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Abstract

Background—Frailty is a geriatric syndrome characterized by weakness and weight loss, and is 

associated with adverse health outcomes. It is often an unmeasured confounder in 

pharmacoepidemiologic and comparative effectiveness studies using administrative claims data.

Methods—Among the Atherosclerosis Risk in Communities (ARIC) Study Visit 5 participants 

(2011–2013; n=3146), we conducted a validation study to compare a Medicare claims-based 

algorithm of dependency in activities of daily living (or dependency) developed as a proxy for 

frailty with a reference standard measure of phenotypic frailty. We applied the algorithm to the 

ARIC participants’ claims data to generate a predicted probability of dependency. Using the 

claims-based algorithm, we estimated the c-statistic for predicting phenotypic frailty. We further 

categorized participants by their predicted probability of dependency (<5%, 5% – <20%, and ≥ 

20%) and estimated associations with difficulties in physical abilities, falls, and mortality.
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Results—The claims-based algorithm showed good discrimination of phenotypic frailty (c-

statistic=0.71, 95% confidence interval (CI) 0.67, 0.74). Participants classified with a high 

predicted probability of dependency (≥20%) had higher prevalence of falls and difficulty in 

physical ability, and a greater risk of one-year all-cause mortality (hazard ratio=5.7 (95% CI: 2.5, 

13) than participants classified with a low predicted probability (<5%). Sensitivity and specificity 

varied across predicted probability of dependency thresholds.

Conclusion—The Medicare claims-based algorithm showed good discrimination of phenotypic 

frailty and high predictive ability with adverse health outcomes. This algorithm can be used in 

future Medicare claims analyses to reduce confounding by frailty and improve study validity.
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Introduction

Frailty is a geriatric syndrome, operationalized as a phenotype by Fried et al. using measures 

of unintentional weight loss and exhaustion, and performance in grip strength, walking 

speed, and physical activity metrics,1 and is associated with adverse health outcomes.1–6 

While the frailty phenotype has been measured in several population-based cohort studies,
2–6 it is not captured in administrative claims databases, including Medicare, often used to 

evaluate the effectiveness of medical interventions on health outcomes in older adults. 

Findings from studies using claims data suggest that exaggerated mortality reductions 

associated with lipid-lowering drugs7,8 and influenza vaccination9 are likely due, in part, to 

unmeasured confounding by frailty. This confounding can result when preventive care is 

withheld from frail older adults near the end of life.10 Increasingly, efforts to identify frailty 

proxies using claims data have been developed to improve estimation of medical 

intervention effects in older adults.11–13

As an initial step to measure frailty in claims data, Faurot et al. developed and internally 

validated an algorithm to predict dependency in activities of daily living (or dependency), a 

proxy for frailty, using the 2006 Medicare Current Beneficiary Survey.14 The algorithm 

reported excellent discrimination (c-statistic=0.84) and predictive validity. Participants with 

higher predicted probabilities of dependency had higher mortality compared to those with 

lower probabilities.14 Our objective was to validate the Medicare claims-based algorithm 

against a reference standard, the Fried frailty phenotype, derived from the Atherosclerosis 

Risk in Communities (ARIC) Study cohort data. Reducing confounding by frailty would 

improve the validity of treatment effect estimates from some pharmacoepidemiologic and 

comparative effectiveness studies using Medicare data.

Methods

Study Design

We conducted analyses using data from the fifth examination of the ARIC Study (2011–

2013) and linked Medicare fee-for-service (FFS) claims. The Medicare claims-based 
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algorithm drew upon medical claims for diagnoses and services from the year prior to ARIC 

Visit 5, and was compared to the frailty phenotype assessed at Visit 5.

Study Population

The ARIC Study is a population-based cohort of randomly selected participants from 

defined populations within four US communities (Washington County, MD; Minneapolis, 

MN; Jackson, MS (African Americans only); Forsyth County, NC).15 At baseline (1987–

1989) 15,792 men and women (45–64 years) were enrolled. Four additional examinations 

and annual (semi-annual from 2012) telephone interviews have been conducted. Medicare 

claims were linked to eligible participants.16 Among the 6,538 Visit 5 participants, we 

excluded those not continuously enrolled in Medicare Parts A and B FFS one year prior to 

Visit 5 (n=3,181) and those with missing frailty information (n=191). Asian or American 

Indian/Alaskan Indian participants (n=11) and African-American participants in 

Minneapolis and Washington County (n=9) were excluded due to small numbers.

Predicted probabilities of dependency

The Medicare claims-based model developed by Faurot et al. was based on a logistic 

regression model with 20 claims for conditions, symptoms, and medical equipment 

predictive of dependency (Table 1), in addition to age, sex, and race.14 To apply the claims-

based model to data for ARIC participants, we first defined the 20 dependency indicators 

using the freely available SAS macro containing International Classification of Diseases, 9th 

Edition, Clinical Modification (ICD-9) diagnosis and procedure codes, and Current 

Procedural Terminology (CPT) and Healthcare Common Procedure Coding System 

(HCPCS) codes.14,17 Claims were extracted for the year prior to Visit 5 from the carrier, 

inpatient, outpatient, durable medical equipment, home health agency, hospice, and skilled 

nursing facility files. Next, for each participant, we multiplied the original dependency 

model coefficients by the 20 indicators and demographic variables derived in our study 

dataset and summed these values to calculate the log odds of dependency, which was further 

converted to a predicted probability. We grouped participants by their predicted probability 

of dependency using categories defined by Faurot et al. (<5%, 5% – <20%, and ≥ 20%).14

Frailty Phenotype (Reference Standard)

The Fried frailty phenotype was operationalized using data from ARIC Visit 5 and had high 

criterion and predictive validity.4 Phenotype criteria components included weight loss, low 

physical activity, slow walking speed, exhaustion, and low grip strength (eTable 1).4 

Participants were classified as frail (three or more components), pre-frail (one or two 

components), and robust (no components); we collapsed the latter categories to indicate frail 

or non-frail (pre-frail or robust) for selected analyses.

Longitudinal Outcomes

Longitudinal outcomes were collected during semi-annual follow-up telephone interviews 

conducted within one year from Visit 5 and included number of falls in the past 6 months 

and physical ability assessments. Physical ability was measured according to standard 

domains (eTable 2) to ascertain the level of difficulty (no difficulty, some difficulty, and 
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unable to do) in performing physical tasks and activities of daily living.18–21 For each 

domain, participants who self-reported some difficulty or unable to do the task were coded 

as having a difficulty in that domain.

We ascertained vital status from the Medicare enrollment data (2010–2013). We calculated 

survival from Visit 5 to death, end of one-year follow-up, or December 31, 2013, whichever 

came first.

Statistical Analysis

We examined the discriminative ability of the claims-based algorithm to predict phenotypic 

frailty (classified as frail vs. non-frail) by estimating the c-statistic and plotting a receiver 

operating characteristic (ROC) curve using the pROC R package.22 Kernel density and 

calibration plots were used to examine overlap and agreement between predicted probability 

of dependency and phenotypic frailty distributions.

We examined the bivariate relationship between the predicted probability of dependency and 

falls and physical ability difficulties. We compared 1-year all-cause mortality across 

categories of predicted probability of dependency and phenotypic frailty using Cox 

proportional hazard models. We standardized survival curves by deriving weights for each 

claims-based dependency and phenotypic frailty strata to reflect the age (65–74, 75–79, and 

≥80 years) and sex distribution of the 2010 Census population aged 65 years and older. 

Weights were applied to Cox models to estimate adjusted hazard ratios (aHR) and 95% 

confidence intervals (CI) using a robust variance.

We estimated the sensitivity, specificity, positive predictive value, and negative predictive 

value of the claims-based algorithm relative to phenotypic frailty using a range of 

dichotomous cut-points from the predicted probabilities. We also computed the number of 

individuals who would remain in a study, if the population were restricted to those likely to 

be non-frail using various cut-points. We further examined how the sensitivity of the 

algorithm varied by age, sex, and race.

All analyses were conducted with SAS version 9.4 (Cary, North Carolina) and R version 

3.3.2 and approved by the Institutional Review Boards of participating ARIC Study centers.

Results

The analytic sample included 3,146 adults; average age was 76 years, 78% were white, and 

60% were female (Table 1). The prevalence of phenotypic frailty was 7%. Frail participants 

and those with ≥20% predicted probability of dependency had a higher prevalence of most 

claims-based indicators compared to non-frail participants and those with lower predicted 

probabilities (Table 1). We observed a low prevalence of claims for home hospital bed and 

wheelchair overall, which were identified in the original Faurot et al. study population as 

strong predictors of dependency (eTable 3).14

The claims-based algorithm demonstrated good discrimination of phenotypic frailty (c-

statistic=0.71, 95% CI 0.67, 0.74) (Figure). The distribution of the predicted probability of 

dependency stratified by phenotypic frailty, suggests higher predicted probabilities for those 
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classified as phenotypically frail (eFigure 1a). The calibration plot (eFigure 1b) shows that 

as the predicted probability of dependency increases, so does the proportion of participants 

classified as phenotypically frail, suggesting good agreement between the two measures. 

Among the 191 participants who did not have phenotypic frailty information measured at 

Visit 5, the mean predicted probability of claims-based dependency was 21% compared to 

6% in those with Visit 5 frailty information. The prevalence of most claims-based indicators 

was higher among participants without frailty information available (eTable 4 and eFigure 

2).

Participants classified with a predicted probability of dependency ≥20% had a higher 

prevalence of falls and difficulties in physical ability compared to those with lower predicted 

probabilities (Table 2). For example, the prevalence of falls in the last 6 months was highest 

for participants with ≥20% probability (33%) and lower for those with probabilities from 5% 

– <20% (21%) and < 5% (13%). For difficulties in physical mobility and housekeeping, 

participants with ≥20% probabilities reported the highest prevalence (mobility 84%, 

housekeeping 60%), followed by those with probabilities from 5% – <20% (mobility 66%, 

housekeeping 34%) and < 5% (mobility 45%, housekeeping 16%).

We observed higher 1-year mortality for participants with ≥20% predicted probability of 

dependency and those classified as phenotypically frail compared to those with <5% 

predicted probability of dependency and phenotypically robust (eTable 5, eFigure 3a and b). 

In adjusted models, participants with predicted probabilities ≥20% and those with 5% – 

<20% had an aHR of death within one year of 5.7 (95% CI 2.5, 13) and 3.6 (95% CI 1.7, 

7.7) compared to participants with < 5% probabilities. Similarly, participants classified as 

phenotypically frail and pre-frail had aHRs for death of 6.5 (95% CI 1.7, 25) and 3.4 (95% 

CI 1.4, 7.8), respectively, compared to robust participants.

Using a 20% cut-point for the predicted probability of dependency to identify 

phenotypically frail participants (216 out of 3136 total), sensitivity was 13% (95% CI 9%, 

18%) with 29 true positives. Specificity was 96% (95% CI 95%, 97%), with 2816 true 

negatives (Table 3). Lowering the predicted probability cut-point increased sensitivity and 

decreased specificity. At a predicted probability of 4%, the sensitivity of phenotypic frailty 

was 71% (95% CI 65%, 77%) and the specificity was 60% (95% CI 58%, 61%). For 

researchers wishing to optimize sensitivity to control confounding via restriction of analyses 

to non-frail adults, the 4% probability cut-point would only include 58% of the ARIC 

sample. Sensitivity was higher among older compared to younger participants but did not 

vary not by race or sex (eTable 6).

Discussion

In this validation study of a Medicare claims-based algorithm predicting dependency, we 

found good discrimination and high predictive validity compared with a reference standard 

measure of phenotypic frailty. We observed study participants with higher predicted 

probabilities of dependency to self-report more difficulty in physical abilities and to have 

higher 1-year mortality compared to participants with lower predicted probabilities.
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Our results support using the algorithm to control confounding by frailty in studies relying 

solely on Medicare claims data. This algorithm can be used to reduce confounding by: (1) 

adjustment, using the 20 individual claims-based predictors or the predicted probability of 

dependency as a continuous variable, (2) restriction to non-frail individuals using a specific 

probability cut-point, or (3) adjustment using a specific probability cut-point and sensitivity 

and specificity estimates with quantitative bias analysis. Restriction of analyses to non-frail 

populations identified through the claims-based algorithm is a straightforward, and therefore 

tempting, approach to mitigate confounding by frailty. However, gains in confounding 

control from this approach must be weighed against potential losses to sample size and 

generalizability. In contrast, the use of a dichotomous probability cut-point together with 

bias analysis would retain all study participants and facilitate examination of variation in 

estimates across a range of bias parameters.

Limitations of this study should also be considered. The population of older adults in the 

ARIC Study is not representative of the general US population. While the prevalence of 

frailty in the ARIC cohort (7%) is comparable to other older adult cohorts,1 it is much lower 

than the 15% prevalence reported in the National Health and Aging Trends Study, a 

nationally representative population.23 This discrepancy may be due to better health in 

persons able to participate in research studies requiring in-person clinic visits. As the claims-

based algorithm was developed using the in-home interview data from Medicare Current 

Beneficiary Survey, its performance might be improved in study populations that have 

included more frail individuals than the ARIC cohort. Furthermore, disentangling age-

associated from comorbidity-associated frailty is challenging and an area of ongoing 

research.24–26 The claims-based algorithm includes a variety of comorbid conditions 

associated with frailty; 14 thus, it may be more likely to identify frail adults with 

comorbidity rather than those without comorbidity.

Medicare claims data are an important resource for evaluating the use and effects of medical 

interventions on health outcomes in older adults. These results support the use of the claims-

based algorithm to assess and reduce unmeasured confounding by frailty in 

pharmacoepidemiologic and comparative effectiveness studies using Medicare claims data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure. 
Receiver operating characteristic (ROC) curve and 95% confidence interval (CI) bands for 

the Medicare claims-based algorithm prediction of phenotypic frailty, ARIC participants 

(n=3146) (2010 – 2013). Bootstrapping with 2000 replicates was used to compute 95% CIs 

for sensitivities and specificities using methods described by Robin et al.22 and Fawcett et al.
27 The shaded grey region denotes the 95% CIs for specificities at a range of sensitivity 

values. The small black region denotes where the 95% CIs for sensitivities at a range of 

specificity values is slightly wider than the 95% CIs for specificities.
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