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ABSTRACT 
In many new buildings the indoor air 

quality is affected by emissions of volatile 
organic compounds (VOCs) from building 
materials. The emission process may be 
controlled either by diffusion inside the 
material or evaporation from the surface but 
it always involves mass transfer across the 
boundary layer at the surface-air-interface. 

Experiments at different velocity 
levels were performed in a full-scale 
ventilated chamber to investigate the 
influence of local airflow on the evaporative 
emission from a surface. The experiments 
included velocity measurements in the flow 
over the surface and measurements of 
chamber air concentrations. 

The results show that the emission, 
expressed in terms of the mass transfer 
coefficient, increases with velocity for fixed 
temperature, relative humidity and air 
exchange rate. This emphasises the 
importance of testing materials at the conect 
velocity and turbulence level in order to 
obtain the actual emission rate for a given 
product. 

KEYWORDS 
Full-scale experiments, emiSSIOn of 

VOCs, CFD 

INTRODUCTION 
Emissions of volatile organic 

compounds (VOCs) from building materials 
such as paint, linoleum, carpets, sealant and 
lacquer affect the indoor air quality in many 
new buildings. People exposed to the VOCs 
may report a decreased acceptability of the 

indoor air quality, irritation of mucous 
membranes and general symptoms such as 
fatigue and headache. 

The emissions occur in a chainlike 
process: diffusion inside the emitting 
material; crossing the surface-air-interface; 
transport across the mass transfer boundary 
layer; and mixing into the bulk air. In any 
particular material one of these processes 
may be rate controlling. For freshly applied 
liquid films the emission is generally 
controlled by evaporation from the surface 
and depends on local airflow parameters 
such as temperature and velocity. 

Assuming that emission of VOC's 
from a surface is limited by molecular 
diffusion through the boundary layer at the 
surface-air-interface, Fick's law describes 
the emission: 

where E = emission rate 
kc = mass transfer coefficient 
Cs = concentration at surface 
C = concentration in bulk air 

(1) 

The mass transfer coefficient, kc , can 
also be expressed in terms of the molecular 
diffusion coefficient, D, and the thickness of 
the diffusion boundary layer, OD, where kc = 

Dloo. 
For a freshly applied surface the 

surface concentration is equal to the 
equilibrium vapour pressure, Cv, and as the 
surface ages the concentration decreases. 
The surface concentration is assumed to be 
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proportional to the amount of VOC 
remammg m the source (Tichenor et al. 
1993): 

where Cv = vapour pressure at surface 
M = mass remammg m source 
Mo = initial mass in source 

(2) 

In a room or chamber the 
concentration of VOC in the air changes as 
VOC is emitted from the surface. Assuming 
that the VOC emission is limited by 
molecular diffusion through ~the boundary 
layer at the surface-air-interface, the mass 
balance equation for VOC in the chamber 
atr IS 

V-=Ak C--C -QC dC ( M J 
dt c v Mo 

(3) 

where V = chamber volume 
I =time 
A =source area 
Q = air flow rate 

The change of mass in the source 
equals minus the emission rate and thus the 
mass balance for VOC in the source is given 
by: 

dM =k (c-c M] 
dt c v Mo 

(4) 

Equations 3 and 4 provide the full 
mass balance of the VOCs. 

In analogue to heat transfer the mass 
transfer coefficient can be described by a 
dimensionless parameter: 

where ShL =Sherwood number 
L = characteristic length 

(5) 

D = molecular diffusion coefficient 

2 

From boundary layer theory (Sissom 
and Pitts 1972) the Sherwood number for 
laminar flow past a flat plate can be approxi
mated by 

and for turbulent flow 

where ReL = Reynolds number (uL/v) 
Se = Schmidt number (vi D) 
u =velocity 
v = kinematic velocity 

(6) 

(7) 

The mass transfer coefficient is thus a 
function of ReL and varies with u112 for lami
nar flow and u415 for turbulent flow. 

Zhang et al. (1996) and Zhang and 
Haghighat ( 1996) have studied the effect of 
air velocity and turbulence on VOC 
emissions from surfaces in small-scale test 
chambers. As a difference in scale may lead 
to different emission rates (see Topp et al. 
1997) the present work focuses on 
experiments m a full-scale ventilated 
chamber. 

It has been the objective to investigate 
the influence of local airflow over an emit
ting surface through full-scale experiments. 
The experiments are compared qualitatively 
with results from Computational Fluid 
Dynamics (CFD) (Topp et al. 1997). 

METHODS 
Experiments were performed in a full

scale ventilated chamber with dimensions, 
length, width and height respectively, 4.0 m 
by 2.8 m by 2.6 m and a volume of 30 m3 

(see figure 1) (Howard et al. 1995). 
Four slots provide supply air to the 

chamber, one at the foot of each wall. The 
chamber has been modified so that three of 
the inlet slots direct the flow upward along 
the wall and the fourth inlet slot directs the 
flow along the floor. The return is located at 
the centre of the ceiling. 
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Figure 1 Outline of full-scale chamber. 

The experiments were performed at. 
two different velocity levels with tempe
rature and relative humidity kept fixed. In 
all experiments the air exchange rate was N 
= 1 h-1 and the amount of recirculating air 
was changed to obtain different velocity 
levels in the chamber. Two experiments 
were performed at a total supply flow rate of 
N* = 5 h-1 (recirculation rate of 4 h-1) and 
two experiments were performed at N* = 2 
h-1 (recirculation rate of 1 h-1) (see table 1). 

Table 1 Experiment parameters. 

Experiment N N* Mo 
(h-1) (h-1) (g/m2) 

1 1 5 44.0 
2 1 5 39.0 
3 1 2 35.7 
4 1 2 34.8 

In each of the experiments, a wood 
board of 1.48 m2 (1.22 m by 1.22 m) was 
placed at the centre of the chamber floor. 
After conditioning the wood board to the 
test conditions, VOC was applied to the top 
surface. The VOC applied was pure decane 
(C 10H22), with equilibrium vapour pressure 
Cv = 12115 mg/m3 and molecular diffusion 
coefficient D = 0.0207 m2/h. Table I shows 
the amount of decane applied in each 
experiment. 

The concentration of decane in the 
chamber air was determined by gas chroma
tography. Chamber air was pulled through 
sorbing traps at a known flow rate using 
mass flow controllers and a vacuum pump. 
Analytes were extracted from the traps with 

3 

carbon disulfide (CS2), and the con
centration of decane in the extract was de
termined by injecting a subsample of the 
extract onto the column of a gas chromato
graph equipped with a mass selective 
detector. 

Smoke tests showed that the flow over 
the wood board was parallel to the surface. 
Velocity profiles were measured to obtain 
detailed knowledge of the boundary layer 
flow over the wood board. The profiles were 
measured with a hot-wire anemometer at the 
centre of the wood board and at 250 mm 
east, west, north and south of the centre 
respectively (see figure 2). 

South 
__.. __.. 
__.. 

® __.. 
~ ® ® ® 

__.. 
~ ~ 

~ 
® 

~ 

~ ~ 

North 

Figure 2 Outline of locations for measu
ring velocity profiles over the 
wood board. 

RESULTS 

Velocity 
The velocity profiles over the wood 

board are shown in figure 3 and 4. As 
expected, the velocity level, i.e. the 
maximum velocity decreases with distance 
from the inlet. The velocity levels at the 
north and south locations though, are much 
different indicating that the flow is not 
symmetric around the board centerline. The 
difference is increased with the flow rate. 

For N* = 2 h-1 the maximum velocities 
occur approximately 3 cm above the surface 
and 2 cm above the surface for N* = 5 h-1. 
As the flow rate is decreased the maximum 
velocity in center, east and west locations 
drops accordingly (see table 2). 



Table 2 Maximum velocities over the 
wood board. 

N* Center East West North South 
(h-1) (rnls2 (rnls2 (rnls) (rnls) (rnls) 

2 0.27 0.32 0.22 0.23 O.I7 
5 0.78 0.86 0.64 0.9I 0.29 
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Figure 3 Velocity profiles over the wood 
board for N* = 2 h-I _ 
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Figure 4 Velocity profiles over the wood 
board for N* = 5 h-1. 
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Concentration 
The measured chamber concentrations 

over time are shown in figures 5 and 6 as 
well as the prediction from the mass transfer 
model developed by Tichenor et al. ( 1993 ). 

The chamber concentration reaches its 
maximum after approximately 0.5 h for N* 
= 2 h-I and after 1 h for N* = 5 h-I_ Then the 
concentration drops rapidly within I 0 h. 

In the early stage of the emission 
process there is a significant difference 
between concentrations from one velocity 
level to another but after approximately 2 h 
the concentration levels are very similar. 

In general, there is good agreement 
between the experimental data and the 
model prediction but the model seems to 
predict lower peak concentrations . 

Concentrations from experiments with 
the same total supply flow rate are very 
similar although there is a 1 0 % difference 
between the peak concentrations for N* = 2 
h-I_ For N* = 5 h-I there is a difference of 12 
% in the amount of VOC applied but the 
difference in concentration is not as 
significant. 

Mass transfer 
The emission rate can be conveniently 

expressed in terms of a mass transfer 
coefficient (equation I). In the present work 
the mass transfer coefficient has been 
obtained through non-linear regression by 
fitting the experimental data to the solutions 
of equations 3 and 4 (see table 3). 

Table 3 Mass transfer coefficients from 
non-linear regression. 

Experiment kc Std. Dev. Std. Dev . 
(m/h) (m/h) (%) 

I I 0.29 0.84 8.2 
2 11.07 1.29 I1.7 
3 4.01 0.19 4.7 
4 3.64 0.2I 5.8 

The standard deviations from the 
regressions are within I2 %, which is 
satisfactory. The mass transfer coefficients 
from experiments with identical flow rates 
agree within I 0 %. 
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Figure 5 Measured concentration in the chamber air and model predictions 
(Tichenor et al. 1993) for N* = 5 h-1
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Figure 6 Measured concentration in the chamber air and model predictions 
(Tichenor et al. 1993) for N* = 2 h- 1

• 

For comparison of mass transfer 
coefficients from experiments with different 
velocity levels the average of the maximum 
velocities in center, north and south 
locations is used as reference velocity (see 
figure 7). 

Topp et al. (1997) performed a series 
of CFD calculations on emission in a full
scale ventilated room and a test chamber 
using a Low Reynolds Number (LRN) 

5 

formulation of the k-£ turbulence model. 
Results from the full-scale room with the 
pollutant source located at · the ceiling and 
the test chamber are included in figure 7. 

The experiments in the present work 
were performed at Schmidt number Se = 2.6 
while Se = 1.0 in the CFD calculations by 
Topp et al. (1997) and thus only allows for 
qualitative comparison. 

From the figure it appears that 
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increasing the velocity yields a proportional 
increase in mass transfer coefficient. 

12 
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Figure 7 Relation between mass transfer co
efficient and velocity. CFD results 
from Topp et al. (1997) included. 

DISCUSSION 
Experiments were performed in a full

scale ventilated chamber at two different 
velocity levels to investigate the effect of 
local airflow on the evaporative emission 
from a surface. 

The results agree with the model 
predictions by Tichenor et al. (1993) and 
show that after reaching its maximum the 
chamber concentration drops rapidly within 
1 0 h, which is consistent with the results 
obtained by Chang and Guo (1992). They 
studied the emission characteristics of a 
mixture of organic compounds, including 
decane, and concluded that the first phase of 
the emission process is mainly controlled by 
evaporation from the surface. After that the 
decay rate slows down, as diffusion 
transport inside the material becomes the 
controlling mechanism of the emission 
process. 

Two experiments were performed at 
each velocity level and the results are 
consistent indicating a high level of 
repeatability. 

6 

It was found that the velocity level in 
the boundary layer flow over the surface has 
a strong impact on the mass transfer 
coefficient as the mass transfer coefficient 
increases in proportion to the velocity. This 
emphasises the importance of testing 
materials at the correct velocity and 
turbulence level to overcome scaling 
problems when transferring results from a 
small-scale test chamber to a full-scale 
ventilated room. 

A source of error is introduced as the 
mass transfer coefficient has been obtained . 
from a best-fit method. The standard 
deviation on the mass transfer coefficient is 
in all experiments less than 12 %. 
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