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Probabilistic predictions support public health planning and decision
making, especially in infectious disease emergencies. Aggregating outputs
from multiple models yields more robust predictions of outcomes and
associated uncertainty. While the selection of an aggregation method can
be guided by retrospective performance evaluations, this is not always poss-
ible. For example, if predictions are conditional on assumptions about how
the future will unfold (e.g. possible interventions), these assumptions may
never materialize, precluding any direct comparison between predictions
and observations. Here, we summarize literature on aggregating probabilis-
tic predictions, illustrate various methods for infectious disease predictions
via simulation, and present a strategy for choosing an aggregation method
when empirical validation cannot be used. We focus on the linear opinion
pool (LOP) and Vincent average, common methods that make different
assumptions about between-prediction uncertainty. We contend that
assumptions of the aggregation method should align with a hypothesis
about how uncertainty is expressed within and between predictions from
different sources. The LOP assumes that between-prediction uncertainty is
meaningful and should be retained, while the Vincent average assumes
that between-prediction uncertainty is akin to sampling error and should
not be preserved. We provide an R package for implementation. Given the
rising importance of multi-model infectious disease hubs, our work provides
useful guidance on aggregation and a deeper understanding of the benefits
and risks of different approaches.
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1. Introduction
Predictions about the future are central to describing and
managing ecological systems. In these complex and uncertain
settings, the decision-making process relies on identifying
what could happen in the future and the likelihood of those
potential outcomes [1,2]. The optimal policy decisions that
use these predictions often depend strongly on the associated
uncertainty. For example, a decision maker may be concerned
with the risk of exceeding some threshold (e.g. estimating the
chance a hospital will exceed bed capacity), or uncertainty
may yield a qualitative change in the decision recommendation
(e.g. implementing amaskmandate in response to a rise in pro-
jected COVID-19 transmission). As such, deliberate processes
for appropriately expressing and managing uncertainty are
warranted [3].

One such method involves eliciting, and then aggregating,
predictions from multiple independent experts or models. In
their seminal paper, Bates andGranger demonstrate the benefits
of additional informationprovidedby independent predictions,
showing that an average of two predictions is more accurate
than either alone [4]. Since then, aggregated predictions have
been shown to more accurately and more reliably capture
future outcomes than a single expert or model. Representing
these predictions probabilistically (i.e. defining the probability
of possible future events) provides the most complete
expression of uncertainty and risk [5]. In the field of infectious
diseases, efforts to elicit predictions across multiple mathemat-
ical and statistical models are becoming common to support
planning and outbreak response [6,7]. Multi-model efforts
have been used to predict a range of future public health out-
comes (e.g. incident deaths, peak magnitude or epidemic size)
[8–12] and estimate intervention effectiveness [13–15].

Importantly, themethod used to aggregatemultiple predic-
tions has a meaningful, and often substantial, effect on the
resulting ensemble. Despite the significance of aggregation
methodology and an extensive available literature, identifying
the most appropriate method for a given problem can be
difficult. Furthermore, which method is most appropriate can
depend on one’s primary objective (e.g. some objectives pro-
posed by Winkler [16] are overall performance, reliability and
robustness to poor performance, and ease of communication
and interpretation). Within multi-model infectious disease
studies specifically, a range of aggregation methods have
been adopted (e.g. averaging probability bins [9], averaging
quantiles [12], performance-weighted average [17]). In this
work, we review two classes of methods for aggregating mul-
tiple probabilistic predictions and illustrate their application in
the context of infectious disease dynamics.

Validation of the performance of different aggregation
methods against subsequent empirical data can inform
methodological choices [18]. However, validation requires
feedback between predictions and data that are impractical
in many decision contexts. One particularly difficult case is
that of scenario projections, namely when decision makers
are interested in comparing predictions across multiple poss-
ible future situations [19]. In contrast to forecasts, which are
predictions about the future (what will happen), scenario projec-
tions are conditional on a given set of assumptions about how
the futurewill unfold (what would happen if); we use ‘prediction’
as a general term that encompasses both forecasts and projec-
tions. Scenarios may specify actions a decision maker could
take in the future (e.g. implementation of, and assumed
compliance with, a public health intervention) or uncertainties
that are out of the decision maker’s control (e.g. emergence
of a new virus variant). Because scenarios are not expected to
occur exactly as specified, it is unclear how best to compare
projections with empirical data [20], complicating potential
performance assessment of different aggregation methods.

Similarly, when the timeframe over which a decision must
bemade is short relative to the availability of data for validation,
an aggregation method must be chosen before it is possible to
evaluate performance. The relative scales of these timeframes
may depend on the natural history of a particular pathogen
(e.g. time to symptompresentation in influenza versus tubercu-
losis) or the decision context (e.g. hospital capacity planning
versus setting eradication and elimination targets). Some
resource allocation decisions, for example, require quantitative
predictions that need to be madewell in advance of anticipated
need, yet by the time validation of those predictions is possible,
the decision-making window has passed.

While eliciting predictions from multiple models provides
useful information for infectious disease management, gui-
dance is needed on how to aggregate predictions when there
are little to no empirical data available. We address this ques-
tion from two perspectives: (i) a literature review on the
aggregation of probabilistic predictions, and (ii) a simulation
analysis aggregating predictions from multiple infectious
disease models in which we control the uncertainty within
and between models. We end with recommendations for the
choice of an aggregation method when empirical validation
is lacking and illustrate how the chosen approach should be
based on a hypothesis about the expression of uncertainty
within and between individual model predictions.
2. Aggregation theory and methodologies
In this section, we summarize existing theory on two classes of
methods to aggregate probabilistic predictions. We searched
the literature from fields including expert judgement, statistics,
operations research, climate modelling and forecasting of
weather and economics. Our search terms included variations
of ‘aggregation’, ‘combination’ or ‘ensemble’ across multiple
databases such as Web of Science and ProQuest. We followed
up on relevant articles to the extent possible through references
therewithin. As the literature on these topics is vast, it is
unlikely our search was exhaustive, but we pursued leads
until converging on a set of similar concepts and references.
As such, this section is not intended to be a formal, systematic
literature review, but instead serves as an overview of concepts
necessary to understand our case study.

In addition to summarizing relevant theory, we developed a
package, CombineDistributions, in the R statistical soft-
ware for implementing the described methods (https://
github.com/eahowerton/CombineDistributions). This package
supplements other existing packages, including for aggregating
point estimates [21], aggregating and evaluating interval
forecasts [22] and evaluating probabilistic predictions [23].

2.1. What constitutes a ‘good’ prediction?
The quality of a probabilistic prediction is often assessed based
oncalibration [24] (figure 1).Calibrationdescribes the consistency
between the prediction and the observed data, where better-
calibrated predictions more closely reflect future observations.
Gneiting & Katzfuss [25] define calibration as ‘statistical

https://github.com/eahowerton/CombineDistributions
https://github.com/eahowerton/CombineDistributions
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Figure 1. Black distributions represent three probabilistic predictions of incident cases and red dashed lines represent a distribution of ‘true’ observed incident cases
(though in practice, we often expect to observe only one realization from this distribution). The calibration and confidence of each prediction is defined. While this
figure focuses on prediction variance of unimodal distributions, miscalibration can arise in many ways (e.g. prediction mean).

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

20:20220659

3

compatibility of probabilistic forecasts and observations; essen-
tially, realizations should be indistinguishable from random
draws from predictive distributions’. Predictions can bemiscali-
brated because of misaligned mean or variance (or, indeed,
higher moments). Confidence describes the calibration of the var-
iance specifically. Overconfident distributions are overly
concentrated (i.e. predictions are too certain about a future out-
come), while underconfident distributions are overly dispersed.

In many settings, however, only a single observation is rea-
lized, making it difficult to discern whether a distribution is
well calibrated. As such, calibration is typically computed
over a series of predictions (e.g. weekly forecasts of incident
deaths), and in this case, the sharpness of a distribution is
used to distinguish between predictions from different sources
that all capture an observation. Sharpnessdescribes thewidth of
the predicted distribution without reference to future obser-
vations, where narrower distributions are sharper. Together
these concepts constitute a standard for determining the qual-
ity of a prediction: ‘maximize sharpness, subject to calibration’
[24]. In other words, distributions should be as narrow as poss-
ible (maximize sharpness) without sacrificing the ability to
capture future observations (subject to calibration). As our
discussion of this topic is brief and the literature is vast, we
direct readers to a selection of other papers and reviews for
more information (see [24–36] for theoretical properties and
corresponding metrics for evaluation and [20,37,38] for
approaches to evaluation specifically for situations when
observations are not readily available).
2.2. How to combine individual predictions?
There are many ways to use multiple sources of quantitative
information, including selecting a single source or aggregating
across sources. While there are many methods proposed in the
literature to perform such aggregation, here, we describe two
classes of methods for aggregating probabilistic predictions:
methods that operate on probabilities, and methods that oper-
ate on quantiles. When operating with an arithmetic mean,
these methods are called the linear opinion pool, or probability
averaging, and the Vincent method, or quantile averaging
(table 1). Both methods yield a valid probability distribution.
The linear opinion pool (LOP) [39] is calculated by taking
the arithmetic mean of cumulative probabilities (or, equiva-
lently, probability densities) across alternative predictions for
a fixed x value (averaging in the ‘vertical direction’,
figure 2a). Alternatively, the Vincent average [42,43] is calcu-
lated by taking the arithmetic mean of values across
alternative predictions for a fixed quantile (averaging in the
‘horizontal direction’, figure 2b). The median of the Vincent
average will be the arithmetic mean of individual model
medians. If the predictions to be aggregated are not defined
analytically, implementing thesemethods numerically requires
a means of interpolating the cumulative distribution function
(CDF) between defined value-quantile pairs.

An array of existing theory describes these two methods,
including cases in which each method is preferred. Although
both methods produce an aggregate distribution with
the same mean [40], there are many ways in which the result-
ing aggregates differ. The Vincent average will be sharper
than the LOP applied to the same set of predictions [40],
due to the increase in LOP variance (s2

LOP, table 1) as individ-
ual predictions become less sharp or more dispersed in
central tendency [44]. As individual prediction means are
more dispersed, the two methods become increasingly
dissimilar [41].

Importantly, theoretical results have shown that using
LOP to aggregate a set of well-calibrated distributions will
only be well calibrated if the individual CDFs are identical
[45–47]. Methods that use metrics other than a weighted aver-
age have been proposed to compensate for the overdispersion
of the LOP (e.g. logarithmic [41,48], beta-transformed [47],
spread-adjusted [45] and generalized [29,49] linear pools).
However, in cases where individual distributions are over-
confident and somewhat dispersed in central tendency, the
simple arithmetic mean LOP can yield a better calibrated
distribution because of the increased variance [46].

Unlike the LOP, the Vincent average can preserve distri-
butional shape across predictions for some distributions.
Specifically, when all individual predictions are from the
same location-scale family (i.e. distributions defined by only
location and scale parameters, such as normal, logistic,
Cauchy), the Vincent average will also be from that family



Table 1. Comparing across averaging techniques, ‘method’ gives the mathematical definition, ‘properties’ gives formulas for mean (μ) and variance (σ2), and
‘underlying premise’ provides a description of the theoretical basis. Throughout, F(x) is a cumulative distribution function (CDF) defined for values, x, F−1(θ) is a
quantile function (inverse of the CDF) defined for quantiles θ, N is the number of predictions to be aggregated, and w is a weight for averaging. Subscripts LOP,
V or i indicate the linear opinion pool, Vincent average, or individual prediction, respectively.

linear opinion pool (LOP; probability averaging) Vincent average (quantile averaging)

method calculate average cumulative probability F, at each value, x, or calculate average value, x, at each quantile, F−1, or

FLOP(x) ¼
PN
i¼1

wiFi(x) F�1
V (u) ¼ PN

i¼1
wiF�1

i (u)

properties both methods yield distributions with the same mean, which is the average of individual distribution means

mLOP ¼
PN
i¼1

wimi mV ¼
PN
i¼1

wimi

the variance of the Vincent average will always be less than or equal to the variance of the LOP

s2
LOP ¼

XN
i¼1

wis
2
i þ

XN
i¼1

wiðmi � mLOPÞ2

¼
mean of

individual

variances

0
B@

1
CAþ

variance of

individual

means

0
B@

1
CA

although s2
V follows no general form, s

2
V � s2

LOP and

s2
V ¼ PN

i¼1
wis2

i if all predictions are from the same

location-scale family

underlying

premise

each prediction captures a possible outcome, and therefore

between-prediction uncertainty is retained

each prediction represents a noisy sample from a higher-order

distribution, and therefore between-prediction uncertainty is
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Figure 2. (a) The linear opinion pool (LOP; blue) averages probabilities across individual predictions (black) along a single vertical line. (b) The Vincent average
(orange) averages values across individual predictions (black) along a single horizontal line. (c) Probability density functions for individual predictions (black) and
each aggregation method (LOP, blue; Vincent average, orange). In all panels, black lines show individual predictions to be aggregated, N(μ = 100, σ = 10) and
N(μ = 120, σ = 5). The Vincent average is equivalent to averaging individual distribution parameters, or N(μ = 110, σ = 7.5). Panels (a) and (b) are modified from
[40] and panel (c) from [41].
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and the parameters of the aggregatewill be the average of indi-
vidual distribution parameters [50].When the true distribution
is from the same family as the individual distributions, this
shape-preserving property can offer calibration benefits [40].
Other reviews provide further discussion of the theoretical
properties of these methods [40,41,51].

Importantly, these properties emerge from assumptions
underlying each method about how uncertainty is expressed
between predictions. Here, and throughout, we use ‘between-
prediction’ uncertainty to refer to the uncertainty captured
across the set of independent predictions; this does not
imply predictions are related in any way. The LOP treats indi-
vidual predictions as alternative possible futures across
which uncertainty should be retained [52], yielding an aggre-
gate distribution that superimposes the shapes of each
individual prediction. The Vincent average assumes individ-
ual predictions are each an imperfect representation of a
single distribution of interest, appropriately capturing
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royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

20:20220659

5

uncertainty despite random noise across predictions. As such,
the Vincent average cancels high and low predictions, yield-
ing an intermediate aggregate distribution. We demonstrate
this philosophical difference by aggregating two normal dis-
tributions (figure 2c). The LOP is bi-modal with modes
centred at each of the two individual distributions, whereas
the Vincent average is centred between the two individual
distributions.
2.3. How should predictions be weighted?
In addition to the averaging direction, the weights assigned
to each prediction (i.e. wi in table 1) affect the resulting aggre-
gate distribution. Weighting schemes can recalibrate the
aggregate by giving more weight to individual predictions
that perform well (e.g. [4,53,54]). Despite the prevalence of
sophisticated optimization schemes (e.g. machine learning
algorithms [18]), giving all predictions equal weight is sur-
prisingly robust in many applications [55–57] including
some infectious disease forecasting settings [54]. However,
averaging can be sensitive to outlying predictions, and in
the LOP framework, this sensitivity can lead to a highly dis-
persed aggregate distribution. We describe one method,
called trimming, which can address this concern without
the need for feedback with observations.

Trimming methods adjust the sharpness of the aggregate
distribution by excluding some values (i.e. assigning a
weight of zero) and equally weighting all remaining values
[58]. Exterior trimming, which gives zero weight to outermost
values, increases the sharpness of the aggregate distribution.
This approach is expected to improve performance in cases
where the unweighted aggregate is underconfident, including
for example, aggregating predictions that vary greatly in cen-
tral tendency [58]. Aggregating with a median instead of a
mean is the most extreme form of exterior trimming, where
all values except the centremost are given zero weight. The
median LOP and median Vincent average are equivalent in
most cases, and the reduced variance of the median LOP
can lead to performance improvements in cases where the
unweighted (mean) LOP is underconfident [59].

Interior trimming gives zero weight to central values,
decreasing the sharpness of the resulting distribution by
increasing weight on outer values. This trimming method is
appropriate when individual predictions are overconfident
and concentrated in central tendency [58]. The effect of trim-
ming a single value depends on the number of predictions
being aggregated (e.g. trimming one value in a set of five pre-
dictions excludes 20% of available information compared
with 2% in a set of 50 predictions).

These trimming strategies depend on a method for deter-
mining which values are ‘interior’ or ‘exterior’ (i.e. ranking).
Here, we focus on CDF trimming [58] which ranks cumulat-
ive probabilities at each value. Figure 3 illustrates exterior
CDF trimming, where open circles indicate cumulative prob-
abilities that will be given zero weight in the LOP average.
The individual prediction being trimmed can vary across



Table 2. Individual model parameters across three cases of uncertainty expression within and between models. Assumptions are shown for each model (A, B, C,
D, E). For simplicity, we assume that all models define σβ= 0.2 and 1/γ∼ N(μ = 1, σ = 0.1). For the susceptible-infected-recovered (SIR) model, ρ = 0, for
the susceptible-infected-recovered-susceptible (SIRS) model, we assume a 26-week mean time to waning (i.e. ρ = 1/26), and for models that represent both
waning possibilities, SIR and SIRS, we assume ρ ∈ {0, 1/26}.

model parametric uncertainty structural uncertainty

case 1 A within & between models μβ = 1.2 none SIR

B μβ = 1.4 SIR

C μβ = 1.6 SIR

D μβ = 1.8 SIR

E μβ = 2.4 SIR

case 2 A within & between models μβ = 1.2 between models SIR

B μβ = 1.4 SIRS

C μβ = 1.6 SIR

D μβ = 1.8 SIRS

E μβ = 2.4 SIR

case 3 A within & between models μβ = 1.2 within models SIR & SIRS

B μβ = 1.4 SIR & SIRS

C μβ = 1.6 SIR & SIRS

D μβ = 1.8 SIR & SIRS

E μβ = 2.4 SIR & SIRS
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values; for example, the predictions being trimmed are differ-
ent at 100 and 130 incident cases (A and D versus A and E;
figure 3). As a result, CDF trimming often includes infor-
mation across more individual predictions than alternative
trimming methods (e.g. mean trimming, which excludes
entire distributions from aggregation based on the mean,
details in electronic supplementary material, S1.1). More
discussion and examples of trimming are provided in [58,59].
3. Illustrating the choice of aggregation method
in a simulated outbreak setting

While it is preferable to evaluate the performance of different
aggregation methods based on past empirical data, it is not
always possible, and results can be difficult to interpret. In
these cases, theory (as outlined in the previous section) pro-
vides a useful ground on which to make methodological
decisions.

However, the needs of the infectious disease setting may
not be fully met by the guidance available in existing theory.
Much theory on aggregating probability distributions depends
on assumptions about the form of the underlying predictive
distribution (e.g. normal distribution), but infectious disease
predictions may not be of the studied forms or any particular
form at all. Here we illustrate how the choice of aggregation
approach can affect the resulting predictions, specifically for
an infectious disease setting. We simulate the aggregation of
predictions from multiple infectious disease models to predict
two disease burden outcomes and investigate the properties
of LOP- and Vincent-aggregated distributions. We focus on
the equally weighted aggregation methods to illustrate the
assumptions of each approach and then explore the properties
of exterior trimming when an individual model with outlying
assumptions is included in the set.
3.1. Methods
We use different versions of a simple SIRS (susceptible-
infected-recovered-susceptible) epidemiological model [60].
In this model, susceptible individuals become infected based
on the transmission rate, β. Infected individuals clear infection
and move to the recovered class based on the recovery rate, γ.
Once recovered, individuals are immune and cannot be
reinfected for some time; the immunity of such recovered indi-
viduals, however, can wane at rate ρ, moving that individual
back to the susceptible class. When ρ = 0, the SIRS model is
equivalent to an SIR (susceptible-infected-recovered) model
for fully immunizing infections (i.e. infections for which
immunity does not wane).

Within our simulation, we define four individual models
that make predictions about an outbreaking infectious disease
in a population of 1000 individuals who are all susceptible at
the start of the outbreak. Individual models make a single pre-
diction of cumulative and peak cases that will occur in a 52-
week period (i.e. the total number of new infections in that
timeframe and the maximum number of new infections in a
single week of that timeframe, respectively). Our simulations
capture uncertainty about both model parameters (i.e. para-
metric uncertainty) and model structure (i.e. structural
uncertainty) (table 2). We implement parametric uncertainty
within and between models. For within-model parametric
uncertainty, we let individual models draw the transmission
rate from a normal distribution with some mean, μβ, and
variance, s2

b. To implement between-model parametric
uncertainty, we assume μβ varies across models.

We assume the primary source of structural uncertainty
is about waning of immunity, specifically whether the infec-
tion process follows an SIR (ρ = 0) or SIRS (ρ greater than 0)
model. To understand the impact of structural uncertainty
on aggregation, we consider three cases about structural
uncertainty:
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(1) Structural uncertainty is not represented across individual
models: this case may arise in situations where there is
consensus on a particular biological or epidemiological
feature. Alternatively, all models may improperly make
the same assumption due to a shared ignorance of the
system (i.e. unknown unknowns). Here, we represent
this case with all models assuming no waning immunity.

(2) Structural uncertainty is represented between models: as
there are multiple ways to represent complex biological
processes with mathematical prediction models, this
case is probably common in multi-model prediction set-
tings. Here, we represent this case with two models
assuming waning and two assuming no waning.

(3) Structural uncertainty is represented within models: this
case may arise in situations where an uncertainty that
is known to be important (but has not yet been resolved)
is included by independent models. Here, we represent
this case with all individual models assuming with
equal probability there will be no waning or waning.

For real multi-model prediction efforts, where there are many
uncertainties affecting dynamics, it is most likely that multiple
cases will be represented for a single set of predictions.

Within each case, we perform 100 000 stochastic replicates
for each model using the chain binomial model [61]. This sto-
chastic simulation framework assumes that the number of
individuals transitioning between compartments (e.g. S to I)
is randomly drawn from a binomial distribution. The prob-
ability of transitioning is based on the rate of that transition
(defined by β, γ and ρ). Our simulation uses weekly time-
steps, which may obscure early stochastic fade-out
dynamics (such dynamics are not the focus of this simulation
study).

Then, we summarize the stochastic replicates into a CDF
approximated by a set of 999 equally spaced quantiles. We
aggregate the CDFs using both LOP and Vincent average
(with an equal weighting scheme) and test the performance
of each aggregate under different assumptions about the
future. To generate ‘future observations’ against which to
test our aggregates, we make assumptions about the ‘true’
values of each parameter.

We consider realized futures where each individual
model has captured μβ (four futures), and where the true μβ
is the mean of individual model μβs (one future). We cross
these realized futures with two future waning scenarios,
where immunity either wanes or does not wane (correspond-
ing precisely to model assumptions, i.e. no waning implies
ρ = 0 and waning implies ρ = 1/26). For each of these 10 rea-
lized futures (5 transmission futures × 2 waning futures), we
generate 1000 synthetic observations against which we
measure the performance of each aggregate distribution
using the continuous rank probability score (CRPS) [62].

Last, we examine an alternative set of scenarios where an
outlier model is included in the set of individual models to
assess the utility of trimming. Outliers bias aggregate predic-
tions, especially when there are only a handful of solicited
models. But exterior trimming should, in theory, alleviate
such biases. To simulate the effects of the outliers on aggre-
gate distributions in an outbreak setting, we included an
outlier model with μβ = 2.4, deliberately outside of the range
of individual model and truth scenario values. We address
the same three structural uncertainty scenarios: the outlier
model assumes no waning immunity when structural
uncertainty is not represented or represented between
models; and assumes waning and no waning are equally
likely when structural uncertainty is represented within
models. We again aggregate these (now five) distributions
using both LOP and Vincent average. We contrast equal
weighting of both the LOP and Vincent average with CDF
exterior trimming (excluding the highest and lowest
values). We compare the performance of these four aggregate
distributions in the 10 truth scenarios (defined in the previous
paragraph) using CRPS.

All technical details for this simulation experiment, includ-
ing model structure, output aggregation, evaluation and
outlier case are provided in electronic supplementary material,
S2. Code to implement this case study can be found in the SIRS
vignette of the CombineDistributions R package.
3.2. Results
Ourmulti-model simulation illustrates the effect of uncertainty
on individual model predictions and the corresponding aggre-
gate under various methods. Predictions of cumulative cases
depend on both parametric and structural assumptions of an
individual model (figure 4a–c). For all models, cumulative
case predictions increase with transmission rate (and corre-
sponding R0). When a model assumes there is no waning,
the population size (1000 individuals) serves as an upper
bound on cumulative cases and predictions are left-skewed.
Alternatively, models that assume immunity wanes yield
multi-modal predictions with alternative states corresponding
to stochastic fade-out after the first wave (500–1000 cumulative
cases) and endemicity (1500–2000 cumulative cases). In very
few cases, simulated epidemics fade out before an outbreak
can take off (because our simulation is implemented in
weekly timesteps). Although also yielding a multi-modal pre-
diction, models that consider both waning possibilities assign
different probabilities to each mode compared with those
assuming immunity strictly wanes.

Differences in individual predictions translate into different
aggregate distributions across the three structural uncertainty
scenarios. In cases where assumptions about model structure
are consistent across individual models, the LOP and Vincent
average generate similar distributions (figure 4d,f ). However,
when individual models make different assumptions about
model structure, the aggregate distributions are qualitatively
different (figure 4e). In this case, although bothmethods gener-
ate multi-modal distributions with one mode at 500–1000
cumulative cases, the second mode in the LOP distribution is
between 1500 and 2000 cumulative cases compared with
1000 and 1500 cumulative cases in the Vincent distribution.
This second mode of the Vincent average leads to poor per-
formance against possible future observations. Specifically,
when compared against 10 possible truth scenarios varying
the true mean transmission rate and waning immunity, the
LOP (generated when individual models make different
assumptions about structural uncertainty) has better CRPS
values than the Vincent average for 84% of simulated obser-
vations (see §3.1 and electronic supplementary material, S2.2
for additional details).

Predictions of peak cases are less sensitive to structural
uncertainty (as subsequent infection waves due to waning
are smaller than the initial outbreak). As a result, parametric
uncertainty is the major driver of differences between
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Figure 4. (a–c) Individual model predictions of cumulative cases over a 52-week period, for three assumptions about how structural uncertainty is represented
across models. Each curve shows the distribution of cumulative cases generated from 100 000 stochastic replicates for four models that make different assumptions
about transmission rate (grey colours, models A–D in table 2). (d–f ) Aggregate distributions are shown when each set of four predictions are aggregated using
equally weighted linear opinion pool, LOP (blue) and Vincent average (orange).
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Figure 5. (a–c) Individual model predictions of peak cases over a 52-week period, for three assumptions about how structural uncertainty is represented across
models. Each curve shows the distribution of peak cases generated from 100 000 stochastic replicates for four models that make different assumptions about trans-
mission rate (grey colours, models A–D in table 2). Aggregate distributions when each set of four predictions are aggregated using equally weighted linear opinion
pool, LOP (blue) and Vincent average (orange).
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individual model predictions of peak cases (figure 5a–c). Both
LOP and Vincent averages yield distributions with similar
central tendency; however, the Vincent average retains the
shape of the individual distributions and is sharper than
the LOP, resulting in better CRPS values than LOP in 54%
of the future observations considered. When the true trans-
mission rate is the mean of individual model transmission
rates (i.e. the case where individual model variation is akin
to sampling error), the Vincent average performs better for
71% of simulated observations (electronic supplementary
material, S2.2).

The presence of an outlier in the set of individual model
predictions can affect the aggregate distribution and its per-
formance when all models are weighted equally (our base
scenario). Using peak cases as an example, the central tendency
of the LOP and Vincent average aggregate distributions
are shifted toward the outlier. While the sharpness of the
Vincent average is relatively unaffected, the LOP becomes
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Figure 6. Two versions of LOP (blue) and Vincent average (orange) aggregate distributions for peak cases when an outlier is included in the set of individual
predictions; (a) equally weighted (i.e. no trimming) and (b) exterior trimmed. For reference, the five models being aggregated are shown in grey, including
the outlier (with μβ = 2.4, model E in table 2) which is labelled as ‘outlier’. The other four models match those in figure 5 (μβ = 1.2, 1.4, 1.6, 1.8, models
A–D in table 2). The LOP and Vincent average aggregate distributions without an outlier present are shown in lighter blue and orange, respectively. Results
are shown for only the case where structural uncertainty is represented between models, as the three structural uncertainty scenarios have very similar predictions
of peak cases (see electronic supplementary material, S2.3).
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more dispersed with an outlier in the set (figure 6a). Exterior
trimming reduces the effect of the outlier, slightly compensat-
ing for central tendency and sharpening the resulting LOP
aggregate, compared with the untrimmed LOP (figure 6b).
The trimmed LOP performs better than the untrimmed LOP
for 69% of future observations considered; however, the Vin-
cent average has the best performance across the majority of
future observations (30% trimmed and 29% untrimmed). Simi-
lar results hold for predictions of cumulative cases, but here, a
version of the LOP aggregate performs best for 70% of obser-
vations (44% trimmed and 26% untrimmed). See electronic
supplementary material, S2.3 for detailed performance results,
including the scenarios in which each method performs best,
the magnitude of this performance advantage, and the
variability of performance over multiple replicates.
4. Discussion
Tobemostuseful fordecisionmakingandplanning,predictions
about the future (or possible futures) need to appropriately cap-
ture our current understanding of uncertainty, so the decision
makers can assess risk. Representing predictions probabilisti-
cally is important for quantifying uncertainty, and aggregating
predictions across multiple independent sources can help us
more accurately express the uncertainty and incumbent risk.

When aggregating, methodological choices can signifi-
cantly affect the way uncertainty is expressed. Identifying
which aggregation method provides the most appropriate
expression of uncertainty is a key challenge, especially in the
absence of feedback with observations. When empirical vali-
dation is not possible (either not on relevant time scales or
not at all, e.g. for scenarios that never materialize), we argue
the chosen aggregation approach should align methodological
theory with a hypothesis about the uncertainty represented
within and between individual model predictions.

In particular, based on our review, theory suggests that
when the uncertainty expressed between individual predic-
tions should be retained, the properties and assumptions of
LOP are more appropriate. However, when the between-
prediction uncertainty is akin to sampling error and therefore
should be averaged away, the Vincent average is better suited
and the LOP will be underconfident. Beyond the direction
of averaging, weighting schemes provide an additional
means to calibrate the aggregate and modulate its variance.
In cases where individual predictions vary in levels of
confidence (with some probably underconfident) or are
overly dispersed in central tendency, exterior trimming
(including aggregating with a median) will reduce the var-
iance of the aggregate. Identifying an effective weighting
scheme is best achieved when predictions can be directly con-
fronted with observations, yet simple rules may still be
preferred [16].

There are challenges to identifying which theoretical case
is more appropriate. Details about the assumptions and
implementation of individual models may not be available,
inhibiting identification of individual and collective
expressions of uncertainty. Multiple uncertainties represented
within the same set of predictions may need to be treated dif-
ferently, or predictions may group into subsets based on
similar assumptions, requiring one approach within a subset
and a different approach across subsets.

Crucially, the choice of aggregation method can have a
meaningful impact on decisionmaking. Inappropriately aggre-
gating with LOP will overestimate the probability of extreme
events and may suggest more drastic actions than necessary.
Conversely, inappropriately using the Vincent average may
underestimate these probabilities, leaving decision makers
unprepared. Identifying qualitative and quantitative decision
outcomes across a range of aggregation methods will reduce
the importance of selecting a single best method [52].

To further explore these conclusions in the context of infec-
tious diseases, we used an outbreak simulation case study,
where we defined exactly how uncertainty was expressed
within each individual model and across the set. When
individual models made different assumptions about
waning immunity, the LOP retained important between-
prediction uncertainty (namely about model structure) for
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predictions of cumulative cases. The Vincent average gener-
ated an aggregate distribution with a mode between the two
expected alternative states (stochastic fade-out or endemicity).

A common criticism of the LOP approach is that it can be
underconfident and sensitive to outliers. Here we have
shown that a simple exterior trimming procedure can appreci-
ably sharpen the aggregate LOPdistribution and restore central
tendencywhen outliers are present,with the trimmedLOPout-
performing the untrimmed LOP for the majority of future
observations considered. Here, outlier predictions were due
to outlying model assumptions about the mean transmission
rate, but there are a range of reasons outlier predictions may
be generated (e.g. anomalies in data used to generate predic-
tions could cause erroneous predictions). The likelihood of
outlying predictions, and the reason these predictions are out-
liers (i.e. genuine scientific uncertainty versus technical error),
may influence the chosen weighting scheme for aggregation.

The effect of each source of uncertainty was not consistent
across prediction targets. For predictions about peak cases,
variation across individual models was driven primarily by
parametric uncertainty rather than structural uncertainty. Pre-
dictions of peak cases were not affected by waning immunity
(i.e. structural uncertainty) because the largest peak in the
SIRS model occurs during the first epidemic wave, before
waning takes place. The first peak in the SIRS model is similar
to the sole wave of the SIR model. This conclusion, however,
may be context dependent as the peak in both models is sensi-
tive to assumptions about initial conditions and parameters
and becomes increasingly complicated as transmission rates
and waning rates vary in time (e.g. as seen in the COVID-19
pandemic). If we consider individual model assumptions
about transmission rate to be variation around a true mean
(as we did in two of the ten truth scenarios considered), the
sharper Vincent average provides a better representation of
uncertainty for predictions of peak cases, including preserving
the consistent shape of the individual predictions.

Here, we have presented a simulation study where
the models generating individual predictions and future
observations are known by design. Yet many additional chal-
lenges exist when implementing multi-model aggregation
methods in practice. First, our simulated results necessarily
are consistent in how outcomes are defined. However, achiev-
ing consistency across multiple independent models is not
straightforward and failing to do so can lead to discrepancies
in results [13]. Expert judgementmethods can help tominimize
the linguistic uncertainty associated with interpretation differ-
ences [3], and when consistency across models is not possible,
vote-processing methods can be used to combine decision rec-
ommendations from differing sources [63]. In addition, we
have assumed that observations were generated by parameters
and processes within the range defined by the individual
models, which is unlikely to be the case (e.g. truth values
were simulated from the same generalmodel structure and sto-
chastic simulation framework as the individual models that
generate the aggregate distribution). Identifying failures to
capture observations among all models, including the aggre-
gate, is an important first step to detecting and addressing
changes in system dynamics that affect predictions [64].

Accurate estimates of future outcomes and related
uncertainty is important for effective infectious disease man-
agement, including the integration of formal decision theory
into infectious disease applications [65–68]. Aggregating pre-
dictions from multiple experts or models has proven to yield
better calibrated estimates of future outcomes both for
infectious disease dynamics (e.g. [9,17,69–71]) and other
fields (e.g. [55]). These methods are becoming increasingly
common in infectious disease management; however, many
outstanding challenges exist to maximize the utility of these
approaches [6,7]. Here we address one of these challenges:
in some crucially important decision settings, traditional
approaches to selecting an aggregation method (namely,
empirical validation) are not feasible on decision-relevant
timescales. By providing a theory-based guide to aggregation
methodology and extending this theory to infectious disease
modelling via simulations, our work provides much needed
support of the use of multi-model approaches in public
health planning and response.
Data accessibility. The R package to implement methods discussed in
this paper can be found in the public repository https://github.com/
eahowerton/CombineDistributions, https://doi.org/10.5281/zenodo.
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Methodological details and additional results are provided in the
electronic supplementary material [72].
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