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Abstract—In active diagnosis the system is excited by a signal
that aims to uncover latent errors. However, the diagnosis
signal may destabilize the system, in particular in an open-
loop structure, but also in a closed-loop structure, because the
nominal controller is designed to stabilize the nominal system.
This paper presents a method for active diagnosis of Mixed
Logical Dynamical (MLD) systems where instability is avoided:
The diagnoser looks for steady states of both the normal and
faulty system which are reachable by the same input such that
the corresponding outputs are distinguishable from each other.
The input is applied to the system and the condition of the system
is determined based on the output. Thus this excitation preserves
stability. The method can be useful in a design phase to find a
sensor allocation which guarantees diagnosability. The method is
tested on the two tank benchmark example.

I. INTRODUCTION

In a complex control system there are many components
with strong interaction between them. Hence the overall sys-
tem performance depends on the individual performance of
components. A fault in a single component may, therefore,
degrade the overall performance of the system and may even
lead to unacceptable loss of system functionality. Thus fault
diagnosis is of crucial importance in automatic control of
complex systems.

There are two main categories of diagnosis methods: passive
and active. In passive diagnosis, the input and output of the
system is observed by the diagnoser. Based on the observation
the diagnoser decides whether a fault has occurred or not. The
input is generated by an external input or by the controller.

In Active Fault Diagnosis (AFD) the diagnoser generates an
input, which excites the system, to decide whether the output
represents a normal or a faulty behavior and if possible decide
which fault occurred. The generated input must perturb the
system from the operation point but at the same time not lead
the system to instability or to an unacceptable performance.

The area of active diagnosis has attracted a lot of attentions
in recent years. See papers [13], [4], [14], [12], [5], [11], [9],
[15], and books [21], [3]. Most of the available methods are
in open-loop configuration and for linear systems. In [19]
a method for active diagnosis of hybrid system based on
reachability analysis is proposed and extended for automatic
sensor assignment in [17]. [18] proposes a model predictive
method for active diagnosis of hybrid system using Mixed

Logical Dynamical (MLD) framework. A qualitative event-
based approach for active diagnosis of hybrid systems is
presented in [6] where diagnosis is improved by executing
or blocking controllable events. [11] and [9] present a method
for active diagnosis of parametric faults in closed loop systems
based on YJKB parameterization.

Stability is an important issue in the fault tolerant control
systems. When a fault occurs, it takes time for the fault
detection module to detect the fault and even when it is
detected it needs some time to isolate and identify the fault.
During this period the system is working in a faulty condition.
For a closed-loop system, because the controller is designed
for the nominal system the performance of the closed loop
system in this period is dependent on the severity of the fault
and the robustness of the nominal controller. The controlled
system may become unstable in this period [22]. The faulty
system may not be stabilizable with the nominal controller and
the time window for an unstable system , e.g. double inverted
pendulum, may be too small to detect and isolate the fault and
then reconfigure the loop [10].

For active diagnosis the stability issue is more critical
because we are exciting the system with the aim of detecting
the fault. When the AFD starts the diagnosis it is not known
whether the system is in the normal or the faulty condition.
A stability guaranteeing method for diagnosis of additive,
parametric and multiplicative faults for linear systems based
on observer parameterization is proposed in [16].

In [18] a model predictive method is proposed for active
diagnosis of MLD system. The problem is reformulated as a
mixed integer programming problem. The objective function
of the optimization problem is to make an observable dif-
ference between predicted outputs of the normal system and
the faulty systems fulfilling constraints imposed by required
performance during fault detection. While the computed input
sequence diagnoses the fault, it may destabilize the system.

In this work a different approach is used. The system is
moved from its current states to other steady states. These
steady states belong to either the normal system or a faulty
system which are reachable by the same input and the cor-
responding steady outputs are distinguishable. The fault is
diagnosed based on the output measurement. Because the
system is moving to steady state, regardless of its condition,
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injected input does not destabilize the system. When it is not
possible to find a diagnosis signal that separates the output of
the normal system from that of a faulty system, the diagnosis
using separating output may not be possible. In this case this
approach could be used as a pre-analysis for deciding which
outputs must be measured to have the capability of diagnosis
using steady outputs.

The structure of the paper is as follows. In Section 2
preliminaries and problem formulation are explained. Section
3 explains the proposed algorithm. In section 4, the method is
tested on the two tank example. And finally conclusions and
future investigation are discussed in Section 5.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section we first introduce the MLD framework and
then the active diagnosis problem is formulated.

A. Mixed Logical Dynamical Systems

For modeling of hybrid systems, the mixed logical dynam-
ical (MLD) framework proposed in [1] is used. The equations
describing an MLD system are as follows:

x(t + 1) = Ax(t) + B1u(t) + B2δ(t) + B3z(t) (1)
y(t) = Cx(t) + D1u(t) + D2δ(t) + D3z(t) (2)
E2δ(t) + E3z(t) ≤ E1u(t) + E4z(t) + E5 (3)

where x ∈ R
nc ×{0, 1}nl are states, u ∈ R

mc ×{0, 1}ml are
the inputs, y ∈ R

pc × {0, 1}pl are the outputs. δ ∈ {0, 1}rl

and z ∈ R
rc are auxiliary binary and continuous variables.

The MLD framework has the capability of modeling various
classes of hybrid systems such as PieceWise Affine (PWA)
systems, linear systems with piecewise linear output functions,
linear systems with discrete inputs or with qualitative outputs,
bilinear systems, and finite state machines in which a linear
time invariant system generates the events [1].

Equivalence of MLD systems with other classes of hybrid
systems such as PWA systems, linear complementary (LC)
systems, extended linear complementary (ELC) systems, and
max-min-plus-scaling (MMPS) systems under some assump-
tions is shown in [7].

Using the MLD framework different problems such as
optimal control, state estimation, etc. can be reformulated as a
mixed-integer programming problem and then can be solved
using mixed integer programming techniques.

B. Problem Formulation

In model-based passive diagnosis, the diagnoser receives
a sequence of input/output measurements. A model of the
normal system B0 and different models of the system sub-
ject to different faults, namely B1, . . . ,Bn. are given. Then,
the diagnoser checks the consistency of the measured I/O
sequence with given model. As explained in [2], the output of
the diagnoser is a fault candidate index f ∈ 1, . . . , n such that
the observed I/O sequence is consistent with the corresponding
behavior Bf [2]. In this case the input is given by an external
system.

The structure of an active diagnoser in depicted in Fig. 1.
It consists of a generator and a diagnoser. The generator
generates an input sequence U = 〈u(0), . . . , u(m)〉 which
is applied to the system and then index f is determined by
the diagnoser through the observation of the applied input
sequence and the output sequence Y = 〈y(0), . . . , y(m)〉.

Plant
yu

Input
Generator 

if
Diagnoser

Fig. 1. Structure of an Active fault diagnoser system

The active diagnosis problem can be stated as follows:
Problem 1 (Active diagnosis problem): Given the set B =

{B0, . . . ,Bn} describing behaviors of the system with no fault
and subject to faults {f1, . . . , fn}, find a sequence of inputs
U and i ∈ {0, . . . , n} such that (U, Y ) belongs only to Bi.

If the input sequence exists, i.e. if the system is diagnosable
then we can look for the optimal solution, where optimality
can be interpreted in different senses.

The main advantage of active diagnosis is when different
behaviors of the system overlap, see Fig. 2. The faultless
behavior and the behavior of the system subject to the fault f1

are in the sets B0 and B1 repectively. As long as the observed
I/O pair uniquely belongs to the set B0 or B1, such as point
A or B, it can be decided whether the system is faulty or not.
But if the observed pair belongs to the intersection of B0 and
B1, like C, it is impossible to diagnose the fault. The main
idea of the proposed algorithm is to generate an input signal
to move the system from C to an area which belongs uniquely
either to the set B0 or B1.

0B

1B  

�A 

�B 

�C 

U Y�  

Fig. 2. Input-Output Space

III. THE PROPOSED ALGORITHM

It is assumed that the initial states of the system are in the
area in which the faulty behavior and the normal behavior
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overlap. If this is not the case the fault could be diagnosed by
means of a passive diagnoser. It is assumed that the model of
the faulty system and the normal system is given in MLD form
as in (1)-(3) with subscript 0 indicating the normal system and
i indicating the system equation for the system subject to fault
fi.

The diagnosis aims at finding a sequence of inputs such
that the outputs based on the different dynamics becomes
distinguishable from each other. In other words:

Yi �= Yj , ∀ i, j ∈ {0, . . . , n}, i �= j (4)

This difference between yi(k) and yj(k) should be observable
which means:

|yi(T ) − yj(T )| ≥ d for all i, j ∈ {0, . . . , n}, i �= j (5)

or if a relative separation is used: |yi(T ) − yj(T )| ≥ d·|yi(T )|,
where T is the length of the sequence and d is a separation
distance that is dependent on the level of noise.

Satisfaction of the above constraints, (4) and (5), is actually
isolation for every single fault. Isolation for every single fault
is very demanding and may not be necessary. One can consider
the following scenarios which are less demanding:

• Fault detection: In this case, the aim is to find if the
system is working normally or it is faulty. We are not
interested to detect which fault has occurred. Therefore
(4) can be relaxed as:

|y0(T ) − yi(T )| ≥ d, ∀ i ∈ {1, . . . , n}, (6)

• Fault isolation for a set of faults: It is possible that a set
of faults have the same impact on the functionality of the
system and also require the same fault accommodation
or control reconfiguration actions. Therefore it is not
required to isolate these faults. Moreover it could be
the case that these faults cannot be isolated easily and
therefore we just aim at isolation of the set. It is assumed
that indices for these faults is given by the set F , then
(4) becomes:

|yi(T ) − yj(T )| ≥ d ∀ i ∈ F , j /∈ F , (7)

Note that a practical approach is to first detect the fault.
Then isolate a set and then isolate a fault in this set.

Due to rich behavior of a MLD system it may have different
steady states. We use this property. In this work, we are look-
ing for steady states from systems i, j ∈ {0, · · · , n} namely,
xsi

, such that the corresponding output are distinguishable i.e.
: ∣∣ysi − ysj

∣∣ ≥ d, ∀ i, j ∈ {0, . . . , n}, i �= j (8)

If these steady outputs exist then the fault is diagnosable.
A steady state value for an MLD system can be obtained

by solving a mixed integer problem of the following form:

min
xs,us,δs,zs

‖Q1(ys − yr)‖p + ‖Q2(xs − xr)‖p+

‖Q3(us − ur)‖p + ‖Q4(δs − δr)‖p+
‖Q1(zs − zr)‖p (9)

s.t.

⎧⎨
⎩

xs = Axs + B1us + B2δs + B3zs

ys = Cxs + D1us + D2δs + D3zs

E2δs + E3zs ≤ E1us + E4xs + E5

(10)

,where ‖.‖p is p norm, Qi are positive definite weighting
matrices. yr, xr, ur, dr, zr are given offset vectors.

It is possible that the resulting steady state (xs, us, δs, zs)
is not reachable. It is also possible that a steady state does not
exist but cycling-steady states exist [8]. Here we assume that
the steady state is reachable and that we do not have cycling-
steady state behavior.

Distinguishable steady outputs, if they exist, can be found
by solving the the following problem:

min
xsi

,us,δsi
,zsi

Σn
i=0‖Q1i

(ysi
− yr)‖p + ‖Q2i

(xsi
− xr)‖p

‖Q3i
(us − ur)‖p + ‖Q4i

(δsi
− δr)‖p+

‖Q5i
(zsi

− zr)‖p (11)

s.t.

⎧⎪⎪⎨
⎪⎪⎩

xsi = Axsi + B1ius + B2iδsi + B3izsi

ysi = Cixsi + D1ius + D2iδsi + D3izsi

E2i
δsi

+ E3i
zsi

≤ E1i
usi

+ E4i
xsi

+ E5i∣∣ysi
− ysj

∣∣ ≥ d for all i, j ∈ {0, . . . , n}, i �= j

,

(12)
where yr, xr, ur, δr, zr, is a reference vector. Selection of

this reference vector is based on the phase in which we are
doing the diagnosis. If we are in the operating phase, then
they are chosen equal to the current operating values. In other
words, we want to find those steady states which are the
closest to the current operating point and at the same time
are distinguishable. If we are in the commissioning phase,
they are equal to the reference signals. In other words, we
are looking for those steady states which are closest to the
reference signals and are distinguishable. Note that additional
constraint on states and outputs could be easily handled in this
formulation by adding them to the optimization constraints.

In (11), the distinguishability constraint
∣∣ysi

− ysj

∣∣ ≥ d
should be written in the appropriate form. To do that, the
following auxiliary binary variables are introduced:

[sij1 = 1] ↔ [ysi
− ysj

≤ d]
[sij2 = 1] ↔ [ysj

− ysi
≤ d]

sij = sij1 ∧ sij2, i, j ∈ {0, . . . , n}, i �= j

S = ∨n
i=0sij (13)

The constraints
∣∣ysi − ysj

∣∣ ≥ d for all i, j ∈
{0, . . . , n}, i �= j can be transformed into the equality con-
straint S = 0 and a set of mixed integer linear inequali-
ties obtained from transforming logical propositions in (13)
to equivalent mixed integer inequalities using the technique
introduced in [1].

The auxiliary binary variable S as it is formulated in (13)
aims at isolation of every single fault. For other scenarios S
is constructed as follows:

• Fault detection:
S = ∨n

i=1s0i (14)

54



• Fault isolation for a set of faults:

S = ∨sij , ∀ i ∈ F , j /∈ F (15)

Using the introduced auxiliary variable, the problem can be
rewritten as:

min
xsi

,us,δsi
,zsi

Σn
i=0‖Q1i

(ysi
− yr)‖p + ‖Q2i

(xsi
− xr)‖p

‖Q3i
(us − ur)‖p + ‖Q4i

(δsi
− δr)‖p+

‖Q5i
(zsi

− zr)‖p (16)

s.t.

⎧⎪⎪⎨
⎪⎪⎩

xsi
= Axsi

+ B1i
us + B2i

δsi
+ B3i

zsi

ysi = Cixsi + D1ius + D2iδsi + D3izsi

E2iδsi + E3izsi ≤ E1ius + E4ixsi + E5i

S = 0

(17)

If the above optimization problem is feasible then there are
xsi

for i = 0, · · · , n such that the corresponding outputs ysi

are distinguishable. Otherwise if the optimization problem in
(16), (17) is infeasible, then the system is not diagnosable by
this method. Having the steady state values, we can apply the
steady inputs us to the system and based on the steady outputs
decide about its condition. Assume that the actual output of
the system at steady state is ys. Then the fault candidate is fc

such that:
c = argmin

i∈{0,...,n}
|ys − ysi

| (18)

Note that in this method there is no need to estimate the states
of the system and diagnosis can be done just by measuring
outputs. It is possible to maximize the difference d which is
used for distinguishability by adding the term −α · d to the
cost function in (16):

min
xsi

,us,δsi
,zsi

,d
Σn

i=0‖Q1i(ysi − yr)‖p + ‖Q2i(xsi − xr)‖p

‖Q3i
(us − ur)‖p + ‖Q4i

(δsi
− δr)‖p+

‖Q5i
(zsi

− zr)‖p − α · d, (19)

where α is a weighting parameter.
The proposed method could be used in the design phase

to decide about sensor locations to guarantee diagnosability
in the steady states. Different output candidates can be con-
sidered. Then the optimization problem is solved. Feasibility
of the optimization problem with the output candidate means
diagnosability of the system with this method.

IV. EXAMPLE

In this section, the proposed method is tested on the two
tank system. The two tank system is shown in Fig. 3. The
system consists of two cylindrical tanks with cross sectional
area A which are connected by two pipes at the bottom and
at level hv . The flows through the pipes, denoted by Q12V12

and Q12V1, are controlled using two on/off valves V12 and
V1. There is a flow Q1 through a pump to tank 1 which is a
continuous input.

Dynamical equations of the system are as follows.

Fig. 3. Two-tank system

ḣ1 = 1
A (Q1 − Q12V12 − Q12V1 − QL), (20)

ḣ2 = 1
A (Q12V12 + Q12V1 − QN ), (21)

where h1 and h2 denote the levels of tanks 1 and 2 respec-
tively. The flow Q12V12 is described by:

Q12V12 = V12k12sign(h1 − h2)
√

2g |h1 − h2|, (22)

where g is the gravity constant and k12 is a valve specific con-
stant. Similarly QL = VLkL

√
2gh1 and QN = VNkN

√
2gh2.

The flow through valve V1 is given by:

Q12V1 = V1k1sign(max{hv, h1} − max{hv, h2})√
|2g(max{hv, h1} − max{hv, h2})| (23)

The MLD model of the system is derived as follows (For
details see [8].). The nonlinear relation

√
x is approximated

by a straight line x, thus (22) becomes:

Q12V12 = V12k12(h1 − h2) (24)

The auxiliary continuous variable z12 = V12(h1−h2) is intro-
duced to transform the above nonlinear equation to the linear
equation Q12V12 = k12z12 with a set of mixed integer linear
inequalities. For QN and QL, using the same method, we will
have QN = kNzN and QL = kNzL where zN = VNh2 and
zL = VLh2.

In order to transform (23) to a linear equation in the MLD
framework, first we introduce the following binary variables
indicating whether the level in each tank has reached hv:

[δ01(t) = 1] ↔ [h1(t) ≥ hv] (25)
[δ02(t) = 1] ↔ [h2(t) ≥ hv] (26)

and then the term max{hv, h1}−max{hv, h2} is transformed
into a linear equation as Q12V1 = k1z1, where

z1 = V1(z01 − z02) (27)
z01 = δ01(h1 − hv) (28)
z02 = δ02(h2 − hv) (29)
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are introduced auxiliary continuous variables.
Finally, differential equations (20), (21) are discretized in

time by Euler approximation ḣi(t) ≈ hi(t+1)−hi(t)
Ts , where

Ts is the sample time. The final MLD model of the system
consists of two continuous states: h1, h2, 2 binary inputs:
V1, V12, 1 continuous input: Q1 and two continuous outputs:
h1, h2, 2 auxialiary binary variables: δ0, δ1 and 5 auxiliary
continuous variables: z01, z02, z1, zN , zL.

V. SIMULATION RESULTS

The proposed active diagnosis method is used for sanity
check of the upper valve V1. It is assumed that the valve
is stuck in the ON position. It is also assumed that at the
beginning both tanks are empty i.e. h1 = h2 = 0. The
proposed predictive method is applied to check whether the
valve is faulty or normal. The variable d is assumed as 0.02
and the sample time is 10 seconds. It is assumed that the valve
VL is always closed and VN is always open.

To obtain an MLD model of the two tanks system we use
HYSDEL (hybrid system description language)[20], which is
a modeling language for Discrete Hybrid Automata (DHA).
Given a description of the system, HYSDEL translates it into
different computational models like MLD or PWA.

We also assume that at the commissioning phase we want
to fill the tanks to yr = [0.3 0.2]′ and also we want to do
the sanity check for V1. Therefore we look for the closest
steady states to yr such that the outputs are distinguishable.
The results of the optimization problem (16) are:

ys0 = [0.3 0.235]′, ys1 = [0.2668 0.235]′

Qs = 0.1196, V1 = 0, V2 = 1 (30)

After finding the steady values a model predictive control is
designed such that the normal system output tracks ys0 with
the initial states [0 0]. Figure 4 shows the result. As it can be
seen by comparing the actual steady outputs with the expected
values of the normal system it can be determined that the
system is faulty.

As we said in the introduction, another application of the
method is when the faulty system and the normal system have
the same behaviors. This situation for the two tank example
is demonstrated in Fig. 5. In this example a model predictive
controller is designed for the two tank system to drive the
system from [0 0] to the equilibrium point [0.2664 0.2349].
This is a steady state for both the normal system and the faulty
system.

Fig. 5 shows the simulation of the closed loop system. As
one can see, the control variable V1 is manipulated such that
the output of the system in the normal condition and in the
faulty one is exactly the same. In this situation if a stuck ON
fault happens, no passive diagnoser would be able to diagnose
it. In order to detect the fault by our method we look for
separating steady state points close to the current steady state.
The resulting steady values are:

Fig. 4. Top:Actual versus expected output of the system:h1’-’, h2’.’, ĥ1’- -’,
ĥ2’.-’, Middle: Continuous input Q1, Bottom:Binary inputs: V1 dashes and
V12 solid

ys0 = [0.2667 0.2089]′, ys1 = [0.2372 0.2089]′

Qs = 0.1063, V1 = 0, V2 = 1 (31)

Fig. 5. Top:Actual versus expected output of the system, Middle:continuous
input Q1, Bottom:discrete inputs: V1(dashed line), V12(solid line)

The steady inputs are applied to the system and the result
is shown in figure 6. As it can be seen the condition of the
system is detectable by steady values of the output.

As one can see the steady value for h2 are always the same
for the faulty system and the normal system. Because the
system is in the steady state, the input flow is equal to the
output flow: Q1 = QN . Q1 is the same in both conditions.
Since QN = kn

√
2gh2, it is obvious that in the steady state

h20 = h21 . Therefore if we do not have measurements from
h1, it is not possible to diagnose the fault by using steady
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Fig. 6. Top:Actual versus expected output of the system:h1’-’, h2’.’, ĥ1’- -’,
ĥ2’.-’, Middle:continuous input Q1, Bottom:discrete inputs: V1(dashed line),
V12(solid line)

values. This analysis can be used in the design phase of the
system to decide where we should put sensors to be able to
diagnose the fault using steady values. As it is shown in [18],
it is possible to diagnose the fault while it is being perturbed
from the steady values, but the problem of that method was
that it may lead to instability. This method excludes the
possibility of diagnosis using transient but preserves stability.
A drawback of the method is that it takes a long time to
reach the steady state values and therefore while it does not
destabilize the system it needs a long time for diagnosis.

VI. CONCLUSION

In this paper a method for active diagnosis of MLD system
based on analysis of steady state values of the system in
normal and faulty modes is presented. The excitation obtained
by this method does not destabilize the system because it
moves the system to a steady state, but it is possible that
there are not enough distinguishable steady output values
and therefore the fault is not diagnosable using steady state
values. However, this analysis method can be used in a design
phase to decide about the location of sensors to guarantee
diagnosability. While the method guarantee the stability during
diagnosis because we should wait till the system reaches
steady values the approach need a long period for diagnosis.
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