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Summary
Variation in levels of the human metabolome reflect changes in homeostasis, providing a window into health and disease. The genetic

impact on circulating metabolites in Hispanics, a population with high cardiometabolic disease burden, is largely unknown. We con-

ducted genome-wide association analyses on 640 circulating metabolites in 3,926 Hispanic Community Health Study/Study of Latinos

participants. The estimated heritability for 640 metabolites ranged between 0%–54% with a median at 2.5%. We discovered 46 variant-

metabolite pairs (p value < 1.2 3 10�10, minor allele frequencyR 1%, proportion of variance explained [PEV] mean ¼ 3.4%, PEVrange ¼
1%–22%) with generalized effects in two population-based studies and confirmed 301 known locus-metabolite associations. Half of the

identified variants with generalized effect were located in genes, including five nonsynonymous variants. We identified co-localization

with the expression quantitative trait loci at 105 discovered and 151 known loci-metabolites sets. rs5855544, upstream of SLC51A, was

associated with higher levels of three steroid sulfates and co-localized with expression levels of SLC51A in several tissues. Mendelian

randomization (MR) analysis identified several metabolites associated with coronary heart disease (CHD) and type 2 diabetes. For

example, two variants located in or near CYP4F2 (rs2108622 and rs79400241, respectively), involved in vitamin E metabolism, were

associated with the levels of octadecanedioate and vitamin E metabolites (gamma-CEHC and gamma-CEHC glucuronide); MR analysis

showed that genetically high levels of these metabolites were associated with lower odds of CHD. Our findings document the genetic

architecture of circulating metabolites in an underrepresented Hispanic/Latino community, shedding light on disease etiology.
Introduction

The metabolome is a complete set of small molecules

(<1.5 kDa) in a biological sample, including biochemicals

of cellular metabolism and xenobiotics from diet and envi-

ronment.1,2 Metabolites play a critical role in various bio-

logical processes starting with the beginning of life,3 and

variation in levels of the human metabolome reflects

changes in homeostasis that provide a window into health

and disease. Genome-wide association studies (GWASs)

with metabolic traits have identified hundreds of genetic

variants associated with levels of numerous metabolites

in multiple biospecimens, including blood,4–8 urine,9–11

feces,12 and saliva.13 The resulted findings have illumi-

nated mechanisms underlying human metabolism and

provided insights relevant to common complex dis-

eases.14–16 For example, in the early GWAS era, one single

intronic variant, rs174548 (FADS1), was shown to affect

serum glycerophospholipids, which were involved in

cholesterol metabolism. Prior analyses showed that

rs174548 was also associated with blood lipids—known
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cardio-vascular disease risk factors.14 In a recent report,

sets of variants were shown to be associated with glycine

levels, and genetically increased glycine levels were associ-

ated with decreased risk of coronary heart disease (CHD)

potentially driven by blood pressure, providing insight in

the causal pathways of CHD.15

Despite the success of previous GWAS discoveries, the ge-

netic impact on circulating metabolites in Hispanics/

Latinos, a population with unique genetic background17,18

and disproportionately high cardiometabolic disease

burden,19 is largely unknown. To address this gap, we per-

formed a GWAS investigating the effect of low frequency

(1% % minor allele frequency [MAF] % 5%) and common

genetic variants (MAF > 5%) on the circulating metabolites

in 3,926 participants from the Hispanic Community Health

Study/Study Of Latinos (HCHS/SOL) and replicated our

findings by using a public database from TwinsUK and the

data from the Atherosclerosis Risk In Communities (ARIC)

study.We implemented co-localization and network analyt-

ical approaches on the identified loci to interpret the under-

lying biological processes. Our findings complement the
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catalog of genetic loci associated with metabolites with a

focus on an underrepresented Hispanic/Latino population

and provide candidate pathways for future research to illu-

minate underlying mechanisms for cardiometabolic

diseases.
Subjects and Methods

Study Populations
HCHS/SOL

A comprehensive description of the community-based cohort

study HCHS/SOL has previously been published.20 Participants

18–74 years of age at their baseline examination were recruited

through a stratified multistage area probability sample design

from four communities (San Diego, California; Chicago, Illinois;

The Bronx, New York, New York; and Miami, Florida). Overall,

16,415 participants, representing major self-reported US Hispan-

ic/Latino background groups (Mexicans, Puerto Ricans, Cubans,

Central Americans, Dominicans, and South Americans), took

part in baseline examinations that occurred in June 2008–July

2011. Second visits were performed in 2014–2017, and the

completion of third visits began in 2020 and is ongoing. A random

subset of 3,926 participants with available genetic and metabolo-

mic measures from their first visit were included in the present

analysis. The HCHS/SOL study was approved by institutional re-

view boards at participating institutions. Written informed con-

sent was obtained from all participants.

ARIC

The ARIC study is a prospective cohort study with 15,792 partici-

pants (73%, European Americans [EAs]; 27%, African Americans)

from four US communities (Forsyth County, North Carolina; Jack-

son, Mississippi; Minneapolis, Minnesota; and Washington

County, Maryland); participants were 45 to 64 years of age at the

baseline examination (1987–1989).21 Six follow-up visits were per-

formed in 1990–92 (visit 2), 1993–95 (visit 3), 1996–98 (visit 4),

2011–2013 (visit 5), 2016–2017 (visit 6), and 2018–2019 (visit

7). We performed replication in 1,509 ARIC EAs from the baseline

examination with available genetic and metabolomics measures

in the present analysis. The ARIC study was approved by the insti-

tutional review boards at each ARIC center, and participants pro-

vided informed consent.
Metabolite Measurements
In HCHS/SOL and ARIC, fasting blood samples were collected,

processed, and stored at �70�C since collection. Stored serum

samples at the HCHS/SOL and ARIC’s baseline examination

were used for metabolomic profiling. The metabolomic profiling

was conducted at Metabolon (Durham, NC) with Discovery HD4

platform in 2017 for HCHS/SOL and Discovery HD3 platform in

2014 for ARIC. Serum metabolites were quantified with untar-

geted, liquid chromatography-mass spectrometry (LC-MS)-based

quantification protocol.22,23 In HCHS/SOL, the platform

captured a total of 1,136 metabolites, including 782 known

and 354 unknown metabolites. In ARIC, the platform captured

a total of 1,160 metabolites, including 787 known and 373 un-

knownmetabolites. For quality control and better understanding

of the biological mechanisms underlying disease etiology, only

known metabolites with missing rates %25% were considered

in this study, including 640 metabolites in HCHS/SOL and 635

metabolites in ARIC.
In TwinsUK, themetabolites profiling was also performed atMe-

tabolon via a platform consisting of four independent ultra-high-

performance liquid chromatography–tandem mass spectrometry

(UPLC–MS/MS) instruments (detailed description is available else-

where8). A total of 901 metabolites were identified and quantified;

644 metabolites were deemed stable due to having consistent

levels across three longitudinal data collections and taken forward

for the association analysis.
Genotyping, Quality Control, and Imputation
The HCHS/SOL participants were genotyped on HCHS/SOL

custom 15041502 B3 Illumina array, which includes Illumina

Omni 2.5M array (HumanOmni2.5-8v1-1) and 150,000 custom

variants.18 Quality metrics used to filter variants for the imputa-

tion basis and association testing included missing call rate

(>2%), Mendelian errors (>3 in 1,343 trios or duos), duplicate-

sample discordance (>2 in 291 sample pairs), and deviation

from Hardy-Weinberg equilibrium (p < 1 3 10�5).18 Pre-phasing

was performed with SHAPEIT2 (v.2.r644) and imputation was per-

formed with IMPUTE2 (v.2.3.0)24 with the 1000 Genomes Project

phase III reference panel. A total of 13,039,987 variants passed

quality filters with MAF R 1% and imputation quality (Rsq) R

0.3 and were carried forward for the association analyses.

For ARIC, genotype data was completed via Affymetrix Array

6.0. Quality metrics used to filter variants for the imputation basis

and association testing included sex mismatch, discordance with

previously-genotyped markers, first-degree relative of an included

individual, and genetic outlier based on allele sharing and prin-

cipal-component analyses, insufficient call rate (>5%), and devia-

tion from Hardy-Weinberg equilibrium (p < 1 3 10�5).25 Imputa-

tion was performed on the data that passed quality filters in two

steps: (1) pre-phasing with ShapeIt (v1.r532) and (2) imputation

with IMPUTE2 with the 1000 Genomes Project phase I reference

panel.25 A total of 38,038,545 variants had Rsq R 0.3 and were

considered in the replication analyses for which MAF-based

variant exclusion was not performed.

For both HCHS/SOL and ARIC, population structure was esti-

mated with principal-component analysis as implemented in EI-

GENSTRAT.26 We considered only autosomal variants.

For TwinsUK, whole-genome sequencing was performed on an

Illumina HiSeqX sequencer with a 150-base-paired-end single-in-

dex-read format. Data from twins with European descent (verified

with ADMIXTURE) was used for genomic data analysis. Genomes

with a ratio of heterozygous to homozygous variants >2.5 were

excluded. Overall, 1,960 subjects (383 monozygotic twins and

522 dizygotic twins) passed quality control and association tests

were performed on �11,350,000 variants (further details on sam-

ple preparation and quality control are available elsewhere8).
Statistical Analysis
Genotype-Phenotype Analyses

In order to address any deviation of metabolites from normality,

we applied a two-stage procedure for rank normalization in geno-

type-metabolite association analyses, which was shown to be su-

perior to reduce type I errors and to improve statistical power.27

We analyzed a total of 640 (Table S1) known metabolites in

HCHS/SOL, and missing values for the included metabolites

were imputed to half of the lowest value in the present anal-

ysis.28 For each of the 640 metabolites, residuals were first ob-

tained by regressing age, sex, estimated glomerular filtration rate

(eGFR),29 recruitment center, the first five principal components,



and genetic analysis group by origin (Cuban, Dominican, Puerto

Rican, Mexican, Central American, and South American); resid-

uals were then inverse normal transformed to be used in the ge-

netic analyses adjusting the same aforementioned covariates. In

addition, we used three random effects terms18 to account for ge-

netic relatedness (kinship) and environmental correlations

(shared household and census block group) by using a linear

mixed-effect model. Overall, 13,039,987 variants (MAF R 1%

and Rsq R 0.3) were analyzed individually with each metabolite.

Analyses were performed in GMMAT30 with additive genetic

models.

Out of 640 metabolites, we identified 333 independent metabo-

lites; the independence was defined as pairwise Pearson correla-

tion coefficient, r % 0.7.31 The remaining 307 metabolites were

grouped into 75 metabolite sets (Table S2), and all metabolites in

one set correlated with at least one other metabolite in the same

set (r > 0.7); that is, metabolites within a particular set did not

correlate (r > 0.7) with any metabolites outside of the set. Signifi-

cance for single variant analysis was defined as p value % 1.23 3

10�10 (accounting for �1,000,000 independent variants and 408

independent metabolite sets [including 333 independent metabo-

lites and 75 metabolite sets]).

We obtained the heritability of each of the 640 metabolites

based on the genotype-metabolite summary statistics by using

LDSC v1.0.0.32 For each metabolite, summary statistics were

used to perform single-trait linkage disequilibrium (LD) score

regression with genomic control correction with genetic informa-

tion only from 3,289 unrelated individuals (kinship coefficient >

0.022).18 The slope of the LD score regression was used to estimate

the heritability explained by all variants used in the LD score esti-

mation.32
Conditional Analysis
Among the metabolites and metabolite sets that reached genome-

wide significance, we identified 497 genetic locus-metabolite pairs

containing statistically significant variants (Supplemental

Methods and Table S3). There were 462 out of 497 identified ge-

netic locus-metabolite pairs that had more than one statistically

significant variant. Therefore, we applied genome-wide complex

trait analysis (GCTA v1.91.4)33 to identify independent genetic

variants within each of the selected regions. Variants that

were both statistically significant in the primary analysis (p value

% 1.23 3 10�10) and genome-wide statistically significant

(p valueconditional < 5 3 10�8) within the GCTA joint model were

considered conditionally independent associations. Overall, we

identified 608 conditionally independent variant-metabolite

associations (Tables S4 and S5).

To annotate the identified 608 independent variant-metabolite

associations, we obtained reports from the Metabolomic GWAS

Server,4 TwinsUK study,8 GWAS Catalog, GRASP Search, Pheno-

Scanner, and our previous reports5–7 and performed manual

search through published papers to detect known loci that overlap

with our findings. If a variant belonging to a region-metabolite

pair was previously associated with any of the metabolites in its

respective metabolite set, the region-metabolite pair was consid-

ered known, and otherwise, it was considered previously

unreported.
Replication Analysis
We conducted replication analysis in ARIC EAs and additionally

used TwinsUK (up to 1,960 twins of European ancestry, mostly fe-
male, recruited as volunteers by media campaigns8) published

summary statistics. In the replication populations, 107 variant-

metabolite associations were represented in 1,509 ARIC EAs and

73 metabolites were present in the TwinsUK dataset.8 Although

the TwinsUK dataset only provided variant-metabolite associa-

tions with p value < 1 3 10�5 (i.e., 24 pairs were available), we

assumed that the dataset contained all 95 variant-metabolite pairs

tominimize type I error rate. Because discovery was performed in a

Hispanic/Latino population, whereas replication was sought in in-

dividuals of European Ancestry, we estimated the generalized ef-

fect across these two populations. Significant generalized effects

were defined as follows: (1) had p value % 2.48 3 10�4 in either

of the European Ancestry datasets (accounting for 202 associa-

tions; 95 variant-metabolite pairs in TwinsUK and 107 variant-

metabolite pairs in ARIC EA, and 53 potential pairs were repre-

sented in both datasets; Table S5) and (2) had consistent direction

of effect in both discovery and replication dataset(s).

For variant-metabolite association with generalized effect, we

obtained information from publicly available data by using Phe-

noScanner34 to identify diseases, intermediate phenotypes,

expression quantitative trait loci (eQTLs), protein quantitative

trait loci (pQTLs), and DNA methylation quantitative trait loci

(methQTLs) associated with the previously unreported variants

(Tables S6–S9). Results were filtered to include associations reach-

ing a widely used genome-wide significance threshold p value <

5 3 10�8.
Co-localization of Metabolites with eQTLs
To evaluate whether the identified 497 genetic locus-metabolite

associations share genetic loci with any gene expression levels,

we performed co-localization analysis with gene eQTLs summary

by using HyPrColoc.35 HyPrColoc can identify subsets of traits

co-localizing at distinct causal variants in the genomic locus.35

All metabolites associated with variants belonging to the same ge-

netic locus were analyzed simultaneously. Analysis was performed

on variants present in both datasets, taking into account all 48 tis-

sues available in GTEx V736,37 (prior structure, p ¼ 0.0001, g ¼
0.98, Table S10).
Locus-Specific Investigations
We investigated associations between selected identified variants

with generalized effect and clinical outcomes of interest in

HCHS/SOL and ARIC EAs (Supplemental Methods). To assess the

association between rs2328895, N-acetyltryptophan, and preva-

lent CHD, as well as between rs324420, N-oleoyltaurine, and

alcohol and tobacco use, we used general linear models with bino-

mial link (R packages survey v3.35.1 in HCHS/SOL and stats v3.5.2

in ARIC). To assess the relationship between the N-acetyltrypto-

phan and rs2328895 and incident CHD and heart failure (HF) in

ARIC, we used Cox proportional hazards models as implemented

in R package survival v2.43.3. A landmark analysis approach was

applied to investigate the relationship between rs2328895 and

incident CHD in older ARIC EAs.38
Assessing Tissue Specificity of Metabolites
To assess the tissue specificity of genes associated with those me-

tabolites, we first calculated gene-based p values from the geno-

type-metabolite summary statistics for each of the 39 metabo-

lites, which were associated with previously unreported

findings with generalized effect. Specifically, we mapped vari-

ants to genes if they are located in the gene body or 50 kb



upstream/downstream of the gene. We used the method Pascal

to calculate a sum of chi-square statistics for each gene,

requiring a gene to have at least two variants for the ana-

lyses.39 The gene-based score was adjusted for the gene length

and the local LD, which was estimated with the admixed Amer-

ican (AMR) population from the 1000 Genomes Project phase

I.40 For each metabolite, we defined the associated genes as

those with gene p value from Pascal less than 5.79 3 10�8

(0.05/39 metabolites/22,129 genes) (Table S11). To identify in

which tissues the metabolite-associated genes were most specif-

ically expressed, we conducted tissue-specific enrichment anal-

ysis by using the tool deTS.41 deTS uses Fisher’s exact test to

assess whether a query list of genes (e.g., metabolite-associated

genes) is overrepresented with tissue-specific genes in a partic-

ular tissue. For the deTS analyses, we used 47 tissues from

GTEx V7, after exclusion of EBV cells and tissues with <30 sam-

ples. The p value from the enrichment test was further adjusted

by the Benjamini-Hochberg (BH) method for 39 metabolites.42
Pathway Analysis
We conducted a network-based analysis to identify modules of

genes whose combined effect was overrepresented in GWASs

by using the previously developed dense module searching for

GWASs (dmGWAS, version 2.7).43 Specifically, we performed

our analysis by using two protein-protein interaction networks:

one from PathwayCommons (PC)44 (16,332 genes and 369,895

interactions) and the other from in-house curation with 21,137

genes and 413,492 interactions. In brief, dmGWAS implements

a dense module searching algorithm to search for modules in

the reference network with a goal of achieving a maximum

module score.43 For each metabolite, the top ten most signifi-

cant modules were identified (Table S12) and combined as

metabolite-related subnetworks. We also performed gene set

enrichment analysis by using DAVID45 to assess the functions

of the subnetworks. Gene Ontology biological process (GOBP),

KEGG, and BIOCARTA (Table S13) were examined. Significant

gene sets were defined as those with false discovery rate (FDR)

< 0.05 via the BH method.
Mendelian Randomization
For each of the previously unreported variants with gener-

alized effect, we performed a lookup in the cardiovascular

disease knowledge portal (Web Resources) for the GWAS

associations with disease (p valueGWAS < 4.07 3 10�4, account-

ing for 41 variants and three diseases: CHD-CARDIoGRAM

plusC4D, HF-HERMES, and type 2 diabetes [T2D]-DIAGRAM).

We then conducted two-sample Mendelian randomization

(MR) analyses to detect any potential causal effects of the

levels of these metabolites and aforementioned diseases. For

each selected metabolite, we considered all statistically inde-

pendent variants (Tables S4 and S5). For each independent

variant, we obtained a causal estimate as the ratio of the asso-

ciation of the variant with disease with published GWAS sum-

mary statistics46–48 to the association of the variant with

metabolite with the summary statistics generated in the pre-

sent study. If a metabolite was associated with more than one

independent variant, we performed a fixed effect inverse vari-

ance meta-analysis by using R package meta v4.10-0 to obtain

the overall estimates. Associations with p valueMR < 1.23 3

10�3 (accounting for 39 metabolites) were considered statisti-

cally significant.
Results

Genotype-Phenotype Analysis

We performed a GWAS of genotyped and imputed variants

with 640 circulating metabolites in 3,926 HCHS/SOL par-

ticipants with mean age at 46 years old and 43% males.

The demographics of study participants and the biochem-

ical name and distribution for each metabolite are summa-

rized in Table S1. Our study design, statistical and func-

tional analyses performed, and an overview of the

known and previously unreported findings are presented

in Figure 1.

We identified 81,604 variant-metabolite associations

reaching the p value % 1.23 3 10�10. Among these, 608

significant single variant-metabolite pairs were indepen-

dent (p value % 1.23 3 10�10, p valueconditional % 5 3

10�8), including 429 unique variants (�12% were low fre-

quency, 1% % MAF % 5%) with an average variance ex-

plained at 3.5%, where 378 pairs were known and 230 pairs

were previously unreported. As expected, assessed low-fre-

quency variants had a 2.53 larger effect on metabolites

levels compared to common variants (mean effect at 0.77

SD and 0.30 SD change per minor allele for low-frequency

and common variants, respectively, Figure 2A). Around

60% of detected variants belonged to genes, harboring

14% exonic variants (Figure 2B).

Among 378 known variant-metabolite pairs, we repro-

duced 171 previously reported variant-metabolite associa-

tions; 207 additional independent variant-metabolite asso-

ciations were located within the known metabolite loci

(Table S4). In the remaining 230 previously unreported

variant-metabolite pairs, 46 pairs of 41 unique variants

and 39 metabolites were successfully replicated in the

ARIC and/or TwinsUK study with generalized effects

(Figure 3), and the explained variances ranged from 1%

to 22% (Table 1). The strongest associations were detected

for N-acetyl amino acids at NAT8 (N2-acetyllysine, p value

¼ 5.983 10�252; N-acetylleucine, p value ¼ 5.663 10�160)

and TPRKB (N-acetylarginine, p value¼ 3.463 10�123). Six

loci (NAT8, FOLH1, ACY3, CPS1, SLC51A, and UCA1-

CYP4F2) affected more than one metabolite. Among the

46 previously unreported pairs with generalized effects,

we report genetic effect on twelve metabolites and six

loci (PCMT1, PTER, FOLH1, TMEM86B, and EEF1A2),

which were not shown previously to be associated with

any other human metabolites.

Out of the 640 metabolites considered in this study,

366 metabolites had a positive estimated heritability

(h2), with the mean at 0.111, ranging from 0 to 0.539

in HCHS/SOL participants (Table S14); heritability

estimates and their summary by super-pathway

are presented in Figure S2. Heritability explained

>20% of inter-individual variation in 50 metabolites,

and amino-acid-related metabolites, such as N-acetyl-

asparagine (h2 ¼ 0.539) and N-acetyl-aspartyl-glutamate

(h2 ¼ 0.464), tended to have the highest heritability

estimates.



Figure 1. Study Design
Co-localization of Metabolites with eQTLs

To better describe the potential genetic contribution of

the identified GWAS loci, we performed co-localization

analysis on 158 metabolite loci with gene expression in

GTEx V7 (Table S10) to understand whether they might

also affect gene expression levels in various tissues. Vari-

ants belonging to 78 genetic loci (136 variants, 339

variant-metabolite pairs) were found to have evidence of

co-localization (posterior probability, PPr > 0.6). There

were 54 loci where a single potential causal variant

underlies both the expression of a single gene and the

metabolite(s). Twelve previously unreported independent

variants with generalized effect were identified as co-

localizing for the association with 45 metabolites and

22 gene eQTLs in various tissues (Figure 4), suggesting

that the expression of these genes may be responsible

for the variation of metabolite levels in this locus. Among

22 previously unreported generalized variant-gene eQTL

pairs, 41% was attributed to four nonsynonymous vari-

ants (rs324420-FAAH, rs1047891-CPS1, rs948445-ACY3,

and rs2108622-CYP4F2), and two intronic variants were

co-localizing with the same gene to which they were an-

notated (rs376277540-SLC51A and rs2304913-BBOX1).

Functional Annotation of GWAS Loci

We further used PhenoScanner34 to determine whether 41

previously unreported independent variants with general-

ized effect detected in the current study were also associ-

ated with other traits and diseases to improve the func-

tional annotation of our GWAS loci. Twelve variants were

genome-wide significant for 65 phenotypes (Figure S3),

including blood lipids levels, blood cell characteristics, fac-
tors related to coagulation, and various diseases, such as

gout, asthma, and chronic kidney disease (Table S7). We

correlated the metabolites with those reported phenotypes

that are available in the HCHS/SOL study and found 24 sig-

nificant metabolite-phenotype associations, including

eight metabolite-lipid and three metabolite-blood cell

characteristics (p valuecor < 7.81 3 10�4, accounting for

64 tests, Table S15).

Assessing Tissue Specificity of Metabolites

To improve biological insight of our findings that were pre-

viously unreported, we assessed tissue specificity of metab-

olites. Pascal analysis identified 376 statistically significant

gene-metabolite pairs, including 313 pairs located in loci

containing previously unreported variants with general-

ized effect (Table S11). For the tissue-specific enrichment

analysis, top ‘‘one’’ ranked tissue-metabolite pairs included

nine liver-metabolite pairs and three kidney-metabolite

pairs (Figure S4).

Pathway Analysis

In genetic loci containing previously unreported variants

with generalized effect, the top ten significant modules of

both protein-protein interaction networks identified

included 70 gene-metabolite pairs, where 41 gene-metab-

olite pairs were also selected for DAVID modules (metab-

olite-specific FDR < 0.05), including three genes to which

three variant-metabolite pairs with generalized effect

were annotated (Tables S11–S13). Among the latter, two

genes were selected by both approaches in several iden-

tical pathways: the EEF1A2-guanidinoacetate pair is

involved in regulation of metabolic process and



Figure 2. Known and Previously Unreported Independent Associations
(A) Minor allele frequency against absolute effect estimates for 608 variant-metabolite associations with 95% confidence intervals.
(B) Functional consequences of 429 unique variants associated with metabolites levels.
transferase activity, whereas the F12-leucylglycine pair is

involved in blood coagulation, according to KEGG and

BIOCARTA.

Locus-Specific Investigations

Changes in metabolites levels may be reflecting the

changes in homeostasis and, possibly, an underlying dis-

ease process; therefore, studying relationships between

the identified variants, the respective metabolites levels,

and the disease outcomes can contribute to our under-

standing of the latter. Out of 39 metabolites associated

with variants with generalized effect, 12 were previously

reported to be associated with various health conditions

(Table S16).

We examined metabolites without known evidence for

disease conditions. For example, a nonsynonymous

variant, rs324420 (FAAH), was associated with increased

levels of an endocannabinoid N-oleoyltaurine (MAF ¼
32%, b ¼ 0.28). Fatty acid amide hydrolase (FAAH) plays

role in drug addiction (MIM: 606581), which led us to

selected smoking and drinking status as outcomes of inter-

est. Each SD increase in N-oleoyltaurine was associated

with lower odds of current smoking (odds ratio [OR] ¼
0.86, 95% confidence interval [CI] ¼ 0.79–0.93) in 3,595

HCHS/SOL participants as well as with lower odds of cur-

rent alcohol drinking (OR ¼ 0.82, 95% CI ¼ 0.71–0.93)

in 3,925 ARIC EAs (p value < 0.006, Supplemental

Methods). However, we did not observe statistically signif-

icant associations between rs324420 and smoking or

drinking status (Table S17).

Intronic variant rs2328895 (SLC17A1) was associated

with decreased N-acetyltryptophan in our study and was

associated with decreased risk of self-reported gout in pre-

vious a GWAS (see ‘‘Rapid GWAS of Thousands of Pheno-

types for 337,000 Samples in the UK BioBank’’ in Web Re-

sources). Gout increases the risk of CHD and HF,

therefore, we investigated both the variant and the
metabolite with CHD and HF. Each SD increase in N-ace-

tyltryptophan levels was associated with increased odds

of prevalent CHD in both HCHS/SOL participants (OR ¼
1.24, 95% CI ¼ 1.06–1.46) and ARIC EAs (OR ¼ 1.75,

95% CI ¼ 1.16–2.63) and with 231% increase in odds of

prevalent (OR ¼ 3.31, 95% CI ¼ 2.12–5.16) and 58% in-

crease risk of incident (HR ¼ 1.58, 95% CI ¼ 1.25–1.99)

HF among ARIC EAs (Table S18). Rs2328895 was sugges-

tively associated with decreased risk of incident CHD in

ARIC EAs (p value ¼ 0.09), where the risk-decreasing ef-

fect was predominantly seen in the elderlies (>60 years

of age, HR ¼ 0.86, 95% CI ¼ 0.77–0.96, Table S18 and

Figure S5).
Mendelian Randomization

In addition to non-genetic observational analyses, we per-

formed MR analyses to elucidate the possible causal path-

ways relevant for diseases of heart (CHD and HF) and dia-

betes mellitus (T2D), both of which are among the ten

leading causes of death in US.49 Genetically regulated

higher levels of five metabolites, which were not previ-

ously associated with any applicable health traits,

including known risk factors for CHD and T2D (according

to the humanmetabolome database, Table S16), had a sta-

tistically significant causal effect on CHD and T2D (Fig-

ures 5A and 5B and Table S19). We estimated that each

SD increase in the levels of octadecanedioate, gamma-

CEHC, and gamma-CEHC glucuronide was associated

with 17% (OR ¼ 0.83, 95% CI ¼ 0.77–0.90), 16% (OR ¼
0.84, 95% CI ¼ 0.78–0.91), and 23% (OR ¼ 0.77, 95%

CI ¼ 0.67–0.87) lower odds of CHD, respectively. Addi-

tionally, each SD increase in 1-arachidonylglycerol

(20:4) and 1-palmitoyl-2-stearoyl-GPC (16:0/18:0) was

associated with increased odds of T2D (OR ¼ 1.13, 95%

CI ¼ 1.06–1.21 and OR ¼ 1.24, 95% CI ¼ 1.10–1.40,

respectively).



Figure 3. Manhattan Plot of 39 Metabolites Associated with 46 Previously Unreported Findings with Generalized Effect
For each of the corresponding super-pathways, a color scheme for the previously unreported loci with generalized effect is represented in
the legend, whereas all other signals are shown in gray.
Discussion

We conducted a GWAS based on 1000 Genomes panel to

detect genetic loci associated with 640 circulating metabo-

lites in a Hispanic population and identified 46 previously

unreported generalized metabolite-genetic locus associa-

tions; seven associations were driven by nonsynonymous

variants. Five loci harboring six variants with generalized

effect have never been reported with circulating metabo-

lites levels. We demonstrated that levels of five metabolites

were genetically associated with the risk of CHD and/or

T2D. Our study represents the GWAS of the metabolome

in an underrepresented Hispanic/Latino community,

which provides additional insights beyond previous

GWASs in other ethnicities.

The 46 previously unreported generalized associations

consist of metabolites from five super pathways, including

amino acids, lipids, cofactors and vitamins, nucleotides,

and peptides. To understand the potential function of

those findings, we applied a series of complementary

methods. By using co-localization analyses, we identified

twelve unique loci where the previously unreported gener-

alized variant co-localized with the eQTL for 22 unique

genes in GTEx tissues, highlighting the biologically plau-

sible genes. Previously unreported generalized variants in

or near genes DOCK7, CPS1, F12, and CYP4F2, which co-

localize with gene expression in seven specific tissues, are

also associated with clinically relevant phenotypes. For

example, synonymous DOCK7 variant rs10889335, associ-

ated with decreased levels of phosphatidylinositol 1-

stearoyl-2-arachidonoyl-GPI (18:0/20:3) (HMDB09815),

co-localized with decreased ANGPTL3 levels in the liver

(Table S10). ANGPTL3 participates in lipid metabolism

and causes familial hypobetalipoproteinemia type 2
(MIM: 605019); rs10889335 was previously associated

with decreased level of triglycerides, low density lipopro-

teins, and total cholesterol.50

To generate new hypotheses, we explored the potential

pathways by using knowledge-based approaches. A nonsy-

nonymous variant, rs324420, belonging to a degrading

enzyme of endocannabinoids, FAAH, was associated with

increased levels of an endocannabinoid N-oleoyltaurine.

rs324420 increases sensitivity of FAAH to proteolytic

degradation51 and was previously associated with several

other endocannabinoids.52 FAAH plays a role in drug

addiction (MIM: 606581), smoking cessation in hu-

mans,53 and alcohol consumption in mice.54 We tested

and identified that increased levels of N-oleoyltaurine

were associated with lower odds of current smoking and

drinking status, providing supporting evidence for the

importance of this endocannabinoid in the addiction

pathways (Table S17). Additionally, rs324420 was identi-

fied as a causal variant, underlying the effect on both

expression of CYP4X1 (a cytochrome P450 family member

participating in oxidation of endocannabinoids) in the

hippocampus, a part of the endocannabinoid brain

signaling system (Table S10),55–57 and it was associated

with several endocannabinoids and derivatives, including

palmitoylethanolamide, linoleoylethanolamide, N-oleoyl-

taurine, and N-oleoylserine. Although we did not observe

statistical significance in both HCHS/SOL and ARIC for

the associations between N-oleoyltaurine with drinking

and smoking, the directionality of the effects was consis-

tent for the N-oleoyltaurine-drinking association in both

studies (Table S17). N-oleoyltaurine can be synthesized

from taurine and oleic acid, both of which are common

in the human diet. The lack of reproducibility of statisti-

cally significant associations might be due to the



Table 1. Previously Unreported Independent Statistically Significant Single Variant-Metabolite Associations with Generalized Effect in
HCHS/SOL, ARIC, and TwinsUK

Phenotype

Variant Information HCHS/SOL (n ¼ 3,926) ARIC (n ¼ 1,509)

rsID Gene Consequence M/O MAF Beta p Value MAF Beta p Value

N-oleoyltaurinea rs324420 FAAH nonsynonymous A/C 0.319 0.28 2.05E�31 0.202 0.19 5.84E�05

Caprylate (8:0) rs12760091 CR936677 ncRNA_intronic C/T 0.44 �0.22 2.35E�20 0.699 �0.22 1.03E�05

Indoleacetylglutamine rs7541453 THEM5; THEM4 intergenic C/T 0.36 0.18 2.21E�16 0.407 0.21 3.51E�08

N-acetylleucinea rs28879089 ALMS1 intronic A/G 0.269 0.70 5.66E�160 0.241 0.55 2.48E�40

N2-acetyllysine rs13409366 ALMS1; NAT8 intergenic G/A 0.268 0.88 5.98E�252 0.241 1.02 6.42E�162

2-hydroxyoctanoate rs111540621 ALMS1; NAT8 intergenic G/C 0.264 �0.30 2.08E�30 0.232 �0.35 2.94E�16

N2-acetyllysine rs10200762 ALMS1P; NAT8B intergenic T/C 0.387 0.47 5.93E�92 0.388 0.58 5.84E�59

N-acetylargininea rs12713794 TPRKB downstream A/G 0.377 0.55 3.46E�123 0.36 0.56 5.18E�54

Isobutyrylglycinea rs1047891 CPS1 nonsynonymous A/C 0.31 0.16 6.98E�11 0.326 0.40 1.66E�22

Isovalerylglycinea 0.19 1.58E�16 0.326 0.20 8.86E�07

Androsterone sulfate rs376277540 ZDHHC19;
SLC51A

intergenic T/TG 0.363 0.16 6.09E�11 0.422 0.17 1.80E�05

Epiandrosterone sulfate 0.16 6.36E�11 0.422 0.18 3.50E�06

16a-hydroxy DHEA
3 -sulfate

0.22 2.29E�20 0.422 0.15 0.000115

Tiglylcarnitine (C5:1-DC) rs7678928 BC027846 ncRNA_intronic T/C 0.362 �0.17 6.75E�13 0.462 �0.15 6.41E�05

Methionine sulfone rs151067661 BC032469;
SLC6A19

intergenic C/inc 0.31 0.22 1.68E�20 0.286 0.17 3.49E�05

Leucylglycinea rs1801020 F12 UTR5 A/G 0.342 �0.24 1.74E�22 0.253 �0.23 1.68E�05

N-acetyltryptophana rs2328895 SLC17A1 intronic C/T 0.314 �0.24 6.60E�24 0.445 �0.14 0.000137

S-adenosylhomocysteinea rs2095375b PCMT1 intronic C/A 0.363 �0.22 1.43E�20 0.637 �0.21 2.21E�08

3-methoxytyrosine rs57835901 DDC intronic A/T 0.034 0.45 1.88E�12 0.015 0.77 3.29E�07

N-acetyltaurine rs6602116b PTER intronic G/A 0.449 0.23 1.44E�24 0.535 0.16 2.28E�05

Deoxycarnitine rs2304913 BBOX1 intronic C/T 0.034 0.45 1.33E�12 0.044 0.43 1.26E�06

N-acetyl-aspartyl-glutamatea rs4929895b FOLH1 intronic G/A 0.409 �0.46 3.30E�84 0.419 �0.39 6.10E�25

N-acetyl-aspartyl-glutamatea rs61885293b FOLH1;
LOC440040

intergenic C/A 0.04 �0.93 3.99E�58 0.048 �1.01 5.73E�34

N-acetyl-aspartyl-glutamatea rs9704992 TRIM48 intergenic T/C 0.432 �0.36 6.78E�55 0.531 �0.32 1.03E�13

N-acetyltryptophana rs2290958 ACY3 intronic T/C 0.21 �0.40 3.28E�45 0.178 �0.47 4.05E�20

N-acetylkynurenine (2)a rs948445 ACY3 nonsynonymous C/T 0.209 �0.21 4.72E�13 0.18 �0.26 1.53E�07

3-methoxytyramine sulfatea rs7141433 GCH1 intronic T/C 0.116 �0.27 4.82E�15 0.125 �0.27 8.04E�07

Indoleacetylglutamine rs146233716 ACSM2A nonsynonymous A/G 0.179 �0.26 1.89E�17 0.246 �0.30 9.43E�09

Gamma-CEHC rs79400241 UCA1; CYP4F2 intergenic G/C 0.248 �0.28 5.93E�26 0.279 �0.24 4.81E�09

Gamma-CEHC glucuronidea �0.18 1.34E�15 0.279 �0.31 2.01E�14

Phenotype Variant Information HCHS/SOL (n ¼ 3,926) TwinsUK (n ¼ 1,293–1,959)

1-stearoyl-2-arachidonoyl-GPI
(18:0/20:4)

rs10889335 DOCK7 synonymous G/A 0.357 �0.17 1.19E�12 0.377 �0.24 1.71E�08

Dopamine 3-O-sulfate rs7129483 MIR4686;
ASCL2

intergenic T/C 0.287 0.27 1.52E�27 0.236 0.18 2.84E�06

1-arachidonylglycerol (20:4) rs102274 TMEM258 intronic C/T 0.47 �0.41 7.52E�62 0.354 �0.25 3.13E�10

1-palmitoyl-2-stearoyl-GPC
(16:0/18:0)

rs174554 FADS1 intronic G/A 0.468 �0.24 4.76E�21 0.354 �0.39 4.90E�08

(Continued on next page)



Table 1. Continued

Phenotype

Variant Information HCHS/SOL (n ¼ 3,926) ARIC (n ¼ 1,509)

rsID Gene Consequence M/O MAF Beta p Value MAF Beta p Value

Palmitoyl
dihydrosphingomyelin
(d18:0/16:0)

rs8008068 SGPP1; SYNE2 intergenic G/A 0.234 �0.24 5.09E�18 0.152 �0.22 1.18E�08

Indoleacetylglutamine rs7185111 ACSM2A intronic G/C 0.311 0.22 4.30E�24 0.328 0.27 3.70E�09

1-(1-enyl-palmitoyl)-
2-palmitoyl-
GPC (P-16:0/16:0)

rs247617 HERPUD1;
CETP

intergenic A/C 0.296 0.16 3.57E�11 0.333 0.14 4.31E�07

1-(1-enyl-palmitoyl)-2-
arachidonoyl-GPE
(P-16:0/20:4)

rs3826884b TMEM86B UTR3 A/G 0.208 �0.20 2.16E�13 0.171 �0.19 2.52E�06

Arginine rs17788484 ARG1 UTR5 T/C 0.033 �0.53 1.23E�16 0.017 �0.73 5.44E�07

2-hydroxyphenylacetate rs7849982 CCBL1 intronic T/C 0.272 �0.17 4.40E�11 0.261 �0.23 4.79E�08

N-acetyltyrosine rs948445 ACY3 nonsynonymous C/T 0.209 �0.30 3.15E�24 0.19 �0.17 1.99E�07

Taurocholenate sulfate rs10488763 AK094117;
AK124179

ncRNA_intronic T/A 0.259 �0.18 1.74E�11 0.131 �0.28 1.84E�06

2-hydroxyphenylacetate rs11614623 HPD intronic T/C 0.196 �0.19 1.56E�11 0.114 �0.28 1.87E�07

Octadecanedioate rs2108622 CYP4F2 nonsynonymous T/C 0.248 �0.22 6.12E�17 0.308 �0.21 1.50E�06

N1-methyladenosine rs406383 ADA intronic G/C 0.256 �0.27 1.75E�24 0.231 �0.19 3.64E�06

Guanidinoacetate rs2314639b EEF1A2;
PPDPF

intergenic T/C 0.199 0.22 5.37E�14 0.141 0.25 6.45E�06

RsID, reference SNP ID; MA/OA, minor allele/other allele; MAF, minor allele frequency; n, number of participants.
aMetabolite has never been reported to be statistically significantly associated with genetic variants.
bVariant belongs to a locus that has never been reported to be associated with other human metabolome metabolites.
differences between the cohorts, such as culture and life-

styles, because taurine and oleic acid are mainly obtained

from diet58 and it has been shown that N-oleoyltaurine

can affect food intake in mice.59 We were also underpow-

ered to detect the effect of current smoking observed in

HCHS/SOL in 1,553 ARIC EAs. Further investigation is war-

ranted to elucidate the relationship between FAAH, N-

oleoyltaurine, and addiction behavior.

Intergenic variant rs376277540, located upstream of

SLC51A, encoding a subunit of a bidirectional transporter

for steroid-derived molecules, OSTa–OSTb, is associated

with increased levels of three androgenic sulfated steroids

(androsterone sulfate, epiandrosterone sulfate, and ahy-

droxy-DHEA3 sulfate).60 OSTa–OSTb can be inhibited by

sulfate-conjugates of steroids in transport experiments,61

supporting the importance of this transporter in relation

to the detected steroids. Additionally, rs376277540 co-lo-

calizes with decreased expression levels of SLC51A in trans-

verse colon and terminal ileum (Table S10).

A previously unreported intronic variant rs2328895,

belonging to SLC17A1 and encoding a sodium-dependent

phosphate transport protein located in the proximal con-

voluted renal tubule, is associated with decreased N-acetyl-

tryptophan levels. rs2328895 was previously reported to be

associated with several anthropometric characteristics,

blood cell traits,62 DNA methylation in whole blood,

expression levels of several surrounding genes, and with

decreased risk for disorders of mineral metabolism and
self-reported gout (Figure S3 and Table S7)(see ‘‘Rapid

GWAS of Thousands of Phenotypes for 337,000 Samples

in the UK BioBank’’ in Web Resources). Gout, which is

characterized by hyperuricemia, increases the risk of

CHD63 and HF,64 and high N-acetyl-tryptophan levels

were found to be associated with increased odds of preva-

lent CHD and HF and increased risk of HF (Table S18).

Moreover, we observed that rs2328895 was associated

with decreased risk of CHD in older ARIC participants. N-

acetyltryptophan has not been previously reported for

CHD and HF. It belongs to tryptophane metabolism65

with anti-oxidant properties.66 Increased urine levels of

N-acetyltryptophan have recently been reported to be

associated with hyperlipidemia.67 Interestingly, for the

same genetic locus, DAVID analysis with both PPI and

PC modules suggested enrichment of N-acetyltrypto-

phan-related genes with chromatin assembly and organi-

zation, the latter playing a key role in determining cellular

fate and identity (Table S13).68 Further studies are needed

to confirm the roles of rs2328895 and N-acetyltryptophan

in CHD and HF.

With the emerging large-scale GWAS discoveries of com-

plex traits, the MR analyses have been widely used to

explore the causal relationship between traits. We utilized

three large GWAS summary statistics and identified two

causal pathways for CHD and one causal pathway for

T2D. Allele C of an intergenic variant, rs79400241, located

downstream of CYP4F2 involved in catabolism of vitamin



Figure 4. Previously Unreported Variant-Metabolite Pairs with Generalized Effect Co-localizing for the Association with Gene eQTLs
The direction of the effect of the minor allele on metabolite levels and gene expression is shown in the legend.
E,69 is associated with increased levels of gamma-CEHC

and gamma-CEHC glucuronide. Both metabolites are

vitamin E derivatives,70 and gamma-CEHC possesses anti-

oxidant and natriuretic properties.71,72 C allele of a nonsy-

nonymous variant, rs2108622, located in CYP4F2, is asso-

ciated with increased levels of octadecanedioate. Increased

octadecanedioate levels have previously been associated

with decreased odds of preeclampsia.73 DAVID analysis

with PPI and PC interaction networks suggested enrich-

ment of octadecanedioate-related genes with apoptosis

(Table S13). Our MR analyses show that increase in octade-

canedioate, gamma-CEHC, and gamma-CEHC glucuro-

nide levels are all associated with decreased odds of CHD

(Table S19), suggesting that these metabolites might help

to prevent CHD and improve CHD risk prediction.

CYP4F2 disruption is known to lead to accumulation of

vitamin E and to decreased production of CEHCs,74 there-

fore, our results are consistent with previous MR analyses
showing that genetically regulated high levels of vitamin

E are increasing the odds of CHD.75

Allele A of an intronic variant, rs174554 (FADS1, an

inflammation initiation and resolution regulator involved

in hepatic lipogenesis76), is associated with increased levels

of 1-palmitoyl-2-stearoyl-GPC (16:0/18:0)—a phosphati-

dylcholine. FADS1 is thought to modulate the hepatic

accumulation of phosphatidylcholines.77 Phosphatidyl-

choline species are suggested to play a role in insulin resis-

tance,78 which is further supported by our MR results, ac-

cording to which increase in 1-palmitoyl-2-stearoyl-GPC

(16:0/18:0) is associated with increased odds of T2D (Table

S19). Allele T of another intronic variant, rs102274 of

TMEM258, a central regulator of intestinal inflammation

and endoplasmic reticulum stress responses79 located in

the same cluster of genes on chromosome 11, is associated

with increased levels of 1-arachidonylglycerol (20:4). 1-

arachidonylglycerol (20:4) is a derivative of arachidonic



Figure 5. Forest Plots for Mendelian Randomization Analysis Results
(A) Coronary heart disease.
(B) Type 2 diabetes.
acid (which plays a key role in inflammation) and is also

associated with increased odds of T2D in our MR analysis.

Furthermore, genes associated with several metabolites

discussed above are most specifically expressed in liver,

including androsterone sulfate, epiandrosterone sulfate,

ahydroxy-DHEA3 sulfate, and palmitoyl-2-stearoyl-GPC

(16:0/18:0) (concordant with the known metabolites syn-

thesis organ), and more importantly, N-acetyltryptophan,

octadecanedioate and gamma-CECH glucuronide

(Figure S4), which do not have known tissue locations in

the humanmetabolome database.80 Our findings pinpoint

the biochemical synthesis ‘‘factory’’ in humans related to

the latter metabolites.

Previous GWASs largely focus on European ancestry,4,8,9

and a few considered African ancestry.5–7 Our metabolite

heritability estimates in Hispanics ranged from 0%–54%,

which are comparable with other ancestries.4,81 We also re-

produced 171 previously reported variant-metabolite asso-

ciations and generalized 46 previously unreported variant-

metabolite associations in Hispanics to European ancestry,

implying that the genetic effects of many metabolites are

consistent across ancestries. Out of 149 metabolites (form-

ing 230 variant-metabolite pairs) associated with previ-

ously unreported variants and considered for replication,

about half (73 metabolites and 107 variant-metabolite as-

sociations) were available for replication in ARIC EAs. 69

(50 metabolites and 63 variants) associations were avail-

able in ARIC EAs but were not replicated. Among these

63 variants, nine variants had imputation quality < 0.6

and six hadMAF< 1.4% and would require a larger sample
size for their replication. Future studies with a broad mea-

sure of metabolites and greater samples may provide addi-

tional insight into those associations that were not repli-

cated in our study, especially given that some of the

previously unreported findings that were not generalized

in ARIC EAs are biologically plausible.

For example, intergenic variant rs12416738 was en-

riched in Hispanics/Latinos (HCHS/SOL MAF ¼ 15%,

ARIC EA MAF ¼ 0.3%) and is associated with increased

levels of several metabolites participating in arachido-

nate-phospholipid remodeling cycle (also known as CoA-

independent transacylation system, involved in cell prolif-

eration), including arachidonate, 1-arachidonoyl-GPC

(20:4n6), 1-stearoyl-2-arachidonoyl-GPC (18:0/20:4), and

1-palmitoyl-2-arachidonoyl-GPC (16:0/20:4n6) (Table

S5). Notably, no genes or corresponding enzymes respon-

sible for the CoA-independent transacylation have been

identified so far,82 making this finding a particularly inter-

esting candidate for future follow-up. Prior GWASs suggest

distinct genetic effects on complex traits in the Hispanic

population.83 The lack of generalizability in the present

studymay be in part due to the unique Hispanic genetic ar-

chitecture, which warrants future investigation.

In summary, our study demonstrated the genetic archi-

tecture of circulating metabolites in an underrepresented

Hispanic/Latino community and improved the functional

annotation of GWAS loci. This work was further strength-

ened by identification of causal relationships between

selected genetically regulated metabolites and disease out-

comes. Our results provide a unique resource and



interesting insights for follow-up studies in basic science

and clinical medicine to further unravel disease etiology.
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