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Purpose: When conducting analyses of child weight growth trajectories, researchers commonly use
Z-scores from a standard instead of the observed weights. However, these Z-scores, calculated from
cross-sectional data, may introduce methodological limitations when used in the context of longitudinal
analyses. We assessed analytic limitations when analyzing infant growth data with three anthropometric
measures: weight and the corresponding Z-scores and percentiles from a standard.
Methods: We undertook a series of Monte Carlo simulations and compared tests of differences in
postnatal weight change across time (growth velocity) between two exposure groups. Models with the
observed weight outcome were compared to the corresponding weight World Health Organization
(WHO) Z-score or weight percentile outcomes. We calculated power, type I error, and median product
term coefficient estimates to assess differences between the models.
Results: There was lower power to detect velocity differences across exposure groups for WHO Z-scores
and percentiles as outcomes compared to the use of observed weight values. We also noted instances in
which velocity differences between exposed and unexposed groups were in the opposite direction in
analyses with WHO Z-score outcomes.
Conclusions: In our simulations of infant weight velocity differences across exposure groups, we
observed lower power and effect inconsistencies when applying a standard-derived Z-score trans-
formation. These results emphasize the need for careful consideration of the appropriate scale when
assessing infant growth trajectories across categorical groups.
Introduction

Analyses of growth trajectories are expanding in tandem with
the growing interest in life course epidemiology and the increased
availability of longitudinal data collected during the postnatal
period.Whenmodeling growth, an investigator may consider using
data transformations, in line with standards that have been
developed in the field for cross-sectional assessment of weight in
childhood. For example, Z-scores or percentiles derived from a
standard, such as theWorld Health Organization (WHO), or derived
from a reference, such as from the Centers for Disease Control, can
be implemented. Z-scores for infant growth (up to the age of
- Chapel Hill, Chapel Hill, NC
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2 years), derived from the 2006WHO growth standards [1], provide
a measure of relative position on the distributional scale of optimal
infant growth following a standard normal distribution [2]. A
Z-score value of zero represents the mean of the optimal distri-
bution for a respective age and sex distribution. A Z-score unit
change represents the change in one standard deviation of the
population standard distribution for the respective anthropometric
measure. Percentiles map to Z-scores, and they provide a measure
bounded by the lowest value of 0 and highest value of 100, which
represents the percentage of the distribution of the standard pop-
ulation below this value.

Using Z-scores from a standard such as WHO or Centers for
Disease Control can have advantages in cross-sectional analyses,
such as providing linear sex- and age- independent measures of
weight outcomes for individuals [2] and the ability to compare
estimates across different studies. However, the use of Z-scores in
longitudinal analyses may be inappropriate, given their derivation
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from cross-sectional populations. Despite this concern, longitudinal
analyses commonly use Z-score transformations.

Other concerns related to the use of Z-score transformations in
longitudinal infant weight trajectories have not been widely
explored but may include diminished power, a liberal type I error
rate, and biased estimates of group differences. For example, a pre-
vious study of changes in growth during adolescence [3] demon-
strated diminished power to detect effects when using Z-scores
compared to actual body mass index. To date, no such studies
comparing various data transformations in the study of group dif-
ferences in weight change during infancy have been conducted.

Our primary aim in this article was to assess the analytic limi-
tations of using Z-scores from a standard in place of observed
weight values when conducting longitudinal analyses of infant
growth.We usedMonte Carlo data simulations to assess differences
in power, type I error, and effect estimation using longitudinal data
across three anthropometric measures: weight, weight WHO Z-
scores, and weight percentiles. These results may provide guidance
in choosing an appropriate outcome measure when evaluating
change in weight across groups in infancy.

Materials and methods

To assess differences in power, type I error, and bias when using
different outcome measures, we followed a two-step process. First,
we simulated infant weight growth data using parameters from
published literature to provide individual infant growth curve
samples from actual populations. These data supplied the observed
values in the following step. Second, we estimated weight change
differences in the simulated data across two time points with
analysis of variance (ANOVA) models. Comparisons were made for
three outcomes including the original weight value, aWHO Z-score,
and matching percentile.

Growth data simulation

Simulated infant weight growth data were based on a Reed first
order parametric model [4,5], a typical form being

y ¼ b0i þ b1i$t þ b2$lnðtÞ þ
b3
t

We use a time transformation suggested for this model, t* ¼ tþ9
9

[4], to allow a time point (t) of birth at 0 months. The Reed first
order model has several advantages, one of which includes linearity
in parameter terms and thus simplicity in model fitdan advantage
when conducting a large number of iterations in a simulation. This
model has also been shown to have a good model fit when
compared to other nonlinear models such as the Jenns-Bayley
model [5]. Parameters specified in the simulations were drawn
from publicly accessible estimates in the literature for three
different countries [6]. The three countries included in the analyses
were Italy, Portugal, and Chile. This variety of populations may
provide a diverse and realistic assessment of model performance
when comparing the weight values as outcome measures versus
WHO Z-scores or related measures such as percentiles.

To accommodate exposure group differences in the Reed first
order growth model, we added two terms, b4 and b5 to create two
distinct growth shapes according to the binary exposure levels:

yij ¼ b0i þ b1i$t
* þ b2i$ln

�
t*
�þ b3i

t*
þ b4$groupþ b5$t

*$group

þ eij

The sum of the b4 and b5 terms represented a difference of
weight at baseline across exposure groups. Furthermore, the b5
term represented a difference in weight change over time between
the two groups.

In the model, yij represents the weight in kilograms for each
subject (i) at seven time points (j) evenly spaced from 0 to
6 months. The group variable represents what one would consider
an exposure variable in an analysis with one index category
(exposed) and one referent (unexposed) and was split at random
using a binomial distribution with probabilities of 0.2 or 0.5. The
referent, considered to be the unexposed group, matched the Reed
parameters from the growth model samples obtained from the
literature as mentioned previously [6]. The total sample size was
1000 people.

The models included random effects for both the intercept, b0,
and each of the three time terms, b1, b2, and b3. Residuals, eij, were
assumed to have SD values of s ¼ 0.5. Missing data were generated
with zero to one missing time point per person out of the seven
total, creating potential for unevenly spaced time points for each
person.

To examine any differences in weight change estimates, given
the standardization status of the outcomemeasure, we chose a two
by two factorial design between baseline weight status and growth
status across exposure groups. Baseline weight status was either no
difference or a difference in baseline average weight matching di-
rection of slope difference between the exposure groups. Slope
differences between the exposure groups were either positive or
negative. It should be noted that due to the adapted Reed model,
baseline differences were dependent on the sum of b4 and b5. The
first combination, b4 ¼ 0 and b5 ¼ 0.5, resulted in the index group
with a higher baseline weight at t ¼ 0 months (t* ¼ 1) (b4 þ b5 ¼
0 þ 0.5 ¼ 0.5) and faster weight change (b5 ¼ 0.5). The second
combination, b4 ¼ �0.5 and b5 ¼ 0.5, resulted in the index group
with an equal baseline weight (b4 þ b5 ¼ �0.5 þ 0.5 ¼ 0) and faster
weight change (b5 ¼ 0.5). The third combination, b4 ¼ 0.5 and
b5 ¼ �0.5, resulted in the index group with an equal baseline
weight (b4þb5 ¼ 0.5 - 0.5 ¼ 0) and slower weight change
(b5 ¼ �0.5). Finally, the fourth combination, b4 ¼ 0 and b5 ¼ �0.5,
resulted in the index group with a lower baseline weight (b4þb5 ¼
0 - 0.5 ¼ �0.5) and slower weight change (b5 ¼ �0.5). The four
groups from the two by two factorial design will be referred to as
“baselineþ and slopeþ,” “baseline¼ and slopeþ,” “baseline¼ and
slope�,” and “baseline� and slope�,” respectively.

For the simulated weight growth data, we chose the b4 and b5
values after visually examining plots so they reflected biologically
plausible differences in baseline weight and growth (see Fig. 1). For
the two scenarios with a baseline weight difference in the exposed
group relative to the referent group, the difference appeared to be
around 25 percentile units. As a sensitivity analysis, we examined
twomore sets of values including combinations of 0.1 and 0.2 for b4
and b5 to determine if our findings were consistent with smaller
differences across exposure groups. Following simulation of the
weight growth from the model above, we calculated their corre-
sponding Z-scores using theWHO growth standards [7]. Percentiles
were derived from the Z-scores using the cumulative probability for
the standard normal distribution.

Growth data analysis

Common practice includes comparison of mean weights across
two time points using ANOVA. We chose that model to estimate
weight change from birth to 6 months for its simplicity and
freedom from assumptions regarding shape of weight trajectories
over time. The two time groups are represented by a dichotomous
variable, month6, and exposure also represented by a dichotomous
exposure values: “exposed” and “unexposed” groups. The product
term b3 covers the difference in weight change across exposure



Fig. 1. Randomly selected simulated growth curves for Chilean females. Bold dashed lines represent the growth curve corresponding to simulation parameters: weight ¼ 16.87 þ
3.20 � t* � 8.96ln(t*) � 16.77/t* þ b4 � group þ b5 � group � t*, t* ¼ (t þ 9)/9, and group ¼ 0 for reference and group ¼ 1 for index exposure. Baseline þ j Slope þ: b4 ¼ 0, b5 ¼ 0.5;
Baseline ¼ j Slope þ: b4 ¼ �0.5, b5 ¼ 0.5; Baseline ¼ j Slope �: b4 ¼ þ0.5, b5 ¼ �0.5; Baseline � j Slope �: b4 ¼ 0, b5 ¼ �0.5. Solid lighter lines represent the randomly selected
simulated lines.
groups. Model 1 had time and intercept as random effects in
analysis estimates:

yij ¼ b0i þ b1i$month6þ b2$groupþ b3$month6$groupþ eij

An alternatemodel, model 2, had the same parameters as model
1, but with fixed effects and autocorrelated residuals.

Power estimates were from 1000 iterations inwhich the ANOVA
model was fit and a binary indicator assigned to the p-value for the
product term, b3, indicating a significant difference in weight be-
tween the two groups for a one-unit change in time (6 months) at a
designated a level of 0.05. Type I error was calculated from the
same set of iterations under a null model. Finally, coefficients for
the product term, b3, were extracted from each iteration and a
median and interquartile range of those values provided an esti-
mated direction and variability of effect for each of the outcome
measures.

We used R software for all analyses [8]. Simulations were con-
ducted using R version 3.4.1 on a Linux-based computing system.
Postsimulation data handling was done using RStudio version
1.0.136.
Results

We present the results for females with binary exposure pro-
portion of 0.2 because interpretation of results remained the same
across gender groups and exposure proportions. Estimates for
males and those for exposure proportions of 0.5 are in the
accompanying Appendix Tables 1e12. Similarly, the display of
growth trajectories with different outcomes as presented in
Figure 1 includes results for the Chilean sample as the comparisons
were similar across the three different locations.

Visual inspection of the three outcome values in Figure 1 plotted
against time for the unexposed group (matching the original
parameter estimates in the literature) indicated distinct shapes
dependent on the outcome. As specified for the simulated data,
weight (in the first column of figures) increased over time with the
exposed group clearly above and below the referent, in the first and
last two panels, respectively. Weight converted to WHO Z-scores
appeared to be flat and close to zero for the referent group, and the
exposed group was also linear but above or below the referent by
about 1 SD depending on the baseline weight status. Percentiles of
the WHO Z-scores plotted over time indicated a referent group
close to the 50th percentile, as expected, given the referentWHO Z-
scores being close to 0. Similar to the WHO Z-scores, the exposed
group percentile values were above and below the referent
depending on the parameter combination in the data generation
process.

Power

The use of untransformed weight values as the outcome pro-
vided the largest power estimates of the three outcome measures
for all models considered (Table 1), exceeding 0.9 in all cases. In the
circumstance of unequal baseline weight, the power was approxi-
mately double that of the transformed values. These results



Table 1
Estimated power by model*, country, and parameter combinations for females

Trajectory type Sample Weight Z-score Percentile

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

Unequal baselinerþ slope Portugal 0.991 1.000 0.230 0.472 0.266 0.042
Italy 0.991 1.000 0.175 0.340 0.277 0.076
Chile 0.989 1.000 0.272 0.455 0.223 0.021

Equal baselinerþ slope Portugal 0.994 1.000 0.787 0.953 0.871 0.996
Italy 0.995 1.000 0.805 0.951 0.884 0.998
Chile 0.989 1.000 0.775 0.938 0.879 0.977

Equal baseliner� slope Portugal 0.996 0.999 0.813 0.961 0.905 0.992
Italy 0.994 1.000 0.841 0.963 0.881 0.990
Chile 0.987 1.000 0.822 0.961 0.897 0.993

Unequal baseliner� slope Portugal 0.989 1.000 0.146 0.418 0.324 0.581
Italy 0.992 1.000 0.123 0.296 0.271 0.104
Chile 0.990 1.000 0.162 0.391 0.348 0.222

Exposed proportion ¼ 0.2 and jb5j ¼ 0.5.
* Model 1: random effects model and model 2: fixed effects model with autocorrelation residual structure.
spanned four different combinations of intercept/slope differences
and two analytic models. For the simulation scenarios in which
there were equal baseline weights across exposure groups,
percentile outcome measures (range: 0.871e0.998) demonstrated
favorable power estimates than most WHO Z-score values (range:
0.775e0.963). In contrast, the group of estimates with unequal
baseline weights across exposure groups demonstrated that the
estimated power for model 2 with WHO Z-score outcomes was
higher than the corresponding model with percentile outcomes.

Type I error

As expected, most estimated alpha levels for simulated weight
values were close to 0.05 (Table 2), the nominal value specified in
generating the data. Fixed effects models (model 2) demonstrated
lower type I errors for WHO Z-scores and percentiles compared to
the original weight values, indicating a liberal bias. Otherwise, no
clear patterns emerged when comparing the fitted models with a
WHO Z-score or percentile outcome.

Product term estimates

In terms of product term estimates, the absolute value of the
parameter for the time and group product term in the weight
model, b3 in models 1 or 2, was between 0.33 and 0.34 (Table 3). For
simulatedweight growth data having a positive or negative slope in
the index group relative to the referent, the estimated product term
was expected to be positive or negative, respectively, indicating
Table 2
Estimated type I error estimates by model*, country, and parameter combinations for fe

Trajectory type Sample Weight

Model 1 Model 2

Unequal baselinerþ slope Portugal 0.052 0.046
Italy 0.055 0.046
Chile 0.051 0.055

Equal baselinerþ slope Portugal 0.053 0.042
Italy 0.058 0.043
Chile 0.051 0.051

Equal baseliner� slope Portugal 0.041 0.041
Italy 0.052 0.060
Chile 0.049 0.037

Unequal baseliner� slope Portugal 0.050 0.048
Italy 0.055 0.049
Chile 0.061 0.032

Exposed proportion ¼ 0.2 and jb5j ¼ 0.5.
* Model 1: random effects model and model 2: fixed effects model with autocorrelati
increasing or decreasing growth of the index group relative to the
referent group.

Given the different scales for each of the three outcomes, the
estimated product term between time and group across different
outcomes was not expected to have the same scale. However, the
direction of the effect was expected to be the same. When exam-
ining the median product term estimates in certain models with
WHO Z-score outcomes, it is clear these models consistently yiel-
ded estimates in the opposite direction than those for the observed
weight outcome. Absent baseline weight differences, the product
term coefficient estimates for the observedweight outcomemodels
were similar to the WHO Z-scores outcome models. However, in
every model with different baseline weight values in the index
exposure group relative to the referent group, the median product
term coefficient estimates were in the opposite direction of the true
difference.

In our sensitivity analyses in which we altered the simulated
weight growth differences to be even smaller than the ones
described previously, we found similar differences conditional on
outcome choice in type I error, power, and product term estimates
across the exposure groups (Appendix).

Discussion

Our primary aim in this article was to determine the degree to
which infant weight growth trajectory analyses are compromised
by analytic limitations when using Z-scores or percentiles from a
growth standard or reference in place of the observed value. To
males

Z-score Percentile

Model 1 Model 2 Model 1 Model 2

0.051 0.041 0.053 0.051
0.047 0.037 0.039 0.042
0.049 0.040 0.054 0.055
0.054 0.027 0.054 0.034
0.055 0.030 0.063 0.043
0.041 0.041 0.042 0.042
0.050 0.034 0.056 0.040
0.046 0.046 0.053 0.047
0.040 0.034 0.048 0.036
0.045 0.035 0.037 0.038
0.052 0.037 0.047 0.037
0.066 0.026 0.048 0.031

on residual structure.



Table 3
Estimated time and exposure group product term median coefficient estimates, b2 (interquartile range) by model*, country, and parameter combinations for females

Trajectory type Sample Weight Z-score Percentile

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

Unequal baselinerþ slope Portugal 0.33 (0.10) 0.33 (0.08) �0.16 (0.18) �0.20 (0.13) 2.73 (2.92) 0.75 (3.54)
Italy 0.33 (0.10) 0.33 (0.08) �0.15 (0.17) �0.17 (0.13) 2.98 (2.65) 2.23 (3.43)
Chile 0.34 (0.10) 0.34 (0.08) �0.17 (0.19) �0.19 (0.13) 2.44 (2.74) �0.99 (3.08)

Equal baselinerþ slope Portugal 0.34 (0.11) 0.33 (0.07) 0.39 (0.20) 0.37 (0.13) 6.82 (3.16) 12.87 (3.71)
Italy 0.34 (0.10) 0.33 (0.08) 0.39 (0.20) 0.38 (0.14) 6.97 (2.84) 13.05 (3.79)
Chile 0.34 (0.10) 0.33 (0.08) 0.36 (0.17) 0.35 (0.13) 6.65 (2.73) 11.61 (3.64)

Equal baseliner� slope Portugal �0.34 (0.10) �0.33 (0.08) �0.40 (0.19) �0.39 (0.14) �6.80 (2.89) �12.81 (3.86)
Italy �0.33 (0.11) �0.34 (0.07) �0.40 (0.18) �0.40 (0.13) �6.78 (3.10) �12.75 (3.67)
Chile �0.34 (0.10) �0.33 (0.08) �0.38 (0.18) �0.37 (0.13) �6.87 (2.81) �12.87 (3.67)

Unequal baseliner� slope Portugal �0.33 (0.10) �0.33 (0.08) 0.11 (0.19) 0.20 (0.16) �3.13 (2.69) �6.02 (3.03)
Italy �0.33 (0.10) �0.33 (0.08) 0.10 (0.18) 0.16 (0.15) �2.94 (2.63) �2.63 (2.88)
Chile �0.33 (0.10) �0.33 (0.08) 0.13 (0.20) 0.18 (0.14) �3.29 (2.86) �3.71 (3.37)

Exposed proportion ¼ 0.2 and jb5j ¼ 0.5.
* Model 1: random effects model and model 2: fixed effects model with autocorrelation residual structure.
assess any analytic limitations, including power, type I error, and
direction of effect, we conducted Monte Carlo simulations with
infant growth data for three anthropometric measures: weight and
the corresponding WHO Z-scores and percentiles. Within this
framework, our interest focused on the growth rate differences
between exposure groups. Given prior findings for an adolescent
population, we expected lower power to detect differences in
weight change by group with Z-scores compared to the original
weight value.

Extensive Monte Carlo simulations confirmed the expected
decrease in power when using Z-scoresdpreviously demonstrated
in an adolescent population [3]. In addition, there was the potential
for conflicting inference under certain conditions when usingWHO
Z-scores for weight outcomes compared to the original non-
transformed weight value. Direction switches in the estimated
exposure group rate of weight change differences were unexpected
findings across two outcome measures: weight Z-scores and
observed weight value. Furthermore, these direction switches
were consistent across sensitivity analyses with even smaller
differences in birth weight and slopes across the exposure groups
(Appendix).

One reason behind these unexpected findings could have been
the choice of target population, the population to which inference
is drawn [9,10]. A target population represented by the growth
standard may have a different distribution of trajectories than the
one represented by the source population. Analyzing those stan-
dardized values in a sequence of person-level longitudinal obser-
vations corresponds to change within that distribution of the
standard, and inference with this new target population may no
longer match changes in the study sample. Children with above-
average birth weight in the standard may have a higher rate of
weight change than the observed values in the source population,
our simulated samples in this article. This difference between
populations could lead to lower growth estimates than specified for
the observed weight outcome after standardizing the weights.
When we increased the specified rate of growth in the simulated
source population, the resulting estimated median slope difference
between exposure groups switched and was in the same direction,
as hypothesized (data not shown). Considering that birth weight is
correlated with slope of weight change, this finding would not be
unusual.

These particular differences for standardized versus unstan-
dardized outcomes may not be desirable as it relates to clinical or
public health utility as different populations can have different
growth parameters dependent on genetics and environment [11].
We assume that the target population in most research would be
(1) nested in the source population from which the sample was
drawn and (2) the potential subject for interventions. In our
example, we used a WHO standard that reflects a standard for
growth including breast-fed infants [12]. In turn, a mismatch be-
tween inference and the true target of intervention could lead to an
unintended mismatch in policy recommendations. A consideration
of the goals of the study may also be relevant to the choice of using
observed weight versus standardized values of weight change. For
example, if policy recommendations on growth will result from the
study, the actual rate of growth in the sample, uncalibrated to a
reference or standard, would be more informative.

In our simulated circumstances with exposure group compari-
sons of infants with different birth weights, the estimated differ-
ences in growth for the two exposure groups diverged for the
original weight and WHO Z-scores. One reason supporting this
finding could be the “true” growth distribution specified in the
simulated study sample for the exposure group with above or
below average birth weights did not match the growth distribution
for those same children in the standard. In light of these findings,
interpretation of results should emphasize the target population
the researcher has chosen either via the standard or the original
weight values. This interpretation strategy would account for any
potential differences in estimates, given the choice of outcome
measure and prevent recommendations based on Z-scores that
may be irrelevant to the source population. If the target population
is the source population fromwhich the study sample was selected
with an analytical goal to adjust for sex and age of the child, then a
potential model in this context of longitudinal change would
contain original weight outcomes stratified or conditioned on sex of
the child.

Conclusions

Using Monte Carlo simulations, we have shown that using a Z-
score standardized to an external population, such as a WHO
standard, may have several inherent limitations in models of lon-
gitudinal weight change in infants. Simulations here provide evi-
dence that analyses using standardized weight measures can (1)
yield lower ability to detect real differences in the rate of growth
between exposures groups, (2) identify groups with significant
differences in which they do not exist, and (3) produce conclusions
thatmay notmatch the true values for the source population. These
three implications may impact research results to obscure true
findings depending on the choice of target population. To improve
interpretation of results from models of infant growth, we
encourage reporting both standardized and original estimates



alongside careful consideration and clear identification of the
target population when using standardized weight outcomes.
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