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Abstract

Hematological measures are important intermediate clinical phenotypes for many acute and 

chronic diseases and are highly heritable. Although genomewide association studies (GWAS) 

have identified thousands of loci containing trait-associated variants, the causal genes underlying 

these associations are often uncertain. To better understand the underlying genetic regulatory 

mechanisms, we performed a transcriptome-wide association study (TWAS) to systematically 
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investigate the association between genetically predicted gene expression and hematological 

measures in 54,542 Europeans from the Genetic Epidemiology Research on Aging cohort. We 

found 239 significant gene-trait associations with hematological measures; we replicated 71 

associations at p < 0.05 in a TWAS meta-analysis consisting of up to 35,900 Europeans from 

the Women’s Health Initiative, Atherosclerosis Risk in Communities Study, and BioMe Biobank. 

Additionally, we attempted to refine this list of candidate genes by performing conditional 

analyses, adjusting for individual variants previously associated with hematological measures, 

and performed further fine-mapping of TWAS loci. To facilitate interpretation of our findings, we 

designed an R Shiny application to interactively visualize our TWAS results by integrating them 

with additional genetic data sources (GWAS, TWAS from multiple reference panels, conditional 

analyses, known GWAS variants, etc.). Our results and application highlight frequently overlooked 

TWAS challenges and illustrate the complexity of TWAS fine-mapping.
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1 | INTRODUCTION

Genome-wide association studies (GWAS) have identified thousands of loci containing 

hematological traitassociated variants (i.e., variants associated with red cell, white cell, and 

platelet traits), and previous Mendelian randomization and phenome-wide association study 

analyses have highlighted the likely causal role of hematological trait-associated genetic 

variants in a variety of disorders, including autoimmune conditions and coronary heart 

disease (Astle et al., 2016; Chen et al., 2020; Vuckovic et al., 2020). Unfortunately, these 

individual single nucleotide polymorphism (SNP)-based GWAS make it difficult to identify 

regulatory variants with small effect sizes which in aggregate impact the same gene, even 

in very large sample sizes, and they identify regions of associated variants whose biological 

function is often not clear (Gamazon et al., 2015).

A transcriptome-wide association study (TWAS) is one gene-based method that 

systematically investigates the association between genetically predicted gene expression 

and phenotypes of interest, which can increase the power to identify novel trait-associated 

loci and may elucidate mechanisms of biological function (Gamazon et al., 2015; Gusev 

et al., 2018; Hu et al., 2019; Zhou et al., 2020). However, many challenges associated 

with TWAS, such as loci containing multiple associated genes, correlated gene expression, 

and bias with expression panels (Wainberg et al., 2019) can complicate TWAS results 

interpretation, particularly for well-studied traits with many identified genetic loci. Here 

we performed a large-scale TWAS of hematological measures using the PrediXcan method 

(Gamazon et al., 2015) to analyze data from 54,542 individuals of European ancestry 

from the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort (our 

discovery data set) (Banda et al., 2015; Kvale et al., 2015). Following the initial TWAS 

analysis, we explored several complimentary strategies (including conditional analysis, 

TWAS meta-analysis, TWAS using secondary gene expression reference panels, and 

fine-mapping tools) to improve TWAS results interpretation. Hematological phenotypes 

Tapia et al. Page 2

Genet Epidemiol. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are particularly good candidates for exploring TWAS analysis interpretation due to the 

availability of large RNA-sequencing datasets in a relevant tissue type, high heritability 

across traits, and a large number of known genetic associations, most with poorly understood 

mechanisms and target genes.

In addition to TWAS, we performed conditional analyses to evaluate if TWAS-identified 

genes represented novel statistical signals or were primarily driven by variants known from 

GWAS (Vuckovic et al., 2020); we replicated our significant set of gene-trait associations in 

a meta-analyzed sample of TWAS results containing 18,100 individuals from the Women’s 

Health Initiative (WHI), 9345 individuals from the Atherosclerosis Risk in Communities 

Study (ARIC), and 8455 individuals from Mount Sinai BioMe Biobank (BioMe), all of 

European ancestry (Table S1); and we compared the TWAS results between primary and 

secondary gene expression reference panels to determine if relevant tissues with smaller 

sample sizes support our primary TWAS findings.

We further employed several strategies to improve our understanding and interpretation 

of complex genomic regions containing multiple TWAS-identified genes. First, we used 

FOCUS (fine-mapping of causal gene sets (Mancuso et al., 2019)) to seek to identify a 

set of causal genes within genomic loci containing multiple significant TWAS gene-trait 

associations. FOCUS is a software used to fine-map TWAS statistics at genomic risk 

regions, while accounting for linkage dis-equilibrium (LD) among variants and predicted 

expression correlation among genes at those risk regions. Second, we developed a novel 

web-based tool (called LocusXcanR) for integrating and visualizing TWAS and GWAS 

results, as well as results from multiple expression reference datasets. Taking the results of 

each analysis into consideration, we highlight frequently overlooked challenges of TWAS 

interpretation, such as failure to consider the number of proximal genes which cannot 

be accurately imputed with a given reference panel, but which may still be influenced 

by variants identified in GWAS studies. Our results illustrate the complexity of TWAS 

interpretation and fine-mapping efforts and provide one resource for clarifying likely gene 

targets for hematological trait-related genetic loci. Consideration of additional annotation 

resources and TWAS limitations is necessary for confident identification of gene targets.

2 | METHODS

2.1 | Initial TWAS analysis

We applied the PrediXcan method (detailed in Online Supporting Information) to identify 

expression-trait associations using individual-level genotype and phenotype data from the 

GERA non-Hispanic White ethnic group. The GERA cohort includes over 100,000 adults 

who are members of the Kaiser Permanente Medical Care Plan, Northern California Region. 

Genotyping was completed as previously described (Kvale et al., 2015) and genotype data 

were phased without external reference and imputed to 1000 Genomes Phase 3 v5. Principal 

components analysis was used to characterize genetic structure in this European ancestry 

sample (Banda et al., 2015). Hematological measures were extracted from medical records, 

and the first visit was used for each participant in most cases. In total, 54,542 non-Hispanic 

White individuals with hematological measures were included in the analysis (see Online 

Supporting Information for further details).
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Variants were filtered for imputation quality (R2 > 0.3). Ten hematological measures were 

analyzed including platelet count (PLT), red blood cell counts (red blood cell count [RBC], 

hematocrit [HCT], hemoglobin [HGB], mean corpuscular volume [MCV], and red cell 

distribution width [RDW] indices), and white blood cell counts (white blood cell count 

[WBC], monocyte count [MONO], neutrophil count [NEUTRO], and lymphocyte count 

[LYMPH]) indices). Because the Depression Genes and Networks (DGN) cohort has the 

largest single whole blood RNA-seq data set (Battle et al., 2014; genes = 11,538, n = 922), 

we used DGN gene expression panel weights from PredictDB (see URLs) to predict gene 

expression levels in GERA.

2.2 | Conditional analysis of significant TWAS genes on known GWAS variants

To determine if TWAS results from GERA were driven by any previously reported genome-

wide significant variant, we performed conditional analysis. For each statistically significant 

TWAS gene-trait association, the effect of predicted gene expression was conditioned on 

a set of previously reported GWAS sentinel variants (Vuckovic et al., 2020) meeting the 

following criteria: (1) the sentinel variant fell within a 1 Mb region of the TWAS gene, (2) 

the trait with which the GWAS variant was associated matched the TWAS analytical trait 

or was within the same trait category as the analytical trait (PLTs, red blood cell indices 

[HCT, HGB, MCV, RBC, and RDW], white blood cell indices [WBC, NEUTRO, MONO, 

and LYMPH]), and (3) the GWAS variant met an imputation quality threshold of R2 > 0.3. 

We used a modified version of the cpgen R package (see Online Supporting Information) 

to perform the conditional analysis, accounting for a PLINK KING-robust kinship matrix 

(Manichaikul et al., 2010), which used only genotyped variants and excluded variants with 

minor allele frequency less than 5% and individuals missing more than 1% of SNPs.

2.3 | Replication of conditional TWAS results in meta-analyzed cohorts

To replicate the conditionally significant gene-trait associations in GERA, we compared 

each gene-trait association to a TWAS meta-analysis including ARIC, WHI, and BioMe 

cohorts (brief cohort summaries follow and are detailed in Online Supporting Information). 

All TWAS analyses were limited to self-reported white or European ancestry participants 

for easy comparability of the DGN European ancestry eQTL panel and with the 

largest single-ancestry blood cell trait GWAS (also conducted in European ancestry 

participants). We analyzed 10 hematological phenotypes (as noted above) across all cohorts; 

inverse normalized phenotypes were analyzed with appropriate covariate adjustments for 

demographic characteristics and principal components.

URLS
cpgen: https://github.com/cheuerde/cpgen
FOCUS: https://github.com/bogdanlab/focus
Human Protein Atlas: https://www.proteinatlas.org/
LocusXcanR R package for R Shiny application: https://github.com/amanda-tapia/LocusXcanR
LocusXcanR R Shiny application for GERA results: http://shiny.bios.unc.edu/gera-twas/
METAL: https://genome.sph.umich.edu/wiki/METAL_Documentation
Online Mendelian Inheritance in Man (OMIM): https://www.omim.org/
PLINK KING kinship matrix: https://www.cog-genomics.org/plink/2.0/distance#make_king
PredictDB: http://predictdb.org/
PrediXcan: https://github.com/hakyimlab/PrediXcan
R Shiny: https://shiny.rstudio.com/
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Each cohort anlayzed in this study included only participants of European ancestry with 

hematological measures. Atherosclerosis Risk in Communities Study (ARIC) included 

9345 participants (“The Atherosclerosis Risk in Communities [ARIC] Study: design and 

objectives,” 1989; Women’s Health Initiative (WHI) included 18,100 women (The Women’s 

Health Initiative Study Group, 1998); and BioMe (the Mount Sinai BioMe Biobank) 

included 8455 participants.

Replication of the conditionally significant GERA gene-trait associations was performed 

using meta-analyzed TWAS results from ARIC, WHI, and BioMe. As described above, 

PrediXcan was used to facilitate gene expression imputation and association in each 

cohort separately, and the meta-analysis association test was conducted using METAL 

(Willer et al., 2010). Seventeen gene-trait associations remained statistically significant 

after conditional analysis; thus, for this set of genes, we defined a Bonferroni-corrected 

statistically significant replication threshold at p-value < 2.94 × 10−3.

2.4 | Characterization of TWAS-identified fine-mapping loci

We next performed fine-mapping of TWAS-identified loci. Fine-mapping loci refers to 

fine-mapping analysis of trait-specific genomic locations that contain, and are centered at 

sentinel TWAS genes. That is, we took the set of trait-specific statistically significant GERA 

TWAS genes, selected the most significant gene in the set (the sentinel gene), and assigned it 

to a locus along with any other statistically significant TWAS genes within a 1 Mb window 

of the sentinel gene. We then selected the next most significant TWAS gene which had not 

yet been assigned to a locus and continued in this fashion until all statistically significant 

TWAS genes had been assigned to a locus.

We then defined locus categories based on whether the locus contained a single gene or 

multiple genes and whether the locus replicated in TWAS meta-analysis at either a lenient 

or strict threshold. For this fine-mapping analysis, the statistical significance of replicated 

genes was qualified based on two different thresholds – a stringent threshold Bonferroni-

corrected for all 239 statistically significant TWAS gene-trait associations at p-value < 2.09 

× 10−4, and a more lenient threshold at p-value < 0.05. Thus, locus categories were defined 

as follows: 1 = single gene locus, strict replication (p < 2.09E−04); 2 = single gene locus, 

replication (p < 0.05); 3 = single gene locus, no replication; 4 = multi gene locus, strict 

replication (p < 2.09E−04); 5 = multi gene locus, replication (p < 0.05); 6 = multi gene 

locus, no replication.

2.5 | TWAS fine-mapping strategies

To facilitate TWAS fine-mapping and allow for better interpretation of TWAS results, we 

employed several different strategies including the use of R Shiny, FOCUS, and secondary 

TWAS reference panels. Details of each method follow.

2.5.1 | R Shiny application—We used R’s convenient Shiny package (version 1.5.0, 

implemented in R 4.0.3) to produce a web application (LocusXcanR) that displays our 

GERA TWAS results. All GERA TWAS results were produced using PrediXcan as 

described above. We also included GERA GWAS results in the R Shiny app; analysis 
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was performed using Bolt LMM as implemented in rvtests (Zhan et al., 2016). GERA 

conditional analysis results were produced using cpgen. Known GWAS sentinel variants 

were obtained from (Vuckovic et al., 2020). Model weights and model variants were taken 

from our primary DGN reference panel from PredictDB or secondary reference panels from 

PredictDB (Genotype-Tissue Expression [GTEx] Project; The Genotype-Tissue Expression 

GTEx project, 2013; whole blood [GWB] and Epstein-Barr virus [EBV] transformed 

lymphocytes [GTL]; and Multi-Ethnic Study of Atherosclerosis [MESA] [Liu et al., 2013] 

monocytes [MSA]. These are considered secondary reference panels due to their smaller 

sample sizes compared with DGN). Supplementary Methods contains further details relevant 

to R Shiny data and visualizations.

2.5.2 | Fine-mapping Of CaUsal gene Sets (FOCUS)—We used the Fine-mapping 

Of CaUsal gene Sets (FOCUS) (Mancuso et al., 2019) software to fine-map TWAS statistics 

at genomic risk regions. As input, we used GERA GWAS summary data along with 

eQTL weights from PredictDB Depression Genes and Networks whole blood data, and the 

European LD reference panel from 1000 Genomes Phase 3. The software outputs a credible 

set of genes at each locus which can be used to explain observed genomic risk.

2.5.3 | TWAS secondary reference panels—We used a set of secondary gene 

expression reference panels relevant to whole blood to assist with fine-mapping by assessing 

consistency between our primary TWAS results from DGN and TWAS results from 

secondary reference panels. Thus, in addition to DGN weights, weights for gene expression 

using RNA sequencing data were obtained from the Genotype-Tissue Expression project 

(version 7) (Zhang & Lin, 2013) (whole blood, genes = 6208; and EBV transformed 

lymphocytes, genes = 3000), and Multi-Ethnic Study of Atherosclerosis (Europeans only, 

monocytes, genes = 4647) (Mogil et al., 2018).

2.6 | Ethics statement

We performed secondary data analysis on deidentified data only (exempt research). All 

individual studies included were approved by relevant local institutional review boards, and 

participants provided written informed consent.

3 | RESULTS

3.1 | Initial TWAS analysis

We applied the PrediXcan method to identify expression-trait associations using individual-

level genotype and phenotype data from the GERA non-Hispanic White ethnic group. 

Analyzed blood cell traits included PLT, RBC, HCT, HGB, MCV, RDW, WBC, MONO, 

NEUTRO, and LYMPH indices. We used DGN whole blood expression panel weights 

from PredictDB (a database of weights provided by PrediXcan; see URLs) to predict gene 

expression levels in GERA. Among the 11,538 genes in the DGN expression panel, 11,438 

genes were predicted in GERA and 51% of those genes achieved DGN model R2 > 0.05 

(see Table S2 for model R2 values for significant genes and Table S3 for genes included 

in DGN but not predicted in GERA). The number of GERA variants used for prediction 

was equal to the number of variants included in the prediction model (i.e., complete variant 
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matching) for 74% of the predicted genes; the remaining genes used fewer variants from 

GERA than were included in the prediction models. We tested each of the 11,438 predicted 

genes individually for association with each of the 10 hematological measures, resulting in 

a Bonferroni-corrected p-value threshold of p < 4.37 × 10−7. Through the subsequent study 

analyses, we will refer to these results as “marginal TWAS.”

Overall, we identified 295 statistically significant marginal TWAS associations (p < 4.37 × 

10−7), with each hematological measure having at least one significant association (Table 

S2). Among these, 47 marginal TWAS associations fell into the major histocompatibility 

complex (MHC) or HLA region (GRCh37; chr 6: 28,477,797–33,448,354) and were not 

considered in subsequent analyses (Table S4); disentangling a set of causal genes within 

the MHC region is exceptionally difficult due to the highly polymorphic genetic loci and 

complex LD in the region. Another nine significant associations included genes which 

contained only a single variant in the prediction model. These associations were also not 

included in subsequent analyses (Table S4). The remaining 239 significant associations 

included genes predicted from 2 to 112 variants, with a median of 21 variants used in 

predictive models. Among this set of 239 associations, we replicated 71 at p < 0.05 with 

same direction of effect for the blood cell trait in TWAS meta-analysis.

3.2 | Conditional analysis of significant TWAS genes on known GWAS variants

To determine whether any of the 239 remaining significant gene-trait associations were 

novel signals, not driven by any previously reported genome-wide significant variant, we 

performed conditional analysis. Since we performed TWAS with individual-level data, we 

conditioned the predicted gene expression value of each statistically significant marginal 

TWAS gene on the set of nearby (within ± 1 Mb of the gene) sentinel GWAS variants 

within the hematological category (RBC, WBC, and PLT) from the largest current European 

ancestry focused GWAS for hematological measures (Vuckovic et al., 2020). We found that 

222 (93%) of all marginal TWAS significant associations were attenuated by known GWAS 

variants and became nonsignificant (p > 4.37 × 10−7) upon conditional analysis. Another 

15 of the associations remained significant after conditional analysis, and the remaining two 

associations did not have GWAS-reported variants within a 1 Mb window of the gene (Table 

S5).

3.3 | Replication of conditional TWAS results in meta-analyzed cohorts

For confirmation of robust and/or novel signal, we attempted to replicate these 17 

conditionally significant findings in a TWAS meta-analysis which included up to 32,036 

European ancestry individuals from three cohorts: ARIC, WHI, and BioMe. Two of the 

17 conditionally significant gene-trait associations (HIST1H2BO-HGB and HIST1H2BO-

RDW) included in the replication set met the stringent significance threshold (p < 2.94 × 

10−3). However, HIST1H2BO is situated within 1 Mb of the MHC region already excluded 

above (GRCh37; chr 6: 28,477,797–33,448,354), with this signal potentially reflecting long-

range LD with the MHC region, and has poor model R2 = 0.016. Additionally, OR2B6 
associated with HGB, MCV, and RWD; ZNF192 associated with HGB, MCV, and RDW; 

and ZSCAN12 associated with MCV meet a more lenient significance threshold (p < 

0.05). Yet, OR2B6, ZNF192, and ZSCAN12 are also located on chromosome 6 within 

Tapia et al. Page 7

Genet Epidemiol. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



approximately 500 kb of the MHC region and all have poor model R2 < 0.015. The 

remaining seven gene-trait associations did not meet any replication criteria.

3.4 | Characterization of TWAS-Identified fine-mapping loci

Based on the conditional analysis, previously reported GWAS sentinel variants were at least 

partly responsible for and attenuated 93% of the significant marginal TWAS signals. Thus, 

we next examined if TWAS aided fine-mapping and identification of regulatory mechanisms 

at these loci. To better contextualize if fine-mapping in GERA was consistent in additional 

cohorts, we also examined replication of TWAS significant genes in these known loci. The 

239 marginal TWAS associations resided in 120 trait-specific, physically nonoverlapping cis 
loci (i.e., the cis region of each locus is ± 1 Mb of the locus’s TWAS sentinel gene start 

and end positions). Over half (57%) of these loci contained only a single significant gene, 

while another 19% contained two significant genes. The remaining 24% of nonoverlapping 

loci contained three or more significant genes, with up to 11 significant genes at a single 

locus. These 120 loci contained 87 unique index genes (defined as the most significant 

TWAS gene within the locus). Most loci did not contain a TWAS gene that replicated in 

meta-analysis (67% total; i.e., 47% of all loci were single-gene loci that did not replicate 

plus 20% of all loci were multi-gene loci that did not contain any gene that replicated, 

even at a marginal level). Ten percent of all loci were single-gene loci that met a marginal 

replication threshold (p < 0.05), and 20% of all loci were multi-gene loci that met this 

marginal threshold for at least one gene at the locus. The remaining four loci (3%) contained 

multiple TWAS genes with at least one gene meeting a strict replication threshold (p < 

2.09 × 10−4) (Table S2). These included the following index gene-phenotype associations: 

TRIM68-MCV, USP49-MCV, PSMD3-NEUTRO, and PSMD3-WBC.

3.5 | TWAS fine-mapping strategies

To facilitate TWAS fine-mapping and allow for better interpretation of whether a given 

TWAS-identified gene was truly likely to associate with hematological variation, or whether 

it was likely to be a spurious association due to correlation of expression with nearby genes 

or other factors, we created an R Shiny application (LocusXcanR) to interactively visualize 

TWAS sentinel genes in context, one locus at a time. LocusXcanR allowed us to integrate 

multiple sources of information from our primary TWAS analysis, including gene expression 

prediction models, TWAS meta-analysis, TWAS using secondary reference panels (whole 

blood and EBV transformed lymphocytes from GTEx, and monocytes from MESA), GWAS 

analysis of all hematological measures, and correlation among genetic variants (i.e., LD) 

and among predicted gene expression levels. We highlight several loci to demonstrate the 

utility of the application, showcase some of the challenges that arise when TWAS identifies 

multiple significant genes at a single locus, and illustrate some of the complexities that are 

inherent in TWAS fine-mapping. In the sections that follow, we feature TWAS genes that 

fall into loci with a low, intermediate, or high level of complexity. All the figures in the 

following sections originate from LocusXcanR (http://shiny.bios.unc.edu/gera-twas/), which 

could be readily adapted to future TWAS analyses for other complex traits.

3.5.1 | HK1locus—The HK1 gene is known to be associated with several red blood cell 

traits including HGB, MCV, HCT, mean corpuscular hemoglobin, RBC, and RDW in GWAS 
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analyses (Vuckovic et al., 2020) and is a Mendelian gene for hemolytic anemia [MIM 

142600]. Our TWAS results confirmed previously reported HK1 GWAS associations with 

HCT and MCV (assigned based on nearest gene for lead GWAS variants). The marginal 

TWAS tests for association between HK1 and HCT (p = 3.84 × 10−8) and MCV (p = 

1.05 × 10−7) were statistically significant (Figure 1); associations were all but eliminated 

by conditional analysis on known GWAS sentinel variants (HCT p = 2.58 × 10−1; MCV p 

= 4.36 × 10−2); HK1 with HCT replicated in meta-analysis (p = 4.63 × 10−2); and HK1 
was the most significant TWAS gene among only two other genes (HKDC1 and TSPAN15) 

implicated by GWAS at these loci, with the other two genes showing no TWAS signal. Thus, 

results point simply to HK1 as the most likely causal gene at this locus.

3.5.2 | CREB5locus—The marginal TWAS tests for association between CREB5 and 

NEUTRO (p = 1.41 × 10−12) and WBC (p = 4.01 × 10−10) were the only TWAS significant 

associations at this locus (Figure 2a), and associations were essentially eliminated by 

conditional analysis on known GWAS sentinel variants (NEUTRO p = 9.04 × 10−1; WBC 

p = 3.97 × 10−1). However, at this locus, both CREB5 and JAZF1 (TWAS NEUTRO p = 

5.26 × 10−3, WBC p = 2.42 × 10−3) had previously been annotated as being the nearest 

and/or assigned gene for one or more GWAS sentinel variants. Predicted gene expression for 

CREB5 and JAZF1 was not highly correlated (r2 between 0.0–0.2), and the genes appeared 

to share only a single, nonsignificant predictive model variant (Figure 2b). CREB5 and 

JAZF1 both replicated at a lenient significance threshold for NEUTRO (p = 1.25 × 10−2, p 
= 8.98 × 10−3, respectively), and CREB5 also replicated at a lenient threshold for WBC (p 
= 2.61 × 10−2) but JAZF1-WBC did not replicate (p = 0.11). Both genes appeared in the 

GTEx whole blood (GWB) and MESA monocyte (MSA) secondary reference panels, but 

neither gene met the significance threshold for either reference panel. Importantly, Human 

Protein Atlas (Uhlén et al., 2015) reported that CREB5 was enhanced in blood and brain 

tissues and was specifically cell type enriched for NEUTRO (Human Protein Atlas., 2020b). 

JAZF1 on the other hand had low tissue specificity (Human Protein Atlas., 2020d). Together 

the TWAS, GWAS, and Human Protein Atlas results point to CREB5 as the most likely, and 

most biologically plausible, gene over JAZF1 at this locus.

3.5.3 | CD164locus—The CD164 gene is known to play a role in hematopoiesis (Watt 

et al., 1998; Zannettino et al., 1998) and has been associated with several blood cell indices 

in GWAS analyses (Vuckovic et al., 2020). Our TWAS results prioritized CD164 over other 

genes at the locus as being significantly associated with MCV (p = 2.54 × 10−12) and 

categorized it into a multi-gene locus along with MICAL1 (p = 4.20 × 10−7) (Figure 3a). 

Conditional analysis on sentinel GWAS variants all but eliminated the TWAS signal for both 

CD164 (p = 8.61 × 10−2) and MICAL1 (p = 1.26 × 10−1). Interestingly, Figure 3b shows 

that CD164 and MICAL1 were not highly correlated in their predicted gene expression 

(r2: 0.2–0.4) and did not share any predictive model variants. We also note that both genes 

replicated in meta-analysis at a lenient threshold (CD164 p = 1.56 × 10−3; MICAL1 p = 

7.06 × 10−3; Figure 3c). Additionally, while MICAL1 is not available in secondary reference 

panels, CD164 met the TWAS significance threshold for its association with MCV in GTEx 

whole blood and MESA monocytes (GTEx p = 2.61 × 10−9 and MESA p = 4.09 × 10−8). 

Thus, the evidence at this locus suggests that expression of CD164 and MICAL1 are both 
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reasonable candidates for being regulated by red cell-associated genetic variants although we 

note that Human Protein Atlas reports low tissue specificity for MICAL1 (Human Protein 

Atlas., 2020f).

3.5.4 | PSMD3locus—The PSMD3 locus contained a much higher level of complexity 

because it fell into a region containing many marginal TWAS genes, had a complex gene-

gene correlation and LD pattern, and included a combination of genes previously reported 

by GWAS as well as genes that had not been reported by GWAS. Thus, TWAS results did 

not clearly pinpoint the most likely causal gene. While PSMD3 appeared as the index TWAS 

gene associated with WBC (Figure 4a), eight other genes were also TWAS significant at 

this locus. Five of those genes (IKZF3, GSDMB, ORMDL3, MED24, and CCR7) replicated 

at a lenient significance threshold (p < 0.05), and PSMD3 replicated at a more stringent 

threshold (p < 2.09 × 10−4) (Figure 4c). We saw a complex network of shared model variants 

and correlation/LD patterns in Figure 4b, notably with MED24 and CCR7 (the next most 

significant genes at this locus) being only slightly correlated (r2 between 0.2 and 0.4) with 

PSMD3. The FOCUS fine-mapping results (Figure 4d) aligned to the TWAS results and 

indicated PSMD3 and MED24 as the most likely causal genes at the locus, each having 

posterior inclusion probabilities (PIPs) equal to 1.0. PIPs for all other genes at this locus, 

including CCR7, were less than 0.021 (Figure 4d).

4 | DISCUSSION

Our follow-up fine-mapping, replication, and conditional analyses for a large-scale TWAS 

of 10 hematological measures demonstrates that results from marginal TWAS analyses alone 

cannot illuminate causal genes at loci for these traits.

4.1 | TWAS discovery analyses

While 17 of our 239 marginal gene-trait associations did remain significant after conditional 

analysis or contained no known GWAS sentinel variants within a 1 Mb region of the 

gene, we found no substantive evidence from meta-analysis nor secondary reference panels 

to support these associations as novel discoveries for hematological traits. Conditional 

analyses suggested that nearly all our TWAS findings were driven at least in part by 

GWAS sentinel variants from the largest recent European-focused GWAS analysis for 

hematological measures (Vuckovic et al., 2020). This is perhaps not surprising given 

the greater statistical power for this GWAS analysis, which was conducted in 563,085 

participants (vs. 54,542 participants in our analysis). However, for 61 gene-trait associations 

(26%), some residual signal (p < 0.05) remained after conditioning on GWAS. For example, 

although JAK2 is a well-known blood cell-associated signal from GWAS (Vuckovic et 

al., 2020) and the Mendelian disease literature for platelet disorders [MIM 147796], its 

association with platelet count remained statistically significant after conditional analysis. 

Thus, our TWAS results also suggested that there are likely additional regulatory variants at 

the JAK2 locus which are not tagged by current GWAS single variants. Similarly, for other 

gene-trait associations retaining some residual significance after conditional analysis, our 

results suggest that additional small-effect regulatory variants remain to be discovered for 
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these genes which associate with blood cell indices, illustrating the power advantages from 

aggregate tests like TWAS.

4.2 | TWAS Fine-Mapping

For TWAS fine-mapping, we grouped the 239 TWAS-wide significant gene-trait 

associations into 120 loci. To effectively interpret these results, we introduced LocusXcanR, 

an R Shiny application that integrates TWAS and GWAS information into locus-specific, 

interactive visualizations which we use to assist with TWAS fine-mapping and TWAS results 

interpretation. We showed the utility of LocusXcanR by highlighting the varying levels of 

complexity at several TWAS loci and demonstrating where TWAS aligns with or provides 

advantages over GWAS. For example, the HK1-MCV locus showed a very simple genomic 

locus in which we found that TWAS confirmed what we already knew from GWAS. Coding 

variants in HK1 are known to be associated with hemolytic anemia due to hexokinase 

deficiency [MIM 142600], providing a clear link to red blood cell-related traits.

The CREB5 locus further demonstrated one of the advantages of TWAS over GWAS in 

that the TWAS results provided clarity regarding the likely causal gene at the locus. At this 

locus, CREB5 and JAZF1 had both been implicated by GWAS, likely assigned based on 

their physical proximity to the GWAS sentinel variant. However, CREB5 showed a stronger 

TWAS signal, replicated in the much smaller meta-analysis sample, and Human Protein 

Atlas provided clear evidence of enrichment in blood (specifically neutrophils) (Human 

Protein Atlas., 2020b, 2020d; Uhlén et al., 2015). These results in aggregate supported 

CREB5 as the likely causal gene at this locus, even though CREB5 may not be the closest 

gene in proximity to all sentinel GWAS variants within the region.

4.3 | TWAS challenges

We further highlight the challenges, particularly at multi-gene loci, which should be 

considered when interpreting TWAS findings, including total and/or predicted expression 

correlation, shared predictive model variants, the relevance of reference tissue panel, 

biological plausibility, and so forth and demonstrated the importance of interpreting TWAS 

results in context. Although TWAS is useful for prioritizing candidate causal genes, 

researchers should guard against the hasty conclusion that the most significant gene is the 

only causal gene or even the most likely causal gene. For example, the conclusion at the 

CD164 locus is not evident from TWAS results. While TWAS points to CD164 as the causal 

gene, as does existing knowledge of the gene’s biological function, taking the full context of 

this locus into consideration, it is not out of the realm of possibilities that both CD164 and 

MICAL1 are causal at this locus.

Furthermore, at the PSMD3 locus we see potentially misleading TWAS results when 

marginal TWAS statistics are interpreted alone. The PSMD3-WBC association appears as 

the sentinel gene at this locus. However, several pieces of evidence support other genes, 

including CCR7, as the most likely biologically plausible causal gene at the locus. First, 

PSMD3 and MED24 have no immune cell specificity (Human Protein Atlas., 2020e, 2020g; 

Uhlén et al., 2015). Second, CCR7 was also TWAS significant, it replicated at a lenient 

threshold in meta-analysis, and is enriched for expression in blood and lymphoid tissues, 
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especially T-cells (Human Protein Atlas., 2020a). However, CCR7 was not highly correlated 

with nor does it appear to share model variants with lead gene PSMD3, and the FOCUS 

results show a posterior inclusion probability of only 0.001. Finally, CCR7 is known to be 

involved in the migration of neutrophils to lymph nodes (Beauvillain et al., 2011). While 

it is certainly possible at multi-gene TWAS loci for multiple genes to be contributing to 

trait regulation, it is also possible for spurious or nonrelevant genes to be identified based 

on shared eQTLs across tissues that are not relevant to a given trait or correlation of gene 

expression.

Moreover, proximal genes which cannot be accurately imputed with a given reference panel, 

but which may still be influenced by variants identified by GWAS studies, must also be 

considered. For example, the gene colony-stimulating factor 3 (CSF3), which has a known 

key role in the production, differentiation, and function of granulocytes [MIM 138970], 

is also situated within the PSMD3 locus. However, this gene has very low constitutive 

expression in whole blood (Human Protein Atlas., 2020c), and it is not depicted in Figure 

4 (or LocusXcanR) because a predictive model could not be fit for this gene in the DGN 

reference panel (likely due to very low expression); therefore, CFS3 cannot be detected as 

a possible target gene at this locus (Supplementary Table 7 contains CSF3, along with other 

genes that have been assigned by one or more GWAS variants but are not included in DGN). 

This genomic region is extremely complex and highly pleiotropic, and any interpretation of 

this locus using TWAS results alone is likely to be overly simplistic. This complex locus 

shows the importance of considering statistical evidence from TWAS, GWAS, and FOCUS 

fine-mapping as well as trait biology in the interpretation of TWAS findings.

5 | LIMITATIONS

While we have used PrediXcan and pre-calculated PredictDB weights for our analysis, we 

note a limitation in doing so. The variants included in PredictDB were not always available 

in our analytical cohort (generally due to poor imputation quality), so some predictive 

models did not use all PredictDB weights. We note that 70% of our TWAS significant 

genes were predicted with complete variant matching (i.e. used all model variants) and 85% 

of TWAS significant genes used at least 90% of model variants; we have included this 

information in Table S2 for transparency, and these details should be taken into account 

when interpreting TWAS results.

The cohorts that we have included in our TWAS meta-analysis also pose some limitations 

on our ability to replicate GERA TWAS sentinel genes. The smaller sample sizes of the 

meta-analyzed cohorts are likely the primary reason why GERA TWAS sentinel genes fail to 

replicate. Additionally, it may be the case that major contributing variants exhibit differential 

allele frequencies across cohorts; although this is less likely than in multi-ethnic analyses 

because all cohorts are of European ancestry, it could still contribute to poorer power for 

replication. Furthermore, differences in imputation quality across cohorts could also explain 

the failure to replicate TWAS sentinel genes in meta-analysis.

Although FOCUS, in some cases, helps to identify a set of the most likely causal genes at 

a locus, we have shown that it does not always provide enough evidence above and beyond 
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TWAS to fully identify a putative causal gene set at a complex locus. Additionally, FOCUS 

performs a summary statistics-based TWAS method and then proceeds to fine-mapping the 

TWAS results from this method. However, we performed TWAS using PrediXcan, and thus, 

the fine-mapping results from FOCUS may not exactly match our PrediXcan TWAS results. 

In future, the FOCUS software could be extended to take pre-calculated TWAS results as 

input (using the TWAS method of the researcher’s choosing), bypassing the need to use 

GWAS summary statistics or to recompute predicted gene expression.

Our analysis is primarily conducted using whole blood TWAS weights only, with 

supplemental TWAS results available in our app for a few other blood-related tissues (whole 

blood and EBV transformed lymphocytes from GTEx and monocytes from MESA); we 

felt this was the most prudent approach to limit false positives and reduce needed multiple 

testing correction, versus an approach using TWAS weights in, for example, all GTEx 

tissues. However, this choice could be inappropriate if the main relevant tissue at some 

blood cell-related loci is not in fact whole blood, and it limits our ability to use FOCUS 

fine-mapping to overcome the choice of tissue for TWAS training. Joint/multiple tissue 

TWAS approaches such as UTMOST (Hu et al., 2019) and MR-JTI (Zhou et al., 2020) could 

be employed in the future to assess the relevance of other tissues at blood-cell-related loci.

6 | SUMMARY

In summary, we found that TWAS results enrich our understanding of GWAS, can help to 

explain trait variation, and are superior to merely selecting the nearest gene. We have shown 

that the gene, or genes, implicated in TWAS, in some cases, clearly overlap with what is 

known in GWAS and from prior knowledge of important genes in hematopoietic processes. 

However, while we showed that TWAS may help in some cases to pinpoint likely causal 

genes, we emphasize the need for investigators not to interpret TWAS results alone and out 

of context. We introduced an R Shiny application and demonstrated its utility in assisting 

researchers in this endeavor by leveraging the TWAS and GWAS information available from 

the analytical cohort and interactively visualizing results one locus at a time. The results of 

this analysis are accessible online (http://shiny.bios.unc.edu/gera-twas/), and we also made 

the layout of this application available for others to import and analyze their own TWAS 

results in the LocusXcanR R package, available on GitHub (https://github.com/amanda-

tapia/LocusXcanR). Together with a clearer understanding of the relationship between 

TWAS and GWAS results, biological insight, and subject matter expertise, TWAS results 

can help us formulate mechanistic hypotheses for functional experimental validation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
HK1locus (locus 60; chr 10: 70,029,740–72,161,638; trait = MCV) from R Shiny. TWAS 

results (top panel) and GWAS results (bottom panel). Marginal and conditional results 

for HK1 are presented in the top panel. Black-colored genes and variants denote those 

previously reported by UK Biobank and BCX GWAS (Vuckovic et al., 2020), blue variants 

denote those not previously reported as UK Biobank and BCX GWAS sentinel variants. 

GWAS, genome-wide association studies; TWAS, transcriptome-wide association study
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FIGURE 2. 
CREB5locus (locus 40; chr 7: 27,338,940–29,865,511; trait = NEUTRO) from R Shiny. 

TWAS results (top panels) and GWAS results (bottom panels). Marginal TWAS result 

displayed in (a), with Black-colored genes and variants denoting those previously reported 

by GWAS, blue variants denote those not previously reported as GWAS sentinel variants. (b) 

Mirrored-Manhattan locus-zoom plot displaying genes connected to their predictive model 

variants. Color scale, increasing from light gray to red, indicates the predicted expression 

correlation (r2) between the index TWAS gene and all other genes in the locus and the 

LD between the index variant and all other variants in the locus. GWAS, genome-wide 

association studies; TWAS, transcriptome-wide association study
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FIGURE 3. 
CD164locus (locus 36; chr 6: 108,687,717–110,703,762; trait = MCV) from R Shiny. 

(a) Marginal TWAS results in the top panel and GWAS results in the bottom panel. 

Black-colored genes and variants denote those previously implicated by GWAS, and blue-

colored genes and variants denote those not previously implicated by GWAS. (b) Mirrored-

Manhattan locus-zoom plot displaying genes connected to their predictive model variants. 

TWAS results in the top panel, GWAS results in the bottom panel. Color scale, increasing 

from light gray to red, indicates the predicted expression correlation (r2) between the index 

TWAS gene and all other genes in the locus and the LD between the index variant and all 

other variants in the locus. (c) Comparison of marginal TWAS (left panel) and TWAS meta-

analysis (right panel). Black-colored genes denote those previously implicated by GWAS 

sentinel variants, and blue genes denote those not previously implicated by GWAS sentinel 

variants. GWAS, genome-wide association studies; TWAS, transcriptome-wide association 

study
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FIGURE 4. 
PSMD3locus (locus 101; chr 17: 37,137,050–39,154,213; trait = white blood cell count). (a) 

displays marginal TWAS results (top panel) and GWAS results (bottom panel), with genes 

and variants colored in blue and black to denote those not reported by GWAS and those 

reported by GWAS, respectively. (b) is a mirrored-Manhattan locus-zoom plot displaying 

genes connected to their predictive model variants with TWAS results (top panel) and 

GWAS results (bottom panel). Color scale, increasing from light gray to red, indicates the 

predicted expression correlation (r2) between the index TWAS gene and all other genes 

in the locus and the LD between the index variant and all other variants in the locus. (c) 

presents marginal TWAS results (left panel) and meta-analysis TWAS results (right panel), 

with genes colored in blue and black to denote those not reported by GWAS and those 

reported by GWAS, respectively. (d) displays the FOCUS posterior inclusion probabilities 

(PIPs) for each gene at this locus. FOCUS, Fine-mapping Of CaUsal gene Sets; GWAS, 

genome-wide association studies; TWAS, transcriptome-wide association study
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