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Abstract

Exposure to wildfire smoke causes adverse health outcomes, suggesting the importance of 

accurately estimating smoke concentrations. Geostatistical methods can combine observed, 

modeled, and satellite-derived concentrations to produce accurate estimates. Here we estimate 

daily average ground-level PM2.5 concentrations at a 1-km resolution during the October 2017 

California wildfires, using the Constant Air Quality Model Performance (CAMP) and Bayesian 

Maximum Entropy (BME) methods to bias-correct and fuse three concentration datasets: 

permanent and temporary monitoring stations, a chemical transport model (CTM), and satellite-

derived estimates. Four BME space/time kriging and data fusion methods were evaluated. All 

BME methods produce more accurate estimates than the standalone CTM and satellite products. 

Adding temporary station data increases the R2 by 36%. The data fusion of observations with the 

CAMP-corrected CTM and satellite-derived concentrations provides the best estimate (R2=0.713) 

in fire-impacted regions, emphasizing the importance of combining multiple datasets. We estimate 

that approximately 65,000 people were exposed to very unhealthy air (daily average PM2.5 ≥150.5 

μg/m3).

Graphical Abstract

*Corresponding Author: marc_serre@unc.edu; phone: (919) 966-7014. 

The authors declare no competing financial interest.

Supporting Information. Location of PM2.5 monitoring stations; AOD to PM2.5 conversion; CAMP correction figures; additional 
details on BME; covariance of PM2.5 data; additional details on global offsets; equations used for performance evaluation; state-wide 
all-month performance statistics; refinement of plume shape with addition of temporary data; stratified performance statistics with the 
addition of temporary data; further comparison of BME methods; animation of estimated PM2.5 concentrations; variance maps of 
estimated PM2.5 concentrations. This information is available free of charge via the Internet at https://pubs.acs.org/doi/10.1021/
acs.est.0c03761.

HHS Public Access
Author manuscript
Environ Sci Technol. Author manuscript; available in PMC 2021 November 03.

Published in final edited form as:
Environ Sci Technol. 2020 November 03; 54(21): 13439–13447. doi:10.1021/acs.est.0c03761.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://pubs.acs.org/doi/10.1021/acs.est.0c03761
https://pubs.acs.org/doi/10.1021/acs.est.0c03761


Introduction

On October 8-9, 2017, wildfires started in northern California, burning for multiple weeks 

and spreading over nine counties. During the fires, more than 230,000 acres burnt, nearly 

9,000 buildings were destroyed, and 43 people died1. Wildfires produce emissions that 

adversely impact air quality, and in turn, human health2–4. Of wildfire emissions, particulate 

matter (PM) poses the biggest risk to public health, with fine particles 2.5 μm or smaller 

(PM2.5) causing the greatest health concern5. During the October 2017 fires, PM2.5 

concentrations reached the highest levels recorded until that date in the Bay Area, exposing a 

large population to unhealthy air6. Given the potentially severe health impacts of smoke 

exposure and the likely increase in the frequency, intensity, and spread of wildfires due to 

climate change7–10, it is important to estimate wildfire smoke concentrations to better 

estimate population exposure, identify at-risk populations, characterize the risk of adverse 

health outcomes, and inform policy and decision-making processes.

Population-level exposure to wildfire emissions is typically estimated using one or more 

primary datasets: monitoring station observations, chemical transport models (CTMs), and 

satellite-based measurements11,12. Each dataset has strengths and weaknesses for estimating 

wildfire PM2.5 concentrations. Monitoring station observations provide high-quality, 

accurate measurements that are readily available, but these observations are limited to fixed 

locations which restricts the ability to understand smoke plume size and location, a 

significant gap given the rapid change in smoke concentrations over short distances. CTMs, 

on the other hand, can incorporate knowledge of emissions, atmospheric physics and 

chemistry, and meteorological conditions to predict PM2.5 at a fine space/time (s/t) 

resolution, but CTMs have biases and depend upon fire emissions estimates, which have 

large uncertainty13. Satellite observations provide high s/t coverage and valuable 

information on smoke plume size and location, but do not directly measure PM2.5. Instead 

PM2.5 is estimated from aerosol optical depth (AOD) measurements and the conversion to 

ground-level PM2.5 can impact accuracy14, especially since AOD measurements do not 

resolve the vertical distribution of smoke plumes. AOD observations are also limited by 

cloud cover. While these datasets are often used independently for smoke exposure 

estimates, geostatistical methods can combine observations with modeled and satellite-

derived concentrations to produce more accurate estimates during a fire. Previous studies 
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have found that combining multiple PM2.5 datasets, through data fusion, regression 

modeling, and machine learning methods, often leads to improvements in wildfire PM2.5 

estimations, compared to using just one dataset12,15–20.

While the benefits of combining these datasets has been shown, to our knowledge, no prior 

study has evaluated the accuracy of fusing observations from both permanent and temporary 

monitoring stations with bias-corrected CTM and satellite-derived concentrations to estimate 

daily average wildfire PM2.5. This study aims to evaluate the accuracy of using the Constant 

Air Quality Model Performance (CAMP) method in combination with the Bayesian 

Maximum Entropy (BME) framework to estimate daily average ground-level PM2.5 

concentrations during the October 2017 wildfires by bias-correcting CTM concentrations 

and fusing them with monitoring station observations and satellite-derived estimates. The 

BME framework is an established tool for predictive s/t mapping21 that produces accurate s/t 

concentration estimates and associated measures of uncertainty at unmonitored locations22. 

Previous studies have used BME to estimate PM2.5 in the United States (US)23–26, but it has 

never been applied to a wildfire event. Additionally, while previous studies have used CAMP 

to bias-correct modeled PM2.5 across the US27, this is the first time it has been implemented 

to account for the non-linear heteroscedastic bias present in CTM concentrations during a 

fire. We evaluate the accuracy of four different BME s/t kriging and data fusion methods to 

identify which BME methods and combination of PM2.5 datasets best estimate ground-level 

PM2.5 concentrations during the October 2017 wildfires. Our findings can be used to 

improve air quality evaluation, management, and prediction during wildfires and 

characterize population smoke exposure and health risk.

Methods

Study Area and Period.

We estimated daily average ground-level PM2.5 concentrations at a 1-km resolution over 

California, October 1-31, 2017, with the fire period defined as October 8-20 and the fire-

affected region defined as California north of 36° latitude. While our analyses focused on 

estimating concentrations within the fire period and region, we estimated daily average 

PM2.5 for all of October across California in order to understand concentrations more 

broadly.

Monitoring Station Data.

Daily average PM2.5 observations were obtained from permanent Federal Reference 

Methods (FRM) and Federal Equivalent Methods (FEM) monitoring stations and temporary 

non-FRM/FEM monitoring stations. The FRM/FEM daily average observations were 

downloaded from the US Environmental Protection Agency (EPA)’s Air Quality System 

database (https://www.epa.gov/aqs) between October 1–31. The temporary monitoring 

stations were deployed by the California Air Resources Board (CARB) and data were 

obtained from the US Forest Service (USFS) who aggregate the data as part of the 

interagency Wildland Fire Air Quality Response Program (WFAQRP)28. CARB and the 

WFAQRP place temporary stations in impacted regions to monitor air quality during 

wildfires. The temporary stations are Met One Instruments, Inc. Environmental Beta 
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Attenuation Monitors (E-BAM) and E-Samplers monitors, which are designed to accurately 

predict FRM/FEM PM measurements but are not approved for PM2.5 compliance 

monitoring. We averaged hourly concentrations from the temporary stations to obtain daily 

averages. In total, observations from 114 FRM/FEM and 49 temporary monitoring stations 

across California were used (supporting information). Both datasets were cleaned by 

removing observations less than or equal to zero or with incomplete s/t coordinates, and by 

averaging concentrations at monitors with duplicate s/t coordinates. The PM2.5 observations, 

and the CTM and satellite-derived concentrations described below, were natural log-

transformed prior to use given their lognormal distribution.

Community Multiscale Air Quality Model Data.

The Community Multiscale Air Quality (CMAQ)29 simulations, conducted by the Bay Area 

Air Quality Management District (BAAQMD), provided estimates of daily average pollutant 

concentrations in the central California region at a 4-km resolution for October 3-20. Fire 

emissions estimates for CMAQ were processed using the Fire Detection and 

Characterization (FDC)30 products from the GOES-16 geostationary satellite, the National 

Aeronautics and Space Administration (NASA) Fire Energetics and Emissions Research 

(FEER)31 algorithm, and the Sofiev algorithm for plume rise32. The combined high temporal 

resolution of the FDC product (5-min) coupled with the improved spatial resolution (2-km at 

nadir) than older generation geostationary satellites, allowed us to simulate the overnight and 

early morning ignition and large fire activity of October 8–9 that would otherwise been 

missed using default approaches29. In addition to fire emissions, CMAQ was run with 

emissions from all other natural and anthropogenic sources, using the CARB’s emission 

inventory for area and nonroad sources, EMFAC2017 model output for on-road sources, 

EPA BEIS3.61 model output for biogenic sources, and BAAQMD’s facility-level emissions 

data for point sources.

AOD Data.

AOD observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) 

Terra Satellite were used to obtain AOD-derived PM2.5 estimates. The 3-km resolution AOD 

data (MOD04_3K) using the Collection 6 Dark Target (DT) aerosol algorithm were 

downloaded from the Level-1 and Atmosphere Archive and Distribution System Distributed 

Active Archive Center (https://ladsweb.nascom.nasa.gov/) for October 1-31. MODIS-

retrieved AOD is frequently used to estimate PM2.5 at both local and global scales33.

Conversion of AOD to PM2.5.

To convert the MODIS AOD observations into PM2.5 concentrations, we used a mixed 

effects model (MEM)14,34. Only valid, non-negative AOD observations were used. First, 

collocated PM2.5 and AOD observations were paired, where daily average PM2.5 

observations were matched with AOD observations when the station location was within the 

3-km grid cell on the same day as the satellite overpass. During October 2017, all overpass 

times occurred between 9 AM and 1 PM local time. Once paired, we fit a day-specific linear 

MEM to 75% of the matched data and used the remaining 25% to validate (supporting 

information). Our MEM created a varying intercept and slope for each day, allowing for 

day-to-day variability in the AOD-PM2.5 relationship34 and can be described as
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PM2.5ij = β0 + u0j + β1 + u1j × AODij + εij (1)

where PM2.5 ij is the PM2.5 concentration at location i on day j, AODij is the collocated AOD 

measurement, β0 and β1 are the fixed intercept and slope, respectively, u0j and u1j are the 

day-specific random intercept and slope, respectively, and εij is the error term at location i 
on day j. The MEM was then applied to all AOD observations in California during October 

2017 to produce estimates of PM2.5 and associated variance. The final satellite-derived 

output (Sat-PM2.5) had an R2 of 0.323 in the fire-affected region and period and was 

incorporated in the BME framework as soft data, described below.

CAMP Method.

The CAMP method was implemented to bias-correct the CMAQ log-PM2.5 

concentrations27,35. CAMP corrects for bias differentially over the range of values 

estimated, for example, by providing a larger bias correction for high estimates than for low 

estimates. The CAMP method corrects modeled concentrations by modeling the mean and 

variance of the observed value as a function of the modeled value, accounting for the non-

linear and non-homoscedastic relationship between the two. CAMP does this by first pairing 

collocated modeled concentrations with observations. These paired values are divided into 

decile bins and the mean (λ1) and variance (λ2) of observed log-concentrations in each bin 

are calculated as

λ1 y⌣i = 1
n y⌣i

Σj = 1

n y⌣i
yj (2)

λ2 y⌣i = 1
n y⌣i − 1 Σj = 1

n y⌣i
yj − λ1 y⌣i

2
(3)

where n yi  is the number of paired modeled yi  and observed yj  log-PM2.5 values in each 

decile bin. The λ1 yi  and λ2 yi s are made into piecewise linear functions by connecting the 

points estimated in each decile bin, which are used to obtain λ1 and λ2 for each modeled 

log-concentration. The CAMP-calculated mean (λ1) represents the bias-corrected CMAQ 

log-concentration and the variance (λ2) represents the accuracy of the bias-corrected value. 

To account for bias due to uncertainty in the fire emission estimates, two separate CAMP 

corrections were applied: one to the fire-affected region and period and one to all other 

regions and days (supporting information). The final combined product is referred to as the 

CAMP-corrected CMAQ model output (CC-CMAQ) and was incorporated in the BME 

framework as soft data.

BME Framework.

The BME framework uses modern spatiotemporal geostatistics to estimate daily average 

PM2.5 concentrations at unmonitored locations by fusing together different types of 

data36–38, using the general knowledge base (G-KB) and the site-specific knowledge base 

(S-KB) which characterize the general characteristics of the pollutant and the uncertainty in 
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the data, respectively. Further details on the BME theory and its numerical implementation 

can be found in supporting information and previously published research22,23,35,39–42. In 

short there are two aspects of BME modeling, as follows:

First, we transform the air pollution data so it can be modeled as a zero-mean homogeneous/

stationary space/time random field (S/TRF). We use the letter Z to represent PM2.5, Y to 

represent log-PM2.5, X to represent offset-removed log-PM2.5, and oY(p) to denote the 

global offset capturing the trend of log-PM2.5 concentrations as a function of s/t location p = 

(s, t), where s is a spatial location, and t is time. The transformation consists in removing the 

global offset from the observed log-transformed concentration data, which we model as the 

zero-mean homogenous and stationary S/TRF X(p). By adding the offset back to X(p) we 

obtain

Y p = X p + oY p (4)

which is the S/TRF describing log-PM2.5 across the domain. Using this representation, the 

estimate yk of log-PM2.5 at an unmonitored location pk, is simply obtained by adding oY(pk) 

to the BME estimate xk for X(pk).

Second, we obtain xk by implementing BME on X(p). The G-KB includes the mean and 

covariance of the offset-removed log-PM2.5 S/TRF X(p), which we modeled using the 

observations from FRM/FEM and temporary monitoring stations during October 2017 

(supporting information). The S-KB consists of the offset-removed log-PM2.5 concentrations 

from monitoring stations and the offset-removed CC-CMAQ and Sat-PM2.5 log-transformed 

outputs. The S-KB treats concentrations as either hard data or soft data, where hard data 

have no associated uncertainty while soft data do. The hard data are the offset-removed log-

PM2.5 monitoring station observations. Hard data have the greatest influence on the BME 

estimation, with each observation’s influence decreasing with increased distance from the 

monitoring site based on the s/t covariance in the G-KB. The soft data are the CC-CMAQ 

and Sat-PM2.5 offset-removed log-concentrations and their associated uncertainty. The soft 

data are described by a PDF which is the product of Gaussian distributions with a mean and 

variance equal to the offset-removed λ1 (Eq. 2) and λ2 (Eq. 3) at each CMAQ grid cell point 

and equal to the offset-removed satellite-derived concentration (Eq. 1) and its associated 

variance at each satellite grid cell point. Soft data with lower associated uncertainty have 

greater influence on the BME estimate. When no soft data is used, BME reduces to simple 

kriging, given the assumption that the offset-removed log-concentrations have a mean of 

zero.

For this analysis, two s/t global offsets were considered. The first is a separable s/t global 

offset (SSTO), which is typically used in the BME framework22,24,39 and assumes that the 

global offset is the combination of a purely spatial and purely temporal offset. The SSTO of 

log-PM2.5 is calculated by

oY p = log os s + ot t − ot t (5)
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where the spatial global offset, os(s), and temporal global offset, ot(t), of PM2.5 are obtained 

by applying an exponential smoothing function to the time-averaged and spatially-averaged 

data, respectively43 (supporting information). The second is a composite s/t global offset 

(CSTO) which assumes that each s/t location has unique trend across space and time44. At 

any s/t location p, the CSTO for log-PM2.5 is calculated by

oY p = log Σi = 1
N wi ∗ zi
Σi = 1

N wi
(6)

where N is the number of PM2.5 observations within a set s/t radius of s/t location p, and wi 

is the weight assigned to the measurement. wi is determined by both the s/t distance between 

pi and p and the spatial and temporal ranges of the exponential smoothing function. The 

SSTO and CSTO used the same spatial and temporal smoothing ranges (supporting 

information).

We first compared three versions of BME s/t kriging of observations: with and without data 

from temporary monitoring stations and with a CSTO compared to a SSTO. We then 

compared four BME estimation methods: BME s/t kriging of observations, where only hard 

data are used, and three different versions of BME data fusion, using both hard and soft data.

Method Performance Evaluation.

To evaluate the performance of the BME estimation methods, two cross-validation 

approaches were used to generate performance statistics: a leave-one-out cross-validation 

(LOOCV) and a radius cross-validation (RCV). In both, FRM/FEM and temporary station 

observations are considered true values given the accuracy of the E-BAM and E-Samplers. 

The LOOCV estimates the log-PM2.5 concentration at each observation s/t location, without 

using knowledge of the observation. The RCV estimates the log-PM2.5 concentration at each 

observation s/t location, without using knowledge of all observations at and within a defined 

radius of that location for all time points. For the RCV, nine spatial radiuses are analyzed, 

0-4° at increments of 0.5. For both cross-validations, we compared the resulting log-PM2.5 

estimations to the observations in order to calculate the following performance statistics: 

mean square error (MSE), R2, mean error (ME), variance of error (VE), and variance of 

estimation (VZ) (supporting information). The LOOCV performance statistics were also 

calculated for the satellite-derived and CTM concentrations, as is and CAMP-corrected. For 

this, model and satellite-derived values were compared to observations from the same day 

and located within the model or satellite grid cell. All performance statistics were calculated 

for October 8-20 in northern California to understand performance in the fire-affected region 

and period. Performance statistics for October 1-31 across California can be found in 

supporting information.

Results and Discussion

Mapping PM2.5 Through BME S/T Kriging of Observations.

We first evaluated the accuracy of using BME s/t kriging on observed data to estimate PM2.5 

in northern California during the wildfires. For this evaluation, the CC-CMAQ and Sat-
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PM2.5 data were not used and three different BME s/t kriging approaches were compared to 

identify the most accurate estimation method based on observations only. Doing this also 

allowed us to understand the added value of temporary monitoring station data and a CSTO.

Overall, BME s/t kriging of both FRM/FEM and temporary station data with a CSTO 

provides the most accurate estimation in the fire-affected region and period (Table 1) and 

across California for October 1-31 (supporting information). Adding temporary station data 

to the BME s/t kriging estimation improves accuracy, with a 40% reduction in MSE and a 

36% increase in R2, and increases the number of monitoring stations used from 114 to 163 

and daily observations from 2,670 to 3,621. The increase in observations in smoke-impacted 

areas results in a refinement of the smoke plume shape (supporting information). While 

incorporating the temporary station data does not impact performance at the FRM/FEM 

sites, it notably improves performance at the temporary station locations (supporting 

information). Although non-FRM/FEM temporary stations use technology not approved to 

monitor compliance with air quality standards, which may be less accurate, they provide 

critical concentration information in unmonitored locations and improve overall estimation 

accuracy during the fires.

Additionally, implementing a CSTO compared to a SSTO results in a slight increase in 

estimation accuracy, with a 3% reduction in MSE and a 0.2% increase in R2. A SSTO is 

sufficient when all geographic locations in the study area have the same temporal variation 

in concentrations, but when this assumption is not met, a CSTO allows each geographic 

location to have a unique time trend44. During the October 2017 wildfires, the assumption of 

a constant temporal trend in PM2.5 across space is not met, with the smoke plume only 

impacting s/t PM2.5 trends at monitoring stations in northern California. Using a CSTO 

more accurately characterizes the PM2.5 spatial and temporal variations during the fires, 

resulting in a slight increase in precision.

While BME s/t kriging of observations accurately estimates PM2.5 during the fires, relying 

solely on observed data has limitations since the estimates are limited by the locations of the 

s/t observations. In station-dense regions, BME s/t kriging reliably estimates PM2.5, but in 

many scenarios, such as the October 2017 wildfires, the regions most impacted by smoke 

have low monitoring station coverage. This limited coverage can lead to unreliable BME 

estimates in data-scarce, smoke-impacted regions. Additionally, BME s/t kriging on 

observations only does not incorporate critical knowledge of meteorological conditions, 

atmospheric physics and chemistry, and smoke plume shape and location, all of which 

impact smoke concentrations. This limitation can result in an oversimplification and over-

smoothing of the estimation surface. Incorporating CTM and/or satellite-derived outputs into 

the BME framework has the potential to further refine and improve wildfire PM2.5 

estimations.

Mapping PM2.5 Through BME Data Fusion of Observations, CTM, and Satellite Outputs.

To account for non-linear heteroscedastic bias prior to BME data fusion, the CMAQ output 

was CAMP-corrected. CAMP-correcting the modeled concentrations improves accuracy, 

with a 9% increase in R2 and a 53% reduction in MSE (Table 2). When compared to Sat-
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PM2.5, CC-CMAQ provides more accurate PM2.5 estimations, with a lower MSE and higher 

R2.

We next compared four BME approaches using the three data sources: observations, CTM 

output, and satellite-derived estimates. The four BME approaches compared were: BME s/t 

kriging of observations; BME data fusion of observations and CC-CMAQ; BME data fusion 

of observations and Sat-PM2.5; and BME data fusion of observations, CC-CMAQ, and Sat-

PM2.5. All methods used temporary monitoring station data and a CSTO. Comparing these 

four methods allowed us to independently evaluate the added value of the CAMP-corrected 

CTM and satellite-derived outputs in northern California during the wildfires.

The LOOCV results show that all four BME approaches outperform the standalone CC-

CMAQ and Sat-PM2.5 outputs, with lower MSE and higher R2 values (Table 2). Of the four 

methods, the BME data fusion of observations with CC-CMAQ and Sat-PM2.5 is most 

accurate in the fire-affected region and period, with the lowest MSE and highest R2. Of the 

four BME methods, BME s/t kriging of observations performs worst, with the BME data 

fusion of all three datasets providing a 3% reduction in MSE and a 1% increase in R2. The 

BME data fusions of observations with CC-CMAQ and Sat-PM2.5 and with just CC-CMAQ 

have the lowest bias and random error. All three BME data fusion methods tend to 

underestimate the true value while BME s/t kriging tends to overestimate.

While LOOCV is a good assessment of performance, it only evaluates the method’s ability 

to estimate concentrations at monitoring station locations, which may not be located in fire-

affected regions. We analyzed the RCV results to identify the most accurate BME method in 

station-scarce, smoke-impacted regions (Figure 1). Aligning with the LOOCV results, the 

BME data fusion of observations, CC-CMAQ, and Sat-PM2.5 performs best, with the lowest 

MSE and highest R2 at greater distances from the nearest station. The BME data fusion of 

observations with CC-CMAQ performs similarly, but slightly worse, in comparison. BME 

s/t kriging of observations performs worst. Once an estimation location is more than 0.5° 

from the closest station, the BME data fusions of observations with CC-CMAQ and Sat-

PM2.5 and with just CC-CMAQ perform notably better than the BME data fusion of 

observations with Sat-PM2.5 and BME s/t kriging of observations. State-wide performance 

statistics for October 1-31 show slightly better LOOCV and worse RCV results compared to 

the fire-affected region and period, with BME s/t kriging and the BME data fusion of all 

three performing best in station-dense and station-scarce regions, respectively (supporting 

information).

We next compared the four BME methods visually to identify physical differences in the 

estimation surfaces. Maps of each BME method for October 10 (Figure 2) reveal similar 

PM2.5 estimations across California, with a plume of high concentrations north of the Bay 

Area. The primary difference between the estimation surfaces is the smoke plume shape 

refinement that occurs once the observations are fused with the CC-CMAQ and/or Sat-PM2.5 

output. While CC-CMAQ and Sat-PM2.5 provide different refinements, incorporating either 

avoids over-smoothing the estimation surface, which occurs when kriging observations. 

When both CC-CMAQ and Sat-PM2.5 are incorporated into the BME estimation, there is the 

added benefit of including all available smoke plume information to produce the most 
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informed estimate. Maps further highlighting the differences between BME methods can be 

found in supporting information.

Impact of Wildfire Smoke on PM2.5 Concentrations.

The estimation maps of ground-level PM2.5 during the fires show daily average 

concentrations exceeding 190 μg/m3 north of San Francisco Bay (Figure 3), with the highest 

concentrations occurring on October 10, 11, and 13. The 1-km resolution captures the fine-

scale spatial variability of concentrations during the fires, since 1 km (approximately 0.01°) 

is significantly less than the spatial ranges of the covariance model (supporting information). 

The EPA identifies 24-hour average PM2.5 concentrations greater than 150.5 μg/m3 as very 

unhealthy, with adverse health impacts seen in both sensitive groups and the general 

public45. When our PM2.5 estimates are combined with census tract-level population data, 

we estimate that 65,466 individuals were exposed to daily average PM2.5 greater than 150.5 

μg/m3 during the fires, with 64,030 exposed on October 13 alone. Additionally, we estimate 

that 16 million people on at least one day were exposed to daily average concentrations 

greater than 35 μg/m3, the EPA’s 24-hour PM2.5 standard46 and the level at which 

concentrations are unhealthy for sensitive groups45. Napa and Sonoma counties were 

disproportionately impacted by the unhealthy air quality. An animation of the PM2.5 

estimations during the fires along with maps of the estimation variance for October 8-13 can 

be found in supporting information.

Discussion.

Our results show that the BME framework, used in combination with the CAMP correction 

method, can be used to accurately estimate ground-level PM2.5 concentrations during a 

wildfire. All four BME s/t kriging and data fusion methods outperform the standalone 

CMAQ and satellite-derived products, emphasizing the importance of combining multiple 

data sources.

Using temporary monitoring station data in addition to FRM/FEM station data has added 

benefit for estimating PM2.5 during a wildfire, increasing the s/t coverage in otherwise data-

scarce regions. When available, we recommend including temporary station data in future 

efforts to estimate wildfire PM2.5 concentrations. In our implementation of the BME 

framework, we treat the temporary station observations as hard data, given the accuracy of 

the E-BAM and E-Samplers, but where the non-FRM/FEM technology is less accurate, 

these observations can also be treated as soft data in the BME framework to account for 

measurement error. Additionally, we recommend that future efforts to estimate wildfire 

PM2.5 consider using a CSTO instead of the standard SSTO to improve accuracy, given the 

CSTO’s ability to characterize the unique spatial and temporal variations in smoke 

concentrations.

Since CTMs are often relied on for smoke concentration estimates, our results emphasize the 

importance of bias-correcting CTM output, via the CAMP method, to improve accuracy by 

accounting for the non-linear and non-homoscedastic relationship between modeled and 

observed wildfire PM2.5. Combining the CAMP-corrected CTM with observations through 

BME data fusion further improves estimation accuracy by using observed data and 
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accounting for the CTM’s uncertainty. When a CTM simulation is not available, our cross-

validations demonstrate that the BME data fusion of observations with satellite-derived 

estimates produces similarly accurate ground-level smoke concentration estimates, 

especially within 0.5° of a monitoring station.

Our results also demonstrate that BME s/t kriging of observations does a poor job of 

estimating concentrations in fire-affected regions, given that monitoring stations are often 

located in urban or densely populated areas. If the smoke-impacted region is in a station-

scarce area, BME s/t kriging of observations will be inaccurate, and the BME data fusion of 

observations with bias-corrected CTM and/or satellite-derived concentrations will likely 

better estimate ground-level concentrations. When possible, it is best to combine all three 

datasets to produce the most accurate and informed wildfire PM2.5 estimates. Further, during 

wildfires, factors such as wind, topography, and meteorological conditions influence the 

smoke plume trajectory, leading to non-homogenous concentrations across a region47. 

CTMs account for these factors and when combined with satellite-derived information on 

smoke plume size and location, it is possible to capture important plume features that are 

challenging to capture with monitoring stations alone. Incorporating both datasets into the 

BME framework will likely produce more physically meaningful, heterogeneous ground-

level PM2.5 estimations during a wildfire, with increased accuracy in both station-dense and 

station-scare regions.

While our findings show the importance of combining all three datasets, the contribution of 

the satellite-derived estimates is likely limited by the AOD to PM2.5 conversion. In 

comparison to CC-CMAQ, Sat-PM2.5 had lower accuracy, likely a result of the MEM used. 

It is possible that a more complex conversion that accounts for factors such as 

meteorological conditions and land use could improve performance and further increase the 

added value of the satellite-derived PM2.5. Additionally, the MODIS DT aerosol algorithm 

has higher errors over urban and non-vegetated surfaces33, which is common in California; 

using other satellite AOD products in combination with MODIS AOD may provide 

improved PM2.5 estimates in these areas.

By comparing four different BME methods using three PM2.5 datasets, we show that the 

BME data fusion of all three datasets, observations, CC-CMAQ, and Sat-PM2.5, provides the 

best estimate of smoke concentrations in fire-affected regions during the October 2017 

California wildfires. Further, the 1-km resolution of the BME estimations captures the fine-

scale spatial variability of concentrations and allows for the accurate assessment of local-

level exposure. In addition to the benefits discussed above, incorporating the CMAQ model 

into the BME framework allows us to estimate the portion of concentrations attributable to 

the fires. This feature in combination with the framework’s ability to produce measures of 

uncertainty make the BME data fusion of observations with bias-corrected CTM and 

satellite-derived concentrations ideal for characterizing the health risk associated with 

wildfire smoke exposure. Our future work includes using these estimated ground-level 

PM2.5 concentrations to quantify the acute health impacts of smoke exposure during the 

wildfires.
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Figure 1. 
Results of radius cross validation for estimating daily average log-PM2.5 in the fire-affected 

region and period; MSE (left) and R2 (right), based on distance to the closest monitoring 

station, for the 4 BME methods: BME s/t kriging, Observations (Obs); BME Data Fusion, 

Observations and CC-CMAQ (Obs + CC-CMAQ); BME Data Fusion, Observations and Sat-

PM2.5 (Obs + Sat-PM2.5); BME Data Fusion, Observations, CC-CMAQ, and Sat-PM2.5 

(Obs + CC-CMAQ + Sat-PM2.5).
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Figure 2. 
Comparison of 4 BME methods to calculate the median value of daily average PM2.5 

concentrations on Oct. 10, 2017. (1) BME s/t kriging, Observations; (2) BME Data Fusion, 

Observations and CC-CMAQ; (3) BME Data Fusion, Observations and Sat-PM2.5; (4) BME 

Data Fusion, Observations, CC-CMAQ, and Sat-PM2.5.
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Figure 3. 
Median value of daily average ground-level PM2.5 concentrations, estimated by the BME 

data fusion of observations, CC-CMAQ, and Sat-PM2.5, across California for Oct. 8-13, 

2017.
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Table 1.

Leave-one-out cross-validation results for the estimation of the log of PM2.5 daily average concentrations in 

the fire-affected region and period, using three BME s/t kriging approaches.

BME s/t Kriging Method MSE * (log-
μg/m3)2

R2 * (log-
space)

ME * (log-
μg/m3)

VE * (log-
μg/m3)2

VZ * (log-
μg/m3)2

Observations Global Offset

FRM/FEM Composite 0.327 0.520 −0.096 0.196 0.428

FRM/FEM & Temporary Separable 0.202 0.706 −0.001 0.202 0.594

FRM/FEM & Temporary Composite 0.196 0.708 0.003 0.196 0.552

*
Performance metrics for the estimation of log-PM2.5 include mean square error (MSE), R-squared (R2), mean error (ME), variance of error (VE), 

and variance of estimation (VZ). The mean and variance of the observed log-PM2.5 data are 2.36 log-μg/m3 and 0.532 (log-μg/m3)2, respectively.
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Table 2.

Leave-one-out cross-validation results for the estimation of the log of PM2.5 daily average concentrations in 

the fire-affected region and period, using CAMP correction, BME s/t kriging, and BME data fusion 

approaches.

MSE *

(log-μg/m3)2
R2 * (log-
space)

ME * (log-
μg/m3)

VE * (log-
μg/m3)2

VZ * (log-
μg/m3)2

Satellite-derived log-PM2.5 (Sat-PM2.5) 0.365 0.323 0.053 0.362 0.256

CMAQ Model 0.863 0.431 0.226 0.812 1.521

CAMP-Corrected (CC)-CMAQ Model 0.362 0.496 −0.001 0.362 0.375

BME s/t Kriging 0.196 0.708 0.003 0.196 0.552

BME Data Fusion, Observations & CC-
CMAQ 0.192 0.709 −0.0001 0.192 0.441

BME Data Fusion, Observations & Sat-PM2.5 0.193 0.708 −0.006 0.193 0.513

BME Data Fusion, Observations, CC-CMAQ, 
& Sat-PM2.5

0.190 0.713 −0.0003 0.190 0.435

*
Performance metrics for the estimation of log-PM2.5 include mean square error (MSE), R-squared (R2), mean error (ME), variance of error (VE), 

and variance of estimation (VZ). The mean and variance of the observed log-PM2.5 data are 2.36 log-μg/m3 and 0.532 (log-μg/m3)2, respectively.
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