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Abstract
Purpose—Both propensity score (PS) matching and inverse probability of treatment weighting
(IPTW) allow causal contrasts, albeit different ones. In the presence of effect-measure modification,
different analytic approaches produce different summary estimates.

Methods—We present a spreadsheet example that assumes a dichotomous exposure, covariate, and
outcome. The covariate can be a confounder or not and a modifier of the relative risk (RR) or not.
Based on expected cell counts, we calculate RR estimates using five summary estimators: Mantel-
Haenszel (MH), maximum likelihood (ML), the standardized mortality ratio (SMR), PS matching,
and a common implementation of IPTW.

Results—Without effect-measure modification, all approaches produce identical results. In the
presence of effect-measure modification and regardless of the presence of confounding, results from
the SMR and PS are identical, but IPTW can produce strikingly different results (e.g. RR=0.83 vs.
RR=1.50). In such settings, MH and ML do not estimate a population parameter and results for those
measures fall between PS and IPTW.

Conclusions—Discrepancies between PS and IPTW reflect different weighting of stratum specific
effect estimates. SMR and PS matching assign weight according to the distribution of the effect-
measure modifier in the exposed subpopulation, whereas IPTW assigns weights according to the
distribution of the entire study population. In pharmacoepidemiology, contraindications to treatment
that also modify the effect might be prevalent in the population, but would be rare among the exposed.
In such settings, estimating the effect of exposure in the exposed rather than the whole population is
preferable.
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INTRODUCTION
In the presence of effect-measure modification or interaction across strata. stratum-specific
estimates need to be presented.1 Nonetheless, some authors propose the use of standardized
summaries, as opposed to summaries that assume uniformity, in such situations, since these
retain valid interpretations and can be used to measure overall population impact.1–3 Two
analytic methods that are increasingly used to control for confounding, propensity scores (PS)
and inverse probability of treatment weighting (IPTW), allow such summary estimates. In this
paper we give a non-technical description of these methods and present numerical examples
comparing PS, IPTW and other commonly used approaches to obtaining a summary estimate
of effect across strata.

Propensity scores4 (PS) are increasingly used in non-experimental medical research.5
Propensity scores can be implemented in various ways, including matching. Under the
assumption of no unmeasured confounding, unexposed observations individually matched to
each exposed observation on the estimated PS can be conceptualized as counterfactuals, i.e.
representing the experience of the exposed people if they had been unexposed. The crude
relative risk obtained from a cohort matched on the PS can therefore be interpreted as the causal
contrast between the outcome experience in the exposed (factual) and one counterfactual, i.e.
what would have happened to the exposed if they had been unexposed. The target of this causal
contrast thus is the population that is going to be getting the treatment.

Although alternative weighting strategies are available, a popular implementation of inverse
probability of treatment weighting (IPTW) is based on the estimated probability of exposure
in the exposed and the probability of non-exposure in the unexposed.6,7 These analyses adjust
for confounding by creating a re-weighted pseudo-population in which exposure is independent
of the measured confounders. Under the assumption of no unmeasured confounding, this
implementation of IPTW estimates the causal contrast between two counterfactuals: what
would have happened if everyone in the population had been exposed vs. what would have
happened if everyone had been unexposed. This population or marginal contrast is conceptually
similar to the contrast that results from a randomized controlled trial including all subjects.
The target of this causal contrast thus is the general population which might be justified in
specific settings, e.g. for mass vaccinations or over-the-counter medications.

IPTW can be implemented in various ways leading to different causal contrasts. For the sake
of clarity and of the argument, however, we will assume implementations of IPTW leading to
a marginal contrast from now on. In situations in which there is confounding by a variable that
is also affected by previous exposure, and information relating to repeated assessments of
exposure and covariates, IPTW has been promoted as the basis to create marginal structural
models, allowing the control of these confounding variables that cannot be controlled using
traditional methods.8,9 Here we use IPTW in a more basic situation that does not involve time-
varying exposure or covariates, so that IPTW can be compared with alternative methods that
would not be appropriate for time-varying exposures.

Recently, Kurth et al. reported striking differences of the association between thrombolytic
therapy and mortality in patients with ischemic stroke comparing results from PS matching
(OR = 1.2) and the marginal causal ratio obtained by IPTW (OR = 11).10 In this paper we
describe the differences between these analytic techniques in the presence of effect-measure
modification and we discuss the choice among these analytic approaches in specific settings
such as pharmacoepidemiology.

Stürmer et al. Page 2

Pharmacoepidemiol Drug Saf. Author manuscript; available in PMC 2007 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



METHODS
To illustrate the analytic techniques using numerical examples, we chose the simplest possible
scenario, i.e. a dichotomous exposure E (E=1 or 0 for exposure present or absent) that has a
prevalence PE, a dichotomous covariate X (X=1 or 0 for the covariate being present or absent)
with a prevalence PX, and a dichotomous outcome Y (Y=1 or 0 according to whether the
outcome occurred or did not occur) with an incidence proportion IP. The covariate X can be
either confounding or not and it can either be an effect-measure modifier of the relative risk
for the exposure-outcome association or not.

We first calculated the expected number of observations with and without the outcome within
each stratum of X=i from the following parameters: the total size of the study (N), the
prevalence of the covariate (PX), the prevalence of the exposure within each stratum of the
covariate (PEi), and the risks for the outcome IP1i and IP0i among exposed and unexposed in
each stratum of X, respectively.

The Mantel-Haenszel (MH) summary estimator was calculated as a weighted average of the
stratum-specific relative risks with weights based on the standard MH weights

wi = N0i
*IP0i

*N1i /N+i, (1)

where N1i, N0i and N+i are the number of exposed, unexposed, and total in the i-th stratum of
X (i=0,1), respectively.

We also calculated the maximum likelihood (ML) estimator of the RR, an iterative calculation
involving the solution of a set of i + 1 equations with i + 1 unknowns, where i is the number
of strata, as described by Rothman.11 In the presence of effect-measure modification, the MH
estimator and the ML estimator, both of which are intended to estimate uniform effects, do not
consistently estimate any meaningful population parameter.12 We present these estimates here
for comparison with the other estimates, without implying that they are valid or that they should
be used in the presence of effect-measure modification of relative risk. In many realistic
settings, the two estimators have been shown to approximate relative risks standardized to the
total population.13

We then calculated the standardized mortality or morbidity ratio (SMR), which has weights
based on the distribution of the covariate in the exposed. The SMR is calculated as the ratio of
the number of events among those exposed divided by the number of events expected for the
exposed based on the morbidity experience of the unexposed within each stratum. The expected
number is thus the sum of the stratum-specific risks in the unexposed (IP0i) multiplied by the
size of the exposed group within each stratum of the covariate:

Expected = ΣiN1i
*IP0i. (2)

The propensity score in this simple setting is the probability of being exposed within each level
of the covariate and thus equals the prevalence of the exposure within each stratum of X:

e(E)i = PEi (3)

We matched on this PS by choosing a number of unexposed equal to the number of exposed
in each stratum of X and multiplying this number by IP0i to obtain the expected number of
events within the matched unexposed group. Once this matching is completed for both strata
of X, the two strata of X are collapsed into a single 2x2 table and the RREY is calculated by
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taking the ratio of the observed risk among the exposed by the observed risk among the matched
unexposed.

Another way to use PS is to stratify on the score. In our setting with one dichotomous covariate,
the estimate obtained after stratifying on the PS and combining these strata using ML
corresponds to the ML-estimate presented above. In this simple setting, the PS stratified
estimate therefore corresponds to the estimate obtained by “conventional” control for a
covariate in a traditional outcome model. It should be pointed out, however, that estimates
stratified on the PS can be combined by other methods, including the SMR.

One commonly used way to implement an IPTW estimator is to use weights that are the inverse
of the PS in those exposed and the inverse of 1-PS (i.e. the probability of “non-exposure”) in
those unexposed. To obtain a weighted population of equal size to compare with the original
population, we used stabilized weights that include the marginal prevalence of the observed
exposure status, i.e. PE in the exposed and 1-PE in the unexposed, in the numerator.9 The
following weights were calculated accordingly:

w1i = (PE) / e(E)i = (PE) / PEi and (4)

w0i = (1 − PE) / 1 − e(E)i = (1 − PE) / 1 − PEi (5)

in the exposed and unexposed, respectively.

Multiplying the number of observations in each of the 4 groups defined by exposure and
covariate by the corresponding weights, we obtained a new population defined by the number
of observations within these four strata. The number of outcomes within each of these four
strata corresponds to the expected value, i.e. the number of observations multiplied by the
observed stratum-specific risks for the outcome IP1i and IP0i in exposed and unexposed,
respectively. The two strata of X are collapsed into a single 2x2 table and the RREY is calculated
by dividing IP1 by IP0.

All the above formulas were entered into an Excel-spreadsheet to allow easy calculation with
any input data. The spreadsheet, named ‘CausalComp.V1.xls’ is offered as open code under
the conditions of the GNU-GPL license,14 and can be downloaded at
www.members.aol.com/epidemiol/CausalComp.V1.xls. The analytic strategies assessed are
summarized and compared with emphasis on their theoretical behavior in the setting of
nonuniform effects in table 1.

RESULTS
The first scenario (table 2) has a relative risk between exposure E and outcome Y that is
confounded by the covariate X while it is identical within both strata of X (no effect-measure
modification of the risk ratio). We assumed a protective effect of an exposure, which can be
conceptualized as a drug intervention that prevents outcome Y, such as anti-hypertensive
medication to prevent a specified level of cognitive decline in an elderly population of
hypertensives.15 The confounding is due to the exposure being more prevalent in individuals
with X (PE1 = 0.5) compared with individuals without X (PE0 = 0.1) and X being a risk factor
for the outcome in the unexposed (IP01 = 0.4 vs. IP00 = 0.2). X might be conceptualized as the
severity of hypertension.

Since we are using relative risks (as opposed to odds ratios), the presence of confounding is
demonstrated by the crude estimate differing from stratum-specific estimates.16 The absence
of effect-measure modification is demonstrated by the stratum-specific relative risk estimates
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being identical. With no effect-measure modification, all analytic techniques control
effectively for confounding and result in identical relative risk estimates of 0.5.

In table 3, we examine an example without confounding but with effect-measure modification
of the relative risk. There is no confounding because X is not associated with the outcome in
the unexposed (IP0i = 0.2). The exposure of interest is still protective in individuals that have
the covariate X, but the exposure is now a risk factor for the outcome in those individuals
without the covariate X (i.e. where X=0). Continuing with the example of hypertension, the
latter group might be conceptualized as individuals with essentially normal blood pressure in
whom antihypertensive treatment increases rather than decreases the risk of cognitive decline,
e.g. by an unwanted drop in blood pressure.15 Whereas the crude relative risk and the relative
risks obtained by SMR and propensity score matching are identical (RR=0.83), the RR obtained
by IPTW is 1.5. The MH and ML estimators are 1.03 and 1.09, respectively, slightly closer to
the results obtained by SMR and PS than to the IPTW estimator.

The reason for this difference is apparent upon comparing the number of individuals in each
stratum of X with PS matching and IPTW. With PS matching, there are far fewer individuals
in the stratum with X=0 than in the stratum with X=1. This distribution reflects the prevalence
of X among exposed people. Both the PS and the SMR weight the summary according to the
distribution of X among exposed people and are based on the same counterfactual number of
expected events for the exposed had they been unexposed (N=60).

The difference between SMR or PS-matching and IPTW can also be understood as a difference
in the causal contrasts: whereas SMR and PS-matched analysis base their weighting on the
distribution of the covariate X in the exposed, IPTW is based on the distribution of the covariate
X in the entire study population.

In table 4, we present an example when there is both confounding and effect-measure
modification. Confounding is introduced by creating an association between X and the outcome
in unexposed (IP01 = 0.2 and IP00 = 0.1). This example can again be conceptualized in the
setting of antihypertensive treatment as the combination of severity of disease and lack of
indication. The pattern is essentially the same as in table 3 with the exception that the crude
RR is now biased owing to the presence of confounding by X. Quantitatively, the MH and ML
estimators are again closer to the relative risk estimates obtained by SMR and PS than to the
one from IPTW.

All of the numerical examples presented so far assume a prevalence of the covariate X of 0.5.
The results from varying this proportion from 0.1 to 0.9 while keeping the other parameters
constant are presented in table 5. The differences between the estimates obtained from IPTW
and the estimates obtained by SMR or PS matching are most pronounced when the prevalence
of X is 0.5. This result is not surprising given that differences in weighting based on the exposed
and those based on the entire study population will tend to vanish as the prevalence of X in the
entire study population approaches either 0 or 1.

We present a simplified, hypothetical numerical example of a study on the association between
antithrombotic therapy and risk of stroke in an elderly population (say over 80 years of age)
in table 6. The effect measure modifier in this setting is atrial fibrillation: antithrombotic
therapy (e.g. warfarin) reduces the risk of embolic stroke in individuals with atrial
fibrillation17 but increases the risk of hemorrhagic stroke in individuals without atrial
fibrillation18. We assume a prevalence of atrial fibrillation of 10% in this elderly population.
16 Without antithrombotic therapy, the risk of stroke is 5 times higher in individuals with atrial
fibrillation (15%) than in individuals without atrial fibrillation (3%).16 The prevalence of
antithrombotic therapy is 50% in those with atrial fibrillation compared with 1% in those
individuals without atrial fibrillation and the relative risks of stroke associated with
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antithrombotic therapy are 0.33 and 2.7 in individuals with17 and without18 atrial fibrillation,
respectively. In a hypothetical study of N=100,000, these parameters lead to the expected
numbers of individuals in each of the 8 cells defined by atrial fibrillation, antithrombotic
therapy, and stroke presented in table 6. The relative risk obtained by SMR and PS matching
is 0.42 compared with 1.86 from IPTW. Using this implementation of IPTW leading to a
marginal risk ratio, patients that do not have atrial fibrillation (and therefore do not profit from
antithrombotic therapy with respect to risk of stroke) but receive antithrombotic therapy are
up-weighted (weight = 5.9) whereas those individuals with atrial fibrillation who receive
antithrombotic therapy as indicated to reduce the risk of stroke are down-weighted (weight =
0.118). This weighting is the basis for the marginal causal risk ratio (RR=1.86), providing an
estimate of the effect of treating everyone compared with treating no one.

DISCUSSION
Our comparison of results of summary estimates in the presence of effect-measure modification
using MH, ML, SMR, PS matching, and IPTW should clarify and help to understand not widely
appreciated similarities between SMR and PS matching and striking discrepancies between
these analytic approaches and a popular implementation of IPTW. The results from MH and
ML lie between SMR and PS matching on the one hand and IPTW on the other. MH and ML,
however, do not estimate a meaningful population parameter in the presence of pronounced
effect-measure modification.12 In the presence of less pronounced and more realistic effect-
measure modification, MH weighting and ML have been shown to produce results closer to a
population-standardized estimate (e.g. IPTW as implemented here).13

Although discrepant results due to differences in weighting of unequal stratum-specific
estimates from SMR and IPTW have already been noted,10,19 the similarities between SMR
and PS with weights based on the distribution of the effect-estimate modifier in the exposed
and the discrepancy of IPTW with weights based on the distribution of the effect-estimate
modifier in the entire study population may not have been widely appreciated. Weighting
according to the distribution of effect-measure modifiers observed in the whole study
population is ideal in studies with well defined inclusion and exclusion criteria (i.e. everyone
has the indication under study, and no one has a contraindication). In such studies the operating
theme is that anyone entering the study could be either exposed or unexposed, similar to a
randomized controlled trial where the exposure only depends on the outcome of the random
assignment. The target of this causal contrast thus is the general population which might be
justified in specific pharmacoepidemiologic settings, e.g. for mass vaccinations or over-the-
counter medications.

Outside of such an idealized setting, however, treatment is less likely to be given to individuals
with borderline indication, no indication, or even contraindications. In such a setting, weighting
according to the distribution of the effect-measure modifier in only those exposed is easier to
interpret, since the target of this causal contrast is the population that is going to be getting the
treatment. The counterfactual question, “what would have happened if everyone had been
treated”, might be moot in many pharmacoepidemiologic contexts, including our example used
to conceptualize the results presented, i.e. antithrombotic therapy and risk for stroke in a
population containing many people who do not have atrial fibrillation and who would therefore
not likely be treated.

Kurth et al. recently reported striking differences of the association between thrombolytic
therapy and mortality in patients with ischemic stroke between PS matching (OR = 1.2) and
the marginal causal ratio obtained by IPTW (OR = 11)10 This discrepancy between approaches
might be explained in part by a large proportion of the study population having a
contraindication to thrombolysis, e.g., an onset of symptoms of more than 3 hours before
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hospital admission.20 Owing to an increased risk of intracerebral bleeding, thrombolysis is
clearly associated with an increased mortality in patients treated more than 3 hours after
symptom onset, a widely accepted contraindication.21 Thrombolysis does not increase
mortality in patients treated within 3 hours of symptom onset, the period during which this
treatment might be indicated (because it can reduce stroke sequelae). The prevalence of the
contraindication is low among those who are actually treated, but it is high (around 50%) in
the entire study population.

We have presented a simple hypothetical numerical example of a study of the association
between antithrombotic therapy and risk of stroke in an elderly population. The parameter
values we used were derived from published literature. It is straightforward to make the
discrepancies more extreme. The calculations clearly show how patients that do not have atrial
fibrillation (and therefore do not profit from antithrombotic therapy with respect to risk of
stroke) but receive antithrombotic therapy (for whatever reason) are up-weighted in this
implementation of IPTW. Conversely, those individuals with atrial fibrillation who receive
antithrombotic therapy as indicated to reduce the risk of stroke are down-weighted. These
weights are used for the calculation of the marginal causal risk ratio (RR=1.86), providing an
estimate of the effect of treating everyone compared with treating no one in a population in
which only 50 percent have the indication (with respect to risk of stroke).

Rather than obtaining any summary estimate in such data, it might be preferable to exclude
patients without atrial fibrillation from the analysis and present results only for those who have
the indication (i.e. conditional on the indication; RR=0.33). Such a restriction makes the study
setting closer to what would prevail in a randomized trial where treatment might be assigned
to any participant who meets inclusion criteria. Residual confounding and effect-measure
modification within each stratum might again be addressed using the methods presented, taking
the differences between these methods in the presence of effect-measure modification into
account. Alternatively, if the intent is to assess the population impact, including off-label use,
it might be preferable to weight subjects using standardization based on the observed off-label
use (e.g., SMR or PS matching; RR=0.42) or any reasonable explicit set of weights. Such
summary estimates have a clear advantage of providing information on the usually reduced
effectiveness of the treatment under realistic conditions that cannot be obtained from
randomized trials or with an analysis conditional on having the indication for treatment.

The SMR has often been suggested and is often used as the analysis of choice to summarize
data in the presence of effect-measure modification.1,3 The SMR offers the advantage of a
causal contrast between the experience of the exposed and their counterfactual experience if
they had been unexposed. The SMR is also one of the components of the crude relative risk
(together with the confounding risk ratio, i.e. the net effect of differences in the confounder
distributions in exposed and unexposed)22,23 and is closely linked to the concept of etiologic
fraction3,24. The SMR uses as a standard the distribution of the effect-measure modifier in the
exposed sub-population. Standardization to the distribution of the effect-measure modifier in
the entire population (which results in a standardized effect measure, but not an SMR) would
yield identical results to IPTW in this simple setting.3,25 Reciprocally, Sato & Matsuyama
proposed IPTW weights leading to a causal contrast based on the distribution of the effect-
measure modifier in the exposed sub-population that would give the SMR.19 They derived
these weights algebraically from the SMR and propose using IPTW based on these “SMR”
weights in marginal structural models.19

Given that in this setting the SMR and the PS matched analysis are identical, they both offer
an interpretation as a causal contrast based on the counterfactual described above. The MH
estimate and the ML estimate (and its multivariable counterpart), based on the assumption of
uniform effects, do not represent a causal contrast. MH and SMR were developed before the
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widespread availability and use of multivariable analysis techniques and have limitations when
multiple confounders need to be controlled for. If the PS is estimated from several covariates
(e.g. using multivariable logistic regression) rather than calculated non-parametrically, SMR
and PS matched analyses will not be identical, as in this example, but should be similar. In
those settings, the PS matched analysis or an IPTW analysis using “SMR” weights might be
preferred to the SMR, since these analytic strategies can be seen as multivariable extensions
of the SMR, allowing the inclusion of many covariates.

The interpretation of results based on stratification of the PS will depend on the method used
to summarize stratum-specific estimates. A summary of stratum-specific estimates by the
method of MH or ML assumes a uniform effect and thus does not provide the advantage of PS
matching noted above. If stratum-specific estimates are summarized using the SMR, however,
the result will again allow a causal contrast without the disadvantage of PS matching, which
results in the loss of information from exclusion of unexposed individuals that are not selected
as matches to exposed individuals.

Here we used IPTW in a setting with a single, non time-varying exposure and covariate
assessment. IPTW is mostly used as the basis for marginal structural models (MSM) in
longitudinal studies with repeated measures of the exposure and covariates. For repeated time-
varying exposures in longitudinal studies, the analytic approaches presented are not useful
alternatives to IPTW, insofar as MSMs allow one to obtain valid estimates of treatment effects
in the presence of time-varying confounders that are affected by prior treatment.8,9 G-
estimation would be an alternative strategy in such a situation, but is more complex to
implement.26 Since the basic issue presented here remains, when applying MSMs it might be
prudent to consider ways to implement IPTW leading to non-marginal risk ratios19 and inspect
individuals that get extreme weights to understand the extent to which their inclusion influences
the results.

In our examples, we always found unexposed matches for all exposed individuals when
matching on the PS, allowing a causal contrast. In reality, this will not always be the case. Not
being able to include all exposed individuals will affect the results and furthermore will lead
to a contrast that is not a causal contrast for the entire set of exposed persons. Matching avoids
comparisons outside a range of the covariates common to both exposed and unexposed, thus
avoiding a potential bias in multivariable outcome models due to inadequacies of the model.
27 Differences in the estimated PS within matched pairs, i.e. incomplete matching, might lead
to residual confounding.28

We did not look at precision of the estimates, as this issue appeared secondary given the striking
differences in point estimates. In less extreme situations and in situations without effect-
measure modification, the choice of analytic technique will depend on statistical efficiency
and investigator’s knowledge. Since the PS can be estimated using logistic regression and
IPTW is based on the PS, availability of software is not a problem, albeit getting correct
standard errors for some of these estimates may involve resampling8. Also, we only present
results based on risk ratio measures.11,12 Modification of the spreadsheet and the parameter
values to assess confounding and effect-measure modification of the risk difference is
straightforward, however, and the patterns of similarities and differences are exactly the same.

We conclude that differences in the interpretation of causal contrasts in the presence of effect-
measure modification need to be understood and kept in mind when interpreting results from
these analytic strategies. In pharmacoepidemiology, the marginal risk ratio based on a popular
implementation of IPTW, while valid under the built-in assumptions, might lead to misleading
causal contrasts when summarizing the effects of treatment in the presence of a substantial
proportion of individuals with heterogeneity of risk associated with treatment, e.g.
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contraindications. Causal contrasts based on weighting according to the distribution of the
effect modifier observed in the exposed rather than in the whole population, i.e. SMR, matching
on the PS, stratification on the PS summarized by SMR, or implementations of IPTW providing
non-marginal risk ratios, are easier to conceptualize and interpret in such settings.

Take home messages
• Effect-measure modification is likely in pharmacoepidemiologic studies owing to

inclusion of individuals in whom treatment is not indicated or even contraindicated
due to potential lack of response or risk for adverse outcomes

• In the presence of effect-measure modification, reporting stratum-specific results is
preferred, but a summary estimate might still be valuable

• In contrast to standard analytic techniques, propensity scores (PS) and inverse
probability of treatment weighting (IPTW) allow summary estimates that pertain to
defined populations in the presence of effect-measure modification

• PS, standardized mortality ratio (SMR), and IPTW using SMR-weights estimate the
effect of exposure in those who were exposed (target: those who are going to get the
treatment) whereas IPTW using “marginal” weights estimates the effect of exposure
if the whole population were to be exposed (target: general population)

• In populations with a substantial proportion of individuals in whom treatment is not
indicated, estimating the effect of treatment in the exposed rather than the whole
population is preferable
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Table 1
Summary of analytic strategies assessed and theoretical comparison with emphasis on non-uniform effects

Analytic strategy Target population Causal contrast Uniformity assumption Calculation Multiple covariates

Mantel- Haenszel None
(approximates
whole population)

No Yes Weighted average of
stratum-specific estimates

Practicality limited
by number of strata

Maximum likelihood None
(approximates
whole population)

No Yes Usually iterative procedure Modeling

Standardized morbidity ratio Exposed (treated) Yes No Weighted average of
stratum-specific estimates

“SMR” weighted
analysis19

Propensity score matching Exposed (treated) Yes No Matching unexposed to
exposed on estimated
probability of exposure

Yes

Propensity score stratification Depending on
method used to
combine strata

If strata
combined with
SMR

MH, ML: yes
SMR: no

Stratification on estimated
probability of exposure

Yes

Inverse probability of
treatment weighting

Whole population Yes No Weighting by inverse of
estimated probability of
actual exposure (PS in
exposed, (1-PS) in
unexposed)

Yes

SMR- weighting Exposed (treated)
19

Yes No Weighting of exposed by 1,
unexposed by PS/(1- PS)

Yes
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Table 6
Hypothetical example of application of analytic strategies in a study on the association between antithrombotic
therapy and risk of stroke in a fictitious population of 100,000 elderly; antithrombotic therapy reduces the risk
of (embolic) stroke in individuals with atrial fibrillation but increases the risk of (hemorrhagic) stroke in
individuals without atrial fibrillation
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