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New-user designs restricting to treatment initiators have become the preferred design for studying drug
comparative safety and effectiveness using nonexperimental data. This design reduces confounding by indication
and healthy-adherer bias at the cost of smaller study sizes and reduced external validity, particularly when
assessing a newly approved treatment compared with standard treatment. The prevalent new-user design
includes adopters of a new treatment who switched from or previously used standard treatment (i.e., the
comparator), expanding study sample size and potentially broadening the study population for inference. Previous
work has suggested the use of time-conditional propensity-score matching to mitigate prevalent user bias. In
this study, we describe 3 “types” of initiators of a treatment: new users, direct switchers, and delayed switchers.
Using these initiator types, we articulate the causal questions answered by the prevalent new-user design and
compare them with those answered by the new-user design. We then show, using simulation, how conditioning
on time since initiating the comparator (rather than full treatment history) can still result in a biased estimate of
the treatment effect. When implemented properly, the prevalent new-user design estimates new and important
causal effects distinct from the new-user design.

causal effects; epidemiologic methods; prevalent users; study designs

Abbreviations: ACNU, active comparator, new user; SMR, standardized morbidity ratio.
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Estimating unbiased treatment effects with nonexperi-
mental data is challenging. Over the past two decades, new-
user study designs have become the standard in evaluating
drug safety and effectiveness using nonexperimental data
(1). If referent groups of these new-user studies are treated
with a similarly indicated drug of interest, the design is
sometimes referred to as an active comparator, new-user
(ACNU) study (2). This design starts follow-up at the time
of initiation and excludes those who have used either the
treatment of interest or the active comparator. This exclu-
sion protects against potential bias from confounding by
indication (3), induced by including nonusers, and potential
healthy adherer bias (i.e., selection bias) (4) induced by

including prevalent users, as well as depletion of susceptible
persons (5, 6). These studies estimate the treatment effect of
initiating one treatment (the treatment of interest) compared
with initiating another treatment alternative (the active com-
parator) (4).

While the ACNU study design effectively protects against
these biases, it has some limitations. Because ACNU studies
exclude patients with recent exposure to the comparator,
sample size is reduced, and inference is limited to new users
naive to both treatments. In some situations, there are a lim-
ited number of new users of a treatment of interest without
recent exposure to the comparator (e.g., half of those starting
dabigatran have been previously exposed to warfarin) (7).
In particular, when a standard treatment already exists for
a condition, many of the people starting a newly approved
treatment alternative have previously used the standard treat-
ment. Similar exposure patterns occur when a payer requires



prior use of the standard treatment before covering a new and
more expensive alternative.

The prevalent new-user design has been proposed to over-
come these limitations by including initiators of the treat-
ment of interest with past use of the comparator (8). To
reduce bias from confounding by indication and healthy-
user bias, initiators of the treatment of interest are matched to
users of the comparator on time or number of prescriptions
since initiating the comparator. Further matching is then
performed based on a time-conditional propensity score that
controls for confounding by measured variables. Thus, the
study design essentially treats the duration or extent of prior
comparator use as a confounder.

In this work, we enumerate and compare the causal
parameters estimated by the ACNU and prevalent new-user
designs in the context of 3 different types of initiators of the
treatment of interest. Next, we use simulation to examine
when conditioning on time since comparator initiation, but
not full exposure history, can lead to biased treatment effect
estimates.

METHODS

Types of initiators

Suppose we have data on lifetime use of a treatment of
interest (treatment A) and an active comparator (treatment
B) in a population of patients, and we are interested in
estimating the effect of initiating treatment A on all-cause
mortality. Use of these treatments is exclusive: If a patient is
taking treatment A, they are not taking treatment B, and vice
versa.

If we define the time of initiation of treatment A as T0,
we may characterize initiators as type 1A, 2A, or 3A as
shown in Figure 1A and various users of treatment B as type
1B, 2B, or 3B as shown in Figure 1B. Type 1A initiators
are new users—patients with no historical use of treatment
B. These individuals contribute to an ACNU analysis. All
new users have an identical and interchangeable exposure
history: They have used neither A nor B.

Two other types of initiators with past use of B are
presented in Figure 1A. Type 2A initiators—direct switch-
ers—initiate treatment A immediately after a period of use
of treatment B. Type 3A initiators—delayed switchers—
initiate treatment A after a period of no treatment following
a period of use of treatment B. In both cases, the switching
followed, either directly or indirectly, a new-use period of
treatment B.

Unlike new users, not all direct switchers have the same
exposure history, nor do all delayed switchers. For example,
one direct switcher might have received 1 previous prescrip-
tion for treatment B that lasted 30 days while another might
have been continuously on treatment B for 5 years with
dozens of prescriptions. Similarly, some delayed switchers
will have been off treatment B for months; others will have
been off it for a few days.

Notably, type 1A, type 2A, and type 3A are only the
simplest types. For the purposes of describing the causal
effect estimated by the prevalent new-user design and iden-
tifying scenarios where matching on time since comparator

Type 1A: New User

A) B)

Type 2A: Direct Switcher

Type 3A: Delayed Switcher

Type 2B: Continuer

Type 3B: Restarter

Type 1B: New User

T0 T0

T0 T0

T0 T0

Figure 1. Infographic showing treatment histories of various types
of initiators of treatment A and users of B. Panel A includes the
initiators of treatment A (types 1A–3A) and panel B includes the 3
corresponding individuals taking treatment B that would be “ideal”
counterfactual contrasts for types 1A–3A. Gray stars represent pre-
scriptions for A, while black circles represent prescriptions for B.
Below each set of prescriptions is a secondary timeline showing time
with no treatment (dashed black), time treated with A (gray), and time
treated with B (solid black).

initiation could lead to bias, we have limited our analysis
to these types for simplicity. In real data, some initiators
of treatment A will have had multiple past use periods of
treatment B before switching, giving them more complicated
treatment histories. The fact that we rarely have the ability
to look at treatment use across an individual’s lifespan adds
another layer of complexity.

Causal parameters of interest

The ACNU and prevalent new-user designs answer dif-
ferent causal questions. Assuming we are estimating the
treatment effect in the initiators of treatment A (i.e., average
treatment effect in the treated), the ACNU design answers
the question “what if new users of treatment A naive to
treatment B had instead, counter to fact, started using treat-
ment B?” (9) In the context of the types in Figure 1, this
means we are contrasting one set of new users (type 1A) with
another set (type 1B). Conversely, the prevalent new-user
design answers the question “what if initiators of treatment
A had instead initiated, continued, or restarted treatment
B at the time of their treatment-A initiation?” Using the
types, we are contrasting type 1A initiators (new users of A)
with type 1B initiators (new users of B), type 2A initiators
(direct switchers) with type 2B initiators (continuers), and
type 3A initiators (delayed switchers) with type 3B initiators
(restarters). If treatment effects are homogeneous (i.e., the
effect of initiating treatment A is not modified by prior
treatment with B on the scale of interest), these two questions
might have the same answer, but when treatment effects vary
by treatment history, the answers might diverge.

By explicitly stating the causal question, we can see that
matching on time since starting treatment B or the number
of past prescriptions for treatment B might not be sufficient
to identify a population of continuers and restarters that is



bleeding outcomes with warfarin) (14). In the fifth scenario,
direct switchers to treatment A, but not delayed switchers to
treatment A, experienced an increased risk of the outcome
(e.g., lingering amounts of treatment B in the system interact
poorly with treatment A).

To examine the effect of the distribution of types of
switchers (direct vs. delayed), in the sixth scenario, the
associations between the confounders and stopping were
changed so that approximately 90% of initiators of A were
direct switchers. In this scenario, the outcome was associ-
ated with the 3 confounders, time since new use of treatment
B, and cumulative continuous exposure to B (equivalent log-
linear model to the one in the second scenario). Finally, in the
seventh scenario, there was a low prevalence of both delayed
switching to A and restarting of B. The specific models used
to generate all 5 simulated populations are listed in Table 1.

Estimating the risk ratio

After generating the data sets, we identified the population
that had started treatment A and described their treatment
histories. We then identified those who had continued (or
restarted) treatment B with an identical treatment history to
the initiators of treatment A. An individual who stayed on
treatment B throughout the study and did not experience an
outcome could thus act as a comparator with direct switchers
who switched during the second, third, or fourth study
periods and be represented multiple times in the final data
set. We obtained 4 different risk ratios for 1-year (or 1-time-
unit) all-cause mortality. First, to obtain the true risk ratio,
we simulated counterfactual outcomes for each initiator of
A under the counterfactual treatment that they had instead
continued or restarted B. The true effect was estimated using
all 500 replicates (sample size: 20 million).

Second, to estimate the crude risk ratio, we estimated
the risk ratio within each replicate without adjusting for
confounding by any covariates. This risk ratio gives a sense
of the direction and magnitude of confounding.

Third, we estimated each individual’s probability of ini-
tiating treatment A using multivariable regression includ-
ing the 3 confounders, stratified by time since new use of
treatment B. For example, patients who initiated treatment
A in the third time period were combined with patients who
continued on or restarted B in the third time period and a
propensity score model was fitted in this population. This
was done separately for each stratum of time since initiation
of treatment B. We then used standardized morbidity ratio
(SMR) weighting (such that each initiator of treatment A
received a weight of 1 and each continuer or restarter of
treatment B received a weight of 1 divided by 1 minus their
estimated probability of initiating treatment A) (15) so that
the distribution of confounding variables in continuers and
restarters of treatment B matched the distribution of con-
founding variables in those initiating treatment A in each
time-based stratum. Asymptotically, this approach is a more
conservative version of the time-conditional matching meth-
ods proposed by Suissa et al. (8) Rather than ignoring the
intercept and pooling information across multiple strata via
conditional logistic regression (which can lead to model mis-
specification in some strata when the correct model depends

exchangeable with the population of treatment A initiators. 
The direct and delayed switchers in Figure 1 might both 
have been on treatment B for the same length of time and 
the same number of prescriptions but could have different 
exposure histories. If we match only on time since starting 
treatment B or the number of past prescriptions for treatment 
B, we might match a type 2A with a type 3B or a type 
3A with a type 2B despite them having differing risks for 
the outcome. We sought to illustrate, via simulation, the 
impact of implementing a prevalent new-user analysis using 
propensity scores conditional on time since starting the 
comparator alone (rather than on full treatment history) on 
bias of the estimated treatment effect.

Simulated data

We simulated 40,000 patients who were new users of 
treatment B at time 0 (i.e., there were no new users of 
treatment A) and followed these individuals for an additional 
4 time periods (e.g., years) or until death. At years 1, 2, 3, 
and 4, patients on treatment B could: 1) switch to treatment 
A or 2) stop taking treatment B. Those who stopped taking 
treatment B could either: 1) initiate treatment A or 2) restart 
treatment B at each subsequent time point. Once treatment 
A was initiated, patients remained on A for the rest of the 
study duration (i.e., A was not switched or stopped). There 
were 3 confounders (2 binary, 1 continuous) modeled with 
logit-linear effects on stopping or restarting treatment B and 
initiating treatment A. Treatments A and B were modeled 
to be equally protective for the outcome under study versus 
a referent of no treatment (risk ratio for all-cause mortality 
comparing treatment A vs. no treatment and treatment B vs. 
no treatment were both 0.80). The simulation was replicated 
500 times.

We examined 7 scenarios. The first 5 scenarios used 
identical coefficients for the relationship between the con-
founders and exposure that resulted in approximately 26%
of the population initiating treatment A. Approximately 50%
of these individuals were direct switchers and 50% were 
delayed switchers at the time of starting treatment A.

In the first scenario, the risk of all-cause mortality was a 
log-linear function of the 3 confounders and time since new 
use of treatment B (i.e., study start). An association between 
time since new use of a treatment and the outcome can be 
expected when an event becomes more likely over time, such 
as with worsening heart failure (10).

In the next 6 scenarios, the log-linear function of mortality 
included additional treatment history–based characteristics. 
In the second scenario, cumulative continuous exposure to B 
decreased outcome risk (e.g., B is a treatment that becomes 
progressively more effective over time with continued use 
until discontinued, like some cancer therapies (11) or antibi-
otic treatments (12)); in the third scenario, outcome risk 
was increased by time without any therapy (e.g., being on 
either treatment helps slow progression, akin to angiotensin-
converting-enzyme inhibitors slowing microvascular com-
plications of diabetes) (13); and in the fourth scenario, 
outcome risk increased in the year individuals restarted 
treatment B (e.g., treatment B has a period of high initial 
risk of an outcome or a safety event that fades over time, like
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Table 2. Average Distributionsa of Key Variables in Initiators of Treatment A, the Comparator Population Treated With Treatment B at Each
Time Point, and the Standardized Morbidity Ratio–Weighted Comparator Populations in the Baseline Scenario

Variable

Initiators of A
(n = 10,275)

Crude Comparators
(n = 22,216)

SMRtime Comparators
(n = 10,272)

SMRtreat Comparators
(n = 10,271)

Mean % Mean % Mean % Mean %

Confounder 1 52 33 52 52

Confounder 2 55 35 55 55

Confounder 3 0.97 0.98 0.97 0.97

Time since initiating B 1.89 1.55 1.89 1.89

Continuous years of
treatment with B at
baselineb

0.70 1.27 1.31 0.70

Direct switchers to A or
continuers of B

52 89 77 51

Delayed switchers to A or
restarters of B

49 11 23 49

Abbreviations: SMR, standardized morbidity ratio; SMRtime, with SMR weights based on time-stratified propensity scores; SMRtreat, with
SMR weights based on treatment history–stratified propensity scores.

a Across all 500 replicates.
b This quantity resets when individuals are not treated with B, meaning that for restarters it will be 0 while for delayed switchers it can be

anywhere from 1 to 3 depending on their previous exposure history.

were typically similar, except for scenarios 6 and 7. In
scenario 6, just 9% of the treatment-A initiator population
were delayed switchers, and in scenario 7, just 3% of the
treatment-A initiator population were delayed switchers and
0.2% of the treatment B time periods were restarters (for full
tables for those 2 scenarios, see Web Tables 1 and 2). The
time-stratified SMR weights were effective at balancing the
distribution of the confounders and the mean amount of time
since initiating treatment B. The time-stratified weights did
not balance the distribution of direct switchers or continuers
(51% in the treatment-A initiator population, 77% in the
weighted treatment-B initiator population) or exposure to
treatment B during the most recent treatment episode (mean
of 0.70 years vs. 1.31 years). Conversely, the treatment
history–stratified SMR weights balanced all distributions.

Table 3 shows the true risk ratio, crude risk ratio, weighted
risk ratio, and relative bias of each weighted risk ratio in
all 7 scenarios, while Table 4 presents the standard errors
and the mean squared error of the log risk ratio for all
7 scenarios. Standard errors were higher for the treatment
history–stratified analyses than the time-stratified analyses,
as expected given the smaller treatment history strata. While
both methods yielded similar results in scenario 1, the time-
stratified estimates were biased in scenarios 2, 3, and 4,
although the amount of bias varied considerably depending
on the ways treatment history was associated with the out-
come. Interestingly, the time-stratified approach was unbi-
ased in scenario 5, likely for the same reason that there is
no need to adjust for confounders that are associated only
with the outcome in the treated when estimating the average
treatment effect in the treated (17). Even in scenario 6, when
90% of the initiators of treatment A were direct switchers,
the time-stratified estimates were still slightly biased—this

on calendar period), it makes sure to balance covariates 
within each stratum at the cost of precision.

Finally, in the fourth analysis, we again estimated each 
individual’s probability of initiating treatment A using strat-
ified multivariable regression including the 3 confounders. 
Rather than stratify by time since initiation of treatment 
B, however, we instead stratified by full treatment history. 
After applying SMR weights based on these probabilities, 
the distribution of confounding variables in continuers and 
restarters of treatment B matched the distribution of con-
founding variables in those initiating treatment A in each 
treatment history stratum.

To summarize results, we calculated the average risk ratio 
with 95% confidence intervals for each analytical approach 
under each scenario. Confidence intervals were calculated 
from the standard deviation of the risk ratio across the 500 
replicates. We also calculated relative bias as the differ-
ence between the average estimated risk ratio and the true 
risk ratio divided by the true risk ratio on the log scale. 
Confidence intervals of the relative error were calculated 
using the Monte Carlo standard error estimate (16). For 
full simulation and analytical code, see Web Appendix 1 
(available at https://doi.org/10.1093/aje/kwaa283).

RESULTS

Table 2 contains the distribution of confounders and key 
variables in the cohort of treatment A initiators as well as the 
treatment B comparator population in scenario 1 before and 
after applying time- and treatment history–stratified SMR 
weights. On average, direct switchers started treatment A 
after 1.36 years, while delayed switchers started treatment 
A after 2.46 years. Distributions for the other scenarios

https://doi.org/10.1093/aje/kwaa283


Table 3. True and Estimated Risk Ratios, as Well as Relative Bias, for Each Analytical Method When Comparing Treatment A With Treatment
B in Each Scenario

Result
Scenario 1a Scenario 2b Scenario 3c Scenario 4d Scenario 5e Scenario 6f Scenario 7g

RR 95% CI RR 95% CI RR 95% CI RR 95% CI RR 95% CI RR 95% CI RR 95% CI

True risk ratioh 1.00 1.33 1.00 0.66 1.48 1.33 1.33

Crude 1.29 1.22, 1.36 2.06 1.93, 2.19 1.49 1.54, 1.74 1.14 1.08, 1.21 1.91 1.82, 2.00 1.64 1.54, 1.74 1.57 1.47, 1.67

SMRtime 1.00 0.94, 1.07 1.57 1.45, 1.69 1.12 1.36, 1.54 0.79 0.74, 0.84 1.48 1.40, 1.57 1.44 1.36, 1.54 1.38 1.30, 1.47

SMRtreat 1.00 0.93, 1.07 1.33 1.22, 1.45 1.00 1.24, 1.44 0.66 0.62, 0.70 1.48 1.39, 1.58 1.33 1.24, 1.44 1.33 1.24, 1.43

Bias 95% CI Bias 95% CI Bias 95% CI Bias 95% CI Bias 95% CI Bias 95% CI Bias 95% CI

Crude 1.29 1.22, 1.46 1.54 1.45, 1.65 1.49 1.16, 1.31 1.74 1.64, 1.84 1.29 1.23, 1.35 1.23 1.16, 1.31 1.18 1.11, 1.25

SMRtime 1.00 0.94, 1.07 1.18 1.09, 1.27 1.12 1.02, 1.16 1.20 1.13, 1.28 1.00 0.94, 1.06 1.09 1.02, 1.16 1.04 0.97, 1.10

SMRtreat 1.00 0.93, 1.07 1.00 0.92, 1.09 1.00 0.93, 1.08 1.00 0.94, 1.06 1.00 0.93, 1.07 1.00 0.93, 1.08 1.00 0.93, 1.07

Abbreviations: CI, confidence interval; RR, risk ratio; SMR, standardized morbidity ratio; SMRtime, with SMR weights based on time-stratified
propensity scores; SMRtreat, with SMR weights based on treatment history–stratified propensity scores.

a Time since new use of B associated with the outcome.
b Cumulative exposure to B also associated with the outcome.
c Time off treatment associated with the outcome.
d Recently restarting treatment B associated with the outcome.
e Recently directly switching to treatment A associated with the outcome.
f Delayed switching is rare.
g Delayed switching and restarting are both rare.
h From counterfactuals across all 500 replicates.

bias reduced further in scenario 7 when restarting treatment
B was also made less common.

DISCUSSION

With the ACNU design, epidemiologists estimate the dif-
ference between initiating treatment A and initiating treat-
ment B in new users naive to both treatments A and B. The
prevalent new-user design is a useful approach to asking
other causal questions, like “what is the effect of switching in
those that directly switch from treatment B to treatment A?”
and “what would have happened to those who had a delayed
switch to treatment A from treatment B had they instead
restarted treatment B?” These questions are important for
public health.

Because of potential heterogeneity in treatment history
among switchers, matching on or stratifying by time since
initiation alone might not always be sufficient to remove con-
founding bias. In our simulations, when cumulative expo-
sure to treatment B (within a treatment episode or overall),
recently restarting treatment B, or time spent off treatment
A or B was associated with the outcome, stratifying on time
alone resulted in bias. In such cases, matching, stratifica-
tion, or confounder adjustment techniques that incorporate
additional aspects of treatment history are needed. These
analyses are less necessary when delayed switching to A
and restarting B are rare, and when the only treatment his-
tory–related characteristic related to the outcome is recently
switching to treatment A, analyses conditioning on time can
be unbiased and more precise.

Because we were predominantly interested in demonstrat-
ing how and when time-stratified propensity scores might
generate biased effect estimates, we have examined sim-
plified scenarios. First, our presented results are limited
to estimating risk ratios with limited follow-up. We have
chosen to present risk ratios because the causal interpretation
of a hazard ratio in these scenarios might be complicated due
to administrative censoring (e.g., delayed switchers cannot
exist until the third time period) and the lack of proportional
hazards. Additionally, we used SMR weighting to ensure a
constant target population across simulations and increase
simulation speed. It is possible that propensity score match-
ing might behave slightly differently, particularly in small
data sets when there are several design choices that must be
made (e.g., to match with or without replacement). We hope
to see future research specifically exploring the impact of
these design decisions on the bias of effect estimates, and
hope that our code can be used to explore impacts of other
factors like the magnitude of the effect of treatment A and
treatment B on the outcome.

Second, we conducted an “intention to treat” analysis
where individuals were not censored at the time of treatment
switch. Choice of analytical approach between “intention
to treat” versus “per protocol” in comparative effectiveness
research has important implications on the intended causal
parameter (18). In a “per-protocol” analysis, the estimated
treatment effect is the joint effect of initiating treatment A
and remaining on treatment A compared with continuing/
restarting treatment B and remaining on treatment B. When
we are interested in the “per-protocol” effect, individuals



Table 4. Standard Error and Mean Squared Error of Each Analytical Method When Comparing Treatment A to Treatment B in Each Scenario

Result
Standard Error

Scenario 1a Scenario 2b Scenario 3c Scenario 4d Scenario 5e Scenario 6f Scenario 7g

Crude 0.028 0.032 0.029 0.028 0.025 0.031 0.031

SMRtime 0.032 0.039 0.031 0.032 0.029 0.032 0.031

SMRtreat 0.036 0.043 0.034 0.033 0.034 0.038 0.036

Mean Squared Error

Scenario 1a Scenario 2b Scenario 3c Scenario 4d Scenario 5e Scenario 6f Scenario 7g

Crude 0.0649 0.1921 0.1590 0.3057 0.0648 0.0441 0.0271

SMRtime 0.0010 0.0283 0.0131 0.0338 0.0009 0.0079 0.0023

SMRtreat 0.0013 0.0019 0.0011 0.0011 0.0012 0.0015 0.0013

Abbreviations: SMR, standardized morbidity ratio; SMRtime, with SMR weights based on time-stratified propensity scores; SMRtreat, with
SMR weights based on treatment history–stratified propensity scores.

a Time since new use of B associated with the outcome.
b Cumulative exposure to B also associated with the outcome.
c Time off treatment associated with the outcome.
d Recently restarting treatment B associated with the outcome.
e Recently directly switching to treatment A associated with the outcome.
f Delayed switching is rare.
g Delayed switching and restarting are both rare.

(20) leveraging observed real-world relationships between
covariates, switching, exposure, and the outcome would give
a better sense of the magnitude of the bias and precision
trade-off between the time-stratified and exposure history–
stratified designs. This might be especially important when
some observed confounders are, themselves, proxies for
treatment history, and can at least partially close those con-
founding paths.

There are some other points worth considering with
respect to the causal questions that can be examined by
the prevalent new-user design. Consider patients who have
taken the comparator in the past but have discontinued it
either temporarily or permanently because of emergent
contraindications. The actual periods of time when these
individuals are taking neither treatment A nor treatment B
were not included as potential comparators for the treatment
A initiators in our analysis—only the periods when they had
once again started using treatment B. This approach aligns
the causal question more with the ACNU design, but there
might be instances in which including these periods of time
produces estimates for a treatment effect that are more useful
for public health.

For example, patients who discontinue the comparator
might have done so for reasons related to onerous side
effects or hypersensitivity reactions. If these patients initiate
the treatment of interest, restarting the comparator might
not be a realistic counterfactual, and finding matches or
weighted equivalents of these individuals would be very
difficult. In such circumstances, a more relevant question
could be “What if those who initiated the treatment of
interest had instead not initiated it?” Such a question is not
addressable using a conventional ACNU approach but is

are censored at treatment stopping or switching, and anal-
yses should account for potential selection bias (19).

Additionally, we had large data sets with a simple treat-
ment history value and only 3 confounders, making the 
stratification and fit of the SMR-weighted models straight-
forward. Just as time-conditional propensity-score methods 
have to coarsen data to enable model estimation (either by 
combining days into months or switching to number of pre-
scriptions used), any realistic implementation of treatment 
history–based methods will have to do the same, particularly 
when there is a large number of covariates. Future method-
ological work examining when these obstacles indicate use 
of a time-conditional propensity score and conducting sen-
sitivity analyses for unmeasured confounding by treatment 
history would be informative.

Our primary simulations also used static (i.e., non–time-
varying) and independent confounders. To evaluate whether 
our results were robust to the presence of a confounder that 
changed over time and was affected by the treatment and 
other confounders, we created a second set of simulations 
with such a covariate (for code, see Web Appendix 2). Given 
the intention-to-treat nature of our analysis and the compar-
atively small number of confounders, the results were very 
similar (see Web Table 3).

Finally, our simulations were designed to demonstrate 
potential biases rather than give plausible magnitudes of 
potential bias and precision; given the number of variables 
involved (sample size, overall trend of switching, delayed 
switching, restarting in the population, how confounders 
impact continuing treatment, overall prevalence of use, etc.), 
these quantities are likely to be very specific to the outcomes 
and treatments under study. Future plasmode simulations



still potentially critical for public health. Analytically, this
might be achievable by allowing patients who are not on
any treatment into the data set of potential comparators, but
combining or contrasting these results with the results from
an ACNU analysis would be highly inappropriate.

The prevalent new-user design can answer other important
public health questions that cannot be addressed with an
ACNU design, for example, questions related to the safety
and effectiveness of drug discontinuation and deprescribing.
Rather than looking at treatment A and treatment B, one
can instead focus on matching those discontinuing treatment
B to those who stay on treatment B based on their overall
treatment history and time since initiating treatment B. Pro-
vided that key confounders are measured and included in the
propensity score model, the focus can shift from questions
like “what if everyone in the population taking treatment B
discontinued it?” to “what would have happened to those
that discontinued treatment B had they instead remained on
treatment?” A similar argument can be made for using the
prevalent new-user design to study the effect of augmenting
therapy.

CONCLUSIONS

The prevalent new-user design is a tool to answer new and
important epidemiologic and public health questions. When
conducting these studies, it is important that researchers
clearly articulate the effect being studied and acknowledge
how it differs from an ACNU study of the same treatments,
especially when directly comparing study results. Overall,
the prevalent new-user design can provide useful estimates
of treatment effects that are not restricted to new users.
However, researchers should consider matching, stratifying,
or adjusting for additional treatment-related characteristics
beyond time since starting the comparator when the outcome
might be a complex function of disease progression and prior
treatment.
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