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Abstract

Wastewater-based epidemiology has emerged as a critical tool for public health surveil-

lance, building on decades of environmental surveillance work for pathogens such as polio-

virus. Work to date has been limited to monitoring a single pathogen or small numbers of

pathogens in targeted studies; however, few studies consider simultaneous quantitative

analysis of a wide variety of pathogens, which could greatly increase the utility of wastewater

surveillance. We developed a novel quantitative multi-pathogen surveillance approach (35

pathogen targets including bacteria, viruses, protozoa, and helminths) using TaqMan Array

Cards (TAC) and applied the method on concentrated wastewater samples collected at four

wastewater treatment plants in Atlanta, GA from February to October of 2020. From sewer-

sheds serving approximately 2 million people, we detected a wide range of targets including

many we expected to find in wastewater (e.g., enterotoxigenic E. coli and Giardia in 97% of

29 samples at stable concentrations) as well as unexpected targets including Strongyloides

stercoralis (a human threadworm rarely observed in the USA). Other notable detections

included SARS-CoV-2, but also several pathogen targets that are not commonly included in

wastewater surveillance like Acanthamoeba spp., Balantidium coli, Entamoeba histolytica,

astrovirus, norovirus, and sapovirus. Our data suggest broad utility in expanding the scope

of enteric pathogen surveillance in wastewaters, with potential for application in a variety of

settings where pathogen quantification in fecal waste streams can inform public health sur-

veillance and selection of control measures to limit infections.

Introduction

Wastewater-based epidemiology (WBE) incorporates a range of tools intended to complement

traditional public health surveillance, optimally providing timely and actionable data on path-

ogens circulating in populations of interest. Historically, wastewater monitoring has been used
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as a surveillance tool for individual pathogens including poliovirus [1, 2], hepatitis A [3], Vib-
rio cholerae [4], Salmonella enterica serotype Typhi [5] as well as for chemical analytes (e.g.,

drug use) [6]. This strategy has gained global prominence in the detection and quantification

of SARS-CoV-2 RNA in wastewater [7–9], specifically focusing on community prevalence [7,

10, 11], apparent trends in infections over time and space [12], and emerging variants [13, 14].

Advantages and limitations of wastewater as a surveillance matrix have been widely discussed

since 2020 [15–17].

The need to expand wastewater monitoring to screen multiple pathogens or variants is a

valuable approach to better understand the possibility of emerging pathogens or circulating

strains in a particular population. In addition to a rapidly expanding array of sequencing tech-

niques to more completely characterize microbial composition of environmental samples,

more sensitive quantitative or semi-quantitative multiple-target detection approaches exist

[18, 19] and some have been subjected to cross-method comparisons for pathogen detection

and quantification [20–22]. Such tests could complement the highly sensitive and precisely

quantitative emerging digital PCR techniques now considered the gold standard for single-

pathogen detection in wastewater, either as a screening method as a precursor to more in-

depth work on targets of interest or to gain information on a wide range of pathogens of inter-

est. Emerging and re-emerging infectious diseases [23]—including those with pandemic

potential [24]—represent ongoing risks to society, and wastewater surveillance can fill critical

gaps in data to inform public health responses [25].

Based on the demonstrated potential for WBE to complement traditional diagnostic public

health surveillance for a diverse array of pathogens, we implemented a customized multi-paral-

lel molecular surveillance tool for simultaneous detection and quantification of 35 common

pathogenic bacteria, viruses, protozoa, and helminths in wastewater. Such approaches can

expand the existing WBE platform by screening for many more pathogens—including rare or

emerging microbes of interest—enhancing monitoring to inform public health response. We

demonstrate the utility of this method in an analysis of primary untreated influent samples

from four wastewater treatment plants in metro Atlanta, Georgia, USA.

Materials & methods

Sample collection

We collected one-liter primary influent grab samples (n = 30) in high-density polyethylene

(HDPE) plastic bottles from four wastewater treatment plants (anonymized as WWTP A, B, C,

D) in Atlanta, GA between March 20th, 2020–November 5th, 2020 between 9:30 AM—11 AM.

We obtained permission for sample collection from each WWTP manager prior to sampling.

Flow values from the WWTPs ranged from 14–80.2 million gallons per day. All samples were

transferred to the laboratory on ice and stored at -80˚C until further processing was com-

pleted. Initial sample processing began on November 8th, 2021. Frozen samples were thawed

in a 5L bucket of water located in a 4˚C walk-in fridge for up to 3 days or until thawed. Samples

were then recorded for temperature and pH, and a 50 mL aliquot was taken for total sus-

pended solids measurements (S1 Table). Each 1L sample was spiked with 10 μL of Calf-Guard

(Zoetis) resuspended vaccine, containing attenuated bovine coronavirus (BCoV), and 10 μL of

MS2 (105/μL), which served as the process recovery controls. A 1:100 ratio of 5% Tween 20

solution was added to the sample bottle as recommended by InnovaPrep for processing waste-

water samples [26]. A graduated 1L bottle was used as a reference for the total volume in each

sample bottle. Samples were mixed by inverting the bottle 3–4 times. A subset of samples

(n = 4) were processed using three different methods to establish a reasonable workflow for
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the remaining samples: (1) direct extraction, (2) InnovaPrep Concentrating Pipette (CP)

Select, and (3) skim milk flocculation (SMF).

Sample processing

Direct extraction. We directly extracted 200 μL of wastewater influent into the DNeasy

PowerSoil Pro Manual extraction kit (Qiagen, Hilden, Germany). Technical representatives

indicated kits co-purify DNA and RNA and others have compared DNA kits with DNA

+ RNA kits with similar performance [27].

InnovaPrep concentrating pipette. 150 mL from the wastewater influent sample was

transferred into a 500 mL conical centrifuge tube. Samples were centrifuged for 20 minutes at

4800 x g. The 500 mL conical tube was placed under the CP Select, and the fluidics head low-

ered into the sample. The sample supernatant was filtered using a 0.05 μm unirradiated hol-

low-fiber CP tip and eluted using the InnovaPrep FluidPrep Tris elution canister. Processing

times and eluted volumes were recorded. For each day samples were run, one negative control

consisting of 100 mL of DI water was also filtered and processed.

Skim milk flocculation. With the remaining wastewater sample, we proceeded to use the

SMF method [28]. We combined 1 mL of a 5% skimmed milk solution per 100 mL of wastewa-

ter sample (average volume = 750 mL) and adjusted the pH of the skimmed-milk-wastewater

solution between 3.0–4.0 using 1M HCl. Samples were placed on a shaker plate at room tem-

perature (20–25˚C) at 200 RPM for two hours. After shaking, samples were centrifuged at

3500 x g at 4˚C for 30 minutes. The supernatant was discarded and the pellet was archived at

-80˚C until two batch extractions of 15 samples were completed within one week.

A subset of 4 samples were directly extracted and the TaqMan Array Card (TAC) results

from CP, SMF, and the direct extractions were compared to determine an optimal concentra-

tion method prior to full scale downstream processing. Additional details can be found in S2

Table. In the methods trial, SMF resulted in greater number of pathogen detections and was

therefore used for the subsequent full-scale analyses. In the SMF workflow, skim milk pellets

were processed for RNA using the Qiagen DNeasy PowerSoil Pro manual extraction kit. One

extraction blank was run using nuclease-free water for each batch of sample extractions.

Extracts were placed in the -80˚C freezer until reverse transcriptase real-time (quantitative)

polymerase chain reaction (RT-qPCR) or digital PCR (dPCR) processing followed within one

week. Skim milk pellets were run on TAC with 7% in duplicate. All CP eluants were extracted

for RNA using Qiagen AllPrep PowerViral manual kits following manufacturer instructions to

be further processed using dPCR. CP and dPCR were used for process controls and fecal indi-

cators in the full-scale analyses.

Molecular analysis

Two PCR platforms were used to process extracts, the first was an RT-qPCR QuantStudio

(QS) 7 Flex (ThermoFisher Scientific, Waltham, MA) and the second a dPCR QIAcuity Four

(Qiagen, Hilden, Germany). All skim milk pellets were analyzed using the QS7 Flex. The QS7

works in conjunction with a custom TAC, which is prespecified with lyophilized primers and

probes for 35 enteric pathogen targets (see S3 Table). The card was designed to include bacte-

rial, viral, protozoan, and helminth targets that may be circulating in the United States as well

as the leading etiologies of diarrhea among children globally [29, 30]. Cq values< 40 were con-

sidered positive for the target and confirmed through clear amplification signals in the amplifi-

cation and multicomponent plots. We prepared our TAC by combining 38 μL of template

with 62 μL of AgPath-ID One-Step RT-PCR Reagents (Applied Biosystems) and assessed TAC

performance through an 8-fold dilution series (109−102 gene copies/reaction) using 2 plasmids
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(one for DNA and one for RNA targets) that were linearized, transcribed, cleaned, and quanti-

fied as described in [29]. The samples were analyzed in single, not replicates on the same TAC.

Additional MIQE details are found in S4 Table. All CP eluant samples were analyzed using the

dPCR QIAcuity Four platform (Qiagen, Hilden, Germany). On the dPCR platform previously

designed and optimized multiplex assays were used for bovine coronavirus (BCoV), pepper

mild mottle virus (PMMoV), and human mitochondrial DNA (mtDNA) [31] (see S5 Table, S1

Text and S1 Fig). Gene copy concentration results for PMMoV and mtDNA were used as nor-

malization markers for the TAC pathogen data so that we divided the sample gene copy con-

centrations/liter by the normalization marker gene copy concentrations/liter.

Data analysis

When multiple gene targets for a single microbial taxon was detected, we used the highest con-

centration gene target to calculate summary statistics and supported figures. We used R Studio

version 4.2.1 and specific R packages to complete all data cleaning (dplyr v1.1.2), analyses (jan-

itor v2.2.0, gtsummary v1.7.1) and generate graphs (ggplot2 v3.4.2). All TAC data was analyzed

using QuantStudio Design and Analysis Real-Time PCR software (v2.6.0, Thermo Fisher Sci-

entific). Equivalent sample volumes (ESV) have previously been described as the original sam-

ple volume processed and analyzed in a PCR reaction [32]. Here, we calculated ESVs using the

following equation:

ESV ¼
mL RNA template

PCR rxn
∗
mL pellet into extraction
mL extraction eluate

∗
mLWW volume into SMF
mL concentrated pellet

The 95% limit of detections (LODs) were calculated for each assay using probit models

[33]. We translated these 95% analytical LODs (aLODs) into a 95% matrix LOD (mLOD)

using the following equation and the previously calculated effective volumes for SMF:

mLOD ¼
1

EV
aLODð Þ

Results

TAC results were generated using skim milk pellets extracted by the PowerSoil Pro Manual kit

to process the influent samples. The average SMF pellet was 2.2 mL and the average wastewater

influent processed for SMF was 688 mL. Supplemental data on any other method performed

(direct extraction or InnovaPrep CP pellet) is provided in S5 Table and S2 and S3 Figs.

Enteric pathogen measurement by skim milk flocculation

The log10-transformed gene copy concentrations by pathogen class and specific enteric patho-

gen (Fig 1) demonstrates the wide range of pathogens detected in Atlanta wastewater influent

(n = 30). Enteric bacteria, specifically enterotoxigenic E. coli (ETEC), were detected most fre-

quently and at higher gene copy concentrations compared to helminths and viruses. Notable

protozoan detections were Acanthamoeba spp. (28/30), Balantidium coli (29/30), Entamoeba
spp. (29/30), and Giardia spp. (29/30). While virus detections were relatively lower than proto-

zoan detections, astrovirus (26/30), norovirus GI/GII (28/30), and sapovirus (7/30) were

detected in the processed samples. Additional comparison of prevalence of pathogens by

wastewater treatment plant are detailed in Table 1 with Plant C representing the most samples

processed (n = 21). S4 Fig demonstrates the log10 gene copies per liter of wastewater influent
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stratified by gene targets. Interestingly, with the CP samples we detected Strongyloides stercora-
lis in one wastewater sample (S2 Fig and S6 Table).

Of the SMF samples, the bacterial targets of highest concentration were ETEC and entero-

pathogenic E. coli (EPEC—atypical), whereas viral targets were mainly astrovirus and norovi-

rus GI/GII. Somewhat unexpected protozoan targets detected were Cyclospora cayetanensi (3/

30) and Entamoeba histolytica (6/30). Both Cryptosporidium spp. and Giardia spp. were

detected at means of 5.0 log10 and 6.5 log10, respectively. Of the total samples, we detected

SARS-CoV-2 RNA in 50% of samples (n = 15) at concentrations between 3.0 log10−6.0 log10

gene copies per liter of wastewater influent.

dPCR for concentrating pipette and normalization markers

A total of n = 30 CP samples were processed for PMMoV, mtDNA, and BCoV. Fig 2 demon-

strates the log10 gene copies per liter of wastewater influent and indicates PMMoV concentra-

tions exceed mtDNA concentrations. The average concentrations for BCoV dPCR reactions

was 43.3 gene copies (gc)/μL, PMMoV was 1602 gc/μL, and mtDNA was 4.33 gc/μL. The aver-

age concentrations of log10 gene copies/liter per reaction of wastewater was 5.2 x 104 for

mtDNA and 1.9 x 107 for PMMoV. All positive controls and non-template controls performed

without suspicion and additional details on control performance is included in S2 Text and in

Fig 1. Log10 concentrations of enteric pathogens per liter of wastewater influent using the SMF method and PowerSoil pro manual extraction.

https://doi.org/10.1371/journal.pwat.0000224.g001
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the dMIQE checklist (S7 Table). Additionally, BCoV as a process control yielded a 29% aver-

age recovery with a standard deviation of 28, with recovery by sample available as S8 Table.

Pathogen concentrations normalized by mtDNA and PMMoV

Quantitative log10 gene copies per liter of wastewater influent before (S9 Table) and after nor-

malization (S10 and S11 Tables), with mtDNA normalization resulting in overall higher log10

Table 1. Prevalence of pathogens [n by column (%)] detected in wastewater influent from four treatment plants in Atlanta, Georgia—Using SMF method.

MICROBE CATEGORY TARGET WW Plant A (n = 3) WW Plant B (n = 4) WW Plant C (n = 20) WW Plant D (n = 3)

Bacteria Campylobacter jejuni/coli - (0) 1 (25%) 11 (55%) - (0)

Clostridioides difficile 3 (100%) 2 (50%) 15 (75%) 3 (100%)

E. coli O157:H7 3 (100%) 3 (75%) 19 (95%) 3 (100%)

EAEC* 3 (100%) 4 (100%) 20 (100%) 3 (100%)

EPEC (atypical)† 3 (100%) 2 (50%) 20 (100%) 3 (100%)

EPEC (typical)† 3 (100%) 2 (50%) 20 (100%) 3 (100%)

ETEC* 3 (100%) 4 (100%) 20 (100%) 3 (100%)

Helicobacter pylori - (0) - (0) - (0) - (0)

Plesiomonas shigelloides 2 (67%) 0% (0) 10 (50%) 2 (67%)

Salmonella spp. 3 (100%) 1 (25%) 18 (90%) 2 (67%)

Shigella/EIEC† 2 (67%) 0% (0) 19 (95%) 3 (100%)

STEC* 3 (100%) 3 (75%) 20 (100%) 3 (100%)

Yersinia enterocolitica 3 (100%) 2 (50%) 20 (100%) 3 (100%)

Fungus/Algae Blastocystis spp. 3 (100%) 3 (75%) 20 (100%) 3 (100%)

Encephalitozoon intestinalis 3 (100%) 1 (25%) 13 (65%) 3 (100%)

Enterocytozoon bieneusi 2 (67%) 1 (25%) 75% (12) 1 (33%)

Helminth Ancylostoma duodenale - (0) - (0) - (0) - (0)

Ascaris lumbricoides - (0) - (0) - (0) - (0)

Enterobius vermicularis 0% (0) 0% (0) 3 (15%) - (0)

Hymenolepis nana - (0) - (0) - (0) - (0)

Necator americanus - (0) - (0) - (0) - (0)

Strongyloides stercoralis - (0) - (0) - (0) - (0)

Trichuris trichiura - (0) - (0) - (0) - (0)

Protozoa Acanthamoeba spp. 3 (100%) 3 (75%) 19 (95%) 3 (100%)

Balantidium coli 3 (100%) 3 (75%) 20 (100%) 3 (100%)

Cryptosporidium spp. - (0) - (0) 8 (40%) - (0)

Cyclospora cayetanensi - (0) - (0) 3 (15%) - (0)

Cystoisospora belli - (0) - (0) - (0) - (0)

Entamoeba histolytica - (0) - (0) 6 (30%) - (0)

Entamoeba spp. 3 (100%) 3 (75%) 20 (100%) 3 (100%)

Giardia spp. 3 (100%) 3 (75%) 20 (100%) 3 (100%)

Virus astrovirus 3 (100%) 2 (50%) 19 (95%) 2 (67%)

norovirus GI/GII* 3 (100%) 2 (50%) 20 (100%) 3 (100%)

rotavirus 2 (67%) 1 (25%) 15 (75%) 3 (100%)

sapovirus* 0% (0) 0% (0) 5 (25%) 2 (67%)

SARS-CoV-2 2 (67%) 1 (25%) 9 (45%) 1 (33%)

*Enteroaggregative E. coli (EAEC) combined gene targets aatA and aaiC; enterotoxigenic E. coli (ETEC) combined targets from gene LT, STh, and STp; norovirus

included GI and GII targets; sapovirus combined gene targets for I, II, IV, and V; shiga toxin-producing E. coli (STEC) combined gene targets stx1 and stx2.
†Enteropathogenic E. coli (EPEC); enteroinvasive E. coli (EIEC)

https://doi.org/10.1371/journal.pwat.0000224.t001
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ratios. In Fig 3, we note a considerably smaller ratio when using PMMoV normalization over

mtDNA. These concentrations are caused by increased PMMoV concentrations in wastewater

influent compared to mtDNA concentrations.

TAC performance interpretation

Standard curves. The standard curves for this custom TAC included two assays (Adeno-

virus 40/41 and Hepatitis A) with poor standard curve performances (r2 < .95) and therefore

were excluded from all analyses. Of the remaining 40 enteric targets, the DNA control was

phocine herpes virus and RNA control was MS2. For performance metrics (S12 Table), rea-

sonable linearity was detected for all included assays with an average R2 value of 0.997 across

all assays with the lowest R2 of 0.967 for STEC (stx2) and the highest R2 of 1 for Acanthamoeba
spp., Balantidium coli, E. coliO157:H7, Giardia spp., Plesiomonas shigelloides, Salmonella spp.,

Fig 2. Log10 gene copies per liter of wastewater influent using the InnovaPrep concentrating pipette (CP) method. The dashed line represents the

limit of detection when calculated as 3 partitions out of the total valid partitions. Figure includes all technical replicates per sample.

https://doi.org/10.1371/journal.pwat.0000224.g002
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and STEC (stx1). The lowest efficiency assay was Astrovirus at 87% while the highest was Ent-
amoeba spp. at 104%.

Effective volume. The effective volume, which does not account for recovery efficiency, is

calculated as the proportion of original wastewater sample assayed in a single qPCR reaction.

The effective analyzed wastewater volume for InnovaPrep CP was 0.155 mL (SD 0.0605) per

reaction and SMF was 0.410 mL of wastewater per reaction (SD 0.121).

Fig 3. A) Pathogen data normalized by mtDNA. B) Pathogen data normalized by PMMoV. The dashed line represents where

pathogen and normalizer count are equivalent. Figure includes all technical replicates per sample for mtDNA and PMMoV marker.

https://doi.org/10.1371/journal.pwat.0000224.g003
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Limit of detection and matrix LOD. The 95% aLOD was calculated for each assay in S12

Table, reported as gene copies per reaction. The lowest detectable target as Cryptosporidium

spp. at 0.6 gene copies per reaction and the highest as 291 gene copies per reaction for ETEC

(LT), followed by 96 gene copies per reaction for STEC (stx2).

A comprehensive mLOD table for each assay indicates the gene copy per mL of sewage is

found in S13 Table and includes the minimum, maximum, mean, standard deviations, stan-

dard error, and confidence intervals. These results indicate average gene copies per mL of

wastewater influent as low as 1.591 for Cryptosporidium spp. and 16S marker or as high as

264.7 gc/mL for ETEC (LT & ST). SARS-CoV-2 mLOD was 16.4 gc/mL influent.

Inhibition. We used MS2 as the extraction control and the average Cq for negative extrac-

tion controls (n = 7) was 17.8 gene copies per reaction [confidence interval 0.821], whereas all

SMP samples (n = 30) had an average Cq of 19.3 gene copies per reaction [CI 2.04]. With a Cq

difference of 1.5, we can reasonably conclude inhibition was not a major issue with our sample

matrix since samples and controls had Cq difference less than 2.

Discussion

Wastewater surveillance sampling, processing, storage, and analysis methods have advanced

rapidly since the emergence of SARS-CoV-2. Most studies have examined primary influent

[34, 35] and solids [36, 37]. Sampling methods have also varied from grab, composite, and

more recently passive techniques [38]. In addition to testing different matrices, many laborato-

ries have implemented various methods to concentrate SARS-CoV-2 in wastewater using

ultracentrifugation, polyethylene glycol precipitation, electronegative membrane filtration,

and ultrafiltration [28, 39], but few have considered a concentration step followed by a simulta-

neous, multi-parallel quantitative assay or multiple pathogen detection assays. The possibility

of high-plex, high throughput platforms are of particular interest to stakeholders looking to

expand wastewater monitoring nationally in the US and abroad. For example, the CDC has

expanded upon the previously single-plex N1 assay for SARS-CoV-2 to include influenza A

and/or B for increased testing capacity [40]. Practical applications of surveillance suggest that

downstream sampling analyses of 3 or 4 samplings per week could provide useful results

regarding trends, but the specific design would have to be driven by local public health trends

and goals [41–43].

TAC performance metrics

We compared our traditional metrics such as R2 trends of standard curves and found that our

TAC results are within a reasonable R2 range for almost all assays (R2>0.96), except for two

explicitly excluded due to poor standard curve performance. Our 95% LODs calculated also

indicate a broad range of analytical sensitivities across all pathogen targets. With the lowest

detections at 0.6 gene copies per reaction, we also have targets on the higher end of 291 gene

copies per reaction for ETEC. While other studies indicate a loss of sensitivity when using

TAC, there was still an 89% detection rate compared to single-plex assays run [44].

Prevalence of bacteria, protozoan, and viral targets

Our qPCR data indicated 104−106 gene copies per liter for SARS-CoV-2 prior to normalization

efforts, which is comparable to other studies [45]. Researchers had previously detected Giardia
duodenale., Cryptosporidium spp., and Enterocytozoon bieneusi at 82.6%, 56.2% and 87.6%, in

combined sewer overflows (CSO) around China [46]. These molecular surveillance findings

were also similar to ours at 97% (n = 29/30) for Giardia spp., not specifically Giardia duode-
nale, and 27% (n = 8/30) for Cryptosporidium spp., and 53% (n = 16/30) for E. bieneusi. Our
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data showed the presence of Strongyloides stercoralis in urban wastewater, a human parasite

typically associated with rural, underserved settings [47]. This finding is an example of the util-

ity of screening for uncommon or unexpected targets, revealing novel information that can

supplement existing public health surveillance.

Groundwater and runoff can intrude into wastewater collection systems through inflow

and infiltration (I&I), which may be relevant for fungi and a possibility for other microbial

species to mix with wastewater flows [48]. Other potential explanations of sources into waste-

water may include animal waste, commercial and/or industrial waste. These influent flows and

their sources are difficult to determine, but routine surveillance—including with the addition

of source-tracking—may provide additional insight into influent pathogens, their possible ori-

gins, and their utility in understanding infection transmission and control in the sewershed.

Value of multiple detections on TAC

Multi-parallel detection of pathogens of interest using TAC can be helpful in long-term sur-

veillance or monitoring of pathogens, including in rapid screening programs or where numer-

ous pathogens may be of interest. Apart from known, emerging, or suspected pathogens,

antimicrobial resistance genes or other PCR-detectable targets of public health relevance can

be included in TAC design. One key premise of WBE and monitoring is the potential value of

using the method as an early detection for the onset of a potential outbreak [49, 50], yet most

detection methods have a needle in a haystack approach versus a wider screening that could be

especially applicable to state health departments or in routine monitoring. Most clinical testing

is conducted one sample at a time and a high throughput method for simultaneous testing

could expand the early warning potential to many other pathogens.

The customizability of TAC has proven useful in other applications such as surveillance of

respiratory illness [51, 52], acute-febrile illness for outbreak or surveillance purposes [53], and

to improve etiological detection of difficult neonatal infectious diseases for low-resource clini-

cal settings [54]. Some studies have focused on applications of combining nucleic acid detec-

tion with quantitative microbial risk assessments [55], but none have considered such a broad

set of applications to wastewater monitoring and surveillance, although some have applied

these methods qualitatively on fecal sludge samples [56, 57]. It is possible to create a multiplex

assay for digital PCR, the leading technology for wastewater monitoring, for up to five different

genes, but no other platform provides quantitative data on up to 48 gene targets during a single

experimental run.

TAC methods can fill a critical gap in existing molecular monitoring tools. As a method

yielding quantitative estimates of potentially dozens of targets, it offers complementary advan-

tages over emerging digital PCR platforms (greater sensitivity and lower limits of quantifica-

tion, but fewer targets) and sequencing methods (many more targets, but high limits of

detection and generally not quantitative). TAC should be considered where targets are present

in high numbers—like in wastewaters and fecal sludges—and where many pathogens are of

interest.

The application of improved methods for the detection and quantification of enteric patho-

gens in wastewater, in addition to other enteric pathogens of interest, can then be translated

into relevant intervention and monitoring efforts [21]. As SARS-CoV-2 surveillance in waste-

water reaches scale [7, 34, 58], detection and quantification of other pathogens has been pro-

posed. Researchers have expanded on wastewater monitoring to focus increased surveillance

on other respiratory viruses such as human influenza and rhinovirus [59], norovirus [60], or

as an outbreak detection tool for influenza [61], and are also considering other emerging infec-

tions such as monkeypox [62].
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Value of sensitivity of dPCR

The current and suggested methodology to process wastewater samples using a molecular plat-

form is dPCR due to its low limit of detection and quantification. While these efforts make

sense to consider when focused on one particular pathogen, it is not as feasible and consumes

several resources if considering a truly practical monitoring system for wastewater. Time, tech-

nical staff labor and resources are always a challenge for laboratories and especially public

health laboratories that have been tasked with monitoring wastewater for SARS-CoV-2. We

can expect enteric targets to be present in wastewater, but to further identify which enteric

pathogens are present and their concentrations with respect to each other would be a useful

application towards building a wastewater monitoring system.

While SARS-CoV-2 was detected through TAC, we were also interested in detecting addi-

tionally relevant targets, including BCoV, PMMoV, and mtDNA, which were not previously

included on the TAC. The normalization of pathogen concentrations using mtDNA consis-

tently lowered concentrations across samples and may be useful as a normalization variable

instead of or in addition to PMMoV. While PMMoV has been widely used for normalization

of wastewater data [63, 64], we found the normalization efforts did not drastically reduce the

noise-to-signal ratio. While several studies have used PMMoV as a normalization marker for

SARS-CoV-2 [12, 65, 66], fewer studies have considered human mitochondrial DNA markers

and those who have found the marker to have strong correlations to clinical case counts [67].

Additional studies have also considered the use of crAssphage [12, 64], HF183 [41, 68], and

Bacteroides ribosomal RNA (rRNA) and human 18S rRNA as other normalization markers to

explore using for wastewater fecal concentration data [12]. Normalization techniques using a

variety of biological (PMMoV, HF183, crAssphage) and chemical markers (ammonia, total

kjeldahl nitrogen, total phosphorous, biochemical oxygen demand) have been proposed as a

way of accounting for non-human inputs to sewers (i.e., dilution effects) and improving corre-

lation with clinical data and comparability between sites. However, the effects of normalization

with a variety of techniques on correlations with clinical data have been mixed [41, 63, 69–71].

Our observations are consistent with those of previous studies. Normalization with mtDNA

nor PMMoV reduced the coefficient of variation for single analytes.

Limitations

Wastewater sample recovery for SARS-CoV-2 has been successful when using fresh samples,

but for many WWTP and their partners it may be unrealistic to complete same-day processing

for logistical reasons [72]. This work demonstrated the recovery of pathogen targets using

archived grab samples, which makes this approach open to a broader range of applications

such as retrospective analyses where clinical data is available or can be linked to these environ-

mental surveillance results. However, more research is needed to understand which recovery

methods work best and can be performed efficiently for archived samples. While we did not

optimize methods for recovery across all targets, it will be increasingly important to consider

such methods when screening for multiple targets and depending on target selection [68, 73,

74].

A major limitation to interpreting this work is limited data on using multiple TAC targets

and their incorporation into predictive models. Researchers have gained interest in calculating

community-specific or dorm-specific fecal shedding rates specifically for SARS-CoV-2 [75,

76], but there was no specific information on the fecal shedding rates for this particular popu-

lation to consider a modeling approach to relate pathogen concentration and clinical case data

for asymptomatic individuals. Additionally, sewersheds of different sizes may have specific

challenges in determining accurate shedding rates. Robust data on enteric shedding rates is
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not widely available for high-income countries, but efforts to estimate these variables and their

uncertainties have been attempted [77].

TAC methods are also limited by the number of gene target detections one can consider.

With the option of detecting many pathogens comes with a need for determining the most rel-

evant genes of interest. While TAC can run up to 48 unique targets, the total amount of tem-

plate that enters each individual well is ~ 0.6 μL. This low template volume, compared to a

2–5 μL of template included in other molecular assays can affect the overall limits of detection

for this platform. While singleplex assays may have lower limits of detection, the likelihood of

optimizing a multiplex for up to 46 or more agents is unrealistic; therefore, giving TAC a con-

siderable advantage as a high parallel, multiple detection platform [44]. Additionally, these tar-

gets and the QA/QC involved require dedicated time and effort to include relevant targets that

may change based on future applications. The need for additional replicates run to produce

robust analytical limits of quantification are encouraged for future work. Using this multiple

pathogen detection tool does not account for variant changes and may not be suitable for all

applications. Our findings indicate TAC offers a multi-parallel platform for screening waste-

water for a diverse array of enteric pathogens of interest to public health with strong potential

for screening other targets of interest including respiratory viruses and antibiotic resistance

genes.
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