
Pragmatic considerations for negative control outcome
studies to guide non-randomized comparative analyses:
A narrative review

Sara N. Levintow1,2 | Carrie M. Nielson3 | Rohini K. Hernandez3 |

Alexander Breskin1,2 | David Pritchard2 | Timothy L. Lash4 |

Kenneth J. Rothman5 | David Gilbertson6 | Paul Muntner7 | Cathy Critchlow3 |

M. Alan Brookhart2,8 | Brian D. Bradbury3

1Department of Epidemiology, Gillings School

of Global Public Health, University of North

Carolina, Chapel Hill, North Carolina, USA

2NoviSci, a Target RWE Company, Durham,

North Carolina, USA

3Center for Observational Research, Amgen,

Thousand Oaks, California, USA

4Department of Epidemiology, Rollins School

of Public Health, Emory University, Atlanta,

Georgia, USA

5RTI Health Solutions, Research Triangle

Institute, Research Triangle Park, North

Carolina, USA

6Chronic Disease Research Group, Hennepin

Healthcare Research Institute, Minneapolis,

Minnesota, USA

7Department of Epidemiology, School of

Public Health, University of Alabama at

Birmingham, Birmingham, Alabama, USA

8Department of Population Health Sciences,

Duke University, Durham, North Carolina, USA

Correspondence

Sara N. Levintow, Department of

Epidemiology, 135 Dauer Drive, 2101

McGavran-Greenberg Hall, CB #7435, Chapel

Hill, NC 27599-7435, USA.

Email: levintow@email.unc.edu

Funding information

Amgen, Inc.

Abstract

Purpose: This narrative review describes the application of negative control outcome

(NCO) methods to assess potential bias due to unmeasured or mismeasured con-

founders in non-randomized comparisons of drug effectiveness and safety. An NCO

is assumed to have no causal relationship with a treatment under study while subject

to the same confounding structure as the treatment and outcome of interest; an

association between treatment and NCO then reflects the potential for uncontrolled

confounding between treatment and outcome.

Methods: We focus on two recently completed NCO studies that assessed the com-

parability of outcome risk for patients initiating different osteoporosis medications

and lipid-lowering therapies, illustrating several ways in which confounding may

result. In these studies, NCO methods were implemented in claims-based data

sources, with the results used to guide the decision to proceed with comparative

effectiveness or safety analyses.

Results: Based on this research, we provide recommendations for future NCO stud-

ies, including considerations for the identification of confounding mechanisms in the

target patient population, the selection of NCOs expected to satisfy required

assumptions, the interpretation of NCO effect estimates, and the mitigation of

uncontrolled confounding detected in NCO analyses. We propose the use of NCO

studies prior to initiating comparative effectiveness or safety research, providing

information on the potential presence of uncontrolled confounding in those compar-

ative analyses.

Conclusions: Given the increasing use of non-randomized designs for regulatory

decision-making, the application of NCO methods will strengthen study design, anal-

ysis, and interpretation of real-world data and the credibility of the resulting real-

world evidence.
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Key Points

• Negative control outcome (NCO) studies can serve as a diagnostic tool for assessing uncon-

trolled confounding in real-world data before conducting comparative effectiveness or safety

analyses.

• Key steps in NCO studies are to define confounding mechanisms in the patient population,

identify NCOs affected by the same confounding structure as the treatment under study and

outcome of interest, and estimate the effects of the treatment on the selected NCOs.

• The extent to which uncontrolled confounding is detected in the NCO analysis guides deci-

sions to employ study design or analytic approaches to reduce bias and to proceed with com-

parative analyses.

1 | INTRODUCTION

The use of large healthcare databases to conduct post-marketing

drug effectiveness and safety studies has led to advancements in

data standards and methods. Widespread adoption of robust

designs and analytic approaches, such as active comparator new

user designs, propensity score methods, and marginal structural

models, have become well-established in pharmacoepidemiology to

address uncontrolled confounding arising in non-randomized

studies.1–5 The growing recognition of the potential for healthcare

databases to supplement clinical trials in the evaluation of drug

effectiveness and safety, coupled with advances in robust design

and analysis, has led regulatory agencies to develop guidance on the

use of real-world evidence in decision-making.6–9 Despite these

advances, a common concern among pharmacoepidemiologists and

regulators is bias resulting from unmeasured or mismeasured con-

founders. Validation studies, data linkage, and quantitative bias

analysis are essential tools to mitigate these concerns by probing

and addressing the assumptions needed to ensure study validity.

Additional confidence in results can be obtained by assessing the

potential direction and magnitude of uncontrolled confounding

using negative control outcome (NCO) methods that rely on an

alternate set of assumptions.

An NCO is a variable that (a) has no plausible mechanism by

which it can be caused by the treatment under study and (b) is

expected to be affected by the same confounding structure as the

treatment contrast for the outcome of interest.10,11 If condition (a) is

met, then an observed non-null association beyond what might be

expected by chance between the treatment and NCO, after control-

ling for measured confounders, should reflect uncontrolled confound-

ing rather than a causal relationship. If conditions (a) and (b) are met,

then an association between treatment and an NCO reflects uncon-

trolled confounding between the treatment and outcome. Notably,

neither condition (a) nor (b) can be evaluated using data; they must be

assumed based on existing knowledge of causal mechanisms.12 NCOs

were used informally in epidemiology before a formal theory was

advanced. For example, when postmenopausal estrogen use was

found to be associated with lower all-cause mortality, an argument for

confounding by lifestyle factors was made by demonstrating the

association between estrogen use and lower mortality by accidents,

suicide, and homicide—outcomes with no causal relationship to hor-

mone replacement therapy.13

Studies of NCOs are increasingly used to detect and, in some

cases, reduce or remove bias due to uncontrolled confounding, arising

as a function of unmeasured or mismeasured confounders.14–17 A

benefit of randomization is its ability to balance all risk factors

between treatment groups (in expectation, as imbalances may still

occur by chance). However, in medical practice, patients are pre-

scribed medicines based on clinical indications, and comparative ana-

lyses can only expect to achieve balance on measured and controlled

confounders. When comparing interventions in non-randomized

cohorts built from healthcare databases, the standard practice is to

describe patient characteristics in the full cohort, calculate propensity

scores from variables available in the database, and assess imbalances

after propensity score matching or weighting. The threat of uncon-

trolled confounding is a particular concern in cohorts built on data-

bases that lack information on key confounding variables, such as

lifestyle and health behaviors, clinical biomarkers, and imaging results.

Nonetheless, if these unmeasured confounders are correlated with

those that are measured, standard analytic methods may result in esti-

mates with negligible bias.18 However, for new therapies that serve as

second line or later treatment choices, channeling bias may occur, in

which drugs with similar indications are selectively prescribed to

groups of patients with varying disease prognoses; this bias can be

common, with confounders difficult to ascertain or quantify in any

design.19

The objective of this narrative review is to propose consider-

ations for the pragmatic use of NCOs in guiding study design deci-

sions and highlight two recent studies that inform these

recommendations. Comprehensive reviews of prior work involving

NCOs have already been conducted14,15; instead, we focus on practi-

cal steps to be taken in future research and highlight as examples two

recently conducted studies.20,21 These studies were selected to illus-

trate use of a variety of NCOs corresponding to several confounding

mechanisms in different therapeutic areas. The first assessed the com-

parability of disease risk for patients initiating osteoporosis medica-

tions20 and the second for those initiating lipid-lowering therapies21

(Table 1). We propose that an NCO study can serve as a diagnostic



for assessing uncontrolled confounding that informs the decision to

proceed with comparative effectiveness or safety analyses.

2 | PRACTICAL CONSIDERATIONS FOR
NCO STUDIES

To arrive at a set of results from NCO studies that can inform the

decision to proceed to comparative analyses, one should consider

three steps (Figure 1).

2.1 | Step 1: Describe expected confounding
mechanisms in the target patient population

The relevant mechanisms are identified using knowledge of pre-

scriber, patient, and disease characteristics that drive treatment

choice and influence the outcome of interest.12,22 Describing poten-

tial confounding mechanisms enables NCOs to be selected, as out-

lined in Step 2. Confounders relevant to healthcare database research

can be organized into the following domains23:

2.1.1 | Confounding by indication or
contraindication, often synonymous with
channeling bias

Treatment selection is affected by factors associated with disease sever-

ity or the outcome of interest. A patient's response to prior therapies,

the presence of or risk for a contraindicated condition, or their likelihood

of benefit may guide the treatment choice, and these factors could inde-

pendently affect the outcome. For example, newer injected therapies

for osteoporosis (denosumab or intravenous zoledronic acid [ZA]) may

be preferentially administered to patients with more severe disease and

then appear to be associated with worse outcomes, compared with

longer-established medications such as oral bisphosphonates (BPs).20

2.1.2 | Confounding by frailty, related to
confounding by cognitive or functional impairment

Patients who have difficulty performing activities of daily living due to

physical frailty or impairments in cognitive functioning may be less

likely to visit a health care provider or pharmacy, and prescribers may

TABLE 1 Summary of two recent studies illustrating applications of NCOs.

Treatments under

study

Outcomes of

interest

Confounding

mechanisms NCOs selected

Unexpected

associations Potential biases

Osteoporosis

treatments

(denosumab,

intravenous ZA,

oral BPs)

Risk of

osteoporotic

fractures

Confounding by

indication, frailty, or

health-seeking

behaviors

Decubitus ulcer,

dementia,

transfusion,

accident, wellness

visit, influenza

vaccine, herpes

zoster vaccine,

pelvic screening,

colon cancer

screening, Mohs

surgery, visual test

Wellness visit: Higher

risks for denosumab

vs. oral BPs, ZA vs.

oral BPs.

Influenza vaccine:

Higher risk for ZA

vs. oral BPs.

Herpes zoster vaccine:

Lower risk for

denosumab vs. oral

BPs.

Comparisons of

denosumab and ZA

to oral BPs may be

confounded by

health-seeking

behaviors.

Lipid-lowering

treatments

(statins, ezetimibe,

PCSK9i)

Risk of

atherosclerotic

cardiovascular

disease events

Confounding by

indication, frailty, or

health-seeking

behaviors

Decubitus ulcer,

accident, fracture,

cancer, wellness

visit, visual test,

influenza vaccine,

herpes zoster or

pneumococcal

vaccine, colon

cancer screening,

non-melanoma skin

cancer or Mohs

surgery

Decubitus ulcer: Lower

risks for PCSK9i vs.

ezetimibe, PCSK9i

vs. high-intensity

statin.

Accident: Lower risks

for PCSK9i vs.

ezetimibe, PCSK9i

vs. high-intensity

statin.

Fracture: Lower risks

for PCSK9i vs.

ezetimibe, PCSK9i

vs. high-intensity

statin.

Influenza vaccine:

Higher risks for

PCSK9i vs. high-

intensity statin.

Comparisons of

PCSK9i to statins

and ezetimibe may

be confounded by

frailty and health-

seeking behaviors.

Abbreviations: BPs, bisphosphonates; NCOs, negative control outcomes; PCSK9i, proprotein convertase subtilisin/kexin type 9 inhibitors; ZA,

zoledronic acid.



also be less likely to prescribe intensive therapy to these patients. For

example, newer lipid-lowering therapies including proprotein conver-

tase subtilisin/kexin type 9 inhibitor (PCSK9i) antibodies require injec-

tion while statins are taken orally; if patients prescribed PCSK9i

antibodies are less likely to have physical or cognitive impairment, and

these frailties are associated with poor outcomes, then prescription of

PCSK9i antibodies compared with statins would appear to be associ-

ated with better outcomes.21

2.1.3 | Confounding by health-seeking behavior or
access to care

Treatment selection is associated with greater access to and higher

use of preventive health services. Patients on newer medications

(denosumab or ZA for osteoporosis; PCSK9i for cardiovascular dis-

ease) may have higher engagement with the healthcare system due to

more comprehensive insurance coverage or other factors. Their

greater use of preventive services may lead to a lower risk of adverse

outcomes, regardless of any effect of treatment.20,21

As illustrated in Figure 2, directed acyclic graphs (DAGs) are use-

ful aids for showing the assumed confounding mechanisms to be

addressed in NCO studies.24 DAGs show assumed relationships

among all known measured or unmeasured confounding variables and

(a) treatment choice, (b) outcome of interest, and (c) NCO. The DAG

should indicate which confounders are included in the propensity

score model for the estimand(s) of interest.

2.2 | Step 2: Select NCOs

An NCO must (a) have no plausible causal relationship to the exposure,

(b) share the same confounding structure as the outcome of interest, and

(c) be measurable and sufficiently common in the target population to

allow for effect estimation.10,11 Although NCOs are often events unre-

lated to the outcome of interest, the first criterion allows for an NCO to

be the same event type if it occurs at a time that rules out a causal rela-

tionship. For example, in a study on the effect of drug-eluting stents on

2-year mortality, an NCO was chosen to be mortality within 2 days of

stenting, which is too soon to observe the biologic effect of the proce-

dure.25 If there is an unmeasured confounder that would affect the treat-

ment and outcome of interest, then it likely also affects the NCO.

NCOs should link directly to the hypothesized confounding

mechanisms. For example, diagnoses of decubitus ulcer—also called

pressure ulcers or bedsores—occur primarily in people with conditions

that limit their mobility.26 In older populations, they are a marker of

frailty and were selected as an NCO in the two aforementioned stud-

ies20,21 to detect uncontrolled confounding by this mechanism.

Receipt of influenza vaccination can be considered a proxy for higher

healthcare engagement and use of preventive services; it was chosen

as an NCO by both studies to capture the potential for confounding

by health-seeking behaviors.27 Figure 2 illustrates the potential for

bias due to an unmeasured confounder (functional impairment), even

after controlling for a measured confounder (age). Despite no causal

mechanism for the treatment choice (PCSK9i vs. statin) to affect the

NCO (accident risk), a spurious association results from the open

F IGURE 1 Incorporation of negative control outcomes (NCO) into a study design and analysis before proceeding with comparative
effectiveness or safety research. *As further described in the text, criteria refer to the conditions under which NCO results suggest negligible
residual confounding. They may concern the magnitude and precision of point estimates or apply a Bayesian framework that characterizes the
potential bias as a distribution (evaluating whether potential bias remains within specified bounds). If multiple NCOs are tested, decision rules
should be formulated to address the possibility that some but not all effect estimates meet specified criteria.



pathway from treatment to NCO through the unmeasured con-

founder. This non-causal association indicates the potential for bias

when estimating the effect of treatment on the outcome of interest

(risk of acute MI).

2.3 | Step 3: Determine whether treatment effects
on the NCO indicate uncontrolled confounding

The effect of treatment on the NCO can be assessed using any valid

estimator after accounting for measured confounders. Regardless of

the analytic approach, the design and analysis of the NCO study

should follow as closely as possible that of the study for the outcome

of interest to ensure that detected or undetected confounding in the

NCO study will also be present in a comparative analysis.

2.3.1 | Interpreting NCO effect estimates

Determining the extent to which uncontrolled confounding is a con-

cern, based on NCO results, can inform whether to proceed with a

comparative analysis. If NCO results are to serve as a diagnostic, cri-

teria should be pre-specified to identify the conditions under which

the results of the NCO study suggest negligible risk of substantial

uncontrolled confounding. Suggested criteria may include the pres-

ence of all or a high proportion of results in which the point estimate

associating treatment with the NCO lies within a window that indi-

cates low magnitude of association (e.g., risk ratio 0.8–1.2) with a rela-

tively narrow 95% confidence interval. A Bayesian framework may

also be used to characterize the magnitude of bias (i.e., uncontrolled

confounding) as a posterior distribution.28,29 The criteria for proceed-

ing with a comparative analysis could then be defined by bounds on

the degree of bias to be tolerated (e.g., probability <5% that the mag-

nitude of bias exceeds 1 NCO event out of 100). We recommend that

criteria are specified based on subject matter expertise and expected

estimates of treatment effects on the outcome of interest in the spe-

cific population.

Multiple NCOs are often tested to thoroughly evaluate various

sources of uncontrolled confounding. When resulting effect

measures range in size and precision, interpreting the set of results is

not straightforward. One approach is to apply the pre-specified cri-

teria to sets of NCOs linked to each confounding domain

(e.g., markers of frailty or health-seeking behaviors). Rather than

aggregating results from all NCOs, which likely represent a variety of

confounding mechanisms, conclusions should be drawn separately

for each domain. We note that employing a high number of NCOs

may increase likelihood of a spurious finding, and investigators

should formulate decision rules that allow for disparate results

across NCOs in the same domain.

2.3.2 | Mitigating uncontrolled confounding
uncovered by NCO analyses

If an NCO analysis suggests the possibility of substantial uncontrolled

confounding, several design and analytic approaches can be employed

(Table 2). Iterating through mitigation efforts and NCO analyses may

resolve concerns of uncontrolled confounding.

Design-driven responses include refining inclusion criteria or the

comparator group definition to improve balance of confounders. For

example, in the NCO study of patients initiating lipid-lowering

TABLE 2 Approaches to mitigate uncontrolled confounding
detected by NCO study.

Design Analysis

Revise cohort inclusion criteria

Example: Restrict to patient

subset with more balanced

covariates and reduced risk

of residual confounding.

Change the estimand

Example: Use an alternative

weighting scheme (such as SMR

weights instead of IPT weights)

to improve covariate balance.

Refine comparator definition

Example: Proceed with

comparative analyses only for

treatment contrasts that

meet criteria for negligible

confounding.

Calibrate results

Example: Directly adjust effect

estimates and confidence

intervals based on control

exposures and/or outcomes.

Abbreviations: IPT, inverse probability of treatment; NCOs, negative

control outcomes; SMR, standardized mortality ratio.

F IGURE 2 Directed acyclic graph showing the
hypothesized relationships of measured and unmeasured
confounders to the treatment, negative control outcome, and
outcome of interest. Despite controlling for the measured
confounder (age), the unmeasured confounder (functional
impairment) induces an association between the treatment
(PCSK9i vs. statin) and the negative control outcome (risk of
accidents), indicating the potential for bias when comparing the
outcome of interest (risk of acute MI) among treatment groups.

For simplicity, the arrow is omitted from age directly to the MI
outcome. MI, myocardial infarction; PCSK9i, proprotein
convertase subtilisin/kexin type 9 inhibitors.



therapies, results suggested patients with less frailty and higher

healthcare utilization were more likely to be prescribed a PCSK9i

compared with patients initiating statins or ezetimibe. The risk of

decubitus ulcer among PCSK9i initiators was consistently lower (risk

ratios 0.4–0.7), while risks of vaccinations tended to be higher (risk

ratios 1.1–1.2 for some contrasts).21 A subsequent NCO study can

determine whether bias may be sufficiently reduced through more

stringent inclusion criteria to balance patients' health status and

healthcare access. Another design-driven approach would be to refine

the comparator definition. For example, in the NCO study of osteopo-

rosis treatments, one comparator pair—denosumab and ZA—was con-

sidered sufficiently comparable. However, another pair—new users of

denosumab and oral BPs—showed evidence of confounding by

health-seeking behaviors.20 Follow-up NCO studies can be used to

determine whether confounding persists when the comparator is

restricted to patients switching oral BPs rather than initiating any oral

medication for the first time, as those switching are hypothesized to

be more similar to patients on injected treatments. It is important to

ensure that all NCO analyses and design refinements are made before

any treatment effect on the primary outcome is estimated.

If a review of the study design does not suggest possibilities for

confounding mitigation, analytic approaches can be tested. Alternative

weighting schemes can be used to estimate a treatment effect less

subject to confounding. For example, NCO results may indicate con-

founding of the average treatment effect after applying inverse proba-

bility of treatment weights, which attempt to balance covariates

across treatment groups using their distribution in the overall popula-

tion. Instead, standardized mortality ratio weights could be used to

estimate the average treatment effect in the treated; that is, the effect

of treatment if all patients had the distribution of covariates in the

treated group. This may achieve balance on the same confounders or

require a smaller set, as only the untreated patients are weighted to

resemble the treated (and not vice versa).30 If changing the estimand

is not feasible or still indicates bias, several methods have been pro-

posed to reduce or remove bias by calibrating the effect

estimate.31–33 In contrast to the approach presented in this article,

these methods are used after conducting a comparative analysis; they

directly adjust effect estimates and confidence intervals by leveraging

an alternative set of causal assumptions and incorporating control

exposures and/or outcomes.34–37 Studies of this sort have used semi-

automated selection of control variables and adjustment of treatment

effect estimates based on associations with control variables.38,39

3 | DISCUSSION

As non-randomized research in large healthcare databases is increas-

ingly used to supplement conventional randomized trials in the evalu-

ation of medical interventions, assessing the potential for

uncontrolled confounding will remain important. We propose use of

NCO methods to guide the decision to conduct comparative effec-

tiveness or safety research, with the goal of strengthening study

design, analysis, and interpretation of real-world data. Two recently

completed studies reviewed in this article demonstrate

implementation of NCOs in claims-based data sources and use of

results to inform decisions to proceed with comparative studies.

3.1 | Considerations for identifying confounders
and selecting NCOs

The studies of osteoporosis and lipid-lowering treatments demon-

strate use of multiple NCOs for each domain of confounding, attempt-

ing to capture different mechanisms and the various ways in which

they manifest in the study population. However, a limitation of this

approach is that interpretation can be challenging if the results are

conflicting. In the study of osteoporosis medications, NCO effect esti-

mates corresponding to confounding by health-seeking behaviors

were in different directions for new users of denosumab compared to

oral BPs. Relatedly, confounding structures can differ across patient

populations and between strata within a population. This heterogene-

ity raises the possibility that a null NCO association with treatment

observed in one cohort may not apply to another population. Antici-

pating this possibility, in the NCO study of lipid-lowering therapies,

analyses were initially stratified by age group and calendar year to

evaluate possible effect modification by age or time. It is advisable to

repeat NCO analyses in each cohort and, if effect measure modifica-

tion is hypothesized, in each stratum of the modifying variable. We

also note that our recommendations for selecting and interpreting

NCOs draw from specific examples of osteoporosis and lipid-lowering

treatments potentially affecting acute health events in older adults

and may not generalize to all confounding scenarios.

3.2 | Considerations for interpreting NCOs and the
potential for bias

Although NCO analyses can provide evidence of the presence or

absence of uncontrolled confounding, like most studies, including con-

ventional randomized trials, they rely on assumptions that may be

untestable.31 A key assumption is that the confounding paths

between the treatment and outcome of interest are the same as those

between treatment and NCO. If this assumption is violated, a true

NCO may not be sensitive to uncontrolled confounding. Although this

assumption cannot be tested in observational data, it reinforces the

importance of specifying anticipated confounders as completely as

possible in the propensity score model. Further, because NCO studies

are often ancillary to a primary exposure-outcome analysis, precision

may be insufficient to arrive at reliable conclusions about NCO associ-

ations. When the NCO incidence is low or study size is small, NCO

studies may not yield effect estimates of sufficient precision to ade-

quately assess the presence of uncontrolled confounding. For exam-

ple, although decubitus ulcer is strongly associated with frailty, its

prevalence is low in ambulatory patient populations. Large sample

sizes are needed to ensure a sufficient number of outcomes such that

an association between treatment and ulcer outcome can be reliably

estimated and uncontrolled confounding by frailty, if present, can be

detected. Conversely, it is possible to find no association between the



treatment and NCO, even in large studies, if there are multiple

sources of opposing bias. Finally, like all studies relying on healthcare

databases to build cohorts, ascertainment of key variables may be

subject to measurement error and further bias effect estimates.

3.3 | Future directions for NCOs to inform
comparative studies

Recommendations for future NCO studies complement guidance

regarding adequate measurement of confounding variables in real-

world data. Confounding variables should be measured to the extent

possible (e.g., by linking claims and electronic health record data), and

assessments of validity for potentially mismeasured confounders

remain important.6 After accounting for measured confounders, NCO

studies can uncover evidence of uncontrolled confounding and inform

the decision to proceed with a comparative analysis. Future research

could employ a temporal approach, particularly for new drugs, in

which an NCO study is refreshed regularly with new data to monitor

the potential for confounding over time. If results indicate uncon-

trolled confounding, design and analytic approaches can be evaluated

before the plan for a comparative analysis is abandoned. Calibration

of effect estimates using NCO results, in conjunction with control

exposures and/or outcomes, has the potential to reduce bias.31–37 As

the design and analysis of NCO studies advance in support of reliable

real-world evidence, study protocols should pre-specify criteria to

identify the conditions under which NCO results suggest negligible

risk of uncontrolled confounding. Given the increased potential for

non-randomized research to be used for regulatory decision-making,

greater transparency of protocols governing decisions to move

forward with comparative analyses is warranted.40 In addition, recom-

mendations for reporting results of NCO studies should be built into

guidance for pharmacoepidemiology publications, as this would help

reviewers to assess the likelihood of uncontrolled confounding as an

explanation for reported associations.41,42

In conclusion, NCO studies are a useful tool to assess the threat

of confounding by unmeasured and mismeasured variables, which

remains a chief concern in healthcare database research. Proactively

performing NCO analyses as a diagnostic in advance of comparative

analyses may strengthen study design, analysis, and interpretation of

real-world data, thereby strengthening the rigor and reproducibility of

the resulting real-world evidence in informing regulatory decisions.
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