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Summary
For the genomics community, allele frequencies within defined groups (or ‘‘strata’’) are useful across multiple research and clinical

contexts. Benefits include allowing researchers to identify populations for replication or ‘‘look up’’ studies, enabling researchers to

compare population-specific frequencies to validate findings, and facilitating assessment of variant pathogenicity in clinical contexts.

However, there are potential concerns with stratified allele frequencies. These include potential re-identification (determining

whether or not an individual participated in a given research study based on allele frequencies and individual-level genetic data),

harm from associating stigmatizing variants with specific groups, potential reification of race as a biological rather than a socio-po-

litical category, and whether presenting stratified frequencies—and the downstream applications that this presentation enables—is

consistent with participants’ informed consents. The NHLBI Trans-Omics for Precision Medicine (TOPMed) program considered

the scientific and social implications of different approaches for adding stratified frequencies to the TOPMed BRAVO (Browse All Var-

iants Online) variant server. We recommend a novel approach of presenting ancestry-specific allele frequencies using a statistical

method based upon local genetic ancestry inference. Notably, this approach does not require grouping individuals by either predom-

inant global ancestry or race/ethnicity and, therefore, mitigates re-identification and other concerns as the mixture distribution of

ancestral allele frequencies varies across the genome. Here we describe our considerations and approach, which can assist other ge-

nomics research programs facing similar issues of how to define and present stratified frequencies in publicly available variant data-

bases.
Introduction

Several databases publish allele frequencies, as well as

other information on genetic variants and alleles, for use

by the human genetics community. These databases

include the National Center for Biotechnology Informa-

tion’s Single Nucleotide Polymorphism Database

(dbSNP),1 the Genome Aggregation Database (gnomAD),2

the Functional Annotation of Variants - Online Resource

(FAVOR),3 and the TOPMed-specific variant server

BRAVO (see web resources). TOPMed is one of the largest

collections of whole-genome sequences to date, with

>78.7% of variants discovered not previously reported in

dbSNP4 and �158,000 whole-genome sequences available

in dbGaP (see web resources). Indeed, TOPMed data in the

BRAVO server may be the only public resource with a re-

cord of a given variant of interest. Yet, unlike other re-

sources providing allele frequencies based on data that

are not TOPMed-specific, BRAVO initially provided only

TOPMed-wide allele frequencies, i.e., not ‘‘stratified’’ by ge-

netic ancestry, race/ethnicity, study membership, or any
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other demographic or genetic features. Notably, TOPMed

is a consortium aggregating whole-genome sequencing

data from �80 parent studies of diverse genetic ancestries,

race/ethnicities and study designs. Therefore, to share

stratified allele frequencies, TOPMed investigators had to

decide how to stratify allele frequencies, taking into

consideration the perspectives of the TOPMed parent

cohorts.

To facilitate decision-making, the TOPMed ELSI (Ethical,

Legal, and Social Issues)Committee discussed potential ben-

efits and concerns with adding stratified frequencies to the

BRAVO server. Here, we summarize concerns of TOPMed

studies with respect to sharing of allele frequencies, describe

the advantages and disadvantages of potential approaches

for stratification, and explain the Committee’s final recom-

mendations, which were later approved by the TOPMed Ex-

ecutive Committee. While these discussions are guided by

the TOPMed-specific experience, we contend this summary

will be useful to other studies and consortia consideringdata

sharing of summarized genetic information, such as allele

frequencies.
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Benefits of sharing allele frequencies

Allele frequencies are used by scientists and clinicians in

multiple ways, including: (1) validation of a research result,

e.g., when a trait-variant association is detected, verifying

that the estimated allele frequency matches known fre-

quencies; (2) identification of a population in which a

variant is relatively common in order to design a replication

study; (3) variant interpretation in a clinical context, i.e., as

evidence for classifying variants as ‘‘pathogenic,’’ ‘‘benign,’’

or ‘‘of uncertain significance’’; and (4) population genetics

research, where allele frequencies can be used to study pop-

ulation history and evolutionary processes.

Stratified allele frequencies may be more helpful to the

research community compared to population-wide fre-

quencies. For example, stratified frequencies may allow

for the identification of a population/group for a replica-

tion study following a genome-wide association study

(GWAS), while population-wide frequencies generally

will not. In addition, population genetic research may

only be done with stratified frequencies. Similarly, given

differences of allele frequencies across genetic ancestries,

quality control procedures comparing allele frequencies

computed in the new study to those in a database will be

more precise when the frequencies in the database are in-

ferred from a population with similar genetic ancestry to

those in the new study. Finally, allele frequency may

help inform clinical variant interpretation: current guide-

lines from the American College of Medical Genetics and

Genomics (ACMG)5 state: ‘‘If a variant is absent from (or

below the expected carrier frequency if recessive) a large

general population or a control cohort (>1,000 individ-

uals) and the population is race-matched to the patient

harboring the identified variant, then this observation

can be considered a moderate piece of evidence for patho-

genicity.’’ Notably, allele frequency greater than expected

given the disorder, or over 5%, can support a benign inter-

pretation—a point on which the guidelines do not require

a matched population. For example, identifying a variant

as common in a specific population of similar ancestry,

though rare in the U.S. overall, could lead to fewer unnec-

essary medical interventions for members of that popula-

tion with the variant.
Concerns in sharing stratified allele frequencies

Despite the abovebenefits of stratified frequencies, there are

also potential concerns, especiallywhen the frequencies are

made freely and publicly available via unrestricted-access

variant servers.Wegroup these concerns into fourmain cat-

egories below: re-identification, stigmatization, reification

of race, and participant informed consent.
Re-identification

A risk of re-identification refers to the risk of determining

whether an individual participated in a given study.6 Previ-
ous research showed that, given genetic data (possibly

chip-based) from an individual, one can use allele fre-

quencies for a set of genetic variants measured in a specific

study to determine whether the individual was a study

participant. This information could be stigmatizing or

otherwise compromise participant privacy, especially if

study participation reveals sensitive phenotypic informa-

tion about the individual. Studies from defined geographic

areas and/or comprising families may have heightened

concerns about re-identification.

Allele frequencies are a form of genomic summary result

(GSR), for which NIH data sharing policies have evolved

over the past two decades. Initially GSRs weremade publicly

available in NIH-designated repositories. GSRs were later

moved out of public access following Homer et al.’s7 find-

ings about re-identification. After much deliberation, the

NIH GSR sharing policy was revised again in 2018 such

that unless a studywas designated as ‘‘sensitive,’’ GSRs could

be made publicly available—i.e., unrestricted access (see

web resources). Other publications have studied the risk of

re-identification using GSRs but assuming that results

from a genetic association study are available (i.e., including

effect size estimates). For example, Lumley and Rice7

showed that a phenotype prediction can be constructed

for an individual based on their genetic data and effect-

size estimates from GWAS. However, relevant to our ques-

tion is the approach of using allele frequencies rather than

effect estimates. Notably, in either case, re-identification

risks are expected to decrease with the size and genetic het-

erogeneity of the research cohort,6–9 suggesting mitigated

risk if the sample size of the strata is large enough.

Stigmatization

There are potential harms from associating a group with

stigmatizing phenotypes or other outcomes when patho-

genic or other associated variants are present or common

only in that group. Stigmatization is a type of group

harm that may result in members of a group being ‘‘ostra-

cized, humiliated, or discriminated against, resulting in the

loss of social, economic, or political opportunities or even

loss of face in the society.’’10 Group-level harms are partic-

ularly salient in discussions of allele frequencies and other

aggregate, summary-level data, as (1) features of those data

are often annotated by, or otherwise attached to, socially

identifiable groups (whether based on ancestry, demo-

graphics, geography, culture, or other affiliation) and (2)

secondary use of data may be subject to little or no ethical

oversight,11 especially when available via publicly avail-

able variant servers. Notably, group harms are distinct

from individual-level risks, such as loss of privacy or auton-

omy, and are often overlooked in ethical and regulatory

frameworks that focus on individual-level protections.12–15

An illustration of potential group harms comes from the

case of the Havasupai Tribe versus the Arizona Board of Re-

gents.16,17 While the tribe’s understanding was that their

samples were going to be used only for diabetes research,

samples were later used for research on schizophrenia



and alcoholism, phenotypes considered stigmatizing to

the tribe. While we are not aware of specific instances

where allele frequencies generated by genetic research on

Havasupai tribal members led to harm, the example illus-

trates how the connection of sensitive phenotypes to a so-

cially identifiable group—whether from the pursuit of a

specific research question or when a risk allele is found at

higher frequency compared to other groups—can stigma-

tize the group and also impact future research efforts.

Notably, the likelihood of group stigmatization will be

influenced by the group identity; its historical experiences

of racism, stigma, and discrimination; the phenotype in

question; and other aspects of social context.18

Reification of race

Stratificationmay encourage or reinforce genetic or biolog-

ical conceptions of race, which perpetuate a harmful

history of scientific racism in the field of genetics.19–22 Spe-

cifically, presenting genetic information (e.g., variant fre-

quencies) using racial or ethnic groupings suggests those

groupings are defined or distinguished by genetic differ-

ences. To the contrary, race is a social construct, and over-

whelming genetic evidence exists to refute rather than sup-

port the idea of ‘‘biologically distinct subcategories’’ of

humans.21 This practice would also not meet the call to

promote anti-racism in science.20 As a practical matter,

U.S.-based race categories, e.g., those defined by the 1997

Office of Management and Budget standards on race and

ethnicity, do not apply to study participants outside of

the US, which complicates stratifying allele frequencies

in variant databases with an international collection of

studies (such as available in TOPMed).

Stratification based on genetic ancestry rather than race

or ethnicity is also potentially damaging. For example,

prior studies have shown that genetic ancestry, when

conceptualized at the continental level, can still be map-

ped onto common notions of race.23 Lewis and colleagues

have recently called for the abandonment of continental

ancestry groupings, citing the problematic confounding

between these categories and racial classifications.24 More-

over, they note admixture analysis as compounding, rather

than solving, this issue, as genomes of individuals are still

described using a mixture of continental-level labels.

Therefore, while statistical methods that do not require

creation of discrete groups based on either genetic or social

definitions may mitigate risks of conflating genetic

ancestry with race, further empirical ELSI research is

needed to explore the implications of using ancestry labels

in allele frequency databases.

Consistency with informed consent

A study’s decision to participate in the computation of

stratified allele frequencies requires (1) interpreting

whether potential uses of allele frequencies are consistent

with participants’ informed consent and (2) determining

to what extent, from ethical and/or regulatory stand-

points, individual-level consent constrains uses of sum-
mary-level data. Informed consent processes for large-scale

genomic research are complicated,25 including by poten-

tial downstream data uses often unconceived or unknow-

able at the time of participant recruitment. This leads to

a common situation of requiring investigators and their

ethics oversight boards to interpret legacy consent for

new and potentially novel applications, such as a publicly

available variant server. For example, for many TOPMed

studies, participants were not explicitly asked at the time

of recruitment about preferences for sharing summary re-

sults. However, this does not absolve investigators and in-

stitutions from considering whether such downstream

uses are consistent, or at least not inconsistent, with partic-

ipant wishes and understandings at the time of consent.

At the initiation of the BRAVO variant server, when only

TOPMed-wide frequencies had been shared, TOPMed in-

vestigators were asked to determine whether their study

could contribute to it and, if so, for which consent groups.

In TOPMed, consents vary considerably between studies,

and even within studies, especially for studies spanning

multiple recruitment sites and institutions. In ongoing

(versus legacy) studies, consents may also evolve over

time. For broad consent such as general research use

(GRU), the justification to contribute to BRAVO was fairly

straightforward. Notably, at least one GRU study opted

out due in part to concerns of downstream commercializa-

tionwhere the sourcepopulationmaynot share thebenefit.

For the narrowest consent categories of disease-specific

research, all TOPMed studies but one still agreed to

contribute. In between broad GRU and disease-specific sits

the consent category of health/medical/biomedical

(HMB), which in the NIH standardized description ‘‘does

not include the study of population origins or ancestry’’

(see web resources). Therefore, for studies with HMB con-

sent, investigators had to consider whether presenting fre-

quencies would constitute or enable ‘‘study of population

origins or ancestry’’ which—admittedly—is not straightfor-

ward.Ultimately,mostHMB studies elected to contribute to

BRAVO. As stratified allele frequencies may enable addi-

tional downstream uses, compared to TOPMed-wide fre-

quencies, TOPMed studies need to re-assess the consistency

of involvement with their participants’ informed consent.

The decision to share allele frequencies may be con-

strained by both ethical and regulatory standpoints. We

bring both NIH policy and TOPMed precedent to bear on

this question. First, as noted above, NIH policy on GSRs

has evolved over time. Per the November 2018 policy up-

date (see web resources), GSRs can be shared publicly and

openly unless a study is designated as ‘‘sensitive.’’ Uses of

open access GSRs are typically constrained, if at all, only

by user agreements (such as the BRAVOTerms of Use, which

users attest to when creating a login; see web resources). For

GSRs from sensitive studies, which can be accessed only by

application, use is subject to the same limitations as the

individual-level data. Thus, from a regulatory standpoint,

individual consent limits the use of summary-level data

for sensitive studies but not for non-sensitive studies.



Notably, prior to the NIH GSR policy update in 2018,

the TOPMed ELSI Committee used a ‘‘publication analogy’’

to consider whether downstream uses of summary data

should be constrained by individual-level consent.26

Briefly, the publication analogy is the concept that once

data are published in a journal article, they enter the pub-

lic domain andmay be used beyond the limits defined dur-

ing the original participant consent process. The publica-

tion analogy could reasonably be applied to presentation

of stratified allele frequencies in BRAVO, as it was previ-

ously to TOPMed-wide frequencies in BRAVO. Ultimately,

the ELSI Committee’s recommendation to TOPMed

studies in considering expanding from TOPMed-wide to

stratified frequencies was to rely on their investigators’

expertise and experience, and the institutional history

within the study, to make an informed decision on

whether to contribute.
Considerations for implementation

There are multiple approaches to defining strata for

computation of allele frequencies, each of which has ad-

vantages and disadvantages. In TOPMed, the specifics of

proposed strata will likely influence whether study investi-

gators agree to have their study data included. Here we

describe potential strata definitions, illustrated in Figure 1

and summarized in Table 1, and note considerations for

different options. In brief, allele frequencies can be

computed in individuals grouped according to common

characteristics, e.g., by social definitions of race/ethnicity

or based on genetic ancestry patterns (grouping-based

Approach 1 in Figure 1). Alternatively, allele frequencies

can be computed without defining groups, but rather by

first inferring the genetic ancestral background of each in-

dividual in the data and then using this inference to de-

convolve frequencies (Approach 2 in Figure 1). The latter

approach acknowledges that individual genomes are a

mixture of genetic ancestries, and once the distribution

of these ancestries within this mixture is known, one can

infer frequencies of variants in each of these ancestries.

The TOPMed ELSI Committee recommended estimating

ancestry-specific allele frequencies utilizing local genetic

ancestry inference27 and appropriate statistical methods.

Investigators at the TOPMed Informatics Research Center

previously performed local and global genetic ancestry in-

ferences for TOPMed genomes. They condensed the 53 Hu-

man Genome Diversity Project (HGDP)28 reference popu-

lations into seven ‘‘super populations’’29—Europe, Middle

East, Africa, Central and East Asia, South Asia, America,

and Oceania—and assigned genetic ancestries to

TOPMed samples. Specifically, each genome is divided

into segments (local ancestry intervals, each encompassing

a range of haplotypes). It is possible to compute ancestry-

specific allele frequencies using statistical algorithms

applied across all available TOPMed participants by incor-

porating local ancestry information.30
Computing ancestry-specific allele frequencies using

local allele frequencies and statistical deconvolution

(Approach 2 in Figure 1) in TOPMed alleviates the major

limitations of the grouping-based approaches. First, the

use of genetically inferred measures avoids harmonizing

demographic categories across TOPMed. Demographic cat-

egories differ across studies for various reasons, including

data collection methods and the differences in race/

ethnicity categories in the countries in which the studies

were undertaken, complicating harmonization. Further-

more, grouping approaches, whether based on social cate-

gories or genetic ancestry, risk excluding individuals who

do not satisfy the conditions to be assigned to a specific

group. The statistical deconvolution using local ancestry

approach further limits the reification of race as a biolog-

ical variable by not suggesting that race-based groupings

correspond to genetic make-up—a limitation of other strat-

ification schemes. Estimation of ancestry-specific allele fre-

quencies also mitigates re-identification concerns because

the mixture distribution of ancestral allele frequencies

varies across the genome (i.e., by local ancestry). Therefore,

applying this approach further does not require specifying

a minimum number of TOPMed studies or of individuals

in order to report a specific strata, unless a specific genetic

ancestry is uniquely and completely represented by a spe-

cific TOPMed study. In contrast, when using grouping-

based approaches, mitigating the risk of re-identification

requires setting a minimum number of participants or

studies per group/stratum and identifying that minimum

threshold.

The computation of local ancestry data depends on the

availability and selection of reference populations to

define the possible ancestries. Currently, TOPMed will

use the previously computed local ancestries correspond-

ing to the seven super populations represented in the

HGDP reference. Notably, each of these categories is

composed of multiple, smaller sets of individuals from

fine-scale categories. For example, the Europe super popu-

lation includes individuals identified as French, Basque,

Sardinian, Tuscan, and others. Each of these groups could

in principle be used as a specific ancestry. Population ge-

netics research highlights the usefulness of fine-scale pop-

ulation structure for human population history research

and formedical genetics.31–33 Recent studies using large ge-

netic datasets, e.g. from the UK Biobank34 and from the

BioMe Biobank in New York City,32 demonstrated that

fine-scale population structure can be detected and may

affect both epidemiological and medical research, further

suggesting that more granular ancestries may be useful

for allele frequency stratification.

However, there are limitations for using finer-scale an-

cestries for stratified allele frequencies. Critically, distin-

guishing between two closely related genetic ancestries

(e.g., French and Basque) in local ancestry inference

requires sufficiently large reference data, and using

this information to compute accurate ancestry-specific

allele frequency at a variant further requires a sufficient



Figure 1. Visualization of approaches for computing stratified allele frequencies
This figure visualizes potential types of allele frequency stratification and their challenges by demonstrating admixture. Local ancestry
patterns were simulated at random to generate admixed genomes, and each interval is colored by its sampled ancestry. Approach 1 for
computing stratified allele frequencies relies on groupings of individuals based on self-reported race/ethnicity (top right, independent of
inferred admixture patterns) or on identification and grouping of individuals whose genomes aremostly from a specific inferred ancestry
(bottom right). Individuals may be excluded from grouping approaches due to missing race/ethnicity or high admixture. Approach 2
uses all individuals and relies on local ancestry inferences to compute ancestry-specific allele frequencies across the genomes. The use
of the plural terms to describe continental ancestries (e.g., ‘‘European ancestries’’) emphasizes the fact that any selected ancestry is a
reflection of a somewhat arbitrary reference population, encompassing a set of finer-scaled ancestries.
number of individuals having the relevant local ancestry

at the variant.30 Also, the decision as to which ancestries

to include is not straightforward. Genetic ancestry is

a continuum, representing the constant mixing of indi-

viduals across groups, rather than a collection of discrete

categories.35 Considering shorter genomic intervals for
ancestry inference will lead to inference of more

ancient admixture,36 with potentially different ancestral

populations.

We recognize that a local ancestry-based approach may

still pose some of the same risks noted above, as it still re-

lies on ancestry labels. A discussion published by Lewis



Table 1. The three types of stratified frequencies considered by the TOPMed ELSI Committee, including their advantages and disadvan-
tages

Ancestry-specific allele
frequencies by statistical
deconvolution

Ancestry-specific allele frequencies
by grouping individuals according
to ancestral patterns

Race/ethnicity group-specific
allele frequencies

Grouping approach No Yes Yes

All participants can
contribute to analysis?

Yes Only those who are ‘‘mostly’’
from one ancestry (i.e.,
predominant ancestry)

Only those with reported
race/ethnicity

Risk of re-identification? Very low; re-identification
methods do not currently exist

Risk exists for groups with
small sample size

Risk exists for groups with
small sample size

Risk of reifying race as
a biological variable?

Low Medium (can be conflated
with genetic ancestry)

High

Ancestry-specific allele frequencies by statistical deconvolution are computed based on inferred local ancestry patterns for individuals in the dataset. Ancestry-spe-
cific allele frequencies by grouping of individuals requires global ancestry inference and selection of a threshold of a minimum percentage of a specific genetic
ancestry to categorize an individual into a genetic ancestry group. Race/ethnicity groups may be based on self-report or external ascription.
et al.24 contends that categories, or labels, of genetic ances-

tries may lead to essentialization of the groups used to

define genetic ancestry and the differences between

them. It is possible that fine-scale ancestry will increase

the risk of essentializing the biological notion of the

groups from which these ancestries originated (e.g., an

emphasis on Ashkenazi Jewish ancestry). While we do

not propose to estimate frequencies by defined groups of

people, tracking the estimated stratified frequencies to a

set of ‘‘groups of origin’’ may still risk reification of the bio-

logical basis of social racial and ethnic categories.

An additional risk of our local ancestry-based approach

stems from one of the benefits: the ability to include indi-

viduals and report on ancestry groups that would not be

included or represented in a predominant ancestry

approach. To illustrate this concern, we invoke the concept

of admixture that, as noted above, is not without issue.

Specifically, Hispanics/Latinos are admixed with three ma-

jor categories of ancestries— European, African, and Amer-

indian—enabling the estimation of Amerindian allele fre-

quencies, that, in the past, would only have been

estimated from Native Americans/American Indians.

Indigenous peoples are under-represented and under-

studied in genetic research for a number of reasons,

including potential stigmatization, the undermining of

tribal sovereignty, and lack of trustworthiness demon-

strated by researchers.37,38 Sharing Amerindian allele fre-

quencies estimated from Hispanics/Latinos may be

viewed, therefore, as a problematic ‘‘back door’’ access.

Furthermore, these frequencies can potentially lead to

group harm to American Indians. For example, as allele fre-

quencies may enable population genetics research, they

may be used to imply population history that is different

from a population’s own narrative, which may be used to

undermine a population’s legal claims to specific terri-

tories.15 In TOPMed, however, we think that this risk is

low, as Amerindian ancestry allele frequencies are esti-

mated from Hispanics/Latinos (primarily) from diverse

backgrounds (Mexican, Cuban, etc.) and are highly un-

likely to be traceable to specific tribes.
There are additional limitations to the selected approach

to estimating stratified allele frequencies. First, allele fre-

quency estimates using statistical deconvolution may be

less precise, compared to standard estimates, when a variant

is only rarely available from a specific ancestry. Therefore,

TOPMed may not be able to confidently share stratified

variant frequencies for rare variants. TOPMed will continue

to provide global (unstratified) TOPMed frequencies for rare

variants. Second, this approach would not accommodate a

study interested in sharing study-specific allele frequencies,

e.g., for studies from a unique founder population. Such

population-specific allele frequencies could be useful in

improving clinical care in those populations. TOPMed

may incorporate other mechanisms that would allow such

sharing, e.g., by specific requests from such studies. Finally,

implementing this approach requires the technical exper-

tise and resources to calculate local ancestries.
Conclusions

Maximizing the sharing of genomic data from large-scale

sequencing programs such as TOPMed is important for

ensuring that the resulting resources are fully utilized by

the scientific community. However, the details of how

and where data are shared become critical for maximizing

utility while also maintaining participant privacy and trust

in the research enterprise.39 NIH policy for sharing allele

frequencies, a form of GSR, has fluctuated over the years

from open, to restricted, and back to mostly open

sharing—presumably in an attempt to balance potential

risks with the benefits of open sharing. Notably, stratified

allele frequencies are useful for quality control, design of

replication studies, population genetics research, and clin-

ical variant interpretation. While publicly available variant

servers make frequency and other variant information

easily accessible, how frequencies are calculated and pre-

sented has important scientific and social consequences.

The TOPMed program considered the risks and benefits of

whether and how to add stratified frequencies to the BRAVO



variant server. Ultimately, we recommend providing

ancestry-specific allele frequencies by statistical deconvolu-

tion, a method that does not require grouping individuals

into demographic, genetic ancestry, or any other fixed

category. This approach has the benefits of minimizing

reification of race, maximizing use of available data, and

mitigating risks of re-identification and reputational harms

(see Table 1). An additional benefit is the potential to repre-

sent populations that are not generally available in a pre-

dominant ancestry framework (e.g., Amerindian ancestry).

Overall, the risks associated with sharing allele frequencies

outside the context of a specific GWAS (and therefore a spe-

cific phenotype) are small and become even smaller when

combining populations frommultiple contributing studies.

Further, while we have drawn upon literature of potential

harms and benefits to individuals and groups from genetic

research more broadly, more empirical research is needed

to assess both individual- and group-level implications of

sharing stratified allele frequencies specifically.

Clinical variant interpretation is an evolving science; we

recognize the clinical utility of our proposed approach to

presenting stratified allele frequencies is not yet known.

As a practical matter, clinicians may use patient demo-

graphics, including socio-political race/ethnicity categories,

to select an appropriate population group against which

to compare allele frequency.5 The wider availability of

ancestry-specific frequencies may change this practice.

The effects of genetic ancestry on pathogenicity are still

not studied (e.g., gene 3 gene interaction), and it is not

clear whether ancestry-specific frequencies are indeed

more useful compared to frequencies estimated on groups

defined using social constructs such as race or ethnicity.

However, ancestry-specific frequencies are an attempt at a

more accurate representation of an individual’s genome as

a mosaic of local ancestry patterns andmay help push eval-

uation of patient genomics in a non-categorical direction.

In addition to sharing stratified frequencies with the com-

munity by making them publicly available and supporting

uses outlined above, stratified frequencies may also be used

by TOPMed investigators to empower statistical genetic an-

alyses. For example, investigators may apply admixture

mapping methods while focusing on ‘‘ancestry-enriched’’

variants to increase power for discovery of genetic loci asso-

ciated with complex traits in a diverse, admixed dataset.40

Other future approaches may prioritize variants that tend

to be more common in a given genetic ancestry to poten-

tially improve polygenic risk prediction in individuals with

a high genomic proportion of the same ancestry, to alleviate

the problem of limited generalizability and portability of

polygenic risk scores across populations, which may be

related to genetic ancestry to some extent.41,42

Here we have recounted the TOPMed experience of

working to add stratified allele frequencies to the BRAVO

variant server in a way that is scientifically useful and so-

cially responsible. These frequencies are not yet available

on BRAVO, as some TOPMed studies are still deliberating.

Our proposed approach mitigates concerns about various
‘‘grouping’’ strategies and more accurately reflects underly-

ing genetic architecture. It also serves as an example for

other genomics resources facing similar challenges. Impor-

tantly, we hope that this approach will improve genomic

research in under-represented populations by enabling

more accurate quality control for genetic data, identifying

opportunities for replication of findings from GWASs, and

improving clinical variant interpretation.
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