC

light traps (John W. Hock, Ltd., Gainesville, FL). Study staff
placed traps indoors in a sleeping area where an LLIN was
already hung. Consenting HH participants were instructed to
turn the trapsonat 18:00 and to tie closed the vector collection
bags and turn the traps off at 6:00 the following morning to
collect mosquito vectors overnight. The traps were collected
the following day, and consenting HH members were admin-
istered a questionnaire. Informationwas collected onHHGPS
coordinates, house structure, demographic characteristics,
HH water source, reported LLIN use, and history of HH IRS.
The traps were transported to the field station in Kashikishi,
Nchelenge district, where mosquitoes were killed by freezing,
identifiedmorphologically to genus and sex, enumerated, and
stored dry on silica. Samples were transported to the Tropical
Diseases Research Centre (TDRC) headquarters in Ndola
once per month for final laboratory identification using stan-
dard morphological keys.41,42 Molecular identification meth-
ods were used to validate morphological identification in a
subsample of collections.43,44More detailedmethods of vector
identification are described elsewhere.28

Climatological data were collected from a HOBO Micro
Station (Onset Computer Corporation, Bourne, MA) located
on the grounds of the TDRC field station in Kashikishi and
from the African Flood and Drought Monitor online tool.45,46

Climatological data were aggregated by day from January
2012 to July 2017.Meteorological and hydrological variables
included minimum and maximum daily temperature in �C,
rainfall in mm/day, evaporation in mm/day, wind speed in
m/second, streamflow in m3/second, and percent soil
moisture. For this analysis, the start and end of the rainy
season each year was defined as the first and last weeks in
which the average rainfall exceed 1 mm.
Datamanagement. Entomologic and survey data collected

at participating HHs were uploaded into REDCap secure file
sharing software and downloaded as comma separated
values formatted files.47 Household locations were plotted in
ArcGIS (Figure 1). To investigate spatial distributions, vector
counts were spatially joined to sampling grid quadrants and
plotted over the study area as a function of absolute and
relative abundance by species and season.
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Several geographic and environmental covariates were
developed. Because of a natural break in HH density, HHs
were classified as “lakeside” if they were within 3 km of Lake
Mweru and as “inland” if they were further than 3 km from
the lake. Population density for each HH was calculated as
the number of other HHs within a 500-m buffer. Household
elevation, slope, and normalized difference vegetation in-
dex (NDVI) were extracted from raster files downloaded
from the Shuttle Radar Topography Mission (SRTM) ver-
sion 3 and from Landsat 5 data, as described previously.39

Normalized difference vegetation index values range from
−1 to +1, with negative values corresponding to bodies of
water and positive values increasing with increasing pho-
tosynthetic vegetation, or “greenness.” Stream networks
were developed using the SRTM elevation data in the
ArcHydro Tools module of ArcGIS.48 Streams were classi-
fied as categories 1–4 using the Strahler classification
system, in which the smallest streams are defined as cate-
gory 1, two category one streams join to form a category
2 stream, and so on.49 The distances to roads, health clin-
ics, LakeMweru, and category 1–4 streams were calculated
for each HH.
Statistical analysis. The primary aim of the analysis was to

identify risk factors for HH vector abundance by species. Data
were analyzed using STATA 13.1 (Stata Corporation, College
Station, TX) and R version 3.4.2 (R Core Team, Vienna,
Austria). Entomological, epidemiological, environmental, and
climatological data for all HH visits between April 2012 and
July 2017weremerged byHHand day. Vector counts did not
differ significantly between longitudinal and cross-sectional
cohorts, so data from all enrolled HHs were combined into
one dataset for analysis.

Potential HH-level covariates included natural versus
finished HH flooring, thatch versus metal roof, open versus
closed HH eaves, open versus protected HH water source,
self-reported history of HH IRS with pirimiphos-methyl in
the past year, level of education completed by the head of
household (HoH), and whether the HoH was in permanent
employment. Because of the high degree of resistance to
pyrethroid and carbamate insecticides and limited cover-
age of IRS with these insecticides in the past, the history of
IRS with these compounds was not included in models.
Geographic and environmental covariates as described
above included population density within 500 m, NDVI, eleva-
tion, slope, and distances to roads, health clinics, LakeMweru,
and category 1–4 streams. Household demographics included
the number of HH occupants and the proportion of occupants
who were male, younger than 5 years, or slept under a bed net.
Bivariate and multivariate models were developed by spe-

cies using negative binomial models with robust standard
errors.50,51 The unit of analysis was the HH, with indoor vector
counts by species as the outcome. Generalized estimating
equations were used to account for repeat visits to HHs.52,53

Bivariate comparisons by species were conducted for all
covariates listed above, and covariates thatwere significant at
the P = 0.1 level or identified as relevant in the literature were
retained for multivariate analyses. The variables for roof type
and HH eaves were available in only a subsample of HHs and
were therefore excluded from further analyses.
A series of climate covariates was developed to account for

the effect of weather and hydrology on interannual variation in
vector abundance. The impact of climate was expected to be
delayed because of the duration of vector life cycles, but ap-
propriate time lags have not been explored in this setting. A

FIGURE 1. Nchelenge district sampled and enumerated households from April 2012 to July 2017. This figure appears in color at www.ajtmh.org.
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cross-correlation approach was adapted for this analysis to
investigate themost etiologically relevant time period for each
climate variable to predict HH vector counts.54,55 Using this
method, the average value of each climate variable (e.g.,
rainfall) was calculated at time intervals of 1–12 weeks and
lags of 1–12 weeks from each day of data collection, returning
144potential covariates for each climatological factor. For each
species, a preliminary list of the most predictive climatological
covariates was identified using random forest algorithms,
which are designed to handle a large number of collinear
variables.56,57 Final model selection was conducted from all
relevant variables using stepwise regression and akaike in-
formation criterion (AIC) optimization methods.58,59

RESULTS

Vector speciescomposition.FromApril 2012 through July
2017, a total of 13,780 female anopheline mosquitoes were

collected during 1,724 visits to 1,084 uniqueHHs. The species
composition based on morphological identification included
12,365 An. funestus, 1,371 An. gambiae, 43 Anopheles cous-
tani, and 1 Anopheles maculipalpis. There was a mean of
7.8 female anophelines per HH visit (median 0; range: 0–230),
including 7.0 An. funestus (median 0; range: 0–226) and
0.8 An. gambiae per HH (median 0; range: 0–35). The distri-
bution of nightly HH vector counts was highly skewed, with
no anopheline mosquitoes collected from 53% of HH visits
and 5% of HH visits yielding between 50 and 230 anophe-
lines (Figure 2). By species, no An. funestus were collected
from 60.7% of HH visits and no An. gambiae were collected
from 77.5% of HH visits.
Throughout the year, a higher number of vectors were

collected in inland areas, with especially large collections
occurring in the dry season along a large inland lagoon,which
spans an area of approximately 0.5 km2 in the dry season and
0.90 km2 in the rainy season (Figure 3). As anticipated,

FIGURE 2. Histograms of household (HH) vector counts by species for (A) Anopheles funestus and (B) Anopheles gambiae, with N = 1,724
total HHs.
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An. funestus was the predominant vector, with higher HH
counts than An. gambiae in both rainy and dry seasons.
Anopheles funestus counts peaked shortly after rains
ceased and remained high throughout the dry season
(Figure 4).Anopheles gambiaewere nearly absent in the dry
season collections. Counts rose at the onset of the rains
and then increased throughout the rainy season (Figure 4).
Anopheles gambiae was the predominant vector in some
lakeside grid quadrants during the rainy season, although
overall numbers remained low (Figure 3).
Climate, environment, and HH-level factors. In the rainy

season from approximately October to April, daily minimum
temperature averaged 19.7�C (range: 11.4–25.3) and daily
maximum temperature averaged 29.2�C (range: 19.4–34.1).
Precipitation averaged 6.8mm/day (range: 0–64.6). Therewas
an average of 56% soil moisture, 2.7 mm/day of evaporation,
1.5 m/second wind speed, and 2,983 m3/second of stream-
flow. In the dry season fromMay toSeptember, dailyminimum
temperature averaged 15.7�C (range: 10.2–23.7) and daily
maximum temperature averaged 28.4�C (range: 23.1–33.5).
Precipitation averaged 0.06mm/day. Therewas an average of
26% soil moisture, 0.3 mm/day of evaporation, 2.5 m/second
wind speed, and 143 m3/second of streamflow. Household
elevation ranged from 920 to 1,055 m, and HH slope ranged
from 0 to 10.4�. Normalized difference vegetation index ranged
from 0.29 to 0.78. For each HH, there were between 10 and
1,021HHswithin 500m.Ninety percent ofHHshadopeneaves
and 89% had thatch roofs, with nearly complete correlation
between the two. Eighty-eight percent of HHs had a dirt floor,
and 56% used an open water source, including open wells,
surface water, or lakes and streams.
Correlates of HH vector counts. In bivariate analyses,

vector counts were associated with geography and envi-
ronment, HH occupancy, HH construction, and history of
malaria control activities (Table 1). Household counts of both

An. funestus and An. gambiae increased with increasing
distance from Lake Mweru and decreasing population den-
sity, both potential markers of rural residence. Counts of An.
funestus also increased with increasing distance from health
clinics. Higher counts of An. funestus and An. gambiae were
found in HHs that used an unprotected water source, that
were closer to category 2 streams, and that were located in
areas with higher NDVI, indications of potential larval sites.
Anopheles funestus counts were also higher in HHs located
at lower elevations, at steeper slopes, and farther from cat-
egory 4 streams. Counts of both vectors were higher in HHs
with a larger proportion of children younger than 5 years, and
counts of An. funestus increased with higher HH occupancy.
Higher counts of An. funestus were found in HHs with rudi-
mentary construction, including natural floors, natural roof-
ing, and open eaves. Anopheles funestus counts were
significantly lower in HHs with a reported history of IRS with
pirimiphos-methyl, but An. gambiae counts were not. Higher
numbers of both species were collected in HHs with a higher
rate of bed net use. Longitudinal versus cross-sectional HH
selection was not significantly associatedwith vector counts
of either species.
Inmultivariatemodels,An. funestus countswere positively

associated with NDVI and negatively associated with pop-
ulation density, lakeside residence, distance from roads and
category 1 streams, elevation, slope, and reported history of
IRS with pirimiphos-methyl (Table 2). For each 10% increase
in NDVI, counts were 30% higher (incidence rate ratio (IRR) =
1.3; 95% CI = 1.1–1.5). Counts were 35% lower with each
additional 100 HHs within 500 m (IRR = 0.65; 95% CI =
0.54–0.77) and were 72% lower if the HH was within 3 km of
Lake Mweru (IRR = 0.28; 95% CI = 0.16–0.47). Counts de-
creased 20% with each additional 100 m from a road (IRR =
0.80; 95% CI = 0.74–0.86) and decreased almost 50% with
each additional 1 km from category 1 streams (IRR = 0.52;

FIGURE 3. Distribution ofAnopheles funestus andAnopheles gambiae in sampled grid quadrants throughout the study area inNchelenge district,
Zambia, in (A) rainy season (October–April) and (B) dry season (May–September). An inland lagoon area is identified in an orange box. This figure
appears in color at www.ajtmh.org.
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95% CI = 0.32–0.86). Counts were nearly 50% lower with
each 10 m increase in elevation (IRR = 0.53; 95% CI =
0.47–0.61) and were 12% lower with each additional degree
of slope (IRR = 0.88; 95% CI = 0.80–0.97). Households that
reported a history of IRS with pirimiphos-methyl had 55%
lower counts than unsprayed HHs or HHs sprayed with a
different insecticide (IRR = 0.45; 95% CI = 0.32–0.62).
The strongest climatic predictors of An. funestus counts in

multivariate models were rainfall and maximum temperature,
with the most predictive time lags identified as between 2 and
12 weeks (Figure 5). Vector counts of this species decreased
with increasing rainfall. Counts of An. funestus were 71%
lower for each additional 10 mm of rain at a time lag of
2–4 weeks (IRR = 0.29; 95% CI = 0.17–0.47) and were 44%
lower for each additional 10 mm of rain at a time lag of
4–6 weeks (IRR = 0.56; 95% CI = 0.36–0.86). Correlations

with temperature were complex. Counts were 8% higher for
each 1�C increase in maximum temperature at a time lag of
2–4 weeks (IRR = 1.08; 95% CI = 1.00–1.2) but were 24%
lower for each 1�C increase in maximum temperature at a
time lag of 4–12 weeks (IRR = 0.76; 95% CI = 0.69–0.85).
In multivariate models, An. gambiae counts were nega-

tively associated with population density, lakeside resi-
dence, and distance from the lake, roads, and category 1
streams (Table 2). With each additional 100 HHs within 500 m,
counts decreased 18% (IRR = 0.82; 95% CI = 0.75–0.89).
Overall counts were 75% lower in lakeside areas (IRR = 0.25;
95% CI = 0.14–0.43). Within both lakeside and inland areas,
counts also decreased 18% with each additional 1 km from
the lake (IRR = 0.82; 95% CI = 0.75–0.89). This relationship
was consistent in stratified models, indicating that counts
of An. gambiae were lower in the lakeside area overall, but

FIGURE 4. Time series of (A) weather patterns, (B)Anopheles funestus, and (C)Anopheles gambiae counts bymonth. This figure appears in color
at www.ajtmh.org.
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that counts decreased in an eastern direction in both
lakeside and inland regions (Figure 3). Counts were 18%
lower with each additional 100 m from a road (IRR = 0.82;
95% CI = 0.75–0.89) and were 36% lower with each addi-
tional 1 km from category 1 streams (IRR = 0.64; 95% CI =
0.46–0.89).

The strongest climatic predictors of An. gambiae counts in
multivariate models were rainfall, minimum temperature, and
maximum temperature, with the most predictive time lags
identified as between 2 and 10 weeks (Figure 5). Counts of
An. gambiaewere 34% lower for each additional 10mmof rain
lagged 2–3 weeks (IRR = 0.66; 95% CI = 0.46–0.95), but they

TABLE1
Factors associated with HH counts of Anopheles funestus and Anopheles gambiae using bivariate negative binomial models with robust standard
errors and generalized estimating equation clustered by HH, N = 1,724

An. funestus An. gambiae

IRR 95% CI P-value IRR 95% CI P-value

HH characteristics
Longitudinal HH type 1.01 (0.62–1.6) 0.9 0.73 (0.52–1.03) 0.08
Use unprotected water source 2.0 (1.4–2.9) < 0.001 1.9 (1.4–2.7) < 0.001
History of IRS by self-report* 0.35 (0.25–0.49) < 0.001 0.92 (0.63–1.3) 0.7
Dirt floor in home 4.3 (2.2–8.2) < 0.001 1.3 (0.78–2.2) 0.3
Metal roof* 0.20 (0.10–0.39) < 0.001 0.68 (0.40–1.2) 0.2
Closed eaves* 0.23 (0.12–0.46) < 0.001 0.70 (0.40–1.3) 0.2

HH demographics
Number of HH participants 1.1 (1.04–1.2) 0.001 1.03 (0.96–1.1) 0.4
Proportion who use bed net (by 10%) 1.09 (1.05–1.1) < 0.001 1.06 (1.02–1.1) 0.002
Proportion younger than 5 years (by
10%)

1.2 (1.1–1.3) < 0.001 1.1 (1.02–1.2) 0.02

Proportion male (by 10%) 1.00 (0.97–1.03) 0.9 0.99 (0.95–1.03) 0.6
Environmental variables
HHs within 500 m (by 100 HH) 0.61 (0.50–0.73) < 0.001 0.80 (0.74–0.87) < 0.001
Elevation (by 10 m) 0.86 (0.82–0.90) < 0.001 1.00 (0.93–1.07) 0.9
Slope (by 1�) 1.1 (1.07–1.2) < 0.001 0.96 (0.89–1.05) 0.4
NDVI (by 10%) 2.1 (1.8–2.5) < 0.001 1.5 (1.2–1.8) < 0.001
Distance from Lake Mweru (in km) 1.2 (1.1–1.2) < 0.001 1.06 (1.02–1.1) 0.002
Distance from health clinics (in km) 1.3 (1.2–1.3) < 0.001 1.09 (1.05–1.1) < 0.001
Distance from roads (in 100 m) 0.93 (0.82–1.05) 0.2 0.89 (0.75–1.05) 0.2
Distance from cat. 1 streams (in km) 0.63 (0.38–1.04) 0.07 0.68 (0.40–1.17) 0.2
Distance from cat. 2 streams (in km) 0.59 (0.47–0.74) < 0.001 0.78 (0.67–0.91) 0.002
Distance from cat. 3 streams (in km) 0.82 (0.72–0.95) 0.007 0.95 (0.85–1.06) 0.4
Distance from cat. 4 streams (in km) 1.2 (1.06–1.3) 0.001 1.08 (0.99–1.2) 0.09
HH = household; IRR = incidence rate ratio; IRS = indoor residual spraying; NDVI = normalized difference vegetation index. P-value if < 0.05.
* Indoor residual spraying with pirimiphos-methyl.
† Subsample of all HHs, N = 1,383.

TABLE2
Negativebinomialmultivariatemodels of predictingAnopheles funestus (N=1,665) andAnopheles gambiae (N=1,724) countsperHH, using robust
standard errors and generalized estimating equation clustered by HH

An. funestus An. gambiae

IRR 95% CI P-value IRR 95% CI P-value

History of IRS by self-report* 0.45 (0.32–0.62) < 0.001 – – –

HH within 500 m (by 100 HH) 0.65 (0.54–0.77) < 0.001 0.82 (0.75–0.89) < 0.001
Elevation (by 10 m) 0.53 (0.47–0.61) < 0.001 – – –

Slope 0.88 (0.80–0.97) 0.01 – – –

NDVI (by 10%) 1.3 (1.08–1.5) 0.004 – – –

Lakeside 0.28 (0.16–0.47) < 0.001 0.25 (0.14–0.43) < 0.001
Distance from Lake Mweru (in km) – – – 0.82 (0.75–0.89) < 0.001
Distance from roads (in 100 m) 0.80 (0.74–0.86) < 0.001 0.82 (0.74–0.90) < 0.001
Distance from cat. 1 streams (in km) 0.52 (0.32–0.84) 0.007 0.64 (0.46–0.89) 0.007
Lagged rainfall (by 10 mm)† 0.29 (0.17–0.47) < 0.001 – – –

Lagged rainfall (by 10 mm)‡ 0.56 (0.36–0.86) 0.008 – – –

Lagged rainfall (by 10 mm)§ – – – 0.66 (0.46–0.95) 0.02
Lagged rainfall (by 10 mm)k – – – 2.3 (1.4–3.8) 0.002
Lagged maximum temperature (in �C)† 1.08 (1.00–1.2) 0.05 – – –

Lagged maximum temperature (in �C){ 0.76 (0.69–0.85) < 0.001 – – –

Lagged maximum temperature (in �C)# – – – 0.75 (0.68–0.82) < 0.001
Lagged minimum temperature (in �C)# – – – 1.3 (1.2–1.4) < 0.001
HH = household; IRR = incidence rate ratio; IRS = indoor residual spraying; NDVI = normalized difference vegetation index. P-value if < 0.05.
* Indoor residual spraying with pirimiphos-methyl.
† Lag = 2–4 weeks.
‡ Lag = 4–6 weeks.
§ Lag = 2–3 weeks.
k Lag = 3–10 weeks.
{ Lag = 4–12 weeks.
# Lag = 3–7 weeks.
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were 230% higher for each additional 10 mm of rain at a time
lag of 3–10weeks (IRR=2.3; 95%CI = 1.4–3.8), indicating that
An. gambiae abundance is strongly correlated with increased
rainfall except at short time lags. Correlations with tempera-
ture were again complex. Counts were 30% higher for each
1�C increase in minimum temperature at a time lag of
3–7 weeks (IRR = 1.3; 95% CI = 1.2–1.4), but counts were
25% lower with each 1�C increase inmaximum temperature
over this same time period (IRR = 0.75; 95%CI = 0.68–0.82).

DISCUSSION

This study described HH-level, environmental, and climatic
drivers of indoor abundance for two key malaria vectors in a
high-transmission setting in northern Zambia. Despite control
activities, HHvector countswere high in this setting,with up to
230 female anophelines collected in a night from a single HH.
As previously described,27,28 An. funestus was the dominant
vector in this region, and an average of approximately seven
An. funestus and one An. gambiae were collected per HH
during the duration of the study (range: 0–226 and 0–35,
respectively).
Vector abundance for both species was consistently high-

est in remote inland regions of the study area. Counts were
strongly negatively correlated with HH density and proximity
to LakeMweru, and consequently, HHs in the rural inland area
were likely to have higher vector abundance than HHs in the
peri-urban lakeside area. This result indicates a disparity in
malaria control among rural residents in Nchelenge district,
even accounting for the high overall level of transmission.
Rural regions with low population density are not typically
included in IRS campaigns in northern Zambia, and the high
vector counts collected in these HHs suggest that vector
control effortswith LLINsandsparse IRShavenot significantly
or sufficiently reduced vector populations in this region.
Higher vector counts were also measured in HHs close to
roads and small streams, which may serve as mosquito
breeding sites because of the presence of puddles or ditches,
and higher counts of An. funestus were found in areas of high
NDVI, where vegetation cover may provide harborage and
moisture.Anopheles funestus counts declinedwith increasing
elevation and slope in multivariate models, which may corre-
late with less hospitable breeding habitats.
These results are generally consistent with previous stud-

ies. IndoorAn. gambiae andAn. funestus abundancehasbeen

positively associated with residence in rural areas and prox-
imity to roads, rivers, and agricultural land,11,13 and has been
negatively associated with higher elevation and slope.11,12,15

However, vegetation cover has been found to have negative
associations with vector counts in some studies.12,15 In the
analysis conducted in Nchelenge district from 2012 to 2014,
higher mean counts of An. gambiae and An. funestus were
also found in the inland area, although this relationshipwas no
longer significant for An. funestus in multivariable models
controlling for season, house construction, and vector control
activity.28

Although not significant or included in multivariate models,
markers of socioeconomic status were strongly associated
withHHvector abundance in bivariate analyses. These factors
included HH construction, HH water source, and number of
HH occupants younger than 5 years. Households with dirt
floors or unimproved water sources had up to four times the
number of mosquitoes in unadjusted analyses, and houses
with metal roofs or closed eaves yielded 30–80% fewer
mosquitoes by species. These associations with open eaves
and water source were also seen for An. gambiae in the pre-
vious analysis in Nchelenge district.28 These results show a
direct connection between poverty and malaria risk and pro-
vide opportunities for intervention. Household construction
including eaves, roofing, and wall materials have been a
consistent predictor of vector abundance and malaria
risk,13–15,60–63 and interventions to reduce mosquito entry
could be impactful in future malaria control efforts. For ex-
ample, interventions that block eaves have been shown to
successfully reduce HH entry of An. gambiae.61,62

A history of IRS with pirimiphos-methyl was found to be
protective, with a 55% reduction in An. funestus counts
compared with HHs that either did not report IRS or that were
sampled before the use of this insecticide. Despite being an
important vector in the rainy season, there was no significant
reduction in An. gambiae, potentially because of consistently
low trapcountsof this vector coupledwith several outlierswith
very highAn. gambiae counts. An analysis of the impact of IRS
with pirimiphos-methyl on vector abundance and parasite
prevalence will be presented separately (Hast et al, un-
published data). Interestingly, higher numbers of both vector
specieswere collected inHHswith higher rates of bed net use,
which contrasts with previous results.28 A potential explana-
tion of this result is that larger indoor mosquito populations in
the context of high pyrethroid resistance drove bed net use in
this setting.
ClimatewasalsoasignificantdriverofHHvector abundance,

but patterns differed considerably by species. Anopheles
gambiae counts were strongly positively associated with rain-
fall. There was a 230% increase in captured An. gambiae per
10 mm of rainfall at time lags of 3 weeks or more, and this
species was effectively absent during the dry season. This
pattern forAn.gambiaehasbeenconsistentlydescribed,11,12,16–21

with fewexceptions.13 At shorter time lags, rainfall was found to
be negatively associated with An. gambiae, potentially in-
dicating that high amounts of recent rainfall may flush out
existing eggs or larvae. Counts of An. gambiae were positively
associated with higher minimum temperature but negatively
associated with higher maximum temperature, suggesting that
there is an ideal temperature range for An. gambiae survivor-
ship. The relationship between An. gambiae and tempera-
ture has been inconsistent in the literature; however, study

FIGURE 5. Most etiologically relevant time lags for climatic predictors
ofAnopheles funestus andAnopheles gambiae household (HH) counts.
Red represents a negative correlation, corresponding with lower HH
counts, and black represents a positive correlation, correspondingwith
higher HH counts. This figure appears in color at www.ajtmh.org.
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methodologies differed with regard to data collection, use
of time lags, and location.11–13,16,19,64 It is plausible that An.
gambiae is dependent on rainfall to complete its life cycle
but that the species’ qualitative relationship with tempera-
ture depends on the setting. Previous studies found asso-
ciations between An. gambiae abundance and wind speed,
humidity, and evaporation.11,12,19 In Nchelenge district,
evaporation and soil moisture were positively associated
with An. gambiae counts in preliminary analyses but were
not predictive in multivariate models, suggesting these
factors covary with rainfall.
Conversely, An. funestus abundance declined steeply with

increasing rainfall. There was a 70%decrease in captured An.
funestus per 10 mm of rainfall at short time lags and a 44%
decrease at longer time lags. This suggests that breeding or
larval habitats of this species are likely vulnerable to being
flushed out, which corresponds well with observations for this
species of preferences for larger semipermanent and perma-
nent water bodies that accumulate water from smaller
tributaries over a longer temporal period. Larval sites may in-
clude the marshes or small streams widespread in the area,
which are likely to be more susceptible to long-term in-
undation before settling and returning to viable larval mos-
quito habitat. The negative correlation with rainfall agreeswith
some studies andprevious research inNchelenge district,11,12,28

althoughothershave foundno relationshipbetweenAn. funestus
andprecipitation.17,18,21 Interestingly, counts ofAn. funestus
were positively correlated with maximum temperature at
shorter lags of 2–4 weeks but negatively correlated with
maximum temperature at longer time lags, suggesting that
there may be a varying relationship with temperature at dif-
ferentmosquito life stages. Previous studies found a positive
association between An. funestus and evaporation and wind
speed.11,12 In preliminary analyses, wind speed, soil moisture,
streamflow, and evaporation were negatively associated with
counts of An. funestus, but these were not significant in multi-
variate models.
Although overall vector abundance in Nchelenge district

was high, these results highlight some key preliminary
findings on the impact of vector control and disparities in
current implementation practices and opportunities for ad-
ditional interventions. In particular, HHs in more rural low-
population density areas showed a clear increased risk of
transmission because of their elevated vector numbers.
Historically, in this area of Zambia, vector control measures
have been concentrated in areas of highest human pop-
ulation density, and this study indicates that more effort is
needed in remote areas to regionally suppress transmission.
Household construction emerged as another potential av-
enue for intervention, particularly simple actions such as
closing eaves and replacing thatch roofs with more durable
materials that may reduce vector entry and provide less
harborage for mosquitoes. The characterization of vector
abundance by geographic and environmental factors can
further help guide interventions to HHs at greatest risk in the
context of limited resources. The strong relationship be-
tween vector abundance and climatic factors and the more
detailed characterization of relevant time lags can be
exploited to develop more specific interventions by species
with the most impactful temporal and spatial deployment.
For example, An. gambiae can be targeted just before the
rainy season, whereas An. funestus in this region would be

best targeted at the onset of the dry season just before their
numbers peak.
This study had several limitations. The high number of bi-

variate comparisons by species could increase the chance of
spurious associations. Furthermore, the use of light trapsmay
underestimate true indoor vector counts. The traps catch only
host-seeking mosquitoes in the room they are deployed, and
for each individual host-seeking mosquito, there is a chance
that it will not be captured and observed in the trap because of
a variety of natural stochastic processes. Mathematically, this
would have a larger impact for HHs with low vector densities,
whichmayhave contributed to the high number of zero counts
and thereby limited power to investigate relationships. How-
ever, underestimation of HH counts can occur with any vector
collectionmethod because all methods are tailored to capture
mosquitoesdisplaying aparticular behavior. The considerable
benefits of using light traps for active surveillance, including
logistical ease, low cost, and high acceptability, outweigh
drawbacks in comparison with other methods of vector col-
lection that are more costly and more time- and laboratory-
intensive.65

A major strength of this analysis is the availability of a long
time series of entomologic surveillance data collected in a
consistent manner from a high-transmission area. Many high-
burden regions are difficult to access for long-term surveil-
lance because of logistic difficulties or instability, and this
dataset is unusual in both duration and scope. The length and
frequency of data collection allowed a comprehensive in-
vestigation into interannual variationandappropriate time lags
for climatological variables to determine themost etiologically
relevant time period to predict HH vector abundance
(Figure 5). This has direct relevance for developing and
implementing future vector control interventions.

CONCLUSION

Malaria vector abundance in Nchelenge district, Zambia,
was high throughout the year, indicating that vector control in
this region has had a limited impact. In particular, vector
counts were high among more rural populations and in HHs
with lower sociodemographic indicators. To successfully re-
duce malaria transmission in northern Zambia, these results
suggest that malaria vector control activities should be con-
ducted throughout the year with increased focus on rural
areas, dry-season transmission, and transmission by An.
funestus. The timing and location of interventions should fur-
ther take into account observed correlations with climate and
geography. Improvements in HH construction including
screening eaves and windows provide another option to re-
duce HH entry of malaria vectors.
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