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A B S T R A C T

Background: Gut microbiota may influence metabolic pathways related to chronic health conditions. Evidence for physical activity and diet
influences on gut microbial composition exists, but data from diverse population-based cohort studies are limited.
Objectives: We hypothesized that gut microbial diversity and genera are associated with physical activity and diet quality.
Methods: Data were from 537 participants in the Coronary Artery Risk Development in Young Adults (CARDIA) Study, a prospective cohort,
who attended the year 30 follow-up examination (2015–2016; aged 47–61 y; 45% Black race/55% White race; 45% men/55% women). The
16S ribosomal RNA marker gene was sequenced from stool DNA, and genus-level taxonomy was assigned. Within-person microbial diversity
(α-diversity) was assessed with Shannon diversity index and richness scores; between-person diversity (β-diversity) measures were gener-
ated with principal coordinates analysis (PCoA). Current and long-term physical activity and diet quality measures were derived from data
collected over 30 y of follow-up. Multivariable-adjusted regression analysis controlled for: sociodemographic variables (age, race, sex,
education, and field center), other health behaviors (smoking, alcohol consumption, and medication use), and adjusted for multiple
comparisons with the false discovery rate (<0.20).
Results: Based on PCoA β-diversity, participants’microbial community compositions differed significantly (P < 0.001), with respect to both
current and long-term physical activity and diet quality. α-Diversity was associated only with current physical activity (positively) in
multivariable-adjusted analysis. Multiple genera (n ¼ 45) were associated with physical activity and fewer with diet (n ¼ 5), including
positive associations with Lachnospiraceae UCG-001 and Ruminococcaceae Incertae Sedis with both behaviors.
Conclusions: Physical activity and diet quality were associated with gut microbial composition among 537 participants in the CARDIA
study. Multiple genera were associated with physical activity. Physical activity and diet quality were associated with genera consistent with
pathways related to inflammation and short-chain fatty acid production.
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Introduction

A growing body of literature supports a role for the gut
microbiota in a range of cardiometabolic outcomes, including
through pathways involving systemic inflammation and metab-
olite production [1–4]. Animal and human data indicate that
physical activity and diet influence gut microbial composition
Abbreviations used: CARDIA, Coronary Artery Risk Development in Young Adults
permutational multivariate analysis of variance; SCFA, short-chain fatty acid.
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and function [5–13], suggesting that microbiota-related health
effects may be modifiable. Nevertheless, the type and duration of
physical activity and dietary habits necessary for substantial
changes to the gut microbiome are not known. Intervention
studies of physical activity and diet have documented
behavior-associated changes in the gut microbiota [5–7, 14–20],
although translation of these findings to population-based
; FDR, false discovery rate; PCoA, principal coordinate analysis; PERMANOVA, 
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samples has been limited, and follow-up after intervention pe-
riods have been inconsistent.

Cross-sectional, observational studies have also illustrated 
associations between the gut microbiota and physical activity 
and diet [8, 14, 15, 21–28]. However, many publications reflect 
targeted sample recruitment [14, 21–23], such as professional 
athletes, from which it is difficult to generalize. Among 
population-based observational studies, there has been a paucity 
of samples with sociodemographic diversity, including race/-
ethnicity, and a frequent lack of covariate adjustment for other 
health behaviors, such as smoking [29, 30]. Furthermore, studies 
generally have not included both short- and long-term measures 
of physical activity and diet, which may be distinctly relevant for 
gut microbial community composition.

To address these gaps in the literature, we investigated 
associations between gut microbial composition and physical 
activity and diet in the Coronary Artery Risk Development in 
Young Adults (CARDIA) Study, a prospective cohort of self-
reported Black and White US adults. At the year 30 follow-up 
examination (2015–2016), fecal samples were collected from a 
sample of CARDIA participants and gut microbial compositional 
measures were generated for analysis. Over 30 y of follow-up, 
CARDIA has collected data on an extensive set of covariates, 
including sociodemographic indicators and health behaviors. 
Physical activity and diet have been repeatedly assessed using 
standardized and validated protocols, allowing study of both 
current and longer-term behavioral exposures. We hypothesize 
that microbial diversity will be positively associated with phys-
ical activity and dietary quality scores and that genera with 
higher physical activity and better dietary quality scores will be 
associated with beneficial metabolic products.

Methods

Study participants
The CARDIA study was designed to study the evolution of 

cardiovascular disease risk beginning in young adulthood [31]. At 
baseline, in 1985–1986, 5115 Black and White adults, aged 18–30 
y, were enrolled from 4 US urban centers: Birmingham, AL; Chi-
cago, IL; Minneapolis, MN; and Oakland, CA. There have been 8 
follow-up examinations at years 2, 5, 7, 10, 15, 20, 25, and 30, 
with retention of the majority of surviving cohort members (91%, 
86%, 81%, 79%, 74%, 72%, 72%, and 71%, respectively).

Data are from a microbiome ancillary study conducted at the 
year 30 follow-up examination (2015–2016) among a subset of 
CARDIA participants (aged 48–60 y, n ¼ 537, 45% self-reported 
Black race/55% White race, 55% female/45% male). Partici-
pants were excluded if they reported being pregnant at the time of 
the exam, taking antibiotics within the past month, having diag-
nosed inflammatory bowel disease, or experiencing gastrointes-
tinal illness within the past week on the screening questionnaire. 
Among the 537 individuals who met the eligibility criteria and 
completed the microbiome study component, participants were 
excluded from multivariable-adjusted analysis of current behav-
iors if they were missing relevant exposure or covariate data (n ¼ 
45 were excluded for missing dietary data, n ¼ 5 for missing 
physical activity data, n ¼ 7 for missing smoking data, and n ¼ 6 
for missing alcohol consumption data, resulting in 480 partici-
pants with complete health behavior data at year 30. There were 
no missing data for analysis of lifetime behavioral measures, as we
used available reports from 30 y of follow-up, and n ¼ 537 were
available for lifetime analysis. The approach for deriving the
sample size in the fully adjusted linear regression model is sum-
marized in Supplemental Figure 1. CARDIA was approved by
institutional review boards of each field center, and study par-
ticipants provided written informed consent for both the CARDIA
core examination and the microbiome study.
Measurement of physical activity, diet, and
covariates

Standardized questionnaires were used to obtain socio-
demographic and health behavioral data at the CARDIA field
centers during study examinations. Participants self-reported
their race and gender at baseline, as well as age and educa-
tional attainment at each examination. At each examination, the
interviewer-administered CARDIA physical activity question-
naire queried the participant’s past-year engagement (frequency
and intensity) in 13 activities. From these data, a total activity
score (exercise units) was calculated as previously described
[32]. We note that 300 CARDIA exercise units is approximately
equal to meeting current physical activity guidelines [33].

Atyears0, 7, and20,CARDIAusedan interviewer-administered
dietary history to comprehensively assess past-month food and
beverage consumption and the use of dietary supplements [34].
The dietary history was not administered at year 30, but micro-
biome participants completed a 23-item frequency-based instru-
ment [35] in their home at the time of sample collection, reporting
their typical frequency of consumption of major food/food groups
(further detailed in Supplemental Methods). A diet quality score
was derived as previously described [36].

All CARDIA participants were asked to self-report medication
use. We derived a medication use score by summing the number
of medications participants reported taking. Participants in the
microbiome ancillary study were additionally asked to report
their use of antibiotics, prebiotics (fiber substitutes), or pro-
biotics over the past 6 mo.

For lifetime exposure analysis, imputations of exam-specific
data assuming linear change between available measurements
were conducted in R (v 3.5.1) with the ‘zoo’ package (v 1.8-9)
[37], and time-weighted averages were generated for physical
activity and diet using the full set of data, reported and imputed,
over follow-up. For the time-varying behavioral covariates,
smoking and alcohol consumption, we created current and life-
time measures for adjusted models. At baseline, participants re-
ported their current smoking status and past smoking history,
including age of initiation and number of cigarettes smoked per
day. Updated smoking data were collected at each follow-up
examination. Lifetime smoking was modeled as pack-years, as
previously described (one pack ¼ 20 cigarettes) [38]. At each
examination, participants reported the amount and frequency of
beer, wine, and spirits consumption, from which daily con-
sumption of alcohol in milliliters (mL) was calculated. Lifetime
alcohol consumption was modeled as time-weighted mL-days.
Microbiome data collection, sequencing, and data
processing

Standard protocols were followed for collection and pro-
cessing of stool samples [39, 40], as previously described [41].
Participants completed the stool collection in their home and
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shipped their sample to the Nutrition Research Institute at the 
University of North Carolina, Chapel Hill, where samples were 
stored at -80�C until processing. DNA was extracted from 0.2 
grams of stool using the MoBio PowerSoil kit for 6 batches. The 
V3-V4 hypervariable regions of the 16S ribosomal RNA marker 
gene (Primers: 341F/785R) were amplified and sequenced, in 
random order, using the Illumina MiSeq platform (2 � 300), 
over 6 sequencing runs. Sequence data were processed with 
DADA2, which integrates tools for quality control, read error 
correction, and taxonomic assignment [42]. Samples were 
sequenced to a median sample depth of 101,177 (interquartile 
range: 84,051–115,831) reads. The DADA2-formatted Silva 
database (silva_nr_v138_train_set.fa.gz) was used to assign tax-
onomy [43]. Full Silva taxonomic classifications can be found 
in Supplemental Table 15. We note that assignments of Incertae 
Sedis refer to genera for which hierarchical classification is 
unknown [44].

Microbiota diversity among participants was derived in R 
with the ‘vegan’ package (v 2.5-6) [45]. Raw counts were used to 
calculate richness (read count-normalized number of distinct 
genera) and Shannon diversity index, an integrated measure of 
richness and distributional evenness [46]. Both richness and 
Shannon diversity were standardized (mean ¼ 0; standard de-
viation ¼ 1) for analyses with health behaviors. For assessing 
β-diversity, genera were log-normalized by applying following

equation, log10
��

RC
n 

��
x � þ1

�
, with RC representing the total raw genus count per participant, n as the total counts of genera per 

participant, x as the total of all genera and participants, and N as 
the total number of participants [41]. Principal coordinates 
analysis (PCoA) plots were generated based on Bray-Curtis 
dissimilarity [47]. For regression analysis of log-normalized 
genera, we restricted analysis to genera that were present in at 
least 25% of participants to test associations with the most 
prevalent genera and to limit the influence of rare assignments 
that may lead to spurious findings [41].

Statistical analysis
Study participant characteristics were compared across 

quartiles of lifetime dietary pattern scores and physical activity 
(exercise units) using chi-square for categorical characteristics, 
Kruskal-Wallis for means of continuous variables, and Mood’s 
test for medians of continuous variables. Using multivariable-
adjusted regression, we analyzed associations between health 
behaviors and 3 standard microbial measures: within-person
α-diversity, between-person β-diversity, and individual genera. 
Microbial measures were set as dependent variables, and health 
behaviors and confounders were set as independent variables. 
Primary analysis was at the genus level, which reflects the most 
refined taxonomic view available from our data. Physical activity 
and dietary quality were modeled as continuous and in quartiles. 
Continuous physical activity was log-transformed, to account for 
non-linearity, for statistical analysis.

We conducted 3 levels of multivariable adjustments in our 
analysis. In Model 1, we adjusted for sequencing run to account 
for batch effect. In subsequent analysis, we added (Model 2) 
sociodemographic variables: age (continuous), educational 
attainment in years (continuous), field center (Birmingham/
Chicago/Minneapolis/Oakland), race (Black/White), and sex 
(male/female), and, in Model 3, smoking and alcohol con-
sumption. In analysis of current physical activity and diet,
smoking was modeled as never, former, and current categories;
in analysis of lifetime measures, smoking was modeled as cate-
gorical: never smokers, and among ever smokers, below and
above the median pack-years, an approach previously applied
[48]. Similarly, in both current and lifetime analyses for alcohol
consumption, categories were modeled as: abstainers, and
among drinkers, below and above the median (mL/day).

α-Diversity measures were included as a participant-level
measure (richness, Shannon) in linear regression models, with
P< 0.05 the threshold for statistical significance. For β-diversity,
model significance was assessed with the permutational multi-
variate analysis of variance (PERMANOVA) test (1000 permu-
tations), at P < 0.05. For visual display of PCoA plots, centroids
of health behavior categories were overlaid onto the first PCoA 2
axes, although we note that the PERMANOVA test indicates
significance through permutations for differences between mi-
crobial dissimilarity and the health behavior in the full multi-
dimensional space. For genus-specific regressions, separate
regressions were run for each log-normalized genus [41], ac-
counting for multiple comparisons with the Benjamini-Hochberg
false discovery rate (FDR) [49]. Genus-specific associations with
FDR <0.20 were considered significant.

In addition to our primary analysis, sensitivity analyses were
conducted to evaluate the robustness of results when control-
ling for medication use, a potential confounder. We tested all
associations with a fourth model, Model 4, in which medication
use was added to Model 3 as a categorical variable: no medi-
cations used (n ¼ 186), 1–2 medications used (n ¼ 127), � 3
medications used (n ¼ 167). A range of medications were re-
ported by CARDIA participants, including cholesterol-lowering
(e.g., statins), antihypertensives (e.g., β-blockers), and diabetes
(e.g., metformin). In addition, we examined specific medica-
tions or supplements that may be particularly relevant for the
gut microbiota, including metformin (n ¼ 33), past-year anti-
biotics (n ¼ 81), and use of pre- or probiotics (n ¼ 99). We also
tested the sensitivity of genus-specific results based on a
different rare taxa restriction, excluding only genera with
prevalence under 10% [50]. Because of differences in the diet
assessment methodology between years 20 and 30 of follow-up,
we conducted analysis with year 20 as the last measure for both
current and lifetime measures.

Results

Participant characteristics according to lifetime health be-
haviors are presented in Table 1; see Supplemental Table 1 for
characteristics with respect to current health behavior measures.
Compared with men, women had lower mean physical activity
scores and higher mean diet quality scores. Compared with
White participants, Black participants had lower mean physical
activity and diet quality scores. Physical activity and diet quality
were positively associated.

Between- and within-person microbial diversity
analysis

For both current and lifetime measures of physical activity
and diet quality, between-person microbial diversity was statis-
tically significant in multivariable-adjusted PCoA analysis
(PERMANOVA P < 0.001) (Figure 1). These data show that
levels of physical activity and diet quality were distinguished



TABLE 1
Characteristics1 of CARDIA (Coronary Artery Risk Development in Young Adults) microbiome study participants according to health behaviors
categories2: CARDIA Year 30, n ¼ 5373

Weighted lifetime physical activity

n Q1 Q2 Q3 Q4 P4

130 130 139 138

Physical activity (exercise units) 143 [96.5, 175] 270 [235, 299] 398 [360, 440] 622 [558, 791] <2.20 � 10-16

Age (y) 55.4 (3.51) 55.3 (3.69) 55.2 (3.63) 55.2 (3.29) 0.883
Female, % 80.8 59.2 41.0 35.5 1.64 � 10-14

Black race, % 55.4 50.0 43.2 30.4 2.76 � 10-4

Education attained (y) 15.4 (2.55) 15.9 (2.58) 16.0 (2.55) 16.2 (2.56) 0.0943
Diet quality score -0.408 (0.732) -0.0742 (0.786) 0.0393 (0.813) 0.341 (0.863) 7.63 � 10-12

Smoked, % ever 44.6 45.4 43.1 39.2 0.315
Consumed alcohol, % ever 71.5 80.8 90.7 95.7 5.29 � 10-9

Weighted lifetime diet - Year 30

n Q1 Q2 Q3 Q4 P
136 132 133 136

Diet quality score -1.06 (0.326) -0.348 (0.165) 0.251 (0.179) 1.08 (0.404) <2.20 � 10-16

Age (y) 53.9 (3.46) 54.8 (3.86) 55.5 (3.21) 56.9 (2.81) 2.40 � 10-11

Female, % 43.4 50.8 51.1 69.1 2.02 � 10-4

Black race, % 77.9 55.3 30.8 14.0 <2.20 � 10-16

Education attained (y) 14.6 (2.43) 15.5 (2.49) 16.1 (2.38) 17.4 (2.10) <2.20 � 10-16

Physical activity (exercise units) 268 [162, 384] 285 [190, 406] 367 [225, 519] 442 [300, 603] 3.19 � 10-7

Smoked, % ever 42.6 47.0 39.9 42.6 0.0178
Consumed alcohol, % ever 75.8 87.9 87.2 89.0 0.0121

1 Means (standard deviation) or median [interquartile range] unless otherwise noted.
2 537 participants in the microbiome study. Variable-specific totals may be lower because of missing data.
3 Diet quality score was standardized (mean ¼ 0, standard deviation ¼ 1). Weighted scores include diet year 30.
4 P values from chi-square for frequencies (%), Kruskal-Wallis for means, and the Mood's Median test for medians.
with respect to this multivariate measure, a global indicator of
gut microbial composition based on genera abundance.

Current physical activity was positively associated with
α-diversity measures, Shannon diversity and richness, in
multivariable-adjusted analysis (Model 3, Supplemental
Table 2). Lifetime physical activity, as well as both current and
lifetime diet, were associated with α-diversity measures in sem-
iadjusted analysis (Models 1 and 2).

Genus-specific analysis
Regression results for genus-specific analysis were sensitive to

multivariable-adjustment (Supplemental Tables 3–14). In
regression analysis adjusted for one demographic covariate at a
time, we note that we found that that adjustment for sex or race
generally yielded the largest changes in estimates.

Physical activity
Forty-five [45] genera were significantly associated with

current physical activity at FDR <0.20 in multivariable-adjusted
analysis (Figure 2); 43 genera were associated with current
physical activity modeled continuously, 15 of which were also
associated when physical activity was modeled as lowest versus
highest quartiles. As compared with current physical activity, we
observed fewer genera associations for lifetime physical activity
(Figure 2). Four genera were associated, positively, with all
measures of physical activity: Agathobacter, Butyricicoccus,
GCA-900066575, and Lachnospiraceae NK4A136 Group.

Diet quality
Few genera were significantly associated (FDR <0.20) with

diet quality in Model 3 (Figure 3), all observed in analyses that
modeled diet quality as quartiles, comparing the fourth to the
first quartile. Four genera were associated with the lifetime
measure of diet quality, 2 negatively (Anaerotruncus and Rumi-
nococcaceae Incertae Sedis) and 2 positively (Lachnospiraceae
FCS020 Group and Lachnospiraceae UCG-001). One genus,
Ruminococcus, was associated, positively, with current diet as
quartiles, comparing the fourth to first quartile.

Sensitivity analysis
Results were not materially affected by adjustment for use of

medications, past-year antibiotics, or pre-/probiotics. Statistical
significance was maintained for β-diversity (PERMANOVA P <

0.001). α-Diversity results did not change after these further
adjustments, with current physical activity the only health
behavior associated with α-diversity (positively). Genus-specific
associations were also largely unchanged, with 37 genera
significantly associated with continuous current physical activity
at FDR <0.20 (Supplemental Table 5), and 7 with current
physical activity modeled as quartiles (Supplemental Table 6).
Some associations between genera and diet were attenuated on
further adjustment for medications (Supplemental Tables 3–6),
although some previously nonsignificant associations strength-
ened and achieved significance (Supplemental Table 8) or
remained consistent with Model 3 adjustments (Supplemental
Tables 9, 12–14).

Changing the rare taxa exclusion criteria altered the number
of genera available for study: n ¼ 95 with filtering at 25% to n ¼
132 with filtering at 10%. However, results for α-diversity were
consistent across the 2 approaches, and the genera most strongly
associated with physical activity or diet quality were generally
robust to filtering. In additional sensitivity analysis, we used the
year 20 dietary history as the most recent measure of diet, in
both current and lifetime analyses, given the larger amount of



FIGURE 1. β-Diversity plotted using PCoA biplots based on the Bray-Curtis dissimilarity matrix between quartiles of physical activity (lifetime and
current) and diet (lifetime and current) engagement among study participants. Centroids indicate quartiles (95% confidence interval for the mean
location of each population group) in the adjusted Model 3 of demographics and health behaviors and are significantly different between the
groups per P < 0.001 in the permutational multivariate analysis of variance test. (A) Associations in quartiles of current physical activity against
microbial diversity; (B) Associations in quartiles of lifetime physical activity; (C) Associations in quartiles of current diet with year 30 measures;
(D) Associations in quartiles of lifetime diet. MDS: Multi-Dimensional Scaling.
information provided in the dietary history, as compared with
the brief year 30 survey. In these analyses, Anaerotruncus was
negatively associated with current (year 20) and lifetime (years
0, 7, 20) measures of diet quality, and Ruminococcaceae Incertae
Sedis was negatively associated with lifetime diet quality (Sup-
plemental Tables 9, 10, 13, and 14). Several associations from
our primary analysis were no longer observed when we excluded
the year 30 diet data. We note that, for some findings, results
varied depending on whether diet quality was modeled contin-
uously or as quartiles.

Discussion

In this population-based study of CARDIA participants, we
tested associations between 2 modifiable health behaviors,
physical activity and diet quality, with respect to 3 standard
measures of gut microbial composition: β-diversity, α-diversity,
and genera abundance. A multivariate measure of community
composition, β-diversity, distinguished participants with respect
to current and lifetime physical activity and diet quality. In
addition to this high-level finding, we observed several genus-
specific associations with physical activity and, to a lesser
extent, dietary quality in multiple comparisons-adjusted anal-
ysis. These results were robust to adjustment for a range of
potential confounders, including sociodemographics, other
health behaviors, and medication use. Associations for specific
genera were consistent with postulated pathways through which
the gut microbiota may impact health. Our findings are consis-
tent with the hypothesis that higher physical activity and diet
quality may influence the gut microbial composition in ways that
are beneficial to health.

We observed multiple associations between microbial mea-
sures and physical activity, and these results are consistent with
results from other studies. The positive association between
alpha-diversity and physical activity has been observed in both
observational and exercise intervention studies [14, 21, 51].
Several genera (Agathobacter, CAG-56, GCA-900066575, Lach-
nospiraceae UCG-001, Lachnospiraceae UCG-004, Lachnospiraceae
UCG-010, and Roseburia) that were positively associated with
physical activity in CARDIA derive from family Lachnospiraceae,
which was positively associated with step counts among older,
community-dwelling men [25]. As in our data, Roseburia was



FIGURE 2. Genera associated with physical activity (lifetime and current) with at least one association at false discovery rate (FDR) <0.20.
Genera present among 25% of the total sample (n ¼ 537) are included. FDR values for positive and negative associations between physical activity
measures and individual genera are listed for genera with at least one adjusted significant association in the respective direction at FDR <0.20.
The direction of association is noted as blue for positive associations from the beta value of the linear regression equation of the multivariable
adjusted models. Only the FDR values from the Model 3 multivariate regression model are shown. Model 3 adjusts for: sequencing run, age, sex,
race, clinical field center, education, diet, smoking, and alcohol. All FDR values were rounded up.
positively associated with physical activity in a cross-sectional
study of premenopausal women [27], Lactobacillus was
inversely associated with physical activity in a study comparing
elite rugby players with low body mass index controls [14], and
FIGURE 3. Genera associated with diet variables (lifetime and current) wi
present among 25% of the total sample (n ¼ 537) are included. FDR valu
individual genera are listed for genera with at least one adjusted significan
association is noted as blue for positive associations from the beta value o
Only the FDR values from the Model 3 multivariate regression model are s
center, education, physical activity, smoking, and alcohol. All FDR values
Faecalibacterium had a higher relative abundance among ath-
letes, compared with sedentary individuals [14, 21, 23]. Simi-
larly, exercise interventions have shown mean increases in
Roseburia and Faecalibacterium after a period of aerobic exercise
th at least one association at false discovery rate (FDR) <0.20. Genera
es for positive and negative associations between diet measures and
t association in the respective direction at FDR <0.20. The direction of
f the linear regression equation of the multivariable adjusted models.
hown. Model 3 adjusts for: sequencing run, age, sex, race, clinical field
were rounded up.



training; these findings have been observed in a range of sam-
ples, including healthy men, adolescents, and physically inactive 
older women [7, 15, 16].

Many studies support a role for dietary factors on the gut 
microbiota [29, 30], and we were surprised by the relatively 
stronger evidence for associations with physical activity than 
with diet. These findings may reflect our use of an abbreviated 
dietary instrument that assessed frequency of food group con-
sumption, but lacked quantitative estimates, in the microbiome 
ancillary study at year 30. The lack of detailed, quantitative di-
etary information may have limited our ability to detect die-
t–microbiome associations. Intervention studies have illustrated 
significant diet-related shifts in gut microbial composition [5, 6, 
17–20], as well as functional changes, such as the production of 
microbiota-dependent metabolites [6, 18]. These studies provide 
strong empirical support for dietary effects on the gut micro-
biota, at least in the short term. Findings from observational 
studies have tended to be weaker than those from intervention 
studies, perhaps because of more limited variability in observed 
as compared with allocated diets as well as potential measure-
ment error in self-reported diet [5, 6]. Despite these differences, 
several diet–microbiome findings appear robust across designs. 
For example, we observed positive associations between genera 
within family Lachnospiraceae (Lachnospiraceae FCS020 Group, 
Lachnospiraceae UCG-001) and diet quality in CARDIA is 
consistent with results from dietary interventions in which the 
relative abundance of genera within family Lachnospiraceae 
increased following time on a plant-based diet, as compared with 
time on an animal-based diet [6] and in response to allocation to 
a Mediterranean diet [18]. Similarly, family Lachnospiraceae was 
positively associated with dietary quality in the Multiethnic 
Cohort [52] and Osteoporotic Fractures in Men study [26].

Our findings are consistent with biologic pathways postulated 
to influence chronic disease risk and may contribute to our un-
derstanding of a mediating role for the gut microbiota in diet and 
physical activity effects on chronic disease risk. However, the 
complexity of the gut microbial community and the potential for 
differential metabolic activity subgenus favors a cautious inter-
pretation. For example, consider our findings related to several 
genera within family Lachnospiraceae, which were positively 
associated with physical activity and diet quality. Members of 
family Lachnospiraceae have been shown to be involved in the 
fermentation of nondigestible polysaccharides to short-chain 
fatty acids (SCFAs) [53], which may play a role in mitigating 
inflammation. On the other hand, SCFAs have also been associ-
ated with overweight and glycemic dysregulation, perhaps 
through their contribution of excess energy.

Physical activity and diet may influence gut microbial 
composition through systemic and gastrointestinal pathways. 
Systemically, both diet and physical activity influence energy 
balance, with attendant effects on body composition; profiles of 
gut microbiota have been associated with body fat type and dis-
tribution patterns [54, 55]. Compelling data also support a role for 
colonic transit time. Colonic transit time appears to decrease with 
greater physical activity [24, 56] and with higher fiber con-
sumption [57] and increase with protein catabolism [58]. Gut 
microbial compositional differences have been observed with 
respect to colonic transit times, with lower transit times positively
associated with α-diversity [59]. Longer colonic transit time has 
been associated with lower fecal SCFAs, likely reflecting both
typical dietary consumption of nondigestible polysaccharides as
well as gut microbial composition and function [60].

Our study has many strengths. CARDIA is an established
population-based cohort of sociodemographically diverse Black
and White participants with high participant retention. Over 30 y
of follow-up, the CARDIA study has collected comprehensive co-
variate data, including sociodemographic variables, health be-
haviors, and medical histories using standardized and validated
assessments. These data allow us to examine both current and
long-term measures of physical activity and diet. Our study
included rigorous covariate adjustment, which has not been
consistently employed in observational studies of the microbiome.
We note that genus-specific associations were sensitive to these
adjustments, particularly sex, race, and other health behaviors
(e.g., smoking, alcohol consumption). The CARDIA microbiome
subsample was overall similar to the larger CARDIA cohort.

Several limitations merit mention. Our cross-sectional data
did not permit assessment of temporality, and it is possible that
associations may reflect microbial influences on behaviors [61].
Physical activity and diet were self-reported, and both are
known to be susceptible to measurement error [62, 63]. How-
ever, we expect that our microbiome data, like other biological
measures, have error that is independent from self-reports of diet
and physical activity, decreasing the potential for correlated
errors that may increase the potential for bias. Within-person
variability in microbial composition has been documented,
and our use of a single sample may influence the reproducibility
of some findings, particularly genus-specific associations [64].
However, it is reasonable that extraneous variability due to
within-person variability is likely random. In addition, we note
that studies indicate that between-person variability exceeds
within-person variability [65], supporting our ability to detect
between-person differences from a single sample. Our sample
size may have been insufficient for robust detection of some
genus-specific associations, particularly at more stringent FDR
thresholds; we considered our sample too small to test for
stratum-specific differences, such as by race or sex. Finally, the
field of the microbiome is still young, and there is a lack of
consensus on valid and reproducible methodology, and re-
searchers have documented large extraneous variability related
to sample collection and DNA extraction [66, 67]. Our methods
were consistent with those of other contemporaneous cohort
efforts [68], but we acknowledge the potential lack of compa-
rability across studies due to protocol differences.

Our characterization of microbial diversity and taxonomic
composition was based on relative genera abundance estimates,
derived from 16S ribosomal RNA sequence data. This approach
does not allow ascertainment of functional potential, such as
metabolic pathways or gene families, or refined taxonomic
assignment (subgenus). Future work with whole metagenomic
sequences will allow the derivation of a richer and more biolog-
ically relevant set of measures. We elected not to use existing al-
gorithms, such as PICRUSt2, to approximate metabolic pathways
[69], although there remains debate about the accuracy of such
approaches. With respect to taxonomic resolution, we cannot,
with these data, distinguish subgenus associations. We know that
large diversity can exist at lower levels of taxonomy [70, 71].

We report associations between gut microbial composition
and 2 major health behaviors, physical activity frequency and
dietary intake, in a demographically diverse cohort of middle-
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