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Abstract 

The laminar flow for a backwards facing step is studied. This work was initially 
part of the work presented in [1]. In that work low-Reynolds number effects was stud­
ied, and the plan was also to include laminar flow. However, it turned out that when the 
numerical predictions of the laminar flow (Re= 118) was compared to the experiments 
of Restivo [2], we found a large discrepancy. We believe that there is something wrong 
in that experimental investigation . To support that conclusion, we present in this re­
port prediction of other backward facing flow configurations, where we show that our 
predictions agree well with experimental data. 

1 Configuration 

The configuration is shown in Fig. 1. The Reynolds number is defined as 

Re= Ubulkh. 
V 

The boundary conditions at all walls are U = V 
streamwise gradient for U, i.e. 

0. At the outlet we have used zero 

au = 0 ox 
which, from continuity, gives V = 0. A parabolic inlet profile is used 

U = 6UbulkfJ(l - y) 

_ y- (H- h) 
y= 

h 

(1) 

·This work was carried out during the author's stay at Dept. of Building Technology and Structural Engi­
neering, Aalborg University in Autumn 1997. 
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Figure 1: Configuration. 
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Figure 2: Experimental reattachment length XR as a function of inlet Reynolds number 
Re [2] . 
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Figure 3: Contours of stream function. Re = 195. h/ H = 0.516 
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Figure 4: Contours of stream function. Re = 50. h/ H = 1/4. a) Hybrid scheme, 80 x 40 
cells. b) QUICK scheme, 160 x 80 cells. 

2 Backward-Facing Flow with h/ H = 0.516 

Armaly et al. [3] have presented an experimental investigation of backward-facing flow. 
The ratio of the inlet height and the step is larger (hj H = 0.516) than in the Restivo 
configuration. They report that the flow is laminar up to Re = 600. For 600 < Re < 3000 
the flow is transitional, and for higher Re number the flow is fully turbulent. Even if the 
flow is laminar for Re < 600, they found it to be three-dimensional for 200 < Re < 3000. 

This flow has been computed using a 160 x 80 equidistant mesh and a QUICK scheme. 
The extent of the computation domain in the x direction is 10H. The streamlines for Re = 
195 are shown in Fig. 3 and the predicted re-attachment point is located at XR = 4.3 which 
is in agreement with experiments [3] (XR,exp = 4.3) and other computations (see Ref. [4]). 
In the present computations a small recirculation bubble was found along the upper wall 
for 4 < xj H < 5.2; it was very thin however (only one or two cells). 

3 Backward-Facing Flow with h/H = 1/4 

In Fig. 4 the contours of the predicted streamlines are shown. Two equidistant meshes 
have been used. A 80 x 40 mesh using the Hybrid scheme gives XR/ H = 2.55 and a 160 x 80 
mesh employing QUICK gives xR/ H = 2.47. This agrees well with the predicted value 
reported by Thangam and Knight [5] who report xR/ H ~ 2.5. 
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4 Backward-Facing Flow with h/ H = 1/6 

For this configuration the grids are equidistant in the x direction. In the y direction cells 
with a constant spacing dy1 is used for the inlet, and dy2 is used below the inlet. Seven and 
fourteen cells are used to cover the inlet for the coarse and fine mesh, respectively. 

In Fig. 5 the streamline contours are shown for Re= 50. The extent of the the recircula­
tion region is similar to that in Fig. 4. When the Re number is increased, the recirculation 
region grows larger, Figs 6 and 7. 

For Re = 50 the difference between the predictions obtained with the different grids is 
small. For Re = 100 the size of the predicted recirculation bubble near the ceiling is larger 
with the finer grid. The size of the bubble below the inlet, however, does not differ that · 
much. For Re = 118 the extent of the computation domain is increased to 12H. As can 
be seen from Fig. 7 the size of the recirculation bubble near the ceiling and of the bubble 
near the floor increases slight1y, compared to Re = 100. In Fig. 9 the sensitivity to the inlet 
velocity profile is investigated. A parabolic inlet profile is compared to the experimentally 
measured profile (see Fig. 8), and as can be seen from Fig. 9 the difference is rather small . 

Using the fine grid the predicted length of the recirculation region in Figs. 7 and 9 
(xR/ H = 3.92 and 3.76, respectively) is considerably shorter than that reported by Restivo [2, 
6], whose experimental value xR/h is between 30 and 45, i.e 6 < XR/(H - h) < 9 (5 < 
XR/ H) < 7.5) . The value shown in Fig. 2 (taken from Re£ [2]) is xj(H- h) = 6.42. 

The predicted velocity profiles are compared with experiments in Fig. 11. They agree 
fairly well up to x/ h = 15, but then there is a large discrepancy. It can be seen that at 
.1:jh = 20 a recirculation bubble appears near the ceiling in the predictions, which is not 
present in the experiments. Such a separation bubble is indeed present in the predictions 
in Fig. 3 and also in the measurements [3]. 

In Fig. 10 the predicted streamlines for Re = 160 are presented. A slightly longer 
computations domain was used (14H). No convergence was obtained with QUICK on the 
fine mesh, which probably indicates that the flow starts to get transitional and/or three­
dimensional. As can be seen both the recirculation bubble at the floor and at the ceiling 
gets slightJy larger. 

5 Conclusions 

We have computed laminar flow in a backward-facing step for different configurations. 
Good agreement with experiments is obtained for h/ H = 0.516. Good agreement is also 
obtained with other predictions in the literature for h/ H = 1/4. However, for h/ H = 1/6 
the agreement with experiments of Restivo [2] is very poor. Thus we believe that the exper­
iments are in error. One reason could be that the configuration in the experimental setup 
was too small . The stream wise extent was 9H and the predicted extent of the recirculation 
bubble near the ceiling is approximately 6H at Re = 118 and 7 H at Re = 100. 
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Figure 5: Contours of stream function. Re = 50. h/ H = 1/ 6. a) Hybrid scheme, 80 x 42 
cells. b) QUICK scheme, 160 x 84 cells. 
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Figure 6: Contours of stream function. R e = 100. h/ H = 1/6. a) Hybrid scheme, 80 x 42 
cells. b) QUICK scheme, 160 x 84 cells. 
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Figure 7: Contours of stream function. R e = ll8. h/H = 1/ 6. a) Hybrid scheme, 80 x 42 
cells. b) QUICK scheme, 160 x 84 cells. 
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Figure 8: Inlet..profiles. SolidJines: prescribed inlet U profiles in the predictions; markers: 
experiments. Re = 118. h/ H = 1/ 6. 160 x 84 cells. a) Interpolated profile from experiments. 
b) Parabolic profile. 
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Figure 9: Contours of stream function . Re = 118, h/ H = 1/6, Hybrid scheme, 160 x 84 cells . 
a) Prescribed inlet profiles according to experiments (see Fig. 8 a ). b) Parabolic inlet profile 
(see Fig. 8 b). 
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Figure 10: Contours of stream function . R e = 160, h/ H = 1/ 6. Hybrid scheme. a) 85 x 42 
cells. b) 169 x 84 cells. 
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