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Abstract: The humid highlands of the Galapagos are the islands’ most biologically productive regions
and a key habitat for endemic animal and plant species. These areas are crucial for the region’s food
security and for the control of invasive plants, but little is known about the spatial distribution of
its land cover. We generated a baseline high-resolution land cover map of the agricultural zones
and their surrounding protected areas. We combined the high spatial resolution of PlanetScope
images with the high spectral resolution of Sentinel-2 images in an object-based classification using a
RandomPForest algorithm. We used images collected with an unmanned aerial vehicle (UAV) to verify
and validate our classified map. Despite the astounding diversity and heterogeneity of the highland
landscape, our classification yielded useful results (overall Kappa: 0.7, R?: 0.69) and revealed that
across all four inhabited islands, invasive plants cover the largest fraction (28.5%) of the agricultural
area, followed by pastures (22.3%), native vegetation (18.6%), food crops (18.3%), and mixed forest
and pioneer plants (11.6%). Our results are consistent with historical trajectories of colonization and
abandonment of the highlands. The produced dataset is designed to suit the needs of practitioners of
both conservation and agriculture and aims to foster collaboration between the two areas.

Keywords: agriculture; conservation; galapagos; image fusion; invasive species; land cover;
planetscope; random forest; sentinel-2; uav

1. Introduction

1.1. The Humid Highlands of the Galapagos and Their Value

Vast expanses of agricultural land in the Galapagos have become abandoned in the last decades,
making this UNESCO Natural World Heritage Site vulnerable to invasive plants, which thrive
in disturbed environments [1,2]. Presently, the humid highlands of the Galapagos record higher
numbers of invasive plants when compared to the dry lowlands, and these plants not only threaten
agricultural systems but also the remaining patches of native-dominated ecosystems that still exist
in the non-protected areas of this Ecuadorian archipelago [3]. Crop production and cattle ranching,
when properly implemented, can effectively be used to control the spread of invasive plants or even
rehabilitate invaded lands [4,5]. Given the direct influence of agriculture on both the introduction and
control of introduced species, local governance seeks to incentivize agroecological models that serve to
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control the spread of invasive plants to nearby native dominated patches or to the protected lowlands
while simultaneously contributing to local food security [5-7].

The humid highlands are also an irreplaceable foraging habitat for Galapagos giant tortoises and
crucial nesting habitat for several endemic bird species [8,9]. Adult tortoises migrate every year from
their nesting grounds in the lowlands to the highlands seeking food, and at high elevations, their
seasonal diet has become dominated by introduced and invasive species [10]. Thus, some landowners
of Santa Cruz island that are located in the tortoises’ migratory path have turned to tourism for their
primary source of income, allowing tortoises to wander freely through their land and charging tourists
to see tortoises in their “natural” environment [11]. However, land parcels are divided by barbed wire
and living fences made up mainly of Erythrina smithiana. E. smithiana grows into dense thickets that act
as barriers for tortoises and are known to interrupt their migratory paths [12].

1.2. Remote Sensing of Island Agroecosystems

Remote sensing techniques have become essential tools for agronomists and conservation scientists
alike because they allow for systematic, non-intrusive, and uniform collection of data that can be
interpreted from a biophysical standpoint, even in places that are hard to reach [13-16]. Despite its
usefulness, remote sensing is still relatively underused because, until recently, access to high-resolution
imagery was prohibitively expensive, and the long revisit time of high-resolution satellites was
impractical for applications that required close monitoring, especially in regions with persistent cloud
coverage [14,15]. However, this has changed with the introduction of small satellite constellations
that have short revisit times and with the availability of freely-accessible high spatial and spectral
resolution image collections [13,15,17].

The persistent cloud coverage, high biological diversity, and high landscape heterogeneity
of island agroecosystems like those in the Galapagos make them challenging regions to classify.
Among the plethora of methods, sensors, vegetation indices, and classification algorithms used for
mapping island ecosystems and agricultural landscapes, methods that combine multiple data sources
of complementary resolutions have been among the most successful at accurately classifying land
cover [15,18-21]. The inclusion of vegetation indices is useful for differentiating land cover types
that have variable spectral responses based on local conditions, such as moisture and vegetation
health [16,22]. Object-based classification methods have been found to handle nuanced classification of
high-resolution images better than pixel-based classification methods [15,18,23,24]. Machine learning
methods, like decision trees [25], have become common and have been shown to have higher accuracy
than parametric classification methods like maximum likelihood classifiers as they do not require
assuming a particular statistical model for the distribution of the training data [24-26]. Object-based
classification of high-resolution images using machine learning algorithms, like random forest, is an
efficient method for classifying smallholder agricultural systems and mapping invasive species with
high accuracy results [23,24,26-28]. Taking advantage of newly-available high-resolution sensors,
commonly-used vegetation indices, object-based approaches, and contemporary machine learning
methods, we can create an easily-replicable methodology that addresses the challenges of creating
high-quality classification maps of regions like the humid highlands of the Galapagos.

1.3. Past and Present Efforts to Map the Humid Highlands and Agroecosystems of the Galapagos Using
Remote Sensing

Despite the importance of the agricultural region for human wellbeing and environmental
conservation, the land cover of these critical habitats remains mostly undocumented in detail for this
tropical archipelago. Table 1 summarizes previous and current efforts to map the Galapagos using
remote sensing.
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Table 1. Previous and current efforts to map land cover in the Galapagos Islands using remote sensing.*

Spatial . Year Images Agricultural Zone
Source Sensor Resolution Spectral Resolution Collected Visibility
CLIRSEN and TNC, SPOT 4 20 m Visible, SWIR 2000 highly obscured by
2006 Landsat 5 30 m Visible, NIR, SWIR 2000 clouds
SIGTIERRAS 2010 Orthophotos 0.5m Visible 2009 Yes
Visible, NIR, SWIR,
Rivas-Torres et al., 2018 el e Panchromatic A Excluded
SRTM 30 m Radar 2015
Jager and Carrion Worldview 2 0.46/1.84m Panchromatic, 2015/2018 Excluded
(In press) Multispectral
PlanetScope 3m Visible, NIR 2018 Yes
’ Visible, Red Edge Edge,
Current publication Sentinel-2 10m NIR, Narrow NIR, SWIR 2017/2019 Yes
SIGEI%{{ARAS 10 m Visible (Stereoscopy) 2009 Yes

CLIRSEN (Center for Integrated Survey of Natural Resources by Remote Sensing); TNC (The Nature Conservancy);
SIGTIERRAS (Sistema Nacional de Informacion y Gestion de Tierras Rurales e Infraestructura Tecnoldgica); SPOT
(Satellite Pour 1'Observation de la Terre); SRTM (Shuttle Radar Topography Mission); DTM (Digital Terrain Model);
SWIR (shortwave infrared); NIR (near infrared). * Shaded cells group used sensor types into individual studies.

Most previous studies either exclude the agricultural areas or suffer from high cloud cover
concentrations over the humid highlands (Table 1). Only the survey performed by the National System
of Information of Rural Lands and Technological Infrastructure (SIGTIERRAS) has high-resolution
images where the agricultural zone is visible. However, these images are a decade old, and the sensor
was sensitive only to wavelengths within the visible spectrum. Furthermore, two of the primary studies
that are used by the Galapagos National Park (GNP) and government institutions (CLIRSEN and TNC,
2006, and SIGTIERRAS 2010) are not published, so wider access to this valuable information is greatly
restricted. Given the sensitive nature of ecosystems around and within the agricultural areas and the
dynamic rate at which they change, it is imperative that the humid zones be precisely mapped with a
replicable methodology to support monitoring efforts and to inform land management strategies [29].

1.4. Objectives

The purpose of this work is to build upon previous studies and make updated land cover
classification maps of Galapagos agroecosystems available using some of the highest-resolution
freely-available images. Specifically, our objectives for the present investigation are to:

e Develop a classification methodology, using remote sensing, specifically in complex
agroecosystem landscapes.

e  Identify regions of remaining native forests in and near the agricultural zone.

e  Identify the distribution of invasive plant species like Psidium guajava, Rubus niveus, Zygsigum
jambos, and Pennisetum purpureum that threaten agricultural lands and adjacent protected areas.

e  Identify the distribution of Erythrina smithiana living fences in Santa Cruz, which might act as an
obstacle for migrating tortoise populations.

e Identify the distribution of economically significant agricultural land cover like cattle ranching
pastures, annual crops, tree crops, and cash crops, such as coffee.

Having access to updated information about the distribution of invasive species and remaining
native forests will assist landowners and institutions like the GNP and the Ministry of Agriculture
(MAG) in their goals to manage land uses, conserve protected species, and prevent the spread of
invasive plants. Current land cover distributions can help determine the optimal conditions for prized
crops, as well as predict the range of invasive plants in islands where plants may be at a different
stage of colonization. This information, together with previous efforts using comparable mapping
techniques, will help plan for future conditions as both local and global drivers, such as land use or
climatic patterns, continue to change.
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2. Materials and Methods

2.1. Study Area

All four inhabited islands of the Galapagos, Santa Cruz (-90.36387, —0.62881), San Cristobal
—0.88422, —89.49595), Isabela (—0.80732, —91.01344), Floreana (—1.30986, —90.43528), have a zone in the
humid highlands that has been designated for agricultural use (Figure 1). This region extends from
what is commonly known as the “transition zone” at about 200 masl to some of the highest points
of the islands (~700 masl). To define the study area, we created a 1 km buffer around the designated
agricultural zone of each inhabited island. The buffer was included in the present mapping campaign
to take into account the constant flow of people, animals, and plants across the boundary that separates
the agricultural areas and the GNP [30].

The agricultural regions of the Galapagos face the south or windward side of the islands,
which receive high levels of precipitation (813 mm mean annual precipitation) during the warm
season (January—-May) and remain enveloped in clouds during the cool season (June-December) [31].
The agricultural zones are within the humid highlands of the Galapagos, and in comparison to the
lowlands, they receive nearly three times as much rain, present higher overall humidity (85-93%
mean relative humidity, about 5% higher than the lowlands), lower average temperatures (16-20 °C
mean minimum temperature, about 2 °C lower than the lowlands) and lower solar radiation (1-6
mean daily sunshine hours, about 2 h less than in the lowlands) throughout the year [32]. The humid
highlands also record higher plant diversity when compared to the dryer lowland ecosystems of the
Galapagos [31]. The severe seasonal temperature and precipitation fluctuations of highland areas have
gradually weathered the islands’ volcanic rocks, creating a patchwork of nutrient-rich soils of variable
depths and textures that can grow both tropical-weather crops and temperate-weather crops [33].
The greater primary productivity and diversity, combined with different edaphic conditions, have
resulted in the formation of unique ecosystems that present distinct plant assemblages in comparison
to the lower elevation arid areas [34]. Likewise, the unique conditions of the humid highlands harbor
endemic plant species that present particular adaptations and biological mechanisms that are important
to maintaining the ecological processes that characterize these ecosystems [35,36]. Such environmental
uniqueness motivates prioritizing these areas for conservation within the renowned Galapagos
archipelago [35,37,38].

Inhabitants of the highlands of the Galapagos devote their land to three general activities: cattle
ranching, crop production, and tourism activities. According to the 2014 agricultural census, pastures
cover nearly 60% of the land surface area of Galapagos agroecosystems, either cultivated or naturally
germinated. A commonly grown variety is elephant grass (Pennisetum purpureum), which is used as
cattle feed but is also considered invasive [39]. Pastures for cattle forage are often combined with forestry
practices for tree crops or timber products, an agroecological practice known as silvopasture [36].
Tree crop varieties used in silvopastures often include lemon (Citrus spp.) or guava (Psidium guajava);
P. guajava is also considered highly invasive. The most common transitory (annual) crops include
maize, manioc, watermelon, and tomatoes, but these are reported to represent only about 1% of
the surface area [40]. The most common permanent (perennial) crops are tree crops, such as coffee,
banana, and plantain, but also pineapple and sugar cane. Reportedly, permanent crops cover about
8% of the surface area. Landowners reported that most permanent and transitory crops are grown as
monocultures [41]. Pioneer (non-invasive but fast-growing) and forest species are reported to cover
about 22% of the surface area, while invasive species (e.g., P. guajava, R. niveus, C. odorata, Zygsigum
jambos) are reported to cover about 5% of the surface area in the agricultural region [40].

Farmers spend a great deal of time and resources clearing their land of invasive plants, which
usually proliferate in vacant areas. Land parcels that do not have active land management sometimes
become monocultures of invasive plant species, like guava (P. guajava) and cedar (C. odorata), which
then spread into the adjacent protected areas. Invasive plants, which have severely modified 2-5%
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of the GNP, are mostly located in the humid highlands due to the higher productivity relative to the
dryer lowlands [3,29,42].
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Figure 1. Study area. Each of the inhabited islands has a designated agricultural zone. The map above
shows the geographical location of the agricultural zones (blue outline), and the panels below show a
detail of each agricultural zone with cloudless PlanetScope images.

2.2. Preliminary Definition of Land Cover Units

We focused on defining and mapping vegetation types that were of interest to both the conservation
and agricultural sectors, including invasive species, like guava, and valued cash crops, like coffee.
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We based the agriculturally-relevant categories on those used by the 2014 agricultural census of the
Galapagos [40]. Similarly, we based conservation-related categories on those used by the official
classification systems of the MAG and on previous classification studies of the protected areas of the
GNP [42,43].

We used level hierarchies to address the complexity of landscapes, breaking down broader
categories into increasingly specific categories (Figure 2). At level 1, categories allow choosing between
Land and the Pacific Ocean. At level 2, the ‘Land’ category is broken down into four categories: ‘bare
ground,” ‘built environment,” ‘vegetation,” and ‘freshwater.” Bare ground is volcanic rock or soil surface
area with no vegetation cover. This category excludes recently tilled land for crops. Built environment
is surface covered by concrete, pavement, or other impervious surfaces. Vegetation represents all
plants that cover the land surface, and freshwater describes naturally-occurring or artificial bodies
of freshwater, such as ponds or reservoirs. At level 3, the ‘vegetation’ category is further broken
down into ‘introduced” and ‘native’ species, and levels 4 and 5 correspond to more specific categories
that can be recognized as individual vegetation stands or patches at a mapping scale of 1:10,000.
Introduced species (Table 2) are plants that were intentionally or unintentionally brought to the islands
by humans and have become naturalized since their introduction, such as Citrus and Erythrina spp.
Native species (Table 3) are those that arrived on the islands by their own means, transported by the
wind, water, or other animals [44]. Introduced species include food crops (transitory and permanent
crops), pastures, and invasive species. The pastures category includes grass species planted by farmers
for cattle grazing naturally-occurring species that are dispersed by the wind [40]. Invasive species
are a subset of naturalized plants that produce reproductive offspring in large numbers and over a
considerable distance, thus having the potential to spread over large areas and negatively impact native
biota [45]. Some of the most common and aggressive species include Cedrela odorata (cedar), Cinchona
pubescens (quinine), Psidium guajava (guava), Rubus niveus (blackberry), Lantana camara (supirosa),
and Syzygium jambos (pomarrosa) [42].

Lvl Lv2 Lv3 Lv4 Lv5

Bare Ground

Built Environment

Transitory Crops
Permanent Coffea -Coffee
Crops

Other Permanent Crops
Cultivated Grass
Penmisetum - Elephant grass
Silvopasture
Erythrina - Porotillo
. Cedrela -Cedar
Cinchona -Quinine
Lantana -Supirosa
Mixed forest
Psidium -Guava
Rubus -Blackberry

Syzygium -Pomarosa

Vegetation

Deciduous Forest
Evergreen Forest and Shrubland
Evergreen Seasonal Forest and Shrubland
Humid Tallgrass
Pioneer

Figure 2. Category hierarchy used for land cover classification of Galapagos agroecosystems.
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Table 2. Descriptions of introduced land cover categories.

Category

Description

Cedrela—Cedar

Cinchona—Quinine

Coffea—Coffee

Cultivated Grass

Erythrina— Porotillo
Lantana-Supirosa

Mixed forest

Permanent Crops

Pennisetum—Elephant grass

Psidium—Guava

Rubus—Blackberry

Silvopasture

Syzygium—Pomarrosa

Transitory Crops

Cedrela odorata, or spanish cedar, is a semi-deciduous tree 10-30 m tall, which
outcompetes most other tree species and grows into a dense canopy [46].
The red quinine tree (Cinchona pubescens) is a 15 m broad-leaved evergreen,

which was once widespread in Santa Cruz’s Miconia region (~580 masl). [47]

The Coffea- and coffee category includes bushes of the arabica or robusta
varieties since this is the most important cash crop and the only product that
is exported. Coffee is often shade-grown with other tree crops like Citrus or

banana (Musa spp.), so this category is limited to what is visible from
above [40].

Cultivated grass is a category that groups monocrops of less common
cultivated grasses for pasture or landscaping, including grasses of Brachiara
or Paspalum genera [40].

Erythrina smithiniana or porotillo is a shrubby tree of the Fabaceae family,
which grows up to ~8 m and is commonly planted as stakes along the edges
of farms to form ‘living fences’ [12].

Lantana camara or Supirosa is an ornamental shrub up to 3 m tall that
invades a wide variety of habitats, from tropical to temperate regions [48,49]
Mixed forest is a category describing a forest where there is a mixture of
introduced, invasive, or native species, and the dominance of a single
species cannot be established [42].

Permanent Crops are those that take over one year to reach productive age,
and that can produce for several subsequent years without requiring
replanting after each harvest. Some of the most common perennial crops
include coffee (Coffea spp.), plantain, banana (Musa spp.), sugar cane
(Saccharum spp.), pineapple (Ananas spp.), and orange (Citrus spp.) [40].
The permanent crops category also includes all other perennial or tree crops,
such as pineapple (Ananas spp.), sugar cane (Saccharum spp.), or other tree
crops, commonly of Fabaceae, Persea, or Carica genera [40].
Pennisetum purpureum or Elephant grass is the most common type of
cultivated grass for cattle fodder and grows tall, robust bamboo-like
clumps [40].

Psidium guajava or guava is a small tree (8 m tall) that has escaped
cultivation and become common in mesic forests (>150 masl) of several of
the large islands [50,51].

Rubus niveus or blackberry is a widespread thorny shrub that grows in gaps
of native vegetation and forms dense thickets up to 4 m high over
grasslands, bracken, bush, and forest areas alike [52].
Silvopasture describes an intentional combination of pasture for cattle
grazing and trees, which provide additional fodder for cattle, fruit crops,
wood, or shade [53].

Syzygium jambos or pomarrosa is a small tree (3—15 m) that forms dense
thickets and threatens several highland habitats, especially in San Cristobal
and Isabela [2].

Transitory crops are short-cycle crops. Common ones include maize
(Zea spp.), cassava (Manihot spp.), and watermelon (Citrullus spp.) [40].
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Table 3. Descriptions of native land cover categories.

Category Description

Deciduous forest was sometimes referred to as ‘dry or arid zone’; this area is mostly
lava substrate dominated by native species like Acacia spp., Bursera graveolens,
Piscidia carthagenensis, Croton scouleri, or Opuntia spp., and ranges from 0 to
~200 masl [42,46].

The Evergreen forest and shrubland is sometimes referred to as the ‘Scalesia’, ‘brown’,
and ‘Miconia’ zones. This region contains well-developed soil with vegetation

Evergreen Forest and characterized by an abundance of shrubs, herbs, ferns, and trees like
Shrubland Darwiniothamnus tenuifolius, Lycopodium spp., Scalesia pedunculata, Miconia
robinsoniana, and Zantoxylum fagara. Epiphytes like mosses and liverworts
commonly cover the trunks and branches of trees in this zone [42,46,51].
Evergreen seasonal forest and shrubland is an ecosystem previously referred to as
Evergreen Seasonal ‘transition zone’, where soil and understory are more developed than the deciduous
Forest and Shrubland forest and species like Clerodendrum molle, Cordia lutea, Chiococca alba, Psidium
galapageium, Tournefortia spp. can be found [42,46,51].
Humid tallgrass is a region previously known as ‘pampa zone’, which contains
virtually no trees or shrubs, and its vegetation consists mainly of ferns, grasses, and

Deciduous Forest

Humid Tallgrass sedges like Cyathea weatherbyana, Habenaria monorrhiza,
or Pteridium aquilinum [42,43].
The pioneer category describes herbaceous, quick-growing native vegetation that
Pioneer thrives in recently disturbed areas, such as Plumbago scandens, Senna occidentalis,

Mentzelia aspera, Sida rhombifolia, or Heliotropium spp., but likely also includes
introduced herbaceous species like Amaranthus spp., or Pothomorphe peltata [46].

2.3. Land Cover Classification

A detailed description of the mapping process is found in Figure 3 and the sections below.

Aguired Fused Object-Onented

Data Pre-Processing Images S Verified map Validated map

Obtained
« Sentinel-2 (S2) « Atmospheric « Combined geometry of « Selected important » Used Google « Randomly generate
« PlanetScope (PS} correction 52 higher-resolution PS variables Earth, UAV reference polygons
.« OTM = QOrthorectify PS bands w/ spectral data - Segmentation and mosaics, (excluding training
« UAV Images images of lower-resolution S2 object generation control points, sample areas)
. GPS Conirol Points * Subset everything bands « Selected training and expert « Manually digitize
to study area » Generated sample knowledge to polygons wi UAY
Generated o NDVI = Classification with verify and fine- images
o NDVRE RandomForest tune training « compare polygon areas
« Slope from DTM o Sl algorithm sample w/ classified map
» Orthomosaics from « Estimated training « Calculate:
UAV images sample o KAl
classification error = ROC-AUC
.« R2
+ RMSE

Figure 3. Workflow overview for land cover classification.
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2.3.1. Data Acquisition

Multispectral Data

New freely-available sensors, such as the 10-meter spatial resolution Sentinel-2 images from the
UE’s Copernicus Programme [54], and 3-meter spatial resolution 4-Band PlanetScope images from
Planet Labs [55], can help overcome the challenges that have limited mapping of these areas. Planet
Labs is a commercial venture, but its image collections are accessible to university students and faculty
for free through its education and research program.

PlanetScope sensors have a high spatial resolution (3 m) and are sensitive to both visible and
Near Infrared (NIR) wavelengths (Figure 4). The high spatial resolution of PlanetScope images
allows visualizing considerably more details than NASA's freely available Landsat collections or even
commercially-available SPOT (Satellite Pour 1'Observation de la Terre) sensors. Meanwhile, Sentinel-2
sensors have a high spectral resolution (Aerosol, Visible, Red Edge, NIR, Narrow NIR, Water Vapor,
and Short Wave Infrared or SWIR) and have a 10, 20, and 60-meter spatial resolution (Figure 4).

1001

H H H (60 m)

7 .
ﬂ IIl (Széer?)tmel—2
E (10 m)

PlanetScope

n J (3m)

Atmospheric Transmission (%)

o

400 900 1400 1900 2400
Wavelength (nm)

Figure 4. Comparison of spectral bands between Sentinel-2 and PlanetScope satellites. The axes depict
the wavelength in nanometers and the terrestrial atmospheric transmission (grey) in percent (adapted
from NASA, https://landsat.gsfc.nasa.gov/sentinel-2a-launches-our-compliments-our-complementsy/).

The multispectral images used to make the mosaic and land cover classification are listed in
Table 4. These images were chosen by searching through Planet and Copernicus image collections
for low (usually <10%) cloud cover images from the warm/humid season (January-May) that were
recorded less than a month apart from each other for each island to avoid variability in the island
mosaics. Even if cloud cover was greater than 10%, the images were considered useful if land areas
were visible. Images from 2018 were used as a reference, and we included images a maximum of one
year apart to complete areas that suffered from cloud coverage.
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Table 4. Multispectral images used for land cover classification of the Galapagos agricultural zone.

Sensor Capture Date Capture Time Visible Islands Cloud Cover (%)
Sentinel-2 21-February-17  11:33:01 AM EST Isabel}fl' Santa Cruz, 0
oreana

Sentinel-2 10-March-19 12:23:11 PM EST San Cristobal 22
4-Band PlanetScope 10-March-18 10:47:46 AM EST Floreana 0
4-Band PlanetScope 10-March-18 10:46:47 AM EST Floreana 0
4-Band PlanetScope 11-April-18 11:52:07 AM EST Isabela 0
4-Band PlanetScope 11-April-18 11:52:08 AM EST Isabela 0
4-Band PlanetScope 11-April-18 11:52:09 AM EST Isabela 0
4-Band PlanetScope 9-March-18 10:48:35 AM EST Santa Cruz 1
4-Band PlanetScope 9-March-18 10:48:36 AM EST Santa Cruz 1
4-Band PlanetScope 9-March-18 10:48:37 AM EST Santa Cruz 0
4-Band PlanetScope 10-March-18 10:47:34 AM EST Santa Cruz 0
4-Band PlanetScope 10-March-18 10:47:35 AM EST Santa Cruz 0
4-Band PlanetScope 10-March-18 10:47:36 AM EST Santa Cruz 0
4-Band PlanetScope 10-March-18 10:45:18 AM EST San Cristobal 2
4-Band PlanetScope 10-March-18 10:45:19 AM EST San Cristobal 1
4-Band PlanetScope 31-March-18 11:44:57 AM EST San Cristobal 1
4-Band PlanetScope 31-March-18 11:44:58 AM EST San Cristobal 7

Topographical Data

We used a 10-meter spatial resolution Digital Topographic Model (DTM) generated from
SIGTIERRAS orthophotos (2010). The DTMs were provided by authorities from the Galapagos
Government Council (CGREG). Elevation and Slope are useful predictors of vegetation variability [56,57].
We calculated the slope from the DTM layer in ArcMap.

Unmanned Aerial Images and GPS Control Points

From 2017-2019, we surveyed about 83 agricultural production units (UPA) on all four islands.
Most surveyed UPAs were recommended for mapping by MAG because they are considered to be
representative of agrarian production on each island. Additionally, some UPAs were chosen because
they are located in known tortoise habitat. During the surveys, we collected high-resolution (<2 cm
per pixel) visible wavelength images of the UPAs with an unmanned aerial vehicle (UAV—D]I Mavic
Pro Platinum, 1/2.3 CMOS Sensor), as well as 826 control points of the most salient landscape features
and vegetation types within the UPAs that were visible from above, wherever terrain accessibility
allowed, using a handheld GPS (Garmin Map64, accuracy: +/— 3 m). We covered an area of ~1252 ha
with our drone flights, corresponding to about 2% of the study area (Table 5, Figure 5). We aligned the
UAV images and generated a three-dimensional mesh that we used to stitch together a high-resolution
(~0.04 m) orthomosaic using AgiSoft Photoscan (version 1.4.5) for each UPA.

Table 5. Extent of surveyed area per island.

Island Number of UPAs Surveyed =~ UAV Survey Area (ha) Percentage of Study Area
Santa Cruz 26 566.89 1.92
San Cristobal 38 503.37 292
Isabela 12 124.18 0.98
Floreana 7 57.85 3.35
All islands 83 1252.29 2.05
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Figure 5. Footprint of UAV flights, GPS control points, and selected training samples for land cover
classification of humid highlands and agricultural zones of the Galapagos.

2.3.2. Image Pre-Processing

We used PlanetScope surface reflectance products, which were already atmospherically corrected
to bottom-of-atmosphere reflectance. We generated the mosaic of these scenes in ENVI 5.3 and applied
a 20-pixel edge feathering between images. Sentinel-2 images were atmospherically corrected in
SNAP 6.0 using the Sen2Cor plugin with a Maritime setting. Lastly, we enhanced Sentinel-2’s 20 m
and 60 m bands to 10 meters using Sen2Res [58]. The Sen2Res algorithm separates band-dependent
information (reflectance) from information that is common to all bands (geometry of image elements),
then unmixes lower resolution bands, maintaining their reflectance while propagating the geometry of
scene elements to keep sub-pixel details [58]. All multispectral image mosaics, the DTM, and slope
layers were clipped using a mask of the study area. The Sentinel-2 images were used as a reference for
orthorectification of the PlanetScope images.

2.3.3. Image Fusion

We used the variational fusion method proposed by Gasparovic etal. (2018) to fuse PlanetScope and
Sentinel-2 images to improve classification accuracy. This method introduces the geometry information
of the higher resolution image (PlanetScope) by aligning all edges of the higher resolution bands
with each lower resolution (Sentinel-2) multispectral bands of similar spectral characteristics [59,60].
Figure 4 highlights the spectral overlap with Sentinel-2 and PlanetScope fused bands. High-resolution
PlanetScope bands 1, 2, 3, and 4, were each fused with the 10 m Sentinel-2 bands 2, 3, 4, and 8§,
respectively. We also fused PlanetScope’s Band 4 with Sentinel’s Band 8A, 11, and 12. There is no
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direct equivalent to fuse with Sentinel-2’s Red Edge bands, so following Gasparovic et al. (2018),
we generated a synthesized band (S) using Equation (1),

s 33234 1)

where B3 is PlanetScope’s Band 3 (Red), and B4 is its Band 4 (NIR). Table 6 summarizes the band
combinations that were used to obtain the fused images. Image Fusion was conducted with the
open-source Orfeo ToolBox V.6.6.1.

Table 6. Band combinations for fusing PlanetScope with Sentinel-2 images.

PlanetScope
Bands B1—Blue B2—Green B3—Red B4—NIR S—Syn

B2—Blue X
B3—Green X
B4—Red X
B5—Red Edge
B6—Red Edge
B7—Red Edge
B8—NIR
B8A—Narrow NIR
B11—SWIR
B12—SWIR

Sentinel-2

X X X

X X X X

2.3.4. Vegetation Indices

The fused multispectral images were used to generate vegetation indices, namely the Normalized
Difference Vegetation Index (NDVI), Structural Index (SI), and Normalized Difference Vegetation Red
Edge (NDRE). NIR wavelengths are used to calculate vegetation indices like the NDVI and SI, which
are known to be useful for land cover classification [22,61,62]; studies also suggest that including
Sentinel-2’s Red Edge band in a vegetation index, such as the NDRE, can yield more accurate results
for the classification of agricultural areas [16,63].

2.3.5. Object-Oriented Classification with RandomForest

Random Forest (RF) is a widely used algorithm for remote sensing, being a powerful option
for integrating different imagery sources and ancillary data sources into image classification
workflows [64,65]. RF classification has been demonstrated to work well in land cover classification
tasks like this one because it is effective with relatively small samples of training data and not
particularly sensitive to noise [27]. The method is also ideal because it can achieve good accuracy
without detailed hyperparameter optimization, and provides a robust estimate of the trained model’s
uncertainty [23,24,27].
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Segmentation

We created the objects with a multiresolution algorithm where PlanetScope bands and fused
Sentinel-2 bands (Red, NIR) were given equal weight. The images were divided into segments of
relatively homogenous pixel composition, where the mean of band values of pixels within each segment
is used to represent “objects.” We set the segmentation scale parameter at 40 pixels, where each pixel is
about 9 m?. During the segmentation process, the similarity of pixels was determined by two values
ranging from 0 to 1. The first value is a shape criterion, where higher values mean that the color
of pixels is given less influence over what is included or excluded from each segment. The second
value is a compactness criterion, where higher values emphasize spatial proximity, causing resulting
objects to be more compact. We used a trial-and-error approach to determine the values (shape: 0.7;
compactness: 0.3) where objects such as built environment, living fences, and pastures were selected
most completely while excluding adjacent objects of different categories.

Training Data Sample

On each island, at least 20 object samples were selected for each category using GPS control points
and drone images acquired during fieldwork as reference. These object samples represent areas where
the cover category covers the total extension of the sample. From this data sample, we selected 50
stratified random pixel sample subsets for training the classification model.

Random Forest Classification

RF classification was performed in R Studio open-source statistical software, where we used the
randomForest, Caret, and raster packages to produce all classifications. For each island classification,
randomForest sampled 1000 classification trees and tried four variables at each split to calculate the
out-of-bag samples (rfOOB). The rfOOB are used to create a cross-validated prediction error for the
model and to formulate a measure of feature importance [66].

We used two sets of metrics to gauge the importance of 20 different variables from three different
sources (orthophoto, PlaneScope, Fused S2 + PS;) in the randomForest model. The first metric we
used is the Variable Importance (Caret Package), which is the mean of the scaled (from 0-100)
class-specific decreases in accuracy. The second set of metrics we used included the Mean Decrease
Impurity Importance (MDI) or Mean Decrease in Gini, as well as the Mean Decrease Accuracy (MDA,
randomForest package). MDI measures how important a variable is for estimating the value of a target
class across all of the decision trees that make up the forest. MDA evaluates the importance of each
variable by looking at how much prediction error increases when removing that variable while all
others are left unchanged [67,68].

2.3.6. Verification

Throughout the image classification process, we used Google Earth, high-resolution UAV images,
GPS control points, and expert knowledge to inform, correct, and fine-tune the training samples for
the image classification. We ran the classification algorithm multiple times, and after each iteration,
we identified regions where we suspected the classification had issues, and then selected additional
samples or removed existing samples to correct our results. Categories with insufficient data (Lantana,
Erythrina) to select training samples that would produce consistent results were dropped from
the classification.
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2.3.7. Validation

To validate the map, we created a confusion matrix and calculated Cohen’s Kappa [69-71]. We also
calculated the receiver operating characteristic (ROC) area under the curve (AUC) for our land-cover
methods, which is sometimes used to demonstrate the accuracy of machine learning methods [72].
However, this metric assumes that grid contents are homogenous. Given that we are dealing with
high-resolution data and land cover classes that are often not discrete, we also assessed the accuracy of
our maps by calculating the root mean square error (RMSE) and a correlation coefficient (R?) like land
cover classification studies that use high-resolution images [73-76].

First, we generated a grid of 60 x 60 m squares. We randomly selected 15 squares on each island
that overlapped areas where we had high-resolution images and control points but that did not overlap
with the areas chosen for training the algorithm. This way, we maintained independent data sources for
the geometry of the classified images and our reference polygons [69]. We created two versions of these
areas, one to serve as the reference polygons and the other to serve as the prediction. We intersected
the prediction polygons with the classified maps to extract the information corresponding to those
areas. For the reference polygons, we cut them into sections that visually matched the high-resolution
UAYV images and the GPS control points, and we manually classified them.

To characterize the effectiveness of our classification for estimating land cover fractions,
we calculated the percentages of the polygons that were occupied by the different classes, and obtained
a root mean square error (RMSE) and a correlation coefficient (R?) for each island and for each class c
using Equations (2) and (3) [73-76], respectively:

N
RMSE(c) = %Z( fie— fl-,c)z, )

i=1
N 2~ - 2
ch _ iZl(firC - fC)
N - 2
i:1(fi,c - f C>
where f; . is the predicted land cover fraction of class ¢ for sample i, f; is the true land cover fraction
of class ¢ for sample i, f. is the mean class c land cover fraction of the samples, and N is the total

number of samples. If the predicted cover perfectly matched the reference cover, we would expect an
R? value of 1 and an RMSE of 0 for that class. The island-wide results were obtained by summing

®)

simultaneously over samples and classes in Equations (2) and (3).

The AUC is a performance metric that estimates how well a model is able to distinguish between
classes, typically ranging between 1 (perfect classification) and 0.5 (no predictive capability); values
less than 0.5 are characteristic of a classifier that is anticorrelated with the true categories [77,78].
The AUC only characterizes binary predictors, so we calculated the AUC values for each land cover
category versus all other categories, using the same 60 reference polygons to evaluate our classification.
An AUC value of 0.7 is usually determined as the threshold for usefulness in an application, while
scores >0.9 denote high performance and are the most useful for classification [79].
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3. Results

3.1. Object Oriented Classification with Random Forest

Previous research has shown that although RF can handle high dimensional data, classification
accuracy remains relatively unchanged when only the most important predictor variables are
used [80,81]. Therefore, we ran the RF classification several times and recorded the importance
ranking of the less important variables of each iteration. In addition, a correlation and collinearity
analysis was performed, leaving a set of only the most important and uncorrelated variables. Four data
layers were removed from our data layer stack used in the final classification because they were mostly
redundant and did not offer new information for classification: PlanetScopes’s Band 2 and its NDVI,
as well as the fused Band 6 and 7 (Red Edge). Table 7 summarizes the final layer stack used, as well as
the MDA and MDI scores for each layer. Table 8 details the variable importance for sorting each of the
land cover categories. These metrics suggest that for most land cover categories, elevation was the
most important variable for their classification. All used PlanetScope layers were also consistently
useful for classification, as were the fused NIR and Narrow NIR bands. The fused NDVI and NDRE
were particularly helpful for differentiating the Cedrela—cedar cover.

Table 7. Data layer stack and variable importance.

Sensor Data Layer Mean Decrease Accuracy ~ Mean Decrease Gini
Orthophoto Elevation 95.59 94.96
Orthophoto Slope 62.39 63.39
PlanetScope B1—Blue 63.00 69.28
PlanetScope B3—Red 49.06 59.35
PlanetScope B4—NIR 57.42 69.64

S2 +PS B2—DBlue 42.37 48.39

S2 + PS B3—Green 50.15 57.28

S2 +PS B4—Red 48.47 49.41

S2 +PS B5—Red Edge 52.94 4428

S2 + PS B8—NIR 54.23 60.81

S2 + PS B8A—Narrow NIR 57.88 65.54

S2 +PS B11—SWIR 54.79 50.34

S2 + PS B12—SWIR 55.04 48.65

S2 +PS NDVI 54.59 62.92

S2 +PS NDVRE 55.79 58.22

S2 + PS SI 60.47 46.59

The classification method yielded a cumulative classification error ranging from 2.76% for Floreana
to 6.2% for Santa Cruz (Table 9). Permanent crops were the most commonly misclassified cover, as it
was sometimes misclassified as a transitory crop or as mixed forest. Table 9 summarizes the error rates,
as well as the most common classification errors (>0.1 error rate) revealed in the confusion matrix.
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Table 8. Variable Importance for Each Land Cover Category.

16 of 39

Land Cover Category Orthophoto PlanetScope Fused Image (Sentinel-2 + PlanetScope)
Elevation Slope Bl B3 B4 B2 B3 B4 B5 BS BSA  BI1 Bl2 NDVI NDRE SI

Bare Ground 27.46 36.66 2508 2158 2380 20.17 2126 1942 1469 2393 3040 1745 1939 1942 1915  14.16
Built Environment 32.04 2331 3590 27.64 2426 2532 2394 2474 2445 2264 2327 2461 1871 2100 1735 2892
Cedrela-Cedar 13.26 452 992 1031 1121 1200 656 1334 508 1055 1123 932 827 2843 1814  7.16
Cinchona-Quinine 28.42 1458 2086 1266 1424 1751 1595 1092 834 1248 1195 779 878 1364 1311 1059
Coffea-Coffee 59.06 3449 4441 3642 3845 3014 3770 3174 2996 3439 37.87 3861 3458 2981 3271  32.29
Cultivated Grass 49.33 3179 4260  34.04 3342 2921 2911 2467 2329 3127 3287 2583 2478 2634 2786  25.62
Deciduous Forest 42.88 2726 4186 2552 2942 2230 2733 2149 2502 2566 29.03 3057 2387 1893 2158  22.05
Everggﬁizlﬂ‘;fgt and 75.88 1575 2548 2126 3271 2019 2477 1929 1496 2431 2362 1599 1676 1838 1798  16.73
Evergreen Seasonal Forest 40.31 3318 3928 3425 3252 2711 3016 2659 2461 3630 3487 3092 3009 2836 3179  23.99
Freshwater 29.24 2324 2289 2009 2244 1518 1627 1536 1352 1943 2070 2039 2117 1735 1554  15.06
Humid Tallgrass 54.93 4238 3121 2662 37.64 2492 2850 2599 2324 3000 3136 2373 2583 2487 2585  21.70
Mixed Forest 58.38 4098 4141 3564 3984 3051 3435 33.85 2778 3648 3980 2830 2945 3361 3593 2561
Pennisetum-Elephant Grass 63.06 2480 3128 2720 3492 2543 3421 2264 2170  29.65 3031 2322 2176 2196 2391  19.42
Permanent Crops 50.89 2967 3365 3074 3107 2596 3412 2427 2360 3156 33.02 3008 2728 2595 2610 2821
Pioneer 56.26 4443 4733 4292 4002 2860 3697 3232 3359 3806 3919 3418 3165  29.00 3426  30.83
Psidium-Guava 45.78 19.65 3198 2817 2877 2042 2176 2512 1519 2604 2870 21.86 2599 2211  21.64  24.99
Rubus-BlackBerry 59.99 2445 2746 2547 3371 1926 2526 2320 1656 2397 2454 1583 1776 2473  19.63  14.50
Silvopasture 39.14 2019 2740  23.05 2529 2541 3143 2379 2440 2521 2680 2818 2470 2086 2325  20.64
Syzygium-Pomarosa 17.32 683 1574 1593 2340 1939 2330 2263 1285 1779 1941 2470 1948 1055 1419  13.89
Transitory Crops 50.13 2766 4792 3527 2966 2935 32.07 2865 3147 3131 3328 3146 2611 2356 2419  27.59
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Table 9. Classification errors of the random forest (RF) algorithm for each category per island.

Category Island Common Classification Errors (>0.1)
Santa Cruz San Cristobal Isabela Floreana
Bare Ground 0.04 0.00 0.02 0.00
Built Environment 0.02 0.02 0.00 0.00 .
Evergreen forest: In San Cristobal, out of 50 samples, evergreen
'Cedrelu—Cecfla.r 0.02 0.02 0.00 0.06 s forest was misclassified as guava 5 tinﬁes. 5
Cinchona-Quinine 0.00 NA NA NA Mixed forest: In San Cristobal (50 samples), mixed forest was
Co.ffea—Coffee 0.04 0.00 0.00 NA misclassified as cedar 2 times. In Floreana, (50 samples) it was
Culltlvated Grass 0.02 0.10 0.07 0.00 misclassified as evergreen seasonal forest 2 times.
Deciduous Forest 0.06 0.02 0.02 0.00 Permanent crops: In Santa Cruz (50 samples), permanent crops
Evergreen Forest and Shrubland 0.02 0.18 0.00 0.06 were misclassified as pioneer, guava, and transitory crops 2 times
Evergreen Seasonal Forest 0.10 0.08 0.00 0.06 each. In Cristobal (50 samples) it was misclassified as transitory
Freshwater 0.00 0.00 0.00 0.00 crops 4 times and mixed forest 3 times. In Isabela (55 Samples) it
Humid Tallgrass 0.02 0.00 0.02 NA was misclassified as transitory crops 4 times.
Mixed Forest 0.02 0.12 0.07 0.12 Psidium-Guava: In San Cristobal (50 Samples), guava was
Pennisetum-Elephant Grass 0.08 0.00 0.00 NA misclassified as evergreen forest 3 times and as mixed forest 3 times.
Permanent Crops 0.28 0.20 0.18 0.00 Silvopasture: In Santa Cruz, silvopasture (50 samples) was
Pioneer 0.08 0.02 0.00 0.00 misclassified as permanent crops 4 times, as pioneer 3 times, and as
Psidium-Guava 0.04 0.16 0.09 0.08 guava, cultivated grass, and humid tallgrass 2 times each.
Rubus-BlackBerry 0.00 0.00 0.00 0.00 Transitory crops: In Isabela (55 Samples), transitory crops were
Silvopasture 0.38 0.02 0.07 0.02 misclassified as permanent crops 7 times.
Syzygium-Pomarrosa NA 0.02 0.00 NA
Transitory Crops 0.02 0.06 0.24 0.04
OOB Estimate of Error Rate 6.20% 5.14% 4.11% 2.76%




Remote Sens. 2020, 12, 65 18 of 39

3.2. Spatial Coverage and Distribution of Land Cover Categories

Table 10 lists the spatial coverage of each land cover type on all islands and details the percentage
of terrestrial surface that each category covers within the agricultural area as well as within the 1 km
buffer zone from our study. A shapefile (Figure S1) of the classified images can be found online
in the supplementary materials section. Appendix A contains a breakdown for individual islands:
Santa Cruz (Table A1), San Cristobal (Table A2), Isabela (Table A3), and Floreana (Table A4). Figure 6
depicts the spatial distribution of each land cover type on the four islands. Figure 6 and Table 10 show
that there is a dramatic change in vegetation inside the agricultural area relative to the surrounding
protected areas. Inside the agricultural area, the most common cover is Psidium—Guava, covering
about 4958 ha, or nearly 20% of the agricultural area (Table 10). Meanwhile, the dominant land cover
in the surrounding areas is Evergreen Seasonal Forest and Shrublands, covering 13,379 ha or 38% of
the surrounding protected areas.

Table 10. Extents and percentage of terrestrial surface covered in the study area by each land
cover category.*

All Islands

Land Cover Agricultural Area Buffer Zone Total
Ha % Ha % Ha %

Bare Ground 18.63 0.07 513.04 1.45 531.67 0.88
Built Environment 259.04 1.03 35.81 0.10 294.85 0.49
Cedrela-Cedar 1349.62 5.34 2574.54 7.29 3924.16 6.48
Cinchona-Quinine 17.42 0.07 48.25 0.14 65.67 0.11
Coffea-Coffee 944.86 3.74 41.95 0.12 986.81 1.63
Cultivated Grass 2402.48 9.51 119.05 0.34 2521.53 4.16
Deciduous Forest 268.96 1.06 8542.59 24.20 8811.55 14.55

Evergreen Forest and 242889  9.62 273784 776 516673 853

Shrubland
Evergreen Seasonal Forest 1642.12 6.50 13,379.97 3791 15,022.09 24.81
Freshwater 29.39 0.12 7.64 0.02 37.03 0.06
Humid Tallgrass 369.84 1.46 987.56 2.80 1357.40 2.24
Mixed Forest 1877.17 7.43 2830.53 8.02 4707.70 7.77
Pennisetum-Elephant Grass 103.85 0.41 531.54 1.51 635.39 1.05
Permanent Crops 2969.38 11.75 232.10 0.66 3201.48 5.29
Pioneer 1048.90 415 70.01 0.20 1118.91 1.85
Psidium-Guava 4958.86 19.63 2420.95 6.86 7379.81 12.19
Rubus-BlackBerry 325.39 1.29 81.42 0.23 406.81 0.67
Silvopasture 3113.75 12.33 82.87 0.23 3196.62 5.28
Syzygium-Pomarosa 434.04 1.72 29.08 0.08 463.12 0.76
Transitory Crops 698.43 2.76 28.34 0.08 726.77 1.20

Total 25,261.00  100.00 35,295.10 100.00 60,556.10  100.00

*Shaded cells highlight the dominant land cover type within the agricultural area, within the surrounding buffer
zone, and in both areas combined.

The land cover tables and maps reveal other intriguing patterns. Most Cedrela is located outside
of the agricultural area, like in Santa Cruz, where 76% of the 3098 ha Cedrela stands are located in GNP
land directly adjacent to the southwest boundary of the agricultural area (Figure 6, Table A1). Similarly,
most Pennisetum stands are located outside of the agricultural areas, like in Isabela, where 93% of the
432 ha of Pennisetum is situated to the southwest of the agricultural area (Figure 6, Table A3). Similarly,
most mixed forest is found outside the agricultural area, like in Santa Cruz where 77% of 1166 ha of
this land cover type surrounds Cedrela stands and straddles the altitudinal gradient almost as high
as 700 masl to the north and as low as 120 masl to the southwest of the agricultural area (Figure 6,
Table A1). There are also native ecosystems that thrive within agricultural areas. For example, most
evergreen forest and shrubland is found within the agricultural areas, like in San Cristobal, where
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74% of its 2200 ha of this ecosystem is found around and to the East of El Junco (the island’s largest
freshwater body), but well within the agricultural area (Figure 6, Table A2).

" ; e AN L R — kM
[ Bare Ground Cultivated Grass Humid Tallgrass Psidium-Guava I:] Agricultural zone cadastre
- Built Environment | Deciduous Forest - Mixed Forest - Rubus-Blackberry PlanetScope Mar 2018,
Cedrela-Cedar - Evergreen Forest and Shrubland - Pennisetum-Elephant Grass - Silvopasture gz}:z;giﬁggoga
Cinchona-Quinine - Evergreen Seasonal Forest -I Permanent Crops - Syzygium-Pomarosa Zones 15S & 16S,
- Coffea-Coffee - Freshwater Pioneer Transitory Crops ﬁz?g;;Dﬁg,%izésia;o

Figure 6. Land cover classification of the agricultural areas and surrounding humid highlands of

the Galapagos.

We have also grouped categories corresponding to broader types, such as invasive vegetation,
native vegetation, pastures, and food crops (Table 11). Each of the more general categories from Table 11
has been represented as thematic maps (Appendix B). It should be noted that the estimate for invasive
species is very conservative because, unlike previous studies [42], it excludes the mixed forest category
from its calculation. Cumulatively, native vegetation categories (deciduous forest, evergreen forest and
shrubland, evergreen seasonal forest and shrubland, and humid tallgrass, cover 50% of the study area,
mostly distributed outside of the agricultural zones (Figure 6, Figure Al). Around 4709 ha of native
vegetation are found within the agricultural zone, compared to 25,647 ha covering the surrounding
areas. The exception to this pattern is San Cristobal, where 30% (2535 ha) of its agricultural area was
categorized as native vegetation (Table 11, Figure A1).
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Table 11. Extent and percentage cover by general vegetation cover categories.*

Island Land Cover Agricultural Area Buffer Zone Total
Ha % Ha % Ha %

Native Vegetation 1500.40 1312 14,065.95 7692  15566.35 52.37

Invasive Vegetation 247412 21.63 3061.52 16.74 5535.64 18.62

Santa Cruz Pastures 3726.33 32.58 185.67 1.02 3911.99 13.16
Transitory and Permanent Crops 2549.13 22.29 118.93 0.65 2668.07 8.98

Mixed Forest and Pioneer 1090.52 9.53 948.41 5.19 2038.93 6.86

Native Vegetation 2535.61 30.40 6981.65 8710  9517.25  58.18

Invasive Vegetation 2766.56 33.17 270.02 3.37 3036.58 18.56

San Pastures 790.09 9.47 67.67 0.84 857.76 5.24
Cristobal 1 5sitory and Permanent Crops 97211  11.65 81.63 102 1053.73  6.44
Mixed Forest and Pioneer 1175.85 14.10 468.43 5.84 1644.28 10.05

Native Vegetation 657.99 12.63  3555.66 4722  4213.66  33.08
Invasive Vegetation 1871.86 35.93 2149.56 28.55 4021.42 31.57

Isabela Pastures 1047.19 20.10 467.18 6.20 1514.37 11.89
Transitory and Permanent Crops 1017.21 19.52 92.31 1.23 1109.52 8.71

Mixed Forest and Pioneer 620.51 11.91 1302.27 17.30 1922.78 15.09
Native Vegetation 15.81 5.84 1044.70 71.43 1060.52 61.17

Invasive Vegetation 76.63 28.28 204.68 13.99 281.32 16.23

Floreana Pastures 56.48 20.84 12.95 0.89 69.42 4.00
Transitory and Permanent Crops 74.22 27.38 9.52 0.65 83.73 4.83

Mixed Forest and Pioneer 39.18 14.46 181.43 12.40 220.62 12.73

Native Vegetation 4709.81 18.64 2564796 72.67 30,357.77  50.13

Invasive Vegetation 7189.17 2846  5685.79 16.11  12,874.96  21.26

All Islands Pastures 5620.08  22.25 733.46 2.08 6353.54 10.49
Transitory and Permanent Crops 4612.67 18.26 302.39 0.86 4915.06 8.12

Mixed Forest and Pioneer 2926.06 11.58  2900.54 8.22 5826.60 9.62

*Shaded cells group land cover types by island.

San Cristobal’s agricultural area is also covered to a comparable extent (2766 ha) by invasive
species (Table 11, Figure A2). Identifiable patches of invasive species (Cedrela, Cinchona, Pennisetum,
Psidium, Rubus, and Syzygium) constitute about 21% of the study area’s surface area, most of it (7189 ha)
distributed within the agricultural areas of all islands, compared to 5685 ha identified in the surrounding
areas. Isabela is the island with the highest percentage of its agricultural area covered by invasive
plants (36%, 1872 ha) and is also the island with the highest percentage of its surrounding areas (29%,
2149 ha) covered by invasive plants.

Pastures (Cultivated grass, Silvopastures, and Pennisetum patches) constitute about 10.5% of
the study area (Table 11, Figure A3). The vast majority (5620 ha) of pastures are located within
the agricultural regions of all islands, compared to 733 ha found in the surrounding park areas.
The agricultural area of Santa Cruz has the most extensive pastures (3726 ha), representing 32% of the
agricultural zone’s surface area.

Food crops (permanent crops, transitory crops, and Coffea patches) constitute about 8% of the
study area across all islands (Table 11, Figure A4). Most food crops (4612 ha) are located within the
agricultural areas, compared to 302 ha of GNP areas classified as food crops. Furthermore, most food
crops (3914 ha) are categorized as permanent rather than transitory crops. Floreana’s agricultural area
has the highest percentage of its agricultural area covered by permanent and transitory crops (27%,
74 ha), but Santa Cruz has the largest extension (2549 ha) covered by food crops of all islands.

The estimates from Table 11 are conservative because the mixed forest and pioneer vegetation
categories cover about 9.6% of the surface area, and these categories are, by definition, a mixture of
other categories (Table 11, Figure A5). These vegetation types are about the same surface area (2926 ha)
within the agricultural zones than in the surrounding park areas (2900 ha). San Cristobal is the island
with the most amount of vegetation within its agricultural area categorized as mixed forest or pioneer
(1175 ha).
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3.3. Validation

Our cross-validation yielded an overall kappa index of agreement (KIA) of 0.70. Eight of our
categories had a KIA over 0.7, six categories had a KIA between 0.4 and 0.7, and three categories
had a KIA below 0.4 (Table A5). The highest KIA corresponded to Pennisetum, and the lowest KIA
corresponded to Coffea. Native land cover categories all presented high (>0.9) KIA values. Meanwhile,
our ROC-AUC results are generally consistent, yielding 11 categories with an AUC above 0.7, four
categories with an AUC between 0.5 and 0.7, and three categories with an AUC below 0.5 (Table A5).
Cedrela was the only category with an AUC value above 0.9, while Pioneer, Bare Ground, and Freshwater
had AUC values below 0.5. Humid tallgrass and Cinchona were not represented in our reference
polygons because these land covers are usually found outside of the agricultural areas, and the most
significant extensions of these vegetation covers are located in areas that are hard to reach.

Table 12 lists validation results for each island and Table 13 details the results for each category.
Only the most common land covers for the agricultural region are represented in these tables. We had an
average R? score of 69 for all islands, which ranged from 58 (Floreana) to 83% (Santa Cruz). Our average
RMSE was 21%. We had the most problems classifying pioneer (R? = 0.321, RMSE = 32.81%), Rubus
(R? = 0.139, RMSE = 13.16), Coffea (R*> = 0.191, RMSE = 8.84%), transitory crops (R? = 0.26%, RMSE
= 17.8%), and cultivated grass (R? = 0.412%, RMSE = 32.81%). The classification that explained the
largest amount of variation in the ground truth data were Pennisetum (R? = 1), Syzygium (R* = 1%,
RMSE = 7.47%), Evergreen forest and Shubland (R? = 0.938, RMSE = 15.01%), and Cedrela (R* = 0.907,
RMSE = 14.53%).

Table 12. Validation results per island.

Island R? RMSE (%)
Santa Cruz 0.83 16.99
San Cristobal 0.70 19.52
Isabela 0.66 22.34
Floreana 0.58 23.85
Average 0.69 20.68

Table 13. Validation results per classified category.

Cover R? RMSE (%)
Cedrela—Cedar 091 14.53
Built Environment 0.57 2.73
Coffea—Coffee 0.19 8.84
Cultivated Grass 0.41 32.81
Evergreen Forest and Shrubland 0.94 15.01
Pennisetum—Elephant Grass 1.00 31.47
Mixed Forest 0.69 22.44
Permanent Crops 0.56 22.61
Pioneer 0.03 27.59
Psidium—Guava 0.68 23.84
Rubu—-Blackberry 0.13 13.16
Silvopasture 0.63 25.90
Transitory Crops 0.26 17.80
Syzygium—Pomarrosa 1.00 7.47

4. Discussion

Our results suggest that the agricultural zones of the Galapagos and their surrounding areas
are incredibly diverse, and different vegetation covers thrive within very close proximity to each
other. The complexity of Galapagos agroecosystems presented a challenge to mapping accurately
and precisely the main vegetation covers occurring in the highlands of this UNESCO Natural World



Remote Sens. 2020, 12, 65 22 of 39

Heritage Site. These maps are the first attempt, using the latest satellite images available, to integrate
vastly different land cover types (e.g., native ecosystems, staple food crops, invasive plant species)
within the same decision-making tool, so that concerns of the agricultural and conservation sectors are
both represented.

4.1. Methodology and Sources of Error

In this paper, we presented a replicable methodology that uses free and open-source data to
monitor land use and land cover change in complex agricultural systems. Agricultural landscapes are
a complex patchwork of food crops and other vegetation types, where even small-scale patches of
vegetation can be a valuable habitat for animals of different kinds [82-86]. Having images with high
spatial resolution is crucial for capturing small habitat fragments in the analysis, so methods that use
freely-available high-resolution image collections provide a much-needed and inexpensive alternative
to purchasing commercial high-resolution data for fine-scale analysis. Mapping an agricultural matrix
in high resolution is a challenge because categorically different vegetation types can have similar
spectral signatures and be cultivated in proximity with other vegetation types; our object-oriented
random forest classification of fused images tackles this challenge by combining data sources with
complementing resolutions, taking into account the geometrical properties of landscape features in
addition to their reflectance, and by classifying elements with an algorithm that provides reliable
results with limited training datasets [24,27].

Unfortunately, two land cover types, Lantana and Erythrina, had to be dropped from the final
mapping outcomes because we did not have enough reference points to have consistent results
during classification. In the case of Erythrina, their proximity to other dense vegetation types, such as
permanent crops, Cedrela, and Psidium, was an issue during segmentation. Erythrina trees are usually
planted in long stands as living fences are often pruned, so their crowns tend to be relatively small.
Therefore, the size of Erythrina stands was insulfficient to be adequately captured by the sensors, even at
3 m resolution. The small size and proximity to other vegetation types caused segments to include
neighboring pixels of different land cover types and confuse their spectral signatures. Similarly, in the
case of Lantana, we did not have enough examples of patches that were large enough to produce a clear
spectral response. Additionally, we were limited in our reference data available because some areas
lacking information were too remote or of difficult access to reach them by foot to collect GPS control
points. On the other hand, weather conditions in the highlands also made image collection with a
UAV difficult and sometimes impossible within the timeframe available for fieldwork, as was the case
with Isabela’s highest regions within our study area. Therefore, areas that were easier to access or had
favorable weather conditions were more represented in our samples.

Additionally, land cover units grouping several species, instead of mapping individual plants,
were adopted because these types of general categories are used in policy documents or previous
studies. While this makes our results relevant to the intended users of the map (i.e., MAG) and
compatible with existing data sources, these categories forced us to group together vegetation types
into land cover units that likely had a wide range of spectral signatures. For example, permanent
crops, transitory crops, silvopastures, and mixed forest are land cover units that are heterogeneous by
definition. For instance, permanent crops are often tree crops, but MAG also includes pineapples in
this category since they are technically perennial crops [40]. Pineapple plantations have a very different
spectral signature than tree stands. This inclusion might explain why permanent crops were the most
frequently misclassified category (error rate = 28% in Santa Cruz, Table 9). Similarly, silvopastures are,
by definition, a mixture of grass and tree species, both of which could be of different types and have
vastly different reflectance, and this probably contributed to their misclassification and high error rate
(error rate = 38% in Santa Cruz, Table 9). Likewise, the mixed forest is defined as an area where invasive
species co-dominate with native species [42]. Given there is a wide range of species, both native and
introduced, that could fit that description, it is understandable that humans and computer algorithms
could easily misclassify these areas (error rate = 12% in Cristobal and Floreana, Table 9).
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Another challenge to mapping the agricultural area is that this is a very dynamic landscape,
and its land cover is always changing. For example, both transitory crops and pioneer vegetation
are, by definition, short-lived; farmers harvest transitory crops in less than one year, and succession
quickly leads other plants to take over disturbed areas where pioneer plants once thrived. This short
life probably confused their classification because the spectral life of specific land cover types is shorter
than the two-year timeframe when the different satellite images were collected. Short spectral life
might be one of the main reasons why the ‘pioneer’ land cover unit received the lowest R? score (0.032)
during map validation. Despite their ephemeral nature, it was important to include these categories to
remain consistent with other data sources and to try to capture a snapshot of current vegetation cover.
Furthermore, temporary vegetation covers like ‘pioneer” or heterogeneous categories like ‘mixed forest’
might signal that these areas are currently in flux, so their presence helps represent the dynamic nature
of the agricultural areas.

The landscape and the classification units themselves are not homogenous, so traditional methods
for assessing accuracy are limited by the assumption that each area in the map can be unambiguously
assigned to a single category, and by expressing classification errors as either “right” or “wrong” without
reference to the magnitude of the error [87]. We initially attempted a point-based accuracy assessment,
but this yielded misleadingly low results because GPS control points of individual plant species could
not be unequivocally assigned to any one category. Therefore, we opted for a validation method that
could accommodate for the landscape’s and our classification scheme’s ambiguity. Expressing our
accuracy in terms of percentages and correlations RMSE and R? was more relevant to the users of our
classification because we are comparing manually-classified reference polygons with our classification
results. However, we included other metrics common in land cover classification and machine learning
(KIA, AUC) to reach readers that are more accustomed to them.

Our accuracy assessment results are in a similar range as those from similar object-based land
cover classifications [24,69]. Our overall KIA value of 0.7 suggests that our classification results are
significant and are useful overall. Categories with KIA or AUC values >0.7 correspond to land cover
types with a forest or pasture structure (Table A5). The land covers that were confused most often
were bare ground, freshwater, and pioneer cover types. (Table A5). All three land cover types covered
relatively small surface area extensions, so their representation in the validation reference polygons
was minimal. This error was especially strong for freshwater (KIA: 0.34, AUC: 0.314) because most
visible freshwater occurs in microreservoirs, for which reflectance can change drastically depending
on whether or not they are filled. Only one microreservoir fell within the reference polygons for
classification. Bare ground (KIA: 0.271, AUC: 0.386) was understandably confused with transitory
crops (KIA: 0.446, AUC 0.628) because these areas are usually denuded from other vegetation, and so
the spectral response of the bare soil gets confused with that of the crops themselves. Bare ground
is also hard to distinguish from built environment (KIA: 0.516, AUC: 0.685) because most roads of
the humid highlands remain dirt roads and are not paved yet. Pioneer land cover (KIA: 0.22, AUC:
0.31) was probably confused with several other categories due to their ephemeral nature, as described
above. Of the four categories with an AUC value between 0.6 and 0.7, two correspond to land cover
types that grow below the forest canopy, such as Coffea (KIA: 1.927, AUC: 0.676) and Rubus (KIA:0.417,
AUC: 0.603), so it makes sense that their AUC values are not as high, as their spectral signatures can
become confused with other vegetation types. The other two categories with an AUC between 0.6 and
0.7 are built environments and transitory crops, which, as mentioned earlier, both become confused
with bare ground.
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Our results suggest that our classification map likely represents general patterns (large patches)
relatively well, especially for categories that had a clear spectral signature and, thus, had a high
correlation coefficient as well, such as Cedrela, Pennisetum, and Syzygium. However, the landscape’s
heterogeneity means that the map likely becomes more inaccurate as one approaches smaller scales.
The fact that the two largest islands, Santa Cruz and San Cristobal, had the highest R? values (0.83
and 0.7, respectively) might be due to these islands having larger farms with a more regular and
well-delimited configuration of their crops than smaller farms from Isabela or Floreana.

While human digitation using high-resolution UAV images would usually have more accurate
results than using segments mapped by a computer, the fact that we are using satellite images with a
3 m spatial resolution means that we are within the margin of error for most GPS devices, including
our drone. This might cause misalignment with the high-resolution images that we used to obtain the
geometry for the reference polygons, thus lowering our accuracy results. Furthermore, given that we
used the most homogenous land cover patches visible within our UAV images to help us pick areas to
train the algorithm, remaining unused areas of our images were also the most mixed and harder to
categorize, which might have affected our accuracy scores as well.

4.2. Vegetation Cover Abundance and Distribution

The fact that the areas surrounding the agricultural areas are GNP lands under conservation
means that we expected to find a difference in the vegetation covers within and outside the agricultural
areas. As expected, we found that most native vegetation is distributed outside the agricultural zone
while invasive species dominate the area within the agricultural areas (Figures A1 and A2). However,
we also expected to see this pattern due to the long history of agricultural exploitation within the
Galapagos. The most aggressive agricultural expansion occurred in San Cristobal from 1879 to 1904
under the rule of Manuel J. Cobos, and this set the tone for commercial development of agriculture
in other islands as well. During this time the highlands of San Cristobal were denuded of native
vegetation, P. guajava and avocado trees were brought for pig food, Sygzygium trees were imported to
provide shade for wool sheep, pastures were introduced for extensive cattle grazing to sell cowhides,
up to 3000 ha of sugar cane were planted for sugar and liqueur production and export, and over
100,000 coffee plants covered 110 ha of plantation [88]. In comparison, today, all food crops found in
our study area combined barely cover a third of the area that was once covered by sugar cane alone.
San Cristobal has the most substantial extensions of Sygzygium trees in the entire archipelago (374 ha),
and P. guajava covers 23% of the agricultural area. While agricultural activity as a whole has become a
fraction of what the island once supported, the area covered by coffee plantations has increased to
191 ha. Given the level of agricultural exploitation, perhaps what is surprising is that San Cristobal
also shows the most amount of native vegetation within its agricultural area, which is likely due in
part to the work of the GNP reforesting the areas around El Junco with Miconia robinsoniana.

Other islands followed similar patterns but at different times. Floreana’s first successful inhabitants
took residence in the 1930s, and they subsisted by modifying the highlands by knocking down trees,
clearing the land, hunting wild cattle, and introducing seeds for crops. For example, the Cruz family,
who arrived to Floreana in 1937, dedicated their time to agricultural production and cattle ranching.
As their family grew, so did their land and the pastures that covered them; because the population
was so small (55 people by 1975), life in Floreana was only assured through agricultural production.
By 1965, farmers planted entire hectares of individual transitory crops year-round, and they harvested
the fruit from citrus trees that grew wild inside and outside of the agricultural areas [88]. These patterns
are visible in our results, as there are large areas of land dedicated to cattle production and mixed
forest surrounds the agricultural area. We also see evidence of more recent events, such as the spread
of R. niveus and P. guajava across the landscape [88].
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In Isabela, there was a 900 ha farm called “La Hacienda” that was established in 1897 by Carlos Gil
Quezada. Quezada’s main economic activity was cattle ranching, and through the 1950s, he captured
wild cattle that roamed the pampas of Sierra Negra volcano and exported them to Guayaquil [88,89].
Given that La Hacienda is reported to be relatively near the southeastern border of the present-day
agricultural zone, it is entirely possible that the pastures visible to the southwest of the agricultural area
are the same areas that were used as cattle hunting grounds by Gil Quezada. It would seem unusual
that pastures are found outside of the agricultural zone, and the species found in those grasslands
remain unconfirmed. We do not have direct verification of the vegetation of this site, but the spectral
signature of this region is distinct, and during the development of the land cover map of the GNP [42],
park rangers indicated to the authors that these are Pennisetum grasslands, so we categorized this region
in the same manner. The observed large expansions of invasive species in Isabela are consistent with
the recorded process of extensive cattle grazing and subsequent abandoning of lands since the 1980s as
meat production became less profitable, leaving Isabela’s last remaining stronghold of agricultural
production concentrated in the lowest (easternmost) section of the agricultural zone [88], which is the
same region where transitory and permanent crops can be seen today.

The prevalence of pastures in the agricultural area of Santa Cruz is well reported [40,90,91] and
is consistent with our results. The presence of Cedrela odorata stands in GNP lands (but barely in the
agricultural area) makes sense because, since its intentional introduction in the 1940s, the Ministry
of the Environment prohibited the exploitation of Cedrela in 2007 due to its threatened status in the
continental area. However, by 2009, it allowed the extraction of C. odorata once again, but only within
the agricultural zone [92]. The distribution of P. guajava in Santa Cruz is also consistent with our current
understanding of how cattle and tortoises are dispersing this invasive plant [51], and the presence of
other invasive plants like R. niveus was also expected in all four inhabited islands [93]. It should be
noted that plant species like R. niveus and Coffea commonly grow in the understory of a vegetated area.
When trying to capture vegetation that lies in the understory, the spectral signal becomes mixed with
that of the tree canopy, so ours is an underestimate of the true extent of these vegetation types.

4.3. Comparing and Combining Results with Existing Datasets

Given that this is the first study to map the agricultural areas in high-resolution, we can compare
our results with self-reported surface areas of the agricultural zone from the 2014 agricultural census [40].
Table 14 lists the main categories used by the agricultural census on the left and the corresponding
categories of this study to the right. We would expect to see discrepancies between the results for
several reasons: the agricultural census does not encompass all producers, but rather a sample of 755
of the most productive and representative ones, whereas our study encompasses the entirety of the
agricultural area. Therefore, our estimated land covers might include areas that are not tended by
anyone. This might account for dramatic increases in reported permanent crops, for example, as many
fruit trees within the agricultural area might simply be growing wild, and respondents might not have
taken them into account for their responses. Furthermore, both sources have their own inaccuracies:
while our study is susceptible to misclassifications, self-reported values may be susceptible to under or
over-estimating surface areas. This might be the case for Transitory crops, where our classification
might easily categorize ‘tilled land” and possibly even fallow land as transitory crops. Perhaps not
coincidentally, the two values become very similar if tilled and fallow lands are included in the estimate.
Furthermore, respondents to the census may have different definitions of what falls within each
category. For example, some farmers might not consider P. guajava an invasive plant, as they might see
it as an important element of their silvopastures. This is the reason why, for Table 14, we categorized
Pennisetum as a pasture and excluded it from the invasive category because farmers use this grass
species for their cattle and would likely not consider it ‘invasive’. Furthermore, the category “Pioneer
and forest species” is a category that encompasses any vegetation that has no agricultural value for
farmers, so it is very general.
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Table 14. Results comparison between the 2014 Agricultural Census and this study. The left section
of the table summarizes the results from the 2014 Agricultural Census and the right side of the table
groups land cover types of this study to make them comparable with the agricultural census.

2014 Agricultural Census This Study
Land Cover/ Use ha % ha Y% Categories Included
Permanent crops 1517 8 3913 15 Permanent Crops, Coffea
Transitory crops 220 1 698 3 Transitory crops
Tilled land 110 1 NA NA
Fallow land 433 2 NA NA
Pastures 11,126 59 5618 22 Cultivated Grass, Pennisetum, Silvopasture
Invasive species 934 5 7080 28  Psidium, Rubus, Cinchona, Syzygium, Cedrela
Pioneer and forest 4189 22 7630 30 Pioneer, Mixed Forest, Native vegetation
Other Uses 482 3 307 1 Built Environment, bare ground, water
Total 19,010 100 25,246 100

Despite the many ways in which these data might not match, the dramatic decrease in pastures and
the astounding increase in invasive plants across all four islands are probably real trends. This would
be consistent with the observed trend of decreasing pastures between the 2000 census (14,555 ha)
and the 2014 census (11,126 ha) [41]. This would also be consistent with the fact that the region’s
worst-recorded drought occurred in 2016, which MAG officials reported drove many cattle ranchers to
abandon this activity as many cattle died due to the dry conditions [personal communication]. A drop
in pastures, combined with an increase in invasives, is exactly what we would expect from people
abandoning their lands. Pastures have a spectral signature that is very different from other land cover
types, so it is unlikely that they were so heavily misclassified. However, it is possible that even though
we grouped silvopastures as part of our estimate for pastures, farmers might still identify more heavily
wooded areas as “pastures” while our algorithm might have identified the same region as a forest of
some type. Lastly, although it is hard to compare specific numbers due to differences in methodologies
and missing information, authors did find a general decrease of pastures in the agricultural areas and
an increase in invasive plants in Santa Cruz and San Cristobal from 1987 to 2006 [90]. The present study
serves as much needed baseline data with a replicable methodology that can complement existing
studies [42] to give us, for the first time, a truly complete view of land cover for the entire archipelago
(Appendix C, Table A6).

4.4. Broader Significance

Our methods and our findings are relevant to complex agricultural landscapes in general and
in ongoing conversations about conservation and food security, particularly in the context of other
oceanic islands, as well as “islands’ of protected forests within an agricultural matrix. Our replicable
methods are useful to map other islands, other agricultural landscapes, and other time periods beyond
the ones presented here.

The fact that the agricultural sector has been neglected, especially in comparison to more robust
economic sectors like tourism, development, or conservation, is not unique to the Galapagos. There is
a global trend of abandonment of the agricultural sector and a migration of rural population into urban
centers [94,95]. Furthermore, oceanic islands worldwide are typical tourism hotspots and suffer from
similar pressures as does the Galapagos: reduced space for food production and an overdependence
on food imports to sustain their human populations [96-98]. Our results are relevant in the context of
global food security and particularly in food security on islands because of familiar socioeconomic and
environmental drivers of pattern in island ecosystems [98,99]. Baseline data such as that provided in
this study is essential to track changes in land use and land cover in our food systems and to anticipate
the ways in which climate change can make them more vulnerable to collapse, as well as to help us
identify the land uses and land covers that are most resilient to environmental change [99,100].
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The vast extent of pastures found in our study should prompt decision-makers to reconsider
whether this land use is the most sound in a place where the space to grow food is so limited. Our study
confirms that soil depth and precipitation patterns in this region can support an astounding diversity of
permanent and transitory crops, and pasture monocultures to feed cattle might not efficiently support
local food security. It is relevant that decisionmakers of the Galapagos have promoted silvopastoral
systems as a more sustainable alternative to pasture monocultures. Given that most pastures and
silvopastures of the Galapagos are grain-fed, having an estimate of the distribution of silvopastoral
systems allows us to compare their performance in the context of more variable and extreme seasonality.

Our results are also relevant in the conversations about novel ecosystems and island biogeography.
Our focus on native ecosystems and invasive species make our results applicable to other island
ecosystems because the biogeographical features of oceanic islands lead to high endemism rates and
simultaneously make them more susceptible to invasion from introduced species [101]. In addition,
there is a clear spatial correlation between human activities and invasive species, even long after
these activities were abandoned [1,102]. For example, even though San Cristobal has not had sheep
raised for wool in recent history, the fact that Manuel Cobos once used Syzygium on this island
to give shade to sheep [88] is likely the reason why over a hundred years later Syzygium remains
concentrated on San Cristobal rather than in other islands. Human agency profoundly modifies
the agricultural landscape and its surrounding areas, and our results support previous observations
that introduced species can become integrated into native landscapes, perhaps irreversibly [38,103].
For example, the extent of colonization by Psidium guajava or Rubus niveus pose a particular challenge
for conservation projects that would like to see protected areas returned to a pre-human state. These
plants now serve as an essential food source for endemic fauna like finches and tortoises and, thus,
have become profoundly integrated into the life cycles of the emblematic species who disperse the
seeds across their habitat [51,104-106]. Our results show examples of what previous authors have
called novel ecosystems in which humans have crossed some ecological thresholds that gave rise to
a historically new and stable species assemblage [107]. However, our results also demonstrate the
capacity of human agency to modify the environment in the face of highly aggressive invasive plants.
For example, Cedrela odorata’s distribution in Santa Cruz and the prevalence of native ecosystems
within the agricultural area of San Cristobal both suggest that the work of private landowners and the
GNP can be effective at controlling the spread of invasive plants and propagating the land cover of
our choosing.

4.5. Next Steps

We envision that one of the potential next steps following this baseline map of the highlands of
the Galapagos would be the use of additional vegetation indices to recategorize existing land covers
with greater detail. New and more specific categories must be created to tease apart the differences
in general categories, such as the current ‘mixed forest,” ‘permanent crops,” or transitory crops’. It is
also advisable that future iterations of land cover maps be able to distinguish introduced plants like
Lantana and Erythrina.

5. Conclusions

In this paper, we have presented a replicable and reliable methodology for land cover classification
combining freely-available high-resolution data sources and taking advantage of their complementing
spectral and spatial resolutions. The methods described are well suited to classify complex agricultural
landscapes by taking into account the geometry of scene elements in addition to their reflectance.

We found that our spatial resolution was insufficient to reliably detect rows of living fences
of Erythrina since their crown size was often less than the 3 m pixel size of our data sources.
However, our methods were able to reliably identify stands of invasive plants like C. odorata, S. jambos,
and P. guajava. Our results suggest that out of the 25,261 ha of the agricultural zone, invasive plants
cover most of the surface area (28%), mostly dominated by P. guajava (4959 ha). Pastures for raising



Remote Sens. 2020, 12, 65 28 of 39

cattle cover 22% of the agricultural zones, the majority of which are located in Santa Cruz. Most native
vegetation is distributed outside of the agricultural areas, but almost 19% of the agricultural zone’s
land cover was identified as native vegetation, mainly located in San Cristobal (2535 ha). Food crops of
different kinds cumulatively cover a similar percentage (18%) of the surface area, and about 944 ha of
these are dedicated to coffee cultivation, mostly located in Santa Cruz. About 12% of the agricultural
sector is covered by vegetation that could not be clearly identified as either native or invasive vegetation.

Multiple institutions and researchers have expressed the need for a high-resolution and updated
and land cover classification of Galapagos agroecosystems. Local agencies in the agricultural sector
can now use these data for identifying current agricultural resources and planning land management
projects. For example, the classification maps will inform the GNP and the MAG about priority areas
for intervention to control invasive species; having clear estimates of surface area covered by different
invasive plants allows institutions to make realistic estimates of approximate costs for their control
as part of long-term plans for the region. Authorities can now ascertain the trends of the region’s
food basket with greater confidence, to ascertain whether food crops and pastures have increased or
diminished in relation to previous years as well as in relation to future assessments. These data help
local authorities plan strategic interventions, such as estimating how many people are necessary to
make the most of land that is already being planted, as well as how many people would be necessary
to reactivate areas currently dominated by invasive plants. Additionally, researchers can use these
baseline data to anticipate changes in land cover as socioeconomic and environmental drivers continue
to change observed land use and climate patterns. The land cover categorization and mapping
strategy is designed to be reproducible so that it can be applied to future images to track changes in
these agroecosystems.

The dataset presented here is designed to suit the needs of both agricultural and conservation
practitioners. We aim to encourage collaboration between these two sectors to ensure the well-being
of Galapagos inhabitants and the sustainable preservation of its ecosystems and to serve as a model
for land use mapping in other environments globally where agroecosystems host essential species
for conservation.

Supplementary Materials: The complete land cover dataset is available online at http://www.mdpi.com/2072-
4292/12/1/65/s1, Figure S1: Land cover classification of Galapagos agroecosystems and their surrounding protected
areas (2018).
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Appendix A Land Cover Classification and Validation Results

Table A1l. Land cover surface area and percentages of agricultural area and buffer zone occupied per
category for Santa Cruz island.*

Santa Cruz
Land Cover Agricultural Area Buffer Zone Total
Ha % Ha % Ha %
Bare Ground 12.62 0.11 10.62 0.06 23.24 0.08
Built Environment 116.77 1.02 15.21 0.08 131.98 0.44
Cedrela—Cedar 726.56 6.35 2372.21 12.97 3098.77 10.42
Cinchona—Quinine 17.42 0.15 48.25 0.26 65.67 0.22
Coffea—Coffee 639.97 5.59 7.49 0.04 647.45 2.18
Cultivated Grass 1593.73 13.93 32.01 0.18 1625.73 5.47
Deciduous Forest 123.74 1.08 4825.64 26.39 4949.38 16.65
Evergreen Forest and Shrubland 659.53 5.77 1782.73 9.75 2442.26 8.22
Evergreen Seasonal Forest 580.60 5.08 7123.00 38.95 7703.60 25.92
Freshwater 22.47 0.20 222 0.01 24.70 0.08
Humid Tallgrass 136.54 1.19 334.58 1.83 471.12 1.58
Mixed Forest 259.40 2.27 906.64 4.96 1166.05 3.92
Pennisetum—Elephant Grass 53.66 0.47 121.43 0.66 175.09 0.59
Permanent Crops 1531.34 13.39 106.09 0.58 1637.42 5.51
Pioneer 831.12 7.27 41.77 0.23 872.88 294
Psidium—Guava 1646.79 14.40 459.09 251 2105.89 7.08
Rubus—BlackBerry 29.68 0.26 60.53 0.33 90.21 0.30
Silvopasture 2078.94 18.17 32.23 0.18 2111.17 7.10
Syzygium—Pomarrosa 0.00 0.00 0.00 0.00 0.00 0.00
Transitory Crops 377.83 3.30 5.36 0.03 383.19 1.29
Total 11,438.70  100.00  18287.11  100.00 29,725.81  100.00

*Shaded cells highlight the dominant land cover type within the agricultural area, within the surrounding buffer
zone, and in both areas combined.

Table A2. Land cover surface area and percentages of agricultural area and buffer zone occupied per
category for San Cristobal island.*

San Cristobal

Land Cover Agricultural Area Buffer Zone Total
Ha % Ha % Ha %
Bare Ground 3.33 0.04 141.00 1.76 144.34 0.88
Built Environment 111.81 1.34 13.97 0.17 125.78 0.77
Cedrela—Cedar 130.76 1.57 3.00 0.04 133.75 0.82
Cinchona—Quinine 0.00 0.00 0.00 0.00 0.00 0.00
Coffea—Coffee 191.48 2.30 9.89 0.12 201.37 1.23
Cultivated Grass 290.52 3.48 34.78 0.43 325.30 1.99
Deciduous Forest 107.60 1.29 3283.88 40.97 3391.48 20.73
Evergreen Forest and Shrubland 1648.26 19.76 552.38 6.89 2200.63 13.45
Evergreen Seasonal Forest 704.05 8.44 3145.39 39.24 3849.44 23.53
Freshwater 5.11 0.06 0.61 0.01 5.72 0.03
Humid Tallgrass 75.71 0.91 0.00 0.00 75.71 0.46
Mixed Forest 981.58 11.77 466.49 5.82 1448.07 8.85
Pennisetum—Elephant Grass 19.48 0.23 8.94 0.11 28.42 0.17
Permanent Crops 673.30 8.07 64.57 0.81 737.87 4.51
Pioneer 194.27 2.33 1.94 0.02 196.21 1.20
Psidium—Guava 1952.21 23.40 228.14 2.85 2180.35 13.33
Rubus—BlackBerry 289.75 3.47 20.22 0.25 309.97 1.90
Silvopasture 480.09 5.76 23.95 0.30 504.04 3.08
Syzygium—Pomarrosa 374.37 4.49 9.72 0.12 384.09 2.35
Transitory Crops 107.32 1.29 717 0.09 114.49 0.70
Total 8340.99 100.00 8016.04 100.00  16,357.03  100.00

*Shaded cells highlight the dominant land cover type within the agricultural area, within the surrounding buffer
zone, and in both areas combined.
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Table A3. Land cover surface area and percentages of agricultural area and buffer zone occupied per
category for Isabela island.*

Isabela
Land Cover Agricultural Area Buffer Zone Total
Ha % Ha % Ha %
Bare Ground 0.72 0.01 356.17 4.73 356.89 2.80
Built Environment 24.83 0.48 2.71 0.04 27.54 0.22
Cedrela—Cedar 471.34 9.05 185.60 2.46 656.94 5.16
Cinchona—Quinine 0.00 0.00 0.00 0.00 0.00 0.00
Coffea—Coffee 113.41 2.18 24.58 0.33 137.99 1.08
Cultivated Grass 512.09 9.83 52.16 0.69 564.26 4.43
Deciduous Forest 35.33 0.68 337.23 4.48 372.56 2.92
Evergreen Forest and Shrubland 120.36 2.31 124.55 1.65 24491 1.92
Evergreen Seasonal Forest 344.71 6.62 2440.90 32.42 2785.61 21.87
Freshwater 0.71 0.01 4.64 0.06 5.35 0.04
Humid Tallgrass 157.60 3.02 652.98 8.67 810.58 6.36
Mixed Forest 599.48 11.51 1282.43 17.03 1881.91 14.77
Pennisetum—Elephant Grass 30.71 0.59 401.17 5.33 431.88 3.39
Permanent Crops 741.13 14.22 57.14 0.76 798.27 6.27
Pioneer 21.03 0.40 19.84 0.26 40.87 0.32
Psidium—Guava 1304.19 25.03 1543.43 20.50 2847.61 22.35
Rubu—-BlackBerry 5.95 0.11 0.00 0.00 5.95 0.05
Silvopasture 504.38 9.68 13.85 0.18 518.23 4.07
Syzygium—Pomarrosa 59.67 1.15 19.36 0.26 79.03 0.62
Transitory Crops 162.68 3.12 10.59 0.14 173.27 1.36
Total 5210.30 100.00 7529.33 100.00  12,739.64  100.00

*Shaded cells highlight the dominant land cover type within the agricultural area, within the surrounding buffer
zone, and in both areas combined.

Table A4. Land cover surface area and percentages of agricultural area and buffer zone occupied per
category for Floreana island.*

Floreana
Land Cover Agricultural Area Buffer Zone Total
Ha % Ha % Ha %

Bare Ground 1.96 0.72 525 0.36 7.20 0.42

Built Environment 5.63 2.08 3.93 0.27 9.56 0.55
Cedrel=—Cedar 20.96 7.73 13.73 0.94 34.70 2.00
Cinchona—Quinine 0.00 0.00 0.00 0.00 0.00 0.00
Coffea—Coffee 0.00 0.00 0.00 0.00 0.00 0.00
Cultivated Grass 6.14 227 0.10 0.01 6.24 0.36
Deciduous Forest 2.30 0.85 95.84 6.55 98.14 5.66
Evergreen Forest and Shrubland 0.74 0.27 278.18 19.02 278.92 16.09
Evergreen Seasonal Forest 12.77 471 670.68 45.85 683.45 39.42
Freshwater 1.10 0.40 0.17 0.01 1.26 0.07

Humid Tallgrass 0.00 0.00 0.00 0.00 0.00 0.00
Mixed Forest 36.70 13.54 174.97 11.96 211.67 12.21

Pennisetum—Elephant Grass 0.00 0.00 0.00 0.00 0.00 0.00

Permanent Crops 23.62 8.72 4.30 0.29 27.92 1.61

Pioneer 2.48 091 6.46 0.44 8.94 0.52
Psidium—Guava 55.67 20.54 190.28 13.01 245.95 14.19
Rubus—BlackBerry 0.00 0.00 0.67 0.05 0.67 0.04
Silvopasture 50.34 18.58 12.84 0.88 63.18 3.64

Syzygium-Pomarrosa 0.00 0.00 0.00 0.00 0.00 0.00

Transitory Crops 50.60 18.67 522 0.36 55.82 3.22
Total 271.01 100.00 1462.62 100.00 1733.63 100.00

*Shaded cells highlight the dominant land cover type within the agricultural area, within the surrounding buffer
zone, and in both areas combined.
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Table A5. Kappa index of agreement and ROC-AUC values for each category.

Category KIA AUC

Bare Ground 0.2711 0.386

Built Environment 0.5159 0.685
Cedrela—Cedar 0.8249 0.905
Coffea—Coffee 0.1927 0.676
Cultivated Grass 0.607 0.817
Deciduous Forest 0.9822 0.872
Syzygium—Pomarosa 0.9952 0.879
Evergreen Forest and Shrubland 0.9884 0.882
Evergreen Seasonal Forest and Shrubland 0.7328 0.747
Freshwater 0.3397 0.38

Mixed Forest 0.6876 0.781
Pennisetum—Elephant Grass 1 0.888
Permanent Crops 0.5727 0.752
Pioneer 0.2223 0.314
Psidium—Guava 0.7816 0.846
Rubus—Blackberry 0.4167 0.603
Silvopasture 0.6582 0.708
Transitory Crops 0.4461 0.628

Appendix B Thematic Maps
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Figure Al. Distribution of native ecosystems in and around the agricultural zones of the inhabited
islands of the Galapagos.
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Figure A2. Distribution of invasive vegetation in and around the agricultural zones of the inhabited
islands of the Galapagos.
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Figure A3. Distribution of pastures in and around the agricultural zones of the inhabited islands of
the Galapagos.
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Figure A4. Distribution of food crops in and around the agricultural zones of the inhabited islands of

the Galapagos.
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Figure A5. Distribution of mixed forest and pioneer vegetation cover in and around the agricultural

zones of the inhabited islands of the Galapagos.
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Appendix C Land Cover Classification for the Entire Province

Table A6. Total area occupied by each of the categories and land cover classes for the entire Galapagos

province.*
Category Land Cover Classes Tif‘;;? Agri::el;ural Total %
Evergreen forest and shrubland 30,788.9 2425.8 33,214.7 4.2
Forest and Evergreen seasonal forest and 60,887.7 1640.9 625286 7.9
Shrub §hrubland
Coastal humid forest and shrubland 1377.5 1377.5 0.2
Deciduous forest 262,527 268.8 262,795.8 33.0
Deciduous shrubland 28,258 28,258.0 3.5
Herbaceuos ' Humid'Tallgrass 4477.5 369.7 4847.2 0.6
vegetation Highland deciduous tallgrass 6922.6 6922.6 0.9
Deciduous tallgrass 17,137 .4 17,137 .4 2.2
Mangroves Mangrove forest 1470.4 1470.4 0.2
Cedrela—cedar 1977.4 1349.4 3326.8 0.4
Mixed 1142.1 1875.4 3017.5 0.4
Invasive Rubus—blackberry 495.1 324.8 819.9 0.1
Speci Pennisetum—grass 2871.7 103.8 2975.5 0.4
pecies Cinchona—quinine 61 17.4 78.4 0.0
Psidium—guava 10,312.6 4955.2 15,267.8 19
Syzygium—Pomarrosa 433.4 433.4 0.1
Rocky outcrop Recent lavas 252,273.3 2522733 317
Old lavas 87,914.8 18.6 87,933.4 11.0
Coffea—Coffee 944.5 944.5 0.1
. Cultivated Grass 2402.0 2402.0 0.3
Agricultural Silvopastures 3112.9 31129 04
— Transitory Crops 698.2 698.2 0.1
Permanent Crops 2968.1 2968.1 0.4
Other Urban settings 550.7 258.8 809.5 0.1
Water 705.7 294 735.1 0.1
Total 772,151.4 24,197.17 796,348.6 100

*Note: Shaded cells group together individual land cover classes into general categories.
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