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Abstract
The spatial analysis of data observed at different spatial observation scales leads to the change of
support problem (COSP). A solution to the COSP widely used in linear spatial statistics consists
in explicitly modeling the spatial autocorrelation of the variable observed at different spatial
scales. We present a novel approach that takes advantage of the non-linear Bayesian Maximum
Entropy (BME) extension of linear spatial statistics to address the COSP directly without relying
on the classical linear approach. Our procedure consists in modeling data observed over large
areas as soft data for the process at the local scale. We demonstrate the application of our approach
to obtain spatially detailed maps of childhood asthma prevalence across North Carolina (NC).
Because of the high prevalence of childhood asthma in NC, the small number problem is not an
issue, so we can focus our attention solely to the COSP of integrating prevalence data observed at
the county-level together with data observed at a targeted local scale equivalent to the scale of
school-districts. Our spatially detailed maps can be used for different applications ranging from
exploratory and hypothesis generating analyses to targeting intervention and exposure mitigation
efforts.
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Introduction
Asthma, one of the most common chronic childhood diseases (Gergen et al., 1988), is an
inflammatory disease characterized by symptoms that include wheezing, coughing,
breathlessness, and chest tightness. Approximately 8.9% of all children (6.5 million) in the
United States suffer from current asthma symptoms (NCHS, 2006), reflecting its ubiquity in
affluent societies (Strachan, 1999). Estimated total costs (direct and indirect) of treating
asthma range up to $12.6 billion USD per year (Weiss et al. 2004). The causes of this costly
chronic disease are still unknown; however air pollution exposures (such as PM10, O3, SO2,
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and NO2 etc.) are suspects and have been extensively investigated (U.S. EPA, 1996, 2005;
Gehring et al., 2002; Mortimer et al., 2002; Lewis et al., 2005).

While air pollutants have clearly been associated with exacerbations of asthma (including
increased symptoms, emergency room visits, hospitalizations, and medication use), the
association of air pollutants and increased asthma incidence is less clear. McConnell et al.
(2002) have shown an association between asthma incidence and children exercising in high
ozone areas, though conclusions were limited due to small sample sizes. Investigating the
association between traffic related air pollutants and incidence of children’s asthmatic
symptoms, Zmirou et al. (2004) suggest that air pollution may be a potential contributor to
increasing asthma prevalence in children, while other relevant environmental risk factors,
such as exposure to traffic-related air pollution near the home, have recently been
investigated (Delfino et al. 2009).

Asthma maps at fine scale spatial resolution provide invaluable information that allows
epidemiologists to better understand risk factors that may cause asthma, such as air
pollutants, and help identify susceptible subpopulations, such as the very young, the very
old, individuals with particular pre-existing health conditions and/or with specific smoking
behavior and socioeconomic characteristics, etc. Additionally, more spatially detailed
asthma maps are helpful for public health intervention by not only identifying areas of high
prevalence and targeting health clinical facilities for susceptible populations, but also in
identifying areas in which to focus efforts on abating suspected causal agents.

Geostatistics provide epidemiologists with an essential spatial estimation tool that takes into
account the important spatial variability of asthma prevalence. The maps produced provide a
visualization of disease prevalence that is extremely useful for health research. However,
few studies on mapping asthma have been found, and existing works are often limited to an
exploratory visualization of existing asthma prevalence data obtained at a single observation
scale (e.g., Hernandez et al., 2000; Oyana et al., 2004).

Numerous data sources provide asthma prevalence data that can be used in mapping
analysis. The asthma data can be collected in a number of ways, including random telephone
surveys, questionnaire-based surveys, hospital discharge records, Medicaid claims, etc.
However what is notable is the spatial aggregation scale, or observation scale, at which the
data is reported, which may vary considerably from one data source to another.

One important reason for the difference in observation scale between data sources is that
some data sources may have confidentiality requirements that only allow them to release
data aggregated over large spatial scale (e.g. county level) to protect the privacy of the
individuals who provided their health information. For example the childhood asthma
Medicaid claims data analyzed by Buescher et al. (1999) are aggregated at the county level,
which is a large spatial observation scale providing strong protection of individual privacy
and preventing deductive disclosure. Claims data are cost effective as they are derived from
a health system that is already in place. However, it is not clear how well Medicaid claims
data estimate asthma prevalence at a fine spatial scale. A second source of data that we used
for this study is cross-sectional asthma prevalence data obtained from a school-based asthma
surveillance project, the North Carolina School Asthma Survey, or NCSAS (Yeatts et al.
2003). This project generated high quality asthma prevalence data at a fine spatial
resolution. The NCSAS database provides good quality asthma prevalence estimates for the
majority of middle schools in North Carolina, which corresponds to an observation scale
that is much finer than that of the Medicaid data reported at the county level.

Our goal for this research is to perform an accurate mapping analysis of asthma symptom
prevalence that rigorously accounts for the high natural variability of asthma prevalence
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across space, while efficiently integrating data collected at different observation scales.
Integrating large scale data to obtain good estimate of asthma prevalence at a fine spatial
resolution would lead to some substantial cost savings in North Carolina because it will
enable the state health department to efficiently use data from existing systems such as
Medicaid, which would reduce the need to conduct additional costly active asthma
surveillance.

Gotway and Young (2002) provide an excellent review of statistical methods that address
the issue of combining data obtained at different observation scales. A conceptual approach
to this problem is to model observations at different observation scales as the spatial average
of some fine scale process averaged over the observation areas (i.e. the support of the
observation), which is referred to as the change of support problem (COSP). Many of the
methods addressing the COSP rely on modeling the spatial autocorrelation of the fine scale
process observed at different spatial scales of interest. The procedure consists in averaging
the fine scale process covariance to obtain the point-to-area or area-to-area covariance for
areas (or observation scales) of any size (Journel and Huijbregts, 1978; Gotway and Young,
2002; Goovaerts, 2006; Banerjee et al, 2004). A classical solution for the prediction problem
then consists in using the point-to-area and area-to-area covariances in a linear statistical
estimator (e.g. block kriging). However, the implicit implication of this approach is that we
are considering estimators that are a linear combination of the process observed at different
scales. On the other hand, the powerful Bayesian Maximum Entropy (BME) method of
modern spatiotemporal geostatistics (Christakos, 2000) provides a non-linear non-Gaussian
extension to classical linear Geostatistics that is not limited by this linear constraint. The
goal of this paper is to present a novel approach to deal with the COSP using BME, which
provides a framework for the non-linear integration of data obtained at different observation
scales. In the following sections we present this framework, and we apply it to the problem
of mapping childhood asthma across North Carolina using prevalence data aggregated over
large areas (counties) together with data obtained at the fine scale of interest (school
districts).

One issue that we face when mapping rare diseases is that of the small number problem,
which leads to noisy spatial distribution of observed rates that may require spatial
smoothing. Let yi be the number of positive cases observed for some area i out of ni persons
at risk. The spatial variation of the rate xi=yi/ni tends to be dominated for rare diseases by
very high or low values observed where the denominator ni is small, because a small change
in the numerator leads to a large change of the rate, resulting in the noisy spatial distribution
mentioned above. The small number problem has been widely discussed and many
approaches can deal with it. A classical approach to address this problem is to assume that
the disease count Yi is Poisson distributed with a mean proportional to some measure of
disease risk Ri, i.e Yi•~Poisson(EiRi), where Ei may be an expected rate or the population at
risk The approach consists then in obtaining estimates of the disease risk Ri, using for
example a Bayesian framework (Besag et al., 1991, Lawson et al, 2003; Zhu et al., 2000;
Kelsall and Wakefield, 2002; Gotway and Young, 2002; Banerjee et al, 2004; Diggle and
Ribeiro, 2007), while the more recent Poison kriging method (Goovaerts, 2006; Goovaerts
and Gebreab, 2008) might provide an attractive and computationally efficient alternative.
These approaches basically consist in obtaining maps of disease risk that smooth out the
noise arising from the small number problem for rare diseases. For example Goovaerts and
Gebreab (2008) used Poisson kriging to obtain smooth maps of the risk for cervix cancer
amongst white women in Indiana, where the population weighted mortality rate is only 2.85
per 100,000 person-years. By comparison, the population weighted prevalence of wheezing
symptoms amongst North Carolina school children is 26,000 per 100,000 children, which is
drastically greater than that of a rare disease. As a result, the small number problem is not an
issue that we have addressed in this work. By choosing to model the observed rate X rather
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than then the disease risk R we are able to solely focus our attention to the COSP. This
allows us to focus on the novel BME solution to the COSP presented in this work, which
can then be extended in future works to methods dealing with the small number problem.

Theory
Notation

Let ℝ denote the set of real numbers, s∈ℝ2 be a point in space, and X(s) be a spatial random
field (SRF) representing the spatial distribution of disease prevalence. Let Xmap=[X1,X2,
…,Xn] be a vector of random variables representing the SRF at points smap=[s1,s2,…,sn], i.e.
X1=X(s1),…,Xn=X(sn). In this article the upper case Xmap represent random variables and its
lower case equivalent xmap=[x1,x2,…,xn] an observed sample (realization). The mean trend
and covariance functions of the SRF X(s) are denoted as mX(s)=E[X(s)] and cX(s,s
′)=cov(X(s),X(s′))=E[(X(s)−mX(s))(X(s′) −mX(s′))], respectively, where E[.] is the stochastic
expectation operator. We let mmap and cmap be the corresponding mean vector and
covariance matrix at smap. The probability density function (PDF) of Xmap will be denoted
as f(xmap), while φ(x;m,c) will denote the multivariate Gaussian PDF with mean m and
covariance matrix c.

In the estimation problem, the mapping points will be divided in three sets of points;
smap=[sk,shard,ssoft], where sk is the estimation point, and shard and ssoft are the points where
hard and soft data are available, respectively. Hard data are defined as exact measured
values xhard such that Prob[Xhard=xhard]=1, while soft data correspond to observed values
with an associated measurement error that can be characterized by the PDF  defined as

The BME framework
The BME method uses epistemic principles (Christakos, 2000) to process the general
knowledge ℊ characterizing trends and dependencies in the SRF, and the site-specific
knowledge  consisting in the hard and soft data available. When ℊ={mmap,cmap}, the BME
posterior PDF characterizing the prevalence Xk at estimation point sk is

(1)

where A= ∫ dxk ∫ dxsoft φ(xmap;mmap,cmap)fs(xsoft) is a normalization coefficient. The
subscript  =ℊ∪  on the posterior PDF emphasizes the BME synthesis of the general
knowledge ℊ and the site-specific knowledge . The posterior PDF provides an appropriate
estimated prevalence (expected value of the posterior PDF) and estimation uncertainty
(variance of the posterior PDF).

When one considers only hard data then xmap reduces to [xk,xhard], and the BME posterior
PDF reduces to fK(xk)=φ(xmap;mmap,cmap)/φ(xhard;mhard,chard), which is the conditional
normal PDF fK(xk)= φ(xk;mk|hard,ck|hard) with the following conditional mean and variance

(2)
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(3)

where ck,hard=cov(Xk,Xhard) and chard,hard=cov(Xhard,Xhard). This estimator, obtained using
epistemic principle as the linear limiting case of the BME estimator, corresponds to the
classical simple, ordinary and universal kriging estimators depending on the choice of the
mean trend model.

The change of support problem
Let Z(s) be defined as the average of X(s) over a 2-D spatial domain  centered at s

(4)

We define the spatial scale R of Z(s) as the radius of a circle of same surface area as , i.e. R
=(|| ||/π)0.5. We will refer to X(s) as the prevalence observed at the local scale (i.e. R=0),
while Z(s) will refer to prevalence observed at a spatial scale R>0. We are interested in the
problem of estimating Xk given values observed at different spatial scales.

Area-to-point kriging provides a solution to this problem. The area-to-point kriging
estimator is given by Eq. (2) and (3) where xhard, ck,hard and chard,hard are replaced with
zhard, cov(Xk,Zhard) and cov(Zhard,Zhard), respectively. While area-to-point kriging has been
used in other fields such as remote sensing, its use in disease prevalence estimation is only
recent (Goovaerts, 2006) and is still in development, and it is therefore useful to propose
alternative approaches that can complement it.

The proposed estimator
Let’s define the random variable

(5)

where Z(s) defined in Eq. (4) may have an observation domain  that varies across space.
As seen in the appendix, if X(s) is a homogeneous SRF with covariance cX(s,s′)=cX(|s-s′|),
then Y(s) is a zero mean random variable with variance equal to

(6)

where σX
2 =cX(|0|) is the variance of X(s), and σY

2(s) is a function of s through .

Our proposed approach relies on the model assumption that if zsoft are exact values observed
at scales R>0 at points ssoft, then Ysoft=Y(ssoft) act as additive errors to the observed zsoft
such that the local scale prevalence values Xsoft=zsoft+Ysoft are characterized by the PDF

(7)
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where fYsoft is the PDF for Y(ssoft). When soft data points are sufficiently far apart to be
considered independent then a reasonable choice for this PDF is the product of independent
Gaussian distributions with mean zero and variances given by Eq. 6.

Hence our proposed approach consist in considering exact values observed at the local scale
at points shard as the hard data xhard, and considering values obtained at an observation scale
R>0 at points ssoft as soft data characterized by the PDF of Eq. (7). These hard and soft data
are used in the BME posterior PDF of Eq. (1) to provide an estimate of prevalence at any
estimation point sk.

Our proposed approach models the uncertainty associated with the observation scale through
Eq. (6). According to this equation, the larger the observation scale R is, the larger will be
the uncertainty associated with the corresponding local scale prevalence. The
implementation of this approach only requires calculating σY

2 as a function of the
observation scale R. Furthermore, as shown in the appendix, numerically efficient equations
can be derived for the relationship between σY

2 and R when considering nested exponential
covariance functions, as is the case in this study. As a result our approach allows to
conveniently integrate data at any observation scales, without having to upscale the
covariance for X(s) in order to obtain that between X(s) and Z(s) as is the case in area-to-
point kriging.

Validation analysis
In order to validate our proposed approach to account for observation scale in the context of
mapping disease prevalence, we compare the mapping accuracy of our proposed approach
with two alternative approaches that do not account for observation scale. Let xhard be exact
values of the local scale prevalence at points shard, and let zsoft be values of prevalence
obtained at an observation scale R>0 at points ssoft. Method 1 uses the simple kriging
estimator (i.e. Eq. 2–3 with mk=0 and mhard=0) to estimate local scale prevalence using only
xhard. Method 2 also uses the simple kriging estimator, but this time both xhard and zsoft are
treated as hard data (i.e. the uncertainty associated with the observation scale of zsoft is
ignored). Finally method 3 is our proposed approach using xhard treated as hard data, and
using zsoft treated as soft data (which takes into account the uncertainty associated with the
observation scale of zsoft through Eq. 6). The soft data provides, therefore, more information
for BME which then should decrease the estimation error relative to that of methods 1 and 2.

We do not compare our approach with area-to-point kriging, because (i) our aim in this
article is to show that our proposed approach is more accurate than two limiting methods
that do not account for observation scale (by either ignoring zsoft or treating it as hard), and
(ii) a comparison with area-to-point kriging will be presented in future works that will
consider practical implementation aspects that cannot be covered here due to limited space,
but shows that both methods are complementary. We note that Lee and Wentz (2008) also
excluded area-to-point kriging when introducing the approach presented here in the different
context of water resources.

The estimation error of each estimation method is measured using a validation and a cross
validation procedure. In the validation procedure, xhard is randomly split into a validation set
xvalidation and a training set xtraining such that xhard={xvalidation,xtraining}, the training set is
used to obtain estimated values xvalidation* of the validation set, validation errors are
obtained as xvalidation*-xvalidation, and the mean of the square of estimation errors provide the
mean square error (MSE) used to assess the estimation error of a given method. The cross
validation procedure is similar, with the difference that each datum of xhard is considered in
turn as the validation set to obtain one cross-validation estimation error, and the cross
validation MSE is calculated using all the cross-validation errors from xhard.
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Data
We have obtained two datasets with data on childhood asthma prevalence across North
Carolina during the same time period of 1997–1999. The data with finer resolution are from
a state wide public middle school asthma survey collected in the 1999–2000 school year
(Yeatts et al. 2003), while the second dataset are asthma Medicaid claims from 1997–1998.
(Buscher et al. 1999)

The North Carolina School Asthma Survey database
The first dataset consists in childhood asthma prevalence collected as a part of the North
Carolina School Asthma Survey (NCSAS) (Yeatts et al., 2003). The NCSAS was a
collaborative effort between the North Carolina Department of Health and Human Services,
the North Carolina Department of Public Instruction, and the Department of Epidemiology
in the University of North Carolina at Chapel Hill. This survey collected information on the
breathing status of students enrolled in public 7th and 8th grades (i.e. age of 13–14) in the
1999–2000 academic school year. All 565 public middle schools (for a total of 192,248
enrolled students) were asked to participate in the survey, leading to the participation of 499
schools in the survey. We obtained data from approximately 128,556 students (i.e. 66.9% of
the student population) in 493 schools (i.e. 87.3% of the school population.

The NCSAS questionnaire included internationally standardized and validated questions
from the International Survey of Asthma and Allergies in Childhood (ISAAC) consisting of
written and video types of questions. While the NCSAS provides several relevant asthma
variables for each student, the variable we used, named “current wheezing symptom”, which
characterizes the occurrence of asthma symptom prevalence, was recorded as a value of 1
for children who said “yes” to any one of four video questions describing 1) wheezing
during the day, 2) wheezing induced by exercise, 3) wheezing at night, or 4) a severe
wheezing attack. Using this variable, we calculated, for each of 493 schools, the asthma
prevalence among children by dividing the number of children who answered yes by the
total number of students surveyed in that school. For illustration purposes, we show in Fig.
1(a) a graduated color plot of childhood asthma prevalence obtained from this dataset.

Because of the almost-exhaustive nature and the good data quality of the NCSAS dataset,
the data it provides on the prevalence of asthma symptoms among children enrolled in
public 7th and 8th grades in North Carolina can reasonably be considered exact
measurements of childhood asthma prevalence. Furthermore, the observation scale for this
prevalence data corresponds to that of middle schools, which have a very small geographical
extend relative to that of, for example, a county. Indeed, half of the average distance
between schools in North Carolina and their closest neighbor is approximately 3 km, so that
for the average of schools the maximum distance that children travel to go to school is on
the order of 3 km. Since the children population is generally clustered around schools, the
median travel distance to school must be much less than its maximum of 3 km, in the order
of a fraction of the km scale. Considering the fact that children spend a portion of their day
on the premises of the school itself, we can safely conclude the NCSAS data obtained at the
school observation scale can reasonably be conceptualized as providing exact measurements
of childhood asthma prevalence observed at the local scale, i.e. this dataset provides the
hard data xhard for the SRF X(s).

The county-level database of Medicaid-enrolled children with asthma
Buescher et al., 1999 published a document including data on Medicaid claims due to
asthma in North Carolina during the state fiscal year 1997–1998. The number of childhood
asthma cases in each county was recorded by counting the Medicaid-enrolled children of age
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0 to 14 with asthma. According to the study, the Medicaid-enrolled children suffering from
asthma were identified on the basis of paid Medicaid claims with a diagnosis of asthma as
well as with prescription drugs used for treating asthma. The fraction of Medicaid-enrolled
children with asthma for each of the 100 counties in North Carolina was calculated by
dividing the number of Medicaid-enrolled children with asthma claims by the total number
of Medicaid-enrolled children claims in each county. The location we assign for each of
these fractions is the centroid of the county for which the fraction is calculated, and we
represent these data in Fig. 1(b) using a graduated color plot.

The average land area for counties in North Carolina is 1363.9 km2, which correspond to a
radius of about 20.8 km if we assume that counties can be approximated with circles of same
surface areas. This spatial scale of about 20.8 km is substantially larger than that of the
NCSAS data collected at the school level, which as discussed above, is believed to be on the
order of a fraction of the kilometer scale. This statement is also strengthened by the fact that
most of children live close to their school, with few children living far from their school,
whereas Medicaid-enrolled children can be assumed to have a much more uniform spatial
distribution across the whole county. Therefore we define the fraction of Medicaid-enrolled
children with asthma in a particular county as a measurement of the Z(s) observed at the
county spatial scale. In other words we conceptualize the Medicaid data shown in Fig. 1(b)
as being observations zsoft of the local scale childhood asthma prevalence (the NCSAS data
shown in Fig. 1a) averaged at the county spatial scale. As can be seen from Fig. 1, the
Medicaid data are smoother than the NCSAS data, which is consistent with our hypothesis
that one corresponds to the aggregation of the other at a larger spatial scale.

There are of course many limitations in the use of the Medicaid dataset to provide values of
prevalence zsoft obtained at an observation scale R>0. First, Medicaid-enrolled children are
only a subgroup of the total population of children. However the advantage of this subgroup
is that children enrolled in Medicaid are a group considered more “at risk” for a higher
likelihood of asthma related morbidity, given the lack of economic resources and lack of
consistent chronic care. Furthermore the Medicaid data was obtained in 1997–1998 while
the NCSAS was obtained in 1999–2000. Nevertheless we hypothesize that the local-scale
deviations in asthma prevalence between the Medicaid and NCSAS datasets average out at
the county spatial scale.

Results
Trends and variability in childhood asthma prevalence

The SRF X(s) represents the spatial distribution of childhood asthma prevalence at the local
scale. Its mean trend function provides a model for the systematic trends and consistent
spatial structures of X(s), while its covariance function describes the inherent spatial
variability of X(s).

We obtain the local scale mean trend function using a moving window average of the
NCSAS data xhard with an exponentially decaying exponential filter. This leads to the mean
trend function shown in Fig. 2(a). As can be seen from this figure, the mean trend has a
slightly higher prevalence along the eastern coast of North Carolina, and it decreases almost
linearly from East to West. This mean trend function can be linearized within each county,
and as a result the trend shown in Fig. 2(a) is also the mean trend of asthma prevalence field
observed at the county spatial scale, i.e. mZ(s)=mX(s). A useful implication is that the
framework presented in the theory section to integrate data obtained at different spatial
observation scales is valid not only for the X(s) and Z(s) SRFs, but also for the mean trend
removed residual fields X′(s)=X(s)−mX(s) and Z′ (s)=Z(s)−mZ(s) (since mZ(s)=mX(s)). We
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therefore apply our framework for the integration of data observed at different spatial scales
to the residual fields X′ (s) and Z′(s).

We obtained experimental covariances of the residual field X′ (s) and a covariance function
(Eq. 8) that fits well to the experimental values (Fig. 2b).

(8)

where c01= 0.9 × σX
2, c02=0.1 × σX

2, σX
2= 0.0055 (average number of asthma cases per 1

child)2, ar1= 89.6 km, and ar2= 448 km. The covariance model indicates that about 90
percent of the variability of the local scale childhood asthma prevalence has a spatial range
(e.g. spatial clustering) of 89.6 km, while the remaining 10 percent of variability as a much
larger spatial range (clustering) of 448 km. The explanation for this spatial organization of
local scale asthma prevalence over rather large spatial ranges of up to a few hundred km may
be manifold, and provides the basis for hypothesis generation that may be tested in future
works. One such hypothesis might be that asthma among children is influenced by
underlying factors that are themselves organized in space. One such factor may be the
characteristics of the children population (i.e. ethnic make-up, socioeconomic status, dietary
habits, proportion of children with higher asthmatic susceptibility, etc.) that may themselves
have a spatial structure corresponding to the 89.6 km spatial scale. Another factor may be the
exposure to environmental pollutants suspected to cause asthma, such as airborne particulate
matters, ozone and lead, which may have spatial ranges in excess of 448 km (e.g. Christakos
and Serre, 2000).

The mean trend function and covariance model provide the general knowledge base used in
the BME analysis to produce the maps of asthma prevalence presented next.

Childhood asthma prevalence maps
Using the NCSAS data xhard and the Medicaid data zsoft we obtain maps (Fig. 3) of
childhood asthma prevalence across North Carolina with the three methods described
earlier.

The estimate of local scale childhood prevalence obtained with Method 1, which uses xhard
as hard data and ignores the zsoft data, is shown in Fig 3(a). The associated uncertainty (i.e.
the kriging variance) is shown in Fig. 4(a). These maps interpolate the NCSAS data over all
non-surveyed areas of North Carolina, with a mapping uncertainty that is zero at the spatial
location of each of the NCSAS high schools, and increases away from these surveyed
locations. These maps provide a baseline against which we can compare maps that attempt
to integrate the additional information provided by the Medicaid childhood asthma
prevalence data zsoft available at the county observation scale.

Method 2 uses both xhard and zsoft data as hard data. By ignoring the scale effect for the
Medicaid data zsoft, method 2 underestimates the uncertainty in measuring local scale
asthma prevalence because of the large observation scale of that dataset. The map of the
estimate obtained from method 2 is shown in Fig. 3(b). As can be seen from this figure, this
map integrates more details in the spatial distribution of childhood asthma prevalence
because the combined dataset is larger, leading to a spatial estimate that is quite different
than that obtained with method 1. However, method 2 wrongly assumes that the scale effect
of the Medicaid data can be ignored, leading to the erroneous belief that the uncertainty
associated with the map of method 2 is zero at the centroid of each county where Medicaid
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data points are reported. As a result, method 2 is unable to provide a correct assessment of
the uncertainty associated with its spatial estimate shown in Fig. 3(b).

On the other hand, method 3 accounts for the scale effect by formally processing the
uncertainty associated with the observation scale of the Medicaid data. The estimate
obtained from method 3 is shown in Fig. 3(c), and its estimation uncertainty (variance of the
BME posterior PDF) is shown in Fig. 4(b). Method 3 integrates both datasets, extracting all
the information provided by the NCSAS data obtained at the local scale, and using the
Medicaid data as an approximate guess of the local scale childhood asthma prevalence away
from the NCSAS data points. The resulting map has more spatial details than the map of
method 1, yet it is smoother than the map of method 2. The map of the associated mapping
uncertainty shows that the uncertainty is zero at the NCSAS high school location, that it is
small but non zero at the centroid of counties for which the Medicaid data is available, and
that it increases away from these points. Both these features result in a more realistic
representation of the local scale childhood asthma prevalence than that obtained from either
method 1 or 2.

The results presented illustrate that by formally accounting for the scale effect of the
childhood asthma prevalence data, our proposed framework (method 3) generates a map
describing the spatial distribution of childhood asthma prevalence that is substantially
different and more realistic than maps obtained using methods not accounting for the scale
effect. We now investigate whether this more realistic map is also substantially more
accurate than the maps of method 1 or 2.

Cross-validation results
We use a cross-validation procedure to compare the accuracy of the maps obtained using
methods 1, 2 and 3 by means of their MSE. The results of this cross validation procedure are
shown in Table 1 in terms of the cross-validation MSE and percent reduction in MSE
compared. Somewhat surprisingly, method 2 does not provide any improvement of mapping
accuracy over method 1. In fact the MSE for method 2 is slightly higher than that of method
1. This result provides a striking illustration of what may happen when one attempts to mix-
in data obtained at different observation scales without consideration of the scale effect, as is
the case for the naïve approach used in method 2. Indeed, even though method 2 seems to
provide more spatial details about childhood asthma prevalence across North Carolina, these
details are actually erroneous because they do not account for the uncertainty associated
with the large observation scale of the Medicaid data. Our proposed BME approach (method
3) has a MSE that is substantially smaller than that of either method 1 or 2. The sound
conceptual framework we have developed in this work to integrate data obtained at different
observation scale leads to a 10.2% decrease in cross-validation MSE relative to method 1,
and a 11.6% decrease relative to method 2. This demonstrates that our proposed approach
leads to a map of childhood asthma prevalence across North Carolina that is more realistic
and more accurate than those obtained by methods that do not account for the scale effect.

The cross validation procedure compares the accuracy of the estimation methods when one
data point is removed at a time. This comparison quantifies the gain in accuracy for the
current mapping situation: We can say that the childhood asthma prevalence map (Fig. 3c) is
at least 10% more accurate than maps that may have been produced to date using the
traditional approach of method 1 or 2. Another comparison is through the validation
procedure, which compares the mapping accuracy under other mapping situations by
removing several data points at once. The next section presents validation results.
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Validation results
Our validation procedure consists in removing 30% of the NCSAS data at once, and re-
estimating the childhood asthma prevalence for these points using the remaining NCSAS
data as well as the Medicaid data. The validation MSE obtained for estimation methods 1, 2
and 3 are shown in Table 2: When removing 30% of the NCSAS data, method 2 is slightly
more accurate than method 1, and, more importantly, our soft data approach (method 3) is at
least 20% more accurate than either method 1 or 2.

Discussion
Mapping childhood asthma prevalence (as well as other diseases) is complicated by the fact
that data is often available at a variety of spatial scales. This is particularly the case because
several data sources have confidentiality requirements that only allow release of information
aggregated over spatial scales that are sufficiently large to ensure the privacy of the
individuals who provided their health information.

We develop a mathematical framework to map the spatial distribution of childhood asthma
prevalence by integrating data collected at different spatial observation scales, and we apply
this framework to a real case study in North Carolina using two datasets obtained at two
substantially different observation scales. We constructed our first dataset of childhood
asthma prevalence using the NCSAS data that was collected as part of a previous study of
one of the co-authors (Yeatts et al., 2003). By aggregating the NCSAS data at the high
school spatial scale using good quality information on the prevalence of asthma symptoms
among 7–8th grades, we obtained a dataset that can essentially be treated as exact
measurements of childhood asthma prevalence observed at the local scale for each of 493
high-schools. While this first dataset provides a rich set of point measurements, it is
inherently providing a sparse spatial coverage of North Carolina. Hence, we also included in
the mapping analysis a second dataset consisting of childhood asthma prevalence calculated
on the basis of Medicaid-claims aggregated at the county spatial scale (Buescher et al.,
1999). While this dataset presents some limitations due to biases connected with the
Medicaid-enrolled children population, we hypothesized that local errors in the Medicaid
data may average out at the county spatial scale, so that this dataset provides useful
information as long as the scale effect is adequately accounted for.

The conceptual framework we developed provides a rigorous mathematical formulation for
the uncertainty associated with the spatial scale at which asthma prevalence data are
observed. Using this framework, the NCSAS data is processed as hard data, while the
Medicaid children data is used to generate soft data with an uncertainty corresponding to the
county spatial scale at which these data are reported. These combined hard and soft data are
then rigorously processed using the Bayesian Maximum Entropy method of modern
Geostatistics, leading to an accurate estimation of the spatial distribution of childhood
asthma prevalence across North Carolina.

We find that the map we obtain is substantially more realistic and accurate than the classical
map obtained by ignoring entirely the county level data, or the classical map obtained by
integrating the county level data without consideration of its observation scale. Our cross-
validation results reveals that the childhood asthma prevalence map we generate for North
Carolina has a mapping error variance that is 10% smaller than that of the classical maps
obtained when ignoring the scale effect. Furthermore a partial validation analysis (using a
single random selection of the validation set) indicates that under other mapping situations
the drop in mapping estimation error can be in excess of 20% over the classical approaches
not accounting for the scale effect. Our proposed method, therefore, provides a powerful
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conceptual framework to integrate data obtained at different observation scales for a wide
range of asthma mapping situations.

This work provides a methodological advance that complements the area-to-point kriging
method for the integration of disease prevalence data collected at different observation
scales. Our approach is novel in that it uses the non-linear BME framework to integrate data
collected at different observation scales. There are two aspects of this work that can be
investigated in future works. First, we did not account for the small number problem
because, as noted in the introduction, childhood asthma is not a rare disease. As a result our
analysis interpolates the observed rate, which leads to a map that is spatially detailed (i.e.
“wiggly”). This map fulfills our goal of providing a view of asthma prevalence at a fine
scale, which is highly informative for the visual exploration of associations with fine scale
environmental determinants such as proximity to industrial hog farms. However, future
work may look at extending our novel approach to deal with both the COSP and small
number problem. Second, we assumed in this work that the soft data points where
independent, so that  (Eq. 7) can be written as the product of independent Gaussian
distributions. This is a reasonable approximation in this work as the soft data points
correspond to county centroids, which are about 40 km apart on average in North Carolina.
However future work may consider other applications where the correlation between soft
data points is taken into account.

The application of our novel approach to mapping childhood asthma prevalence is
applicable nationwide. By applying this new method, we obtain a map of the distribution of
childhood asthma prevalence at a finer spatial scale than that obtained using classical BME
studies based on the downscaling of the covariance function and the small number problem
(Choi et al., 2003). The optimal scale varies as a function of the application, but as noted
earlier, our spatially detailed map of childhood asthma across North Caroline can be used to
improve our understanding of possible associations between asthma and causal risk factors
with fine scale spatial variations, such as air pollutants. Furthermore, we demonstrate how
existing sources of asthma data such as Medicaid claims can be used to obtain good
estimates of childhood asthma prevalence. These techniques could be applied to reduce the
need of costly programs dedicated to asthma surveillance, so that state health departments’
limited resources can be more efficiently used for public health interventions and reduction
of childhood asthma morbidity.
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Figure 1.
Map showing (a) the data on asthma symptoms prevalence among high school children (age
13–14) reported in the NCSAS database for most of NC schools, and (b) the county level
asthma prevalence data extracted from the database of Medicaid-enrolled children age 0–14
years who suffered from asthma. The prevalence is expressed as a fraction (i.e. average
childhood asthma cases per 1 child) according to the color bar next to each map.
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Figure 2.
(a) Map of the local scale mean trend mX(s) of the childhood asthma prevalence (fraction of
prevalent asthma cases), and (b) plot of the covariance of the mean trend-removed local
scale childhood asthma prevalence SRF X′ (s).
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Figure 3.
Maps of the estimates of childhood asthma symptom prevalence (average number of case
per 1 child) using (a) method 1, (b) method 2, and (c) method 3.
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Figure 4.
Maps of the estimation variance ([average asthma counts per 1 child]2) obtained with (a)
method 1 and (b) method 3, which provides an assessment of the uncertainty associated with
the estimation maps shown in Figure 3(a) and (c), respectively.
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Table 1

Cross-validation results showing the cross-validation MSE for methods 1, 2 and 3, and the change in cross-
validation MSE between method 1 and method 3, as well as between method 2 and method 3.

Method 1 (simple kriging I) Method 2 (simple kriging II) Method 3 (BME)

MSE 4.06×10−2 4.13×1−2 3.65×10−2

−10.21%

−11.63%
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Table 2

Validation results obtained when selecting a random validation set consisting of 30% of the NCSAS data. The
table shows the validation MSE obtained for methods 1, 2 and 3, and the change in validation MSE between
method 1 and method 3, as well as between method 2 and method 3.

Method 1 (simple kriging I) Method 2 (simple kriging II) Method 3 (BME)

MSE 9.89×10−3 9.70×1−3 7.67×10−3

−22.51%

−20.96%
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