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Abstract

Type 2 diabetes is a complex, systemic disease affected by both genetic and environmental factors. Previous research has identified
genetic variants associated with type 2 diabetes risk; however, gene regulatory changes underlying progression to metabolic
dysfunction are still largely unknown. We investigated RNA expression changes that occur during diabetes progression using a two-
stage approach. In our discovery stage, we compared changes in gene expression using two longitudinally collected blood samples
from subjects whose fasting blood glucose transitioned to a level consistent with type 2 diabetes diagnosis between the time points
against those who did not with a novel analytical network approach. Our network methodology identified 17 networks, one of which
was significantly associated with transition status. This 822-gene network harbors many genes novel to the type 2 diabetes literature
but is also significantly enriched for genes previously associated with type 2 diabetes. In the validation stage, we queried associations
of genetically determined expression with diabetes-related traits in a large biobank with linked electronic health records. We observed
a significant enrichment of genes in our identified network whose genetically determined expression is associated with type 2
diabetes and other metabolic traits and validated 31 genes that are not near previously reported type 2 diabetes loci. Finally, we
provide additional functional support, which suggests that the genes in this network are regulated by enhancers that operate in
human pancreatic islet cells. We present an innovative and systematic approach that identified and validated key gene expression
changes associated with type 2 diabetes transition status and demonstrated their translational relevance in a large clinical resource.

Introduction
The molecular changes that occur during disease patho-
genesis are largely unknown in common complex sys-
temic diseases like type 2 diabetes. Technologies such as
RNA sequencing enable high throughput characteriza-
tion of genome-wide regulatory profiles. This approach
has been utilized in cross-sectional samples of cases
and controls to identify regulatory variation and differ-
entially expressed genes associated with disease pheno-
types (1). At the same time, the development of large-
scale DNA databanks linked to electronic health records
(EHRs) provides an opportunity to evaluate the effects
of markers of disease progression on the human phe-
nome. Our two-stage integrative approach bridges these
methodologies to uniquely empower discovery of novel
disease mechanisms and support known clinically rele-
vant genes.

The Cameron County Hispanic Cohort (CCHC, n = 4800)
is a randomly sampled and longitudinally measured
community cohort of Mexican Americans that provides

the opportunity to assess changes in RNA abundance
across time (2). Individuals living in Cameron County
Texas suffer from a disproportionate burden of metabolic
disease, motivating analyses of molecular changes
associated with metabolic deterioration over time,
measured here by changes in fasting blood glucose. The
prevalence of type 2 diabetes in south Texas estimated
from our randomly ascertained, low-income, community
recruited cohort, CCHC, is 27.6%, considerably higher
than that reported for Mexican Americans nationally,
with a prediabetes prevalence of 32% (3). In a recent study
of CCHC participants, we found that declining metabolic
health had the greatest impact on type 2 diabetes risk,
independent of obesity and family history of diabetes (4).

Furthermore, the availability of a large number of
human metabolic phenotypes in Vanderbilt University
Medical Center’s EHR-linked DNA databank, BioVU
(n ∼ 96 000 total genotyped samples), enables discovery
of the effects of genes across the metabolic phenome in
a clinical setting (5,6).
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Based on twin and family studies, the estimated heri-
tability of type 2 diabetes ranges from 20% to 80% (7,8).
Previously, genetic linkage and genome wide-association
studies have successfully identified many risk variants
(9–13), but to date, reported loci explain less than 15% of
heritability (9,14), with chip heritability estimates as high
as 18% (15). Various studies have aimed to distinguish the
missing heritable components from other components
such as gene–environment interaction and epigenetics
(16,17); however, no studies that we are aware of have
focused on gene expression changes associated with the
transition to type 2 diabetes.

The level of gene expression reflects both variation
in DNA sequence and interaction with other factors,
e.g. other genes, environment or epigenetic regulation.
Therefore, the tissue-specific expression level of RNA in
an individual at a given time represents both genetic and
environmental conditions (18). Because gene expression
levels reflect complex and interacting genetic and envi-
ronmental effects, investigation of changes in the whole
transcriptomic profile during disease progression pro-
vides a novel opportunity to increase our understanding
of the molecular physiology of deteriorating metabolic
health.

To better understand the role of RNA expression
changes in the type 2 diabetes progression, we applied
a novel two-stage approach to identify a set of genes
related to disease transition status and to validate
their function and broader clinical implication. This
innovative approach is designed to facilitate discovery
of robust associations even in a small sample size, due to
two primary factors: (1) our data capture a unique point
of disease progression where changes in gene expression
are likely be large and robust and (2) we control for many
potential confounders by comparing expression changes
in the same individuals across time. Here, we leverage
longitudinal genome-wide RNA sequence profiling and
translate findings using a large-scale DNA biobank linked
to comprehensive EHRs to improve understanding of the
role of gene regulation in metabolic deterioration.

Results
Overview of study design
To elucidate biological processes involved in disease
progression, we used a two-stage strategy to identify and
validate genes associated with transition status (Fig. 1).
In the discovery stage (Fig. 1C, left), we took advantage of
longitudinal specimens and data from CCHC participants
who were closely followed every 3–4 months to study
metabolic measures over time. We used a nested case–
control study design and used RNA-sequencing from two
timepoints per individual to profile the transcriptome of
transition cases, who developed fasting blood glucose
levels diagnostic of type 2 diabetes between the two
RNA measures, and controls, who maintained a non-
diabetic fasting blood glucose level at both baseline
and follow-up (step 1). To aggregate gene effects and

improve power, we clustered genes into networks with
correlated changes in expression between the two time
points across individuals (step 2). After generating the
networks, we examined the association between the
network’s first principal component (eigengene, see
Methods) and transition status to determine networks
associated with metabolic deterioration (step 3). We
evaluated the performance of our approach using an
independent and external large-scale genome-wide
association study (GWAS) repository of previously
reported and mapped genes (step 4) and assessed
the extent to which our significant networks map to
known biological processes using Gene Ontology (GO)
enrichment (step 5). To further elucidate the function
and effect of identified genes on the metabolic phenome
(Table 3 and Supplementary Material, Table S3), we
conducted validation in a large-scale biobank (Fig. 1C,
right). We applied PrediXcan, which estimates the genet-
ically determined component of expression, and used
these estimates to test a gene’s association with EHR
endocrine/metabolic disease codes (step 6) (19). To estab-
lish the enrichment of associations with the metabolic
phenome, we compared our observed results to a
null distribution generated from 100 000 permutations
(step 7). Finally, for novel genes in significant networks
(i.e. never reported in prior GWAS), we assessed their
role in type 2 diabetes risk by testing the association
with genetically predicted expression in BioVU (step
8). Moreover, to follow-up identified genes, we used
chromatin immunoprecipitation sequencing data from
human islet and determined the enrichment of activated
genes in significant networks (step 9).

Demographic characteristics of discovery cohort
Demographic characteristics for the participants of this
study are shown in Table 1. No significant difference
was observed in sex distribution between the 24 cases
(20% male) and 34 controls (15% male, P-value = 0.798).
The age distribution was similar at baseline, with mean
age 51.8 for cases and 54.1 for controls, respectively (P-
value = 0.492). Cases had significantly higher body mass
index (BMI) and fasting blood glucose at baseline than
controls (P-value = 0.011 for BMI, and P-value = 0.039 for
fasting blood glucose). There was a significant change in
fasting blood glucose for both groups over time, but in dif-
ferent directions. Average fasting blood glucose for cases
changed from 109.3 to 139.0 mg/dl (P-value <0.001) and
for controls from 104.9 to 99.3 mg/dl (P-value = 0.002).
Both groups had consistent BMI over the study period
(BMI from 36.0 to 37.0 and P-value = 0.580 for cases and
BMI from 32.1 to 31.7, P = 0.770 for controls). HbA1C mea-
sures are not available at every time for every subject,
but all 53 subjects with available HbA1C had a normal
value (<6.5%) at baseline. Ten cases (17 with an available
measurement) had an abnormal (>6.5%) value at follow-
up, while all controls (29 with an available measurement)
had normal HbA1C at follow-up.

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac039#supplementary-data
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Figure 1. (A) Nested case–control design. CCHC is a randomly ascertained community-based cohort and comprises over 4700 individuals (approximately
60% female). All participants are followed longitudinally. (B) Elapsed time between measures for each participant, the shape indicates their health status
and arrow color represent their final group. (C) Chart of study strategy.

Network analysis and identification of
disease-relevant networks (step 1–3)
A single-gene approach was found to be underpowered
(see Supplementary Material, Tables S1 and S2), moti-
vating the network analysis. We identified 17 networks
(Table 2), with sizes varying from 116 to 6204 genes.
The variance explained by the eigengene (i.e. the first

principal component) for a network ranged from 23.0%
to 65.0% (Fig. 1C).

The network membership score (NMS) (see Methods)
provides an approach to evaluate a network’s association
with transition. A single network, network 5, was found to
be significantly associated with transition status (r = 0.26,
P-value = 0.049), as assessed by the correlation between

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac039#supplementary-data
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Table 1. Demographic and metabolic characteristics of case and control groups, which were defined by changes in fasting blood
glucose

Cases (N = 24) Controls (N = 34) P-value

Baseline Follow-up Baseline Follow-up Baselinea Casesb Controlsc

Male (N, %) 5 (21%) 5 (15%) 0.798
Age at baseline 51.83 ± 11.97 54.12 ± 12.93 0.492
Follow-up time (months) 19.65 ± 13.32 28.70 ± 10.96 0.067
Smokingd 3 (13%) 12 (35%) 0.099
BMI (kg/m2) 35.97 ±5.79 37.01 ±7.04 32.12 ±5.11 31.74 ±5.51 0.012 0.580 0.770
Fasting glucose (mg/dl) 109.29 ±7.52 138.92 ±33.20 104.94 ±7.99 99.26 ±6.32 0.039 <0.001 0.002

aBaseline P-values were based on the comparison of the value at baseline between cases and controls, t-test for continuous variables and χ2 test for dichotomous
variable. bComparing the value at baseline and follow-up within case group, paired t-test was applied. cComparing the value at baseline and follow-up within
control group, paired t-test was applied. dMore than 100 cigarettes in participant’s entire life before enrollment.

Table 2. Identified networks and their correlations with
transition status

Networks Number
of genes

Correlation with
transition

Variation explained
by eigengene

Network 1 717 0.22 55.7%
Network 2 3672 0.01 40.2%
Network 3 2490 0.02 51.1%
Network 4 133 0.19 52.7%
Network 5 822 0.25 51.9%
Network 6 263 0.01 36.7%
Network 7 3295 0.05 23.0%
Network 8 116 0.24 55.1%
Network 9 465 -0.05 46.8%
Network 10 128 -0.11 47.0%
Network 11 711 -0.01 64.5%
Network 12 321 0.12 47.0%
Network 13 803 -0.13 47.8%
Network 14 146 -0.15 45.7%
Network 15 174 -0.19 43.4%
Network 16 6204 0.08 60.6%
Network 17 838 -0.15 45.7%

the network’s eigengene and transition status. Notably,
for this network (see Supplementary Material, Fig. S1
for its topology), the NMS of each gene (see Table 2 and
Supplementary Material, Fig. S2 for NMS distribution)
was significantly correlated with the gene’s association
(ρ) with transition status (r = cor(NMS, ρ) = 0.47, P-
value <1 × 10−15) across the 822 genes. This network is
highly connected (Supplementary Material, Fig. S3) with
mean connectivity = 50 and standard error of the mean
(SEM) = 1.35, and within this network, the connectivity
of a gene was significantly correlated with the gene’s
association, ρ, with transition (r = 0.38, P = 3.8 × 10−29).
Patterns of �g for the top 38 genes (i.e. those genes with
correlation coefficient to transition, ρ, greater than 0.30)
were visualized using a heatmap (Fig. 2C). In the gene
network significantly associated with transition status
(network 5), the top four genes most significantly associ-
ated with transition were MIR3605, ASB9P1, NUDT16 and
MKNK1-AS (ρ = 0.45, 0.31, 0.38 and 0.38, respectively; see
Supplementary Material, Table S1). Finally, in addition to
NMS (discussed above), weighted number of connections
is a parameter of interest (see Supplementary Material,

Fig. S3 for its intranetwork distribution). WDFY3 had the
highest value for membership (0.98) and STX3 had the
largest number of connections in the network (155.09).
Connectivity and NMS were highly correlated (R2 = 0.85
and P = 7.88 × 10−232 Fig. 2B), suggesting, as observed in
standard co-expression analysis, that connectivity (a
metric that determines the topology of the network)
may be used as a measure of network membership
(20). Furthermore, we conducted a sensitivity analysis
using partial least squares discriminant analysis (PLS-
DA) on the 822 genes of the implicated network with
the log2 fold change (FC) residuals after regressing
out the effects of age and BMI. We found that using
the top two components from PLS-DA, there is a
clear separation between the two groups (Supplemen-
tary Material, Fig. S4) and demonstrating that our
observed association with T2D remains after adjust-
ment (P-value = 0.02 for t-test on transition status of
component 1).

Performance of network methodology (step 4)
We found that the NMS for the significant network is
significantly greater (Mann–Whitney U test P = 0.007)
for known metabolic trait-associated genes identified
by GWAS (Supplementary Material, Table S1) than for
the remaining set of genes. As genes mapped in GWAS
often play a functional role on the trait under study,
this finding suggests that the network is capturing
key aspects of metabolic biology (21–23). Notably, the
network is also implicating novel genes, i.e. genes that
have not been reported by previous GWAS, as perhaps
expected given the methodology’s novel focus on
identifying genes that influence changes in expression
(�g) (Fig. 1C).

GO enrichment for biological processes (step 5)
GO analysis implicated immune and inflammatory
processes (Benjamini–Hochberg false discovery rate
[FDR] < 0.05) (Fig. 3A), consistent with a number of recent
studies that show the importance of chronic systemic
inflammation or immunity preceding the onset of type 2
diabetes (Fig. 1C) (24–27).

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac039#supplementary-data
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https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac039#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac039#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac039#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac039#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac039#supplementary-data
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Figure 2. (A) Illustration of our network methodology. In contrast to a conventional coexpression network, each node is a gene with its change in
expression (�g) over time. An edge between nodes is determined by the correlation in expression change across individuals between the corresponding
nodes. Thus, the methodology aims to prioritize genes that may regulate the change in expression (�g), rather than expression level, of partner genes. (B)
Scatter plot of NMS and connectivity in network 5, showing significant correlation between the two metrics. The red line indicates the linear regression
line. (C) Heatmap of key genes in network 5 (i.e. genes with correlation with transition >0.3). The color presents the log2 transformed fold change of
follow-up over baseline for each gene, which we used to quantify �g. Both subjects and genes are clustered by Ward’s minimum variance. The cluster
analysis for genes is unsupervised and the subjects are forced to separate into two groups; cases and controls.

Enrichment of genetically determined expression
associated with trait in a large-scale biobank
(step 6–8)
The 822-gene network was found to be significantly
enriched for associations with diabetes mellitus (enrich-
ment P-value = 0.012), disorders of pancreatic internal secre-
tion (P-value = 0.004), overweight, obesity and other hyperal-
imentation (P-value = 0.029), and most metabolism disor-
ders (protein plasma/amino-acid transport and metabolism,
P-value = 0.009; other metabolism disorder, P-value = 0.002).
Lipid metabolism disorders were not observed to be
significantly enriched in this gene set, nor was the

phecode selected to be a negative control, secondary
diabetes mellitus (Table 3 and Fig. 1C).

Notably, among the validated genes, we identified sev-
eral that have never been reported by GWAS, including
STX3, SIGKEC5, TMEM260 and MAPK3 (Supplementary
Material, Table S1 for complete list).

Functional follow-up in human islets (step 9)
In human islet, ChromHMM analysis identified 16
different chromatin states. The specific chromatin
states—as defined by (1) (high) H4K3me1 and (high
or low) H3K27ac (which characterize strong enhancers

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac039#supplementary-data
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Figure 3. (A) Dot plot of gene ontology enrichment analysis. The diameter indicates the number of genes overlapping the gene ontology term and the
color indicates the enrichment P-value. The figure was generated using the R package clusterProfiler. (B) Bar plot for the fold enrichment of 822 genes
and their exonic regions in our identified network compared to all RefSeq genes and corresponding exonic regions in enhancer, poised enhancer, active
enhancer and insulator regions. (C) Known GWAS T2D SNP (rs735949) overlaps islet transcription factor binding sites from ChIP-Seq data. The transcript
structure of the gene ACSL1 from module 5 is also shown at bottom.

Table 3. Validation of 822 genes from network 5 in BioVU (P-value < 0.05)

Phe-
code

Description Counts P-value∗ Empirical null distribution

1% 5% 50% 95% 99%

275 Disorders of mineral metabolism 1632 1×10−5 1336 1364 1433 1502 1531
242 Thyrotoxicosis with or without goiter 820 9×10−5 663 681 723 766 784
279 Disorders involving the immune mechanism 806 2.7×10−4 650 668 713 758 777
260 Protein-calorie malnutrition 1376 4.8×10−4 1172 1196 1256 1316 1341
277 Other disorders of metabolism 967 2.1×10−3 817 837 884 932 952
255 Disorders of adrenal glands 1372 2.9×10−3 1167 1195 1261 1328 1356
251 Other disorders of pancreatic internal secretion 395 4.3×10−3 316 327 353 379 390
269 Proteinuria 207 6.1×10−3 154 162 180 198 205
252 Disorders of parathyroid gland 598 7.0×10−3 484 500 539 579 595
257 Testicular dysfunction 419 7.7×10−3 319 333 368 403 417
270 Disorders of protein plasma/amino-acid

transport and metabolism
1715 9.3×10−3 1497 1529 1605 1682 1714

264 Lack of normal physiological development 958 1.2×10−2 817 839 889 939 961
250 Diabetes mellitus 3761 1.2×10−2 3359 3417 3561 3707 3768
245 Thyroiditis 771 1.5×10−2 636 655 705 755 776
259 Other endocrine disorders 762 1.9×10−2 650 668 709 752 769
241 Nontoxic nodular goiter 593 2.2×10−2 489 506 545 585 601
278 Overweight, obesity and other

hyperalimentation
984 2.9×10−2 845 868 922 976 999

276 Disorders of fluid, electrolyte and acid–base
balance

2111 3.5×10−2 1870 1908 2004 2101 2141

∗P-values were generated empirically (see Methods) based on random sampling.
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and poised enhancers, respectively) and (2) high signal
for the islet-specific transcription factors (28)—are
enriched in the 822 genes (Fig. 3B and Supplementary
Material, Fig. S5). Compared to all RefSeq genes, the
822 genes are more likely to overlap with these specific
regulatory elements, i.e. 1.26-fold enrichment for gene
regions and 1.56 for exon regions for poised enhancers,
and 1.18-fold enrichment for gene regions and 0.99
for exon regions for strong enhancers (Fig. 3B and
Supplementary Material, Fig. S5), indicating that islet
regulatory regions near these genes are functionally
active (Fig. 1C).

As a vignette to highlight the functional relevance of
our discoveries, we mapped a single variant, rs735949
(a GWAS-identified T2D SNP intronic to Acyl-CoA Syn-
thetase Long Chain Family Member 1, ACSL1, within our
network (29)) to local genomic sequences or regula-
tory elements targeted by islet transcription factors
(Supplementary Material, Table S1). We found that the
variant also disrupts regulatory elements targeted by the
five beta cell transcription factors PDX1, NKX6, NKX2,
H2AZ and FOXA2 to influence ACSL1 islet transcription
(Fig. 3C). Taken together, these findings in islets lend
additional support for the functional relevance of these
genes identified in blood for T2D biology.

Discussion
There are notable strengths to our study. First and fore-
most, this is a landmark, longitudinal study at the border
of Mexico, uniquely capturing longitudinal molecular
signatures of a major health disparity in a minority
population with one of the highest burdens of type 2
diabetes worldwide. Our clinic in the heart of town and
our commitment to community engagement allowed for
extensive phenotypic characterization of this population.
Most prospective studies of complex diseases focus on
identifying baseline predictors for future incidence; for
instance, several risk factors for the incidence of type 2
diabetes have been identified, e.g. adiponectin, C-reactive
protein, and interleukin 6 (30–32). However, the devel-
opment of a complex disease is often not adequately
contextualized as a binary trait; indeed the develop-
ment of the disease may take place over decades and
in the context of distinct genetic and environmental
contexts. Thus, longitudinal study designs that measure
both genetic and environmental effects are warranted.
Gene expression is dynamic over time and often reflects
complex interactions between genetic factors and envi-
ronmental conditions. RNA abundance is therefore well-
suited to elucidate pathogenic mechanisms of complex
disease like type 2 diabetes, as has been shown for studies
of the inflammation process in humans (33,34). Further-
more, we took advantage of multiple independent data
sets to validate our innovative discovery approach and
findings, including exploring the translational effects
of our identified genes in a large-scale biobank with
linked EHRs.

The novelty of our longitudinal design presented
opportunities and challenges for making robust and
verifiable biological inferences. The discovery stage
of our study included a relatively small sample size,
which limited our power to identify genes from gene-
level analysis of changes in expression genome-wide
(see Supplemental Materials). This limitation prompted
joint analysis of the effect of genes using a network
methodology, in which we were well-powered to detect
networks with modest to large effect size. Second, type
2 diabetes is a complex systemic disease with diverse
clinical characteristics even among diagnosed patients.
Here, we used fasting glucose to define the different
phases of diabetic development, which, although a
crucial element, may not capture genes related to
other diagnostic criteria of diabetes such as HbA1C

and 2-h post-load glucose levels. Third, our discovery
stage analysis examined changes in expression in
circulating blood samples, which may or may not be
representative of the transcriptome in other tissues
relevant to metabolic dysfunction. However, circulating
whole blood is the diagnostic tissue for type 2 diabetes, is
easily accessible and is practical for human population-
based studies. Furthermore, it has been shown, using a
broad collection of human tissues (35,36), that there is
substantial sharing of regulatory variation across tissues.
To directly address the issue of tissue specificity, in
our validation stage, we demonstrated an enrichment
of active genes of our identified genes in human beta
islet cells. Lastly, our biobank validation stage is based
on the associations between imputed gene expression
and diagnosed phecodes. Therefore, the predictive power
of the PrediXcan models may limit the accuracy of
our imputed genetically regulated expression; however,
these models have been tested on a broad spectrum
of complex traits and shown notable power to discover
trait-associated genes (37). Models trained in European
ancestry samples are known to show decreased porta-
bility across ethnic groups. Cross-population PrediXcan
analysis would decrease power but not create false
positive results (38). Despite these challenges, we present
an innovative approach that robustly identified and
functionally validated a novel gene set in type 2 diabetes
progression.

In the transcriptome discovery stage of this study, we
followed 58 subjects with an initial fasting blood glucose
measure <126 mg/dl for up to 5 years, during which 24
cases transitioned to fasting blood glucose levels diag-
nostic for diabetes over a mean follow-up of 2 years
(Fig. 1C, step 1). In approximately the same time span,
the 34 controls maintained fasting blood glucose levels
<126 mg/dl. In this group of 58 individuals, we investi-
gated patterns of gene expression via RNA sequencing
data analysis at both baseline and follow-up and clus-
tered genes with correlated changes in expression over
time to identify 17 networks of genes (Fig. 1C, step 2). Our
network methodology differs from conventional coex-
pression analysis. In particular, rather than focusing on

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac039#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac039#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac039#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac039#supplementary-data
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cross-sectional expression profiles, our approach focuses
on change in expression as the unit of analysis (i.e. the
node) and identifies genes with correlated expression
changes (i.e. edges). Only one network, containing 822
genes, was significantly associated with transition status
(Fig. 1C, step 3). We found a significant association of
NMS with gene member correlation coefficient to fasting
blood glucose transition, suggesting that in this network,
the greater a gene’s correlation with network variance,
the greater the gene’s correlation with transition status.
The heatmap of genes significantly correlated with case/-
control status from the network of interest, shown in
Figure 1, demonstrates a visible separation and consis-
tent pattern of RNA expression FC between cases and
controls.

Due to the novelty of this approach, we evaluated the
performance of the methodology using several external
reference datasets including a repository of known GWAS
findings and GO (Fig. 1C, steps 4–5). We found that our
NMS and connectivity are significantly associated with
an external gene prioritization scheme based on the
GWAS catalog of metabolic traits (see ‘Assessing perfor-
mance of network methodology . . . ’ in Methods). This
finding suggests that our methodology is able to capture
key aspects of our current understanding of metabolic
biology. Furthermore, subsequent GO enrichment anal-
ysis of our significant gene network highlights the role
of inflammation and immunity in type 2 diabetes patho-
genesis.

The identified network is large and likely contains
both genes where changes in expression are causally
associated with transition status or where transition
has caused changes in expression, as well as genes
where expression changes are merely correlated with
causal changes due to, e.g. co-regulation. Thus, we
sought to prioritize genes of highest interest that
may warrant additional study. In this network, STX3
exhibited the highest connectivity, and WDFY3 had
the highest membership score, suggesting that these
genes are both highly representative of the aggregate
effect of the network and may play a central role in
biological processes that the network encompasses.
WDFY3 encodes a phosphatidylinositol 3-phosphate-
binding protein and has been reported to play a
role in the WNT signaling pathway (39). The WNT
signaling pathway is involved in many fundamen-
tal molecular functions, including lipid and glucose
metabolism (40), and another gene in the WNT pathway,
TCF7L2, is a known diabetic risk gene identified in
many genome-wide association studies (11,13,41). In
addition, STX3 is a member of the syntaxin fam-
ily, which has a known function in the insulin syn-
thesis and insulin signaling pathways (42–44), such
as regulating insulin granular exocytosis and com-
pound fusion in pancreatic beta cells (45). STX3 reg-
ulation was also found to be associated with type
2 diabetes pathogenesis in our independent biobank
analyses.

Four genes within the network, MIR3605, ASB9P1,
NUDT16 and MKNK1-AS, demonstrated the highest
correlation with transition status. None of these genes
have been previously implicated in genetic association
analyses of type 2 diabetes. MIR3605 is a microRNA, a
short non-coding RNA that participates in transcriptional
regulation. Upregulation of MIR3605 has been observed
in nasopharyngeal carcinoma tissue (46); notably, type
2 diabetes has been reported as a risk factor for the
incidence of nasopharyngeal carcinoma (47), providing
support for the existence of shared genetic risk for
both diabetes and nasopharyngeal carcinoma. ASB9P1
is a pseudogene of ASB9, Ankyrin Repeat and SOCS
Box Containing 9. ASB9 is involved in the regulation
pathway of SOCS box, which inhibits the insulin signaling
pathway and is connected to the development of insulin
resistance (48,49). MKNK1-AS is the antisense RNA for
MKNK1, MAP Kinase Interacting Serine/Threonine Kinase
1. The function of MKNK1 is related to cellular energy
balance, and its expression is affected by high-fat diet
(50,51). In animal studies, the Mknk1 knockout mice
with high-fat diet express a better glucose tolerance
and insulin sensitivity, suggesting that MKNK1 may
be involved in insulin signaling and further insulin
resistance (51). NUDT16 encodes Nudix hydrolase 16, a
member of the Nudix hydrolase superfamily that plays a
role in pyrimidine metabolism; however, its relationship
with diabetes is still unclear.

To validate the biological relevance of our findings, we
performed systematic validation of our findings using a
large EHR-linked DNA biobank and beta islet chromatin
immunoprecipitation data. In summary, we found signif-
icant enrichment of known metabolic trait genes, identi-
fied additional support for novel disease genes based on
models of genetic regulation and observed enrichment of
activated genes in beta islet cell ChiPseq data. Finally, we
leveraged a large DNA biobank with linked EHR to evalu-
ate the translational relevance of our genetic findings on
the broader metabolic phenome.

In the biobank validation stage, we sought to (1) vali-
date the role of our identified set of genes and (2) estab-
lish their broader clinical significance in type 2 diabetes
risk and related disorders. It is important to note that
the analysis in the transcriptome discovery stage can-
not differentiate between expression changes resulting
from deterioration of metabolic health and expression
changes that are causally responsible for the observed
metabolic changes. However, because genetic factors are
intrinsic (i.e. not altered by disease), if genetic regula-
tion of expression (as opposed to e.g. environmental or
disease-state effects) is associated with metabolic dis-
ease in the biobank validation stage, this finding not
only validates the role of the gene but also suggests
that the observed expression changes may in fact be
acting in a causal manner. To explore the effects of
genetic regulation of the genes identified by the net-
work analysis, we analyzed association between genet-
ically regulated expression levels [based on PrediXcan
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models across all tissues derived from Genotype-Tissue
Expression Project (GTEx) v6p] and clinical phenotypes
in BioVU (Fig. 1C, step 6). We tested for enrichment for
specific diabetes-related disorders, including pancreatic
internal secretion disorder, obesity and other metabolic
disorders (Fig. 1C, step 7). The 822 genes we identified
were found to be significantly enriched for associations
with diabetes mellitus and related metabolism disor-
ders. Mineral metabolism disorders were the most signif-
icantly enriched; the association of mineral metabolism
with diabetes and the possible mechanism of comor-
bidity have been discussed in previous studies (52–54).
Bone fracture is a severe outcome of abnormal mineral
metabolism, and risk increases 2-fold in type 2 diabetes
patients (55). Additionally, we identified the disease cat-
egory ‘other disorder of metabolism’, which includes
metabolic syndrome and other lipoid metabolism disor-
ders. Metabolic syndrome is a strong predictor for inci-
dence of type 2 diabetes, with subjects with metabolic
syndrome having three times greater type 2 diabetes
incidence than those without metabolic syndrome (56).
We used secondary diabetes mellitus as negative control
and found that our identified genes are not significantly
enriched in secondary diabetes mellitus (see Table 3).
Collectively, the significant enrichment for associations
between genes identified in our transcriptome discov-
ery stage and phecodes in BioVU related to metabolic
health such as diabetes mellitus, obesity and metabolic
syndrome suggests that dysregulation (whether intrinsic
or dynamic) of this set of genes may be pathogenic for
metabolic health.

The tissue specificity of eQTLs is typically overesti-
mated by simple overlap (due to incomplete power and
reliance on a significance threshold), but more statisti-
cally sophisticated approaches have shown eQTL shar-
ing across tissues to be substantial (57). This motivated
inclusion of PrediXcan associations from all GTEx tissues
in our study. Indeed, ChromHMM analysis of the 822
genes confirmed the functional relevance of our findings
in human islet and showed an enrichment of enhancer
regions in this cell type relative to all RefSeq genes.

Within the 822-gene network, genetically predicted
expression levels of 31 novel genes that had not previ-
ously been identified by GWAS were significantly associ-
ated with type 2 diabetes in BioVU (Benjamini–Hochberg
FDR <0.10, see Supplementary Material, Table S1). Of
particular interest, SIGLEC5 encodes a protein of the
sialic acid-binding immunoglobulin-like lectin (SIGLEC)
family, with known function in inhibiting the activa-
tion of monocytes, macrophages and neutrophils (58).
Recent evidence suggests the function of another pro-
tein in the SIGLEC family, Siglec-7, in improving β-cells’
function and reducing inflammation in pancreatic islets
from diabetic patients (59). This novel gene finding is
further supported by GO enrichment analysis, which
found up to ∼8% of genes in our significant network
were associated with inflammatory process or immune
response.

In summary, we present a novel approach for char-
acterizing gene expression patterns associated with
deteriorating glucose metabolism and assessing their
translational relevance on the related metabolic phe-
nome. Towards this end, we implemented an unsuper-
vised approach using longitudinal transcriptome data
to identify gene networks associated with transition of
blood glucose levels to a diagnostic level for diabetes.
This analysis identified a network of genes with effects
on expression changes that are significantly associated
with transition status. We evaluated the performance
of the methodology by showing that the genes within
the significant network overlap GWAS-implicated loci
with glucose and insulin metabolism-related function.
Furthermore, we showed that this network is signifi-
cantly enriched for genes whose genetically regulated
expression level is associated with type 2 diabetes
and type 2 diabetes-related disorders in a large DNA
databank, providing strong evidence that the gene
network is enriched for genes that are a risk factor for,
rather than a consequence of type 2 diabetes. Notably,
this efficient approach enabled the discovery of a gene
network associated with transition to diabetes in a
limited sample size. Future, larger studies building on
our study design and approach may further clarify
the molecular mechanisms of diabetes development,
establish the pattern of causality leading to the observed
diabetes-associated expression changes and validate
additional gene networks.

Materials and Methods
Transcriptome discovery stage
Study subjects

In this study, we employed a nested case–control study
design. The CCHC was established on the Texas-Mexico
border in 2004 (2). This randomly ascertained commu-
nity cohort currently comprises over 4900 people and is
approximately 60% female. All participants are followed
longitudinally with 5-, 10- and 15-year follow-up visits. At
each visit, extensive examinations included blood sam-
ples drawn following a confirmed 8-h fast. This study was
approved by the Committee for the Protection of Human
Subjects of the University of Texas Health Science Center
at Houston.

Within this cohort, a nested sample of 286 people was
selected based on having fasting glucose <126 mg/dl,
when measured, HbA1C < 6.5%, and no prior diagnosis of
type 2 diabetes. These individuals were then intensively
followed up every 3–4 months over 5 years to track
their metabolic status (60). From the 286, we selected
24 subjects whose fasting glucose transitioned to levels
diagnostic for T2D over the study period (cases, with
fasting blood glucose ≥126 mg/dl during follow-up) and
34 who did not transition (controls, with fasting blood
glucose <126 mg/dl, and when measured, HbA1C < 6.5%
during follow-up, see Fig. 1A and B). The fasting blood
specimen taken at baseline and at the latest follow-up

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac039#supplementary-data
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visits of these 58 subjects was subjected to RNA sequenc-
ing. Fasting blood glucose changes were defined using
the time points at which RNA specimens were available.
Specimens used for RNA sequencing for controls were
taken after approximately the same or more elapsed
time as cases (controls, average time 28.70 months; cases,
average time 19.65 months, Table 1).

Experimental measurement

A fasting peripheral blood specimen was collected using
PaxGene tubes for each participant at both baseline
and at each follow-up visit every 3–4 months over
a period of as many as 60 months (mean follow-
up time 24.98 months, Table 1) (60). Specimens were
stored at −80◦C within 20 min of the draw. Fasting
glucose was measured in a CLIA-approved laboratory.
RNA was extracted from all specimens and stored at
−80◦C. RNA sequencing was performed with Illumina
HiSeq 2000 at the Baylor Sequencing Center following
standard protocols (61). The samples were sequenced
in four batches with a mean RNA integrity (RIN) 8.11
(Supplementary Material, Fig. S8). The RNA sequencing
library for each sample ranged in size from 6.9 to 49
million reads. All raw sequencing read libraries were
checked with FastQC to ensure their sequencing quality
(62), and all samples passed the quality requirements.
All RNA sequencing reads were aligned to the human
reference genome (hg19; Illumina iGenomes reference
transcriptome, UCSC known genes) by Spliced Tran-
scripts Alignment to a Reference (STAR, version 2.5.0a),
an RNA sequence mapping tool, which considers both
annotated and unannotated splice junctions as well
as other mismatches or insertion/deletion during read
alignment (63). Then, STAR was also used to count the
number of mapped reads in each gene. Genes without
mapped reads in over 10% of samples or with median
absolute deviation equal to 0 were excluded from further
analysis. In total, 21 298 genes were expressed in over 10%
of subjects, had median absolute deviation greater than
0 and were included in further analysis, consistent with
standard quality control approaches for RNA sequencing
(64).

DEseq2 v1.30.1 was used to normalize the gene expres-
sion matrix (Fig. 1C step 1), considering the dispersion
of gene expression and the sequencing depth of each
sample (65). The dispersion was scaled to fit a smooth
dispersion curve from empirical data, and sequencing
depth was estimated using a median-of-ratios approach.
We also considered the impact of hidden or unmeasured
covariates on the gene expression difference between
baseline and follow-up using Probabilistic Estimation of
Expression Residual factors (see Supplementary Text)
(66).

Network analysis of longitudinal expression profile

We used a modified weighted gene correlation network
analysis (WGCNA) (version 1.6.8) to cluster genes into
sparse networks (67) (Fig. 1C step 2). Although our

methodology is novel, we leveraged well-established and
commonly used network construction approaches and
metrics (67). In contrast to conventional coexpression
network analysis, each node is a gene g with its change
in expression (�g) between the two time points. An
edge between two nodes g1 and g2 represents the
correlation cor(�g1, �g2) across individuals (Fig. 2A). An
edge, therefore, indicates an effect on expression change
(�g); the effect may be due to several factors, for example
it may be a causal effect, due to coregulation, or it may
be spurious. The input matrix was log2 transformed FC
in normalized expression (from DEseq2) over time, which
we used to quantify �g.

Δg = log 2 (FC)

Explicitly, FC over time was defined as the ratio of the
normalized gene expression at follow-up over the nor-
malized gene expression at baseline (Fig. 1C). The topo-
logical overlap dissimilarity, a robust measure of inter-
connectedness which is based on shared network neigh-
bors (68), was used to describe the connection between
genes and as input for further steps. Hierarchical clus-
tering and dynamic tree cut methods were performed
in R to build the networks and to cut peripheral genes.
Each network’s eigengene was defined as the first prin-
cipal component of the network and calculated within
WGCNA, and this eigengene was used to evaluate the
correlation between network and transition status. To
explore whether networks significantly associated with
transition status remain significant after adjusting for
covariates, we created residual measures of Δg after
regressing out the effects of the covariates age and BMI.
We then performed a sensitivity analysis using PLS-DA
with the residuals and evaluated the performance of top
components on distinguishing transition status.

A hub gene, defined as a highly connected gene within
a network, was identified by the weighted number of
genes connected to it in the specific network. The degree
of network membership for a gene g was calculated from
the correlation between the gene’s expression change
and the network’s eigengene (E), resulting in a NMS.

NMS = cor
(
Δg, E

)

Both the weighted number of connections (‘connectivity’)
and NMS were determined in an unsupervised fashion
during the network construction, independently of
transition status. For a gene g, we can determine
its association with transition status using logistic
regression.

log
P

(
Transition = 1

)

1 − P
(
Transition = 1

) = α + β
(
Δg

)

This allowed us to assess the association of Δg for a
single gene within a network of interest on transition

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac039#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac039#supplementary-data
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status (Fig. 1C step 3). The goal of this step is to prior-
itize potential genes of interest (e.g. those highlighted
in Fig. 2C) and to determine the correlation of gene’s
network membership and connectivity scores with asso-
ciation to transition status. All the genes within the iden-
tified networks, regardless of individual association with
transition status, were carried forward to the validation
stage.

For network visualization, we used the R package
igraph. We highlighted hub genes and their network
partners with highest correlation (among the top 5% of
all edges).

Assessing performance of network methodology using
comprehensive GWAS repository

We evaluated whether networks significantly associated
with transition status from our approach reflect known
understanding of metabolic biology using an external
dataset. We compiled a list of reported or mapped genes
that have been identified by GWAS of metabolic traits,
as curated in the EMBL-EBI GWAS repository (69) (down-
loaded on June 3, 2019). We included diseases and traits
based on the American Diabetes Association’s definition
of metabolic syndrome (70), including blood pressure,
blood glucose, serum lipids, obesity, body mass index,
waist-to-hip ratio, insulin resistance, and type 2 dia-
betes. We tested whether the NMS is significantly greater
for metabolic trait associated genes (which defines a
gene significance score, MetabolicScore = 1) than for the
remaining set of genes (MetabolicScore = 0), using the non-
parametric Mann–Whitney U test.

ρ∗ = U
(
NMS, MetabolicScore

)

This test allowed us to assess the performance of
the network methodology using an independent and
external ‘gene significance’ scheme (MetabolicScore) for
metabolic traits.

GO analysis

We performed enrichment analyses of networks sig-
nificantly associated with transition status to identify
enriched GO biological processes. We used the R package
clusterProfiler to identify enriched annotations (with their
gene count and P-value), using the set of genes in the
networks significantly associated with transition status
as input. All the three major gene ontologies from
the GO project were used, including biological process,
molecular function, and cellular component (71). We
used Benjamini–Hochberg FDR < 0.05 as the significance
threshold.

Biobank validation and functional follow-up
stage
Study material

The biobank at Vanderbilt University Medical Center con-
tains over 95 000 MEGAEX genotyped subjects with linked

EHR (5). The genetically regulated expression of 23 000
genotyped subjects was imputed using PrediXcan (19)
with models trained using GTEx V.6p data (72) (Fig. 1C
step 4). The number of unique genes passing a threshold
of R2 > 0.01 varied by tissue; the minimum number is
2041 from vagina and the maximum is 8023 from tibial
nerve. In total, 17 481 unique genes passed this impu-
tation threshold and were used in downstream associa-
tions between imputed genetically regulated expression
and phecodes derived from ICD-9 codes. These effects
were estimated genome-wide for the metabolic phenome
(Table 3) using logistic regression with age and sex as
covariates.

Enrichment analysis

To validate the networks of genes from the transcriptome
discovery stage, we assessed their enrichment for gene-
level associations with diabetes and related phenotypes
in BioVU (Fig. 1C step 5). Phecodes tested for enrichment
were chosen as the class of endocrine/metabolic diseases
(as externally defined by the PheWAS Map 1.2), including
diabetes mellitus (phecode 250), disorders of pancreatic
internal secretion (251) overweight, obesity and other
hyperalimentation (278) and other related metabolism
disorders, including protein plasma/amino acid trans-
port and metabolism (270), lipoid metabolism (272), min-
eral metabolism (275), goiter (240 and 241), thyroid disor-
der (244, 245, and 246), other metabolism disorders (277,
including disorders of bilirubin excretion, metabolic syn-
drome, etc.) and other endocrine disorders. In addition,
we also evaluated the enrichment for secondary diabetes
mellitus (249), a condition characterized by the destruc-
tion of the beta-cells in pancreatic islets or the induction
of insulin resistance resulting from an acquired disease,
as a negative control. To obtain the empirical P-value,
we counted the number of nominally significant associ-
ations, P-value < 0.05, between our identified genes and
each selected phecode and measured the count against
an empirical null distribution generated by random sam-
pling. We simulated random draws of the same number
of genes 100 000 times and established a null distribution
from the observed number of times an association with
a phecode of interest was seen by chance.

Functional follow-up in human islets

We analyzed ChIP-seq chromatin data for key islet
transcription factors to show an approach to functional
follow-up, in human islets, of the genes within the
identified network that is correlated with transition
status. These data (28) (downloaded from ArrayExpress:
E-MTAB-1919) allowed us to test whether islet gene
regulation might provide further functional insights
into our discoveries. We applied a hidden Markov
model approach to characterize chromatin states using
ChromHMM (73). Binarized maps from the ChIP-seq
bed files were generated using the BinaryBed function
within ChromHMM. Following guidelines suggested by
the ChromHMM authors, we tested numbers of states
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varying from 10 to 30 and found that the result with
16 states best describes the chromatin status. Sixteen
chromatin states were identified using the LearnModel
function with hg18 and default settings. Finally, the
OverlapEnrichment function was used to evaluate the
enrichment of different chromatin states in gene sets
compared to RefSeq genes. For additional details and
exact commands, please refer to GitHub repository (link
provided under Code availability).

Supplementary Material
Supplementary Material is available at HMGJ online.
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