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Evaluation of Small-Scale Laterally Loaded

Non-Slender Monopiles in Sand

H. R. Roesen1; K. Thomassen1; S. P. H. Sørensen2; and L. B. Ibsen3

Aalborg University, June 2010

Abstract

In current design of o�shore wind turbines, monopiles are often used as foundation.
The behaviour of the monopiles when subjected to lateral loading has not been fully
investigated, e.g. the diameter e�ect on the soil response. In this paper the diameter
e�ect on laterally loaded non-slender piles in sand is evaluated by means of results
from six small-scale laboratory tests, numerical modelling of the same test setup and
existing theory. From the numerical models p− y curves are conducted and compared
to current design regulations. It is found that the recommendations in API (1993)
and DNV (1992) are in poor agreement with the numerically obtained p − y curves.
The initial sti�ness, E∗

py, of the p − y curves, is found to be dependent on the pile
diameter, i.e. the initial sti�ness increases with increasing pile diameter. Further,
the dependency is found to be in agreement with the suggestions in Sørensen et al.
(2010). It is found that considerable uncertainties are related to small-scale testing,
and the di�erent evaluations clearly indicate that the accuracy of small-scale testing
is increased when increasing the pile diameter and applying overburden pressure.

1 Introduction

In the design of laterally loaded monopiles
the p−y curve method, given by the design
regulations API (1993) and DNV (1992),
is often used. For piles in sand the rec-
ommended p − y curves are based on re-
sults from two slender, �exible piles with
a slenderness ratio of L/D = 34.4, where
L is the embedded length and D is the
diameter of the pile. Contrary to the as-
sumption of �exible piles for these curves
the monopile foundations installed today
have a slenderness ratio L/D < 10, and
behave almost as rigid objects. The rec-
ommended curves does not take the e�ect
of the slenderness ratio into account. Fur-
thermore, the initial sti�ness is considered
independent of the pile properties such as
the pile diameter. The research within the

�eld of diameter e�ects gives contradictory
conclusions. Di�erent studies have found
the initial sti�ness to be either indepen-
dent, linearly dependent, or non-linear de-
pendent on the pile diameter, cf. Brødbæk
et al. (2009). 123

The aim of this paper is to evaluate the
diameter e�ect on the pile-soil interaction.
Six small-scale tests on laterally loaded
monopiles in sand have been conducted,
cf. Thomassen et al. (2010). The diam-
eter e�ect is evaluated by comparing re-
sults from these tests with calibrated nu-
merical models of the same test setup and
existing theory. Furthermore, p− y curves
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recommended in the current design regu-
lations API (1993) and DNV (1992) are
compared to curves obtained from the nu-
merical models. As the foundations for o�-
shore wind turbines are sensitive towards
rotation and vibrations, strict demands for
the sti�ness of the foundation are induced.
Therefore, the diameter e�ect is evaluated
with focus on the initial sti�ness of the
p− y curves.

2 Laboratory Test Setup

Six quasi-static tests on two closed-ended
aluminium piles with a wall-thickness of
5 mm and outer diameters of 40 mm
and 100 mm, respectively, have been con-
ducted. The piles had a slenderness ra-
tio, L/D, of 5 corresponding to embedded
lengths of 200 mm and 500 mm. The piles
were installed in 580 mm fully saturated
sand. The aim of the tests was to obtain
load-de�ection relationships for the piles.
Therefore, the piles were loaded laterally
370 mm above the soil surface, and the de-
�ection of the pile was measured at three
levels, cf. Fig. 1.

Figure 1: Setup for measuring the lateral deflection of
the pile at three levels. The measurements are given
in mm.

In order to minimize errors such as small
non-measurable stresses and a non-linear
failure criterion, the tests were conducted
in the pressure tank shown in Fig. 2. The

Figure 2: The pressure tank installed in the Geotech-
nical Engineering Laboratory at Aalborg University,
Denmark.

e�ective stresses in the soil were increased
by placing an elastic membrane on the soil
surface sealing the soil from the upper part
of the pressure tank. When increasing
the pressure in the upper part of the tank
the membrane was pressed against the soil
leading to an increase of the stresses in the
soil. The lower part of the tank was con-
nected to an ascension pipe ensuring that
the load was applied as contact pressures
between the grains only, i.e. an increase of
the e�ective stresses. The tests were con-
ducted at stress levels of 0 kPa, 50 kPa,
and 100 kPa.

The soil parameters were determined from
cone penetration tests in accordance to Ib-
sen et al. (2009). A detailed description
of the laboratory tests can be found in
Thomassen et al. (2010).
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3 Numerical 3D Models

The six laboratory tests are modelled in
Flac3D, which is a commercial explicit �-
nite di�erence program. Because of axis
symmetry in the tests, only half the test
setup is modelled. The modelling pro-
gramme is chosen to match the testing
programme in Thomassen et al. (2010), cf.
Tab. 1.

Table 1: Modelling programme for the FLAC3D mod-
els.

D L/D P0

[mm] [-] [kPa]

Model 1 (Test 1) 100 5 0
Model 2 (Test 2) 100 5 50
Model 3 (Test 3) 100 5 100
Model 4 (Test 4) 40 5 0
Model 5 (Test 5) 40 5 50
Model 6 (Test 6) 40 5 100

The generation of the models and the �-
nite di�erence calculations are carried out
stepwise as described in the following.

3.1 Geometry of the 3D Models

The model geometry is set to match the
condition in the pressure tank. There-
fore, the outer boundaries are given as
the volume of the soil mass in the tank,
i.e. a diameter of 2.1 m and a soil depth
of 0.58 m. The soil and pile are gener-
ated by use of prede�ned zone elements to
which di�erent material models and prop-
erties can be assigned. Each zone element
is automatically discritised into �ve tetra-
hedron subelements, which are �rst order,
constant rate of strain elements. Because
large variations in strain and stresses oc-
cur in the soil near the pile a �ner zone
mesh is generated in this area.

In order to model a correct pile-soil inter-
action an interface is generated between
the pile and the soil by use of standard
Flac3D interface elements. The elements

are triangular and by default two inter-
face elements are generated for each zone
face. The interfaces are one-sided and
attached to the soil. The constitutive
model for the interface is de�ned by a lin-
ear Coulomb shear-strength criterion that
limits the shear force acting at an inter-
face node after the shear strength limit is
reached.

Firstly, the soil is generated, secondly, the
interface is generated and attached to the
soil elements and, thirdly, the pile is gen-
erated. Initially, the pile grid is generated
separately and later moved into the soil
and in contact with the interface. Hereby,
it is possible to group the pile elements
and specify pile nodes for the computation
of bending moment. As a simpli�cation,
the piles are modelled as solid cylinders
in contrast to the closed-ended pipe piles
used in the laboratory tests. The solid
piles are modelled with a reduced modulus
of elasticity and reduced density based on
equivalence with the pipe piles used in the
laboratory tests, cf. Sec. 3.5. The zone
geometry for the 100 mm pile is shown
in Fig. 3. In Sørensen et al. (2009) con-
vergence analyses were conducted and the
geometries used in this article are in agree-
ment with the analyses. Note that the
shown coordinate system is in agreement
with the coordinate system employed for
laterally loaded piles in the design regu-
lations and does not represent the system
used in Flac3D.

Figure 3: Zone geometry in the models with the
100 mm pile.
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3.2 Boundary and Initial Condi-

tions

When the geometry is generated the
boundary and initial conditions are as-
signed. At the outer perimeter of the soil
the element nodes are restrained in the y-
and z-direction, cf. Fig. 3. At the bot-
tom surface of the model the nodes are
restrained in all directions. Because only
half the laboratory setup is modelled the
nodes at the symmetry line are restrained
in the z-direction.

The initial stresses are initialised based on
the density of the material, the gravita-
tional loading, and the overburden pres-
sure. The horizontal stresses are gener-
ated by use of a K0-procedure in which
K0 = 1− sinϕtr.

3.3 Calculation Phase

In order to prevent stress concentrations
near the pile the model is brought to equi-
librium with both the pile and the soil hav-
ing the material properties of the soil. Fur-
ther, the pile is assumed smooth by set-
ting the interface friction equal to zero.
Hereafter, the pile and interface are as-
signed the material properties for the pile
and interface, respectively, cf. Sec. 3.5.
Again, the model is brought to equilib-
rium. This second equilibrium ensures a
correct generation of the initial interface
stresses. When equilibrium is reached all
displacements are reset to zero.

The lateral load is applied as lateral veloc-
ities at x = −370 mm. The velocities are
applied to the nodes at the centre of the
pile corresponding to y = 0. Hereby, no
additional bending moment is introduced
in the pile. In order to avoid a dynamic
response of the system the velocity is ap-
plied in small increments.

During the calculations the total lateral
force, H, the displacement, y, and the

stresses, σ, along the pile are recorded.
The bending moment, M , and soil pres-
sure, p, are calculated based on the
recorded stresses in the pile and the in-
terface, respectively, cf. Sec. 3.6.

3.4 Material Models

To describe the constitutive relations in
the soil an elasto-plastic Mohr-Coulomb
model is employed. As the soil is consid-
ered cohesionless no tension forces are al-
lowed. Thus, tension cut-o� is employed
in the model. The yield function of the
model de�nes the stress for which plastic
�ow takes place and is controlled by a non-
associated �ow rule. The piles are mod-
elled by use of an elastic, isotropic model.

3.5 Material and Interface Prop-

erties

The soil properties in the six models are
de�ned equal to the �ndings of the six
laboratory tests, cf. Tab. 2. (Thomassen
et al., 2010)

Table 2: Soil properties determined by the six labora-
tory tests and employed in the FLAC3D models. The
elasticity moduli written in parentheses are found by
means of the numerical model.

ϕtr ψtr γ′ E0

[o] [o] [kN/m3] [MPa]

Model 1 53.7 19.6 10.3 (4.0)
Model 2 50.3 19.0 10.4 38.24
Model 3 47.7 18.3 10.4 55.61
Model 4 54.4 20.4 10.4 (2.0)
Model 5 50.4 19.1 10.4 38.6
Model 6 48.0 18.6 10.4 57.2

For the tests without overburden pressure
the low stresses lead to large uncertain-
ties in the calculation of the initial tan-
gential elasticity modulus, E0. Thus, in
the numerical models without overburden
pressure E0 is calibrated as described in
Sec. 3.7. Due to the small variations in ef-
fective stresses through the soil layer the

4
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soil parameters are assumed to be constant
with depth for all the models. A cohesion,
c, of 0.1 kPa and Poissons ratio, ν, of 0.23
are applied for the soil in all six models.

Because the piles are modelled as solid
cylinders instead of hollow piles, as the
ones used in the laboratory, an equivalent
bending sti�ness and density is required.
Based on this equivalence a reduced elas-
ticity modulus, Esolid, for the modelled
piles are found.

Esolid =
Ehollow · Ihollow

Isolid
(1)

I is the second moment of inertia, and the
subscripts hollow and solid denote the pa-
rameters derived for the pipe piles in the
laboratory tests and the parameters em-
ployed in Flac3D, respectively. In the
same way the density is equated with the
cross-sectional area. The elasticity mod-
ulus and density of the pipe piles are set
to the values for aluminium; 7.2 · 104 MPa
and 2700 kg/m3, respectively.

The interface properties are calibrated by
means of the numerical models as de-
scribed in Sec. 3.7. When using the inter-
face properties listed in Tab. 3 the load-
de�ection curves are found to be similar
to the curves obtained in the laboratory
tests.

Table 3: Interface properties calibrated by means of
the numerical models. E0 is the initial tangential elas-
ticity modulus of the soil, cf. Tab. 2.

Friction ϕint 30◦

Cohesion cint 0.1 kPa
Dilation ψint 0◦

Normal sti�ness kn 100× E0

Shear sti�ness ks 100× E0

3.6 Calculation of the Pile Ben-

ding Moment and Soil Resis-

tance

The bending moment of the pile at a given
level is calculated by use of Naviers for-

mula, Eq. 2. In order to eliminate the ave-
rage vertical stress, corresponding to the
axial force acting on the pile, the bending
moment in each level is calculated by two
points (y,z) = (±D/2, 0).

M =
σxx,i · Izz

yi
(2)

σxx,i is the vertical normal stress at point
i, Izz is the second moment of iner-
tia around the z-axis, and yi is the y-
coordinate for the point, cf. Fig. 3. The
soil resistance per unit length along the
pile, py, is computed directly by integrat-
ing the stresses in the interface nodes along
the interface circumference C.

py =
∫
TydC (3)

Ty is the y-component stress in a node i
positioned in the interface.

3.7 Calibration of the Numerical

Models

The calibration of the numerical models is
based on a comparison between the mod-
elled load-de�ection curves and the load-
de�ection curves obtained from the small-
scale tests in the laboratory.

For the models without overburden pres-
sure E0 is calibrated in relation to the ini-
tial sti�ness of the load-de�ection curves.
In Figs. 4 and 5 the calibrated curves for
P0 = 0 kPa are shown. In the �gures it
is seen that the capacity of the calibrated
models exceeds the capacity of the labora-
tory tests. This indicates that the internal
angle of friction, ϕtr, inserted in the mod-
els is overestimated. ϕtr is based on the
CPT's conducted prior to each laboratory
test. At low stress levels ϕtr varies signif-
icantly with the stresses and it is di�cult
to determine ϕtr with su�cient accuracy.

The agreement between the capacity in
the calibrated and the measured load-
de�ection relationship are found to in-
crease with increasing pile diameter and

5
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Figure 4: Calibrated and measured relationships
at three levels above the soil surface for the test
100 mm with P0 = 0 kPa.

Figure 5: Calibrated and measured relationships at
three levels above the soil surface for the 40 mm pile
with P0 = 0 kPa.
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Figure 6: Calibrated and measured relationships at
three levels above the soil surface for the 100 mm
pile with P0 = 0 kPa.

Figure 7: Calibrated and measured relationships at
three levels above the soil surface for the 40 mm pile
with P0 = 0 kPa.

increasing overburden pressure, cf. Figs. 4
to 9. Thus, the best agreement is found
for the 100 mm pile with an overburden
pressure of 100 kPa, cf. Fig. 8.

Considerable uncertainties are related to
the test results for the 40 mm pile,
cf. Thomassen et al. (2010). This can
also be concluded from the calibration
of the model with the 40 mm pile and
P0 = 100 kPa as signi�cant disagreement
between the calibrated and the measured
values are found, cf. Fig. 9. This dis-
agreement is explained by a disturbance
of the soil prior to the test as described in
Thomassen et al. (2010).

The calibration of the six models clearly
indicates that the accuracy in small-scale
testing is increased when increasing the
pile diameter and applying overburden
pressure.

4 Evaluation of Results

from the Numerical Mod-

els

Prior to the evaluation of the bending mo-
ment and de�ection of the pile a conver-
gence of the stresses in the numerical mod-
els is checked by a comparison between the

6



H. R. Roesen, K. Thomassen, S. P. H. Sørensen and L. B. Ibsen

0 10 20 30 40 50
0

0.5

1

1.5

2

x 10
4

H
or

iz
on

ta
l l

oa
d 

[N
]

Deflection [mm]

D = 100 mm, P
0
 = 100 kPa

Measured
Calibrated

0 10 20 30 40 50
0

500

1000

1500

2000

2500

H
or

iz
on

ta
l l

oa
d 

[N
]

Deflection [mm]

D = 40 mm, P
0
 = 100 kPa

Measured
Calibrated

Figure 8: Calibrated and measured relationships at
three levels above the soil surface for the 100 mm
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Figure 9: Calibrated and measured relationships at
three levels above the soil surface for the 40 mm pile
with P0 = 100 kPa.
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with the computed bending moment at soil surface for
the 100 mm pile with P0 = 100 kPa.

applied moment and the computed ben-
ding moment, cf. Fig. 10. In all the mod-
els the computed bending moment is in
agreement with the applied moment.

4.1 Evaluation of Bending Mo-

ment and Lateral De�ection

In Figs. 11 and 12 the bending moment
distribution along the piles below the soil
surface is shown. For both models the pre-
scribed displacement at x = −370 mm is
35 mm. In the �gures it is seen that the
maximum bending moment occurs at dif-
ferent locations depending on the overbur-

den pressure. When overburden pressure
is applied, the point of maximum bending
moment is located closer to the soil sur-
face. This indicates that the relative in-
crease in soil resistance with overburden
pressure is most signi�cant at the soil sur-
face.

In Figs. 13 and 14 the lateral de�ection
with depth at three di�erent overburden
pressures is shown. The prescribed de�ec-
tion at x = −370 mm is 35 mm. Below
the soil surface the de�ection is recorded
in 21 levels for the 40 mm pile and 26 lev-
els for the 100 mm pile. Above the soil
surface the de�ection is recorded in two
levels: x = −200 mm and x = −370 mm.

When applying overburden pressure the
pile exhibits a more �exible behaviour
than without overburden pressure, cf.
Figs. 13 and 14. This is in accordance
with Poulos and Hull (1989), who pro-
posed a criterion for the pile-soil interac-
tion in which an increase in the soil sti�-
ness compared to the pile sti�ness will lead
to a more �exible behaviour of the pile.
When applying overburden pressure the
e�ective stress level increases, leading to
an increase in the soil sti�ness.

Although the piles behave more �exible
when overburden pressure is applied, the
primary de�ection is caused by rigid body
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Figure 11: Bending moment distribution at different
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Figure 12: Bending moment distribution at different
overburden pressures for the 40 mm piles. The hori-
zontal lines indicate the depth of maximum moment.
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Figure 14: Lateral deflection with depth for different
overburden pressures for the 40 mm piles.

rotation, which is evident because only a
single point of rotation and a negative de-
�ection at pile toe is present, cf. Figs. 13
and 14.

4.2 Evaluation of Diameter ef-

fect on the p�y Curves

The p − y curves from the models with
40 mm and 100 mm piles without overbur-
den pressures are compared at three di�er-
ent depths; 20 mm, 40 mm and 60 mm, cf.
Fig. 15.

At the depth of 20 mm the ultimate soil
resistance for the 100 mm pile is higher
than for the 40 mm pile. At the depth

of 40 mm the opposite is the case. For
the depth of 60 mm it seems the curve for
the 40 mm pile is approaching the ultimate
soil resistance for the 100 mm pile. Which
of the two curves that reaches the highest
ultimate resistance is not possible to pre-
dict because of the limited displacement
applied. Based on Fig. 15 the diameter is
not thought to have a signi�cant in�uence
on the ultimate soil resistance.

From Fig. 15 it can be seen that the ini-
tial sti�ness of the curves are dependent on
the pile diameter, i.e. the larger pile diam-
eter the higher initial sti�ness. This is in
contrast to API (1993) and DNV (1992)
in which the initial sti�ness is considered
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for models with 40 mm and 100 mm piles and
P0 = 0 kPa.

Figure 16: p − y curves at three different depths
for models with 40 mm and 50 mm piles and
P0 = 100 kPa

independent on the pile diameter. The
dependency of the diameter on the initial
sti�ness is further evaluated in Sec. 7.

For the models with overburden pressure
the three p − y curves at same levels are
shown in Figs. 16 and 17. As in the mod-
els without overburden pressure the initial
sti�ness of the p− y curves is found to be
dependent on the pile diameter.

4.3 Evaluation of the p�y Curves

Dependency on Stress Level

In Figs. 18 to 20 the soil resistance along
the 100 mm pile is shown for a pre-
scribed de�ection of 10 mm and 35 mm
at x = −370 mm, respectively. The soil
resistance is calculated at 24 levels along
the pile and are shown for the pressures
0 kPa, 50 kPa, and 100 kPa. In Figs. 21
to 23 the p− y curves for the 100 mm pile
at the 24 levels are shown for the di�er-
ent overburden pressures. In the current
theory concerning the initial sti�ness, E∗py,
e.g. DNV (1992); API (1993); Lesny and
Wiemann (2006); Sørensen et al. (2010),
E∗py is found to increase either linear or
non-linear with depth. Therefore, the ex-
pected results from the obtained p − y
curves would be an increase in the E∗py

with depth as well.
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Figure 17: p − y curves at three different depths
for models with 40 mm and 100 mm piles and
P0 = 100 kPa.

Fig. 18 shows that the soil resistance in-
creases with depth from the soil surface to
a depth of approximately 150 mm. This
increase is in agreement with the expected
variation. When evaluating E∗py of the
p − y curves in the same depth interval
E∗py is constant with depth, cf. Fig. 21. In
the depth interval between 150 mm and
the rotation point of the pile, at approxi-
mately 340 mm, the soil resistance is seen
to decrease with depth. Concurrently, E∗py

is seen to decrease with depth in the same
interval.
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Figure 18: Soil resistance along the 100 mm pile with
P0 = 0 kPa.
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Figure 19: Soil resistance along the 100 mm pile with
P0 = 50 kPa.
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Figure 20: Soil resistance along the 100 mm pile with
P0 = 100 kPa.
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Figure 21: p − y curves along the 100 mm pile with
P0 = 0 kPa.
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Figure 22: p − y curves along the 100 mm pile with
P0 = 50 kPa.
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Figure 23: p − y curves along the 100 mm pile with
P0 = 100 kPa.
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Below the point of rotation, where the pile
exhibit a negative de�ection, a negative in-
crease in the soil resistance is present. Be-
low the point of pile rotation E∗py is found
to increase with depth.

In the models with overburden pressure,
cf. Figs. 19 and 20, the soil resistance is
mainly seen to decrease with depth from
the soil surface to the point of pile rotation
at approximately 310 mm. When evaluat-
ing the p− y curves shown in Figs. 22 and
23 E∗py is found to decrease with depth to
the point of pile rotation. The soil resis-
tance below the point of rotation is seen
to increase negatively with depth and E∗py

increases. The �ndings imply that E∗py is
dependent on the state of stress. Simi-
lar �ndings are found when evaluating the
40 mm pile. At the point of no rotation
the soil pressure is zero and it is therefore
di�cult to evaluate E∗py near this point.

The obtained results should be consid-
ered with reservations due to the fact that
the soil sti�ness is modelled constant with
depth. Secondly, a more advanced consti-
tutive model, in which the variation of the
sti�ness with the de�ection is taken into
account, could have been used. Hereby,
the sti�ness of the soil would increase at
small de�ections, leading to an increase
of the initial sti�ness of the p − y curves
instead of the decrease of E∗py at small
de�ections as observed in Figs. 18 to 23.
Thus, in future research a further evalua-
tion of E∗py is recommended. The evalua-
tion should consist of laboratory tests on
piles instrumented with strain gauges, and
numerical modelling with more advanced
constitutive models employed.

5 Comparison of Test Re-

sults and Theory

To compare the test results to the rec-
ommendations given by the design regula-
tions, API (1993) and DNV (1992), a tra-

ditional Winkler model is made in Mat-

lab by using the �nite element toolbox
Calfem. Furthermore, the model is used
to evaluate di�erent expressions for the ul-
timate soil resistance.

5.1 Evaluation of Tests with

Overburden Pressure

To model the tests with overburden pres-
sure, P0, the formulation for the ultimate
soil resistance must be able to take P0

into account. Hansen (1961) and Geor-
giadis (1983) both proposed a formulation
in which the overburden pressure is taken
into account. Hansen (1961) incorporated
the overburden pressure directly in the ex-
pression for the ultimate soil resistance at
moderate depth. The approach by Geor-
giadis (1983) was developed to incorporate
determination of the ultimate soil resis-
tance for layered soils in a Winkler model.
This is done by introducing an equivalent
system with �ctive depths, x′, for each of
the soil layers. In this paper the approach
is used to employ an equivalent system
with a �ctive depth of the sand layer to
describe the e�ect of the overburden pres-
sure.
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Figure 24: Load-deflection relationships measured
at the level of the hydraulic piston (x = −370 mm)
obtained from the tests and the Winkler model ap-
proach with the two expressions for the ultimate soil
resistance accounting for the overburden pressure in-
corporated. D = 100 mm. P0 = 100 kPa. The ini-
tial modulus of subgrade reaction, k, is set to 40000
kN/m3.
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Figure 25: Load-deflection relationships measured
at the height of the hydraulic piston (x = −370 mm)
obtained from the tests and the Winkler model ap-
proach with the three different expressions for the ul-
timate soil resistance incorporated. D = 100 mm.
P0 = 0 kPa. The initial modulus of subgrade reac-
tion, k, is set to 40000 kN/m3.

Figure 26: Load-deflection relationships measured
at the height of the hydraulic piston (x = −370 mm)
obtained from the tests and the Winkler model ap-
proach with the three different expressions for the
ultimate soil resistance incorporated. D = 40 mm.
P0 = 0 kPa. The initial modulus of subgrade reac-
tion, k, is set to 40000 kN/m3.

In Fig. 24 the load-de�ection relationship
obtained by the two di�erent methods
are compared to the test results for the
100 mm pile with P0 = 100 kPa. The �g-
ure shows that when employing the formu-
lation given by Hansen (1961) the lateral
load is signi�cantly underestimated. The
approach given by Georgiadis (1983) gives
larger lateral load, but still, the load is un-
derestimated. Thus, neither of the formu-
lations are able to take the e�ect of the
overburden pressure into account in a sat-
isfactory way.

5.2 Evaluation of the Ultimate

Soil Resistance

As none of the evaluated methods for in-
corporating the overburden pressure pro-
duced satisfactory results the evaluation of
the ultimate soil resistance is based on the
tests without overburden pressure. The
expression for the ultimate soil resistance
recommended by API (1993) is compared
to two upper bound expressions given in
Gwizdala and Jacobsen (1992) and Jacob-
sen (1989), respectively, and a lower bound

solution given by Hansen (1961). The dif-
ference of the four expressions is the shape
of the wedge formed in front of the pile,
which is de�ned by the angle α. In API
(1993), which is based on the formulation
derived by Reese et al. (1974), α = ϕtr/2.
For the upper bound formulations α = ϕtr

and α = ϕd, the latter given by Eq. 4. For
the lower bound formulation α = 0.

tanϕd =
sinϕpl · cosψ

1− sinϕpl · sinψ
(4)

ϕd is the reduced angle of friction taking
the energy loss into account in the kine-
matic admissible solution. ϕpl = 1.1 · ϕtr

is the plane angle of friction. The four ex-
pressions are incorporated in the Winkler
model and the obtained load-de�ection
curves are shown in Figs. 25 and 26 to-
gether with the test results.

For the 100 mm pile with P0 = 0 kPa, cf.
Fig. 25, the ultimate soil resistance given
by the horizontal asymptote of the curve
is overestimated by both upper bound so-
lutions. However the solution with the re-
duced angle of friction is seen to give the
best estimate of the two. The lower bound
solution is seen to underestimate the ulti-
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Figure 27: The moment curves obtained by means
of the Winkler model approach with the ultimate soil
resistance calculated by the design regulation for-
mulation incorporated and the numerical model for
D = 100 mm and P0 = 0 kPa

Figure 28: The moment curves obtained by means
of the Winkler model approach with the ultimate soil
resistance calculated by the design regulation for-
mulation incorporated and the numerical model for
D = 40 mm and P0 = 0 kPa

mate soil resistance. The expression given
in API (1993) predicts a lower capacity
than the upperbound solutions but still
the capacity is overestimated compared to
the test results.

For the 40 mm pile the test results and
the ultimate soil resistance determined ac-
cording to API (1993) is found to be in
better agreement, cf. Fig. 26. However,
the deviation between the results for the
100 mm and the 40 mm pile must be seen
in relation to the uncertainties when con-
ducting the tests, where the largest un-
certainties are related to the 40 mm pile,
cf. Thomassen et al. (2010). Nevertheless,
from the four expressions evaluated the ex-
pression given in API (1993) is found to
give the best estimate of the ultimate soil
resistance even though the results deviates
from the laboratory tests.

6 Comparison of Design

Regulations and Numer-

ical Models

To establish whether the recommenda-
tions in the design regulations API (1993)
and DNV (1992) gives good estimations

of the pile-soil interaction for non-slender
piles the design method and model results
are compared. Again, only the results
from the tests without overburden pres-
sure are compared.

6.1 Evaluation of Bending Mo-

ment Distribution

The bending moment curves obtained
from the numerical models are compared
to the bending moment calculated by
means of the Winkler model approach us-
ing the formulation for the ultimate soil
resistances given by API (1993).

In Figs. 27 and 28 the moment curves
for the 40 mm and 100 mm piles, respec-
tively, are shown. Both curves are shown
for a prescribed de�ection of 35 mm at
x = −370 mm. For both piles it can
be seen that the maximum moment ob-
tained by the numerical models is located
approximately 1/5L below the soil sur-
face. The maximum moment obtained
from the Winkler approach is located ap-
proximately 2/5L below the soil surface.
The maximum moments found by the nu-
merical models are higher than the ones
obtained by the Winkler model approach.
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Figure 29: p−y curves for three depths from the nu-
merical model and the design regulation formulation
for the 100 mm pile with P0 = 0 kPa.

Figure 30: p−y curves for three depths from the nu-
merical model and the design regulation formulation
for the 40 mm pile with P0 = 0 kPa.

The maximum curvature of the moment-
curves indicates the maximum soil pres-
sure. At pile toe it can be seen that the
moment obtained by means of API (1993)
is curved whereas the modelled moment
curve has no curvature. This indicates
a di�erence in soil pressure and pile be-
haviour. Due to the di�erences between
the measured and calculated moment dis-
tributions it is recommended that tests
are carried out on piles instrumented with
strain gauges in order to evaluate the cor-
rect behaviour of the pile.

6.2 Evalutation of p�y Curves

The p − y curves recommended in the
design regulations API (1993) and DNV
(1992) are compared to the p − y curves
obtained by the numerical models. For the
two tests without overburden pressure the
comparison is shown in Figs. 29 and 30 for
three di�erent depths.

The �gures show that the ultimate soil re-
sistance recommended by API (1993) is
signi�cantly lower than the resistance ob-
tained by the numerical models, most sig-
ni�cant for the 40 mm pile, cf. Fig. 30.
This large di�erence is believed to oc-
cur because the capacity in the numerical

models are overestimated compared to the
test results. Hence, the di�erence emerge
from uncertainties when determining the
soil parameters for low stress levels. In
Fig. 30 the initial sti�ness of the p − y
curves from the numerical models is seen
to be in agreement with the calculated ini-
tial sti�ness from the curve at a depth of
40 mm. In Fig. 29, however, the initial
sti�ness of the p − y curves from the nu-
merical models is in agreement with the
calculated initial sti�ness from the curve
at 60 mm. Because the initial sti�ness
found by the numerical models are seen to
be constant with depth, in the evaluated
depth interval, and because of the di�er-
ence in Fig. 29 and Fig. 30 it is di�cult
to draw any clear conclusions in relation
to the recommendations other than the
agreement between the curves are poor.

7 Evaluation of Initial Sti�-

ness

In API (1993) and DNV (1992) the ini-
tial sti�ness of the p− y curves, E∗py given
by Eq. 5, is assumed to vary linearly with
depth.

E∗py =
dp

dy
|y=0 = k · x (5)
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Figure 31: Load-deflection relation ships measured
at the height of the hydraulic piston (x = −370 mm)
obtained from the tests and the Winkler model ap-
proach with the expressions for the ultimate soil re-
sistance with both linear and non-linear formulation
of the initial stiffness incorporated. D = 100 mm.
P0 = 0 kPa. The initial modulus of subgrade reac-
tion, k, is set to 40000 kN/m3.

Figure 32: Load-deflection relation ships measured
at the height of the hydraulic piston (x = −370 mm)
obtained from the tests and the Winkler model ap-
proach with the expressions for the ultimate soil re-
sistance with both linear and non-linear formulation
of the initial stiffness incorporated. D = 40 mm.
P0 = 0 kPa. The initial modulus of subgrade reac-
tion, k, is set to 40000 kN/m3.

k is the initial modulus of subgrade re-
action and x is the depth below soil sur-
face. k is according to the design regula-
tions dependent only on the relative den-
sity of the soil and, thus, independent of
the pile properties.

Because of strict demands for the maxi-
mum rotation of the wind turbines and
the resonance in serviceability mode the
initial sti�ness of the p − y curves are of
great importance. Therefore, it is of in-
terest to �nd a correct expression for the
initial sti�ness in order to �nd the correct
pile de�ection. Sørensen et al. (2010) pro-
posed a non-linear formulation for the ini-
tial sti�ness, cf. Eq. 6, based on numerical
simulations of full-scale monopiles in sand.

E∗py = a

(
x

xref

)b( D

Dref

)c

ϕd
tr (6)

a is a factor determining E∗py for
(x,D,ϕtr) = (1 m, 1 m, 1 rad) and
the constants (b,c,d) = (0.6, 0.5, 3.6),
a = 50000 kN/m2. xref and Dref are ref-
erence values both of 1 m.

Similar to API (1993) the initial sti�ness
increases with increasing internal angle of

friction, however, with a slightly di�erent
variation. Contrary to API (1993) the
initial sti�ness increases with increasing
pile diameter and varies non-linearly with
depth when using Eq. 6.

7.1 Comparison of Load-

De�ection Relationships

Eq. 6 is inserted in the formulation for the
soil resistance given in API (1993) and em-
ployed in the Winkler model. Thereby,
the load-de�ection relationships shown in
Figs. 31 and 32 for the two piles without
overburden pressure are obtained.

For the 40 mm pile, cf. Fig. 32, it is dif-
�cult to determine, which of the formula-
tions gives the best �t to the test results as
these results are positioned in between the
two. Moreover, because of the large uncer-
tainties for this test, the results may not
be representative for the correct pile-soil
behaviour.

The uncertainties for the test results with
the 100 mm pile are smaller, and the re-
sults are considered more accurate. Fig. 31
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shows that the formulation by API (1993)
overestimates the lateral capacity. When
using the non-linear formulation for the
initial sti�ness the lateral capacity is closer
to the measured results, however, still
overestimated. For the initial part of the
curves, the non-linear expression is seen
to be in better agreement with the results
obtained in the laboratory tests and there-
fore the non-linear expression is believed
to give the best estimate of the variation
of the initial sti�ness.

7.2 Comparison of p�y Curves

In order to evaluate the diameter e�ect the
non-linear formulation, Eq. 6, for the ini-
tial sti�ness is evaluated against the initial
sti�ness found from the p− y curves from
the six numerical models. The factor c is
evaluated by the ratios:

E∗py|D=100

E∗py|D=40
=
(
D100

D40

)c

(7)

The initial sti�ness of the numerically ob-
tained p − y curves, cf. Figs. 15, 16, and
17, is found by linear regression of the
data until a de�ection of approximately
0.2 mm. The slope of the linear regres-
sion is assumed representative for the ini-
tial sti�ness, and the obtained values for
the six models are shown in Tab. 4.

Table 4: The initial stiffness in N/mm2 read of the
p − y curves obtained from the FLAC3D-models for
the two piles at different overburden pressures, cf.
Figs. 15, 16, and 17.

0 kPa 50 kPa 100 kPa

E∗py|D=100 2.9 42.3 79.2
E∗py|D=40 1.3 30.0 48.9

Table 5: Ratio of the initial stiffness of the p − y
curves obtained in the numerical models for the dif-
ferent overburden pressures.

0 kPa 50 kPa 100 kPa

E∗py|D=100

E∗py|D=40 2.3 1.4 1.6

With c = 0.5, as proposed by Sørensen
et al. (2010), the right side of Eq. 7 gives
approximately 1.6. If this value of c is cor-
rect the ratio on the left side of the equa-
tion should give values of approximately
1.6 as well. In Tab. 5 the ratios of the
initial sti�ness from the numerical models
are given. It can be seen that the ratio
for the models without overburden pres-
sure deviates the most. The ratios for the
models with overburden pressure indicates
that c = 0.5 is an appropriate value for the
diameter e�ect on the initial sti�ness. The
results in Tab. 5 indicate that larger un-
certainties are related to the tests without
overburden pressure and, hence, low stress
levels in the soil.

8 Conclusion

In this paper the diameter e�ect on
the pile-soil interaction is evaluated by
means of results from small-scale labora-
tory tests, numerical models of the same
test setup, and existing theory. In total six
tests were carried out on piles with outer
diameters of 40 mm and 100 mm, respec-
tively, and a slenderness ratio L/D of 5.
In four of the tests overburden pressures
of 50 kPa and 100 kPa were applied. The
tests were modelled in the numerical �nite
di�erence program Flac3D, and the mod-
els were calibrated against the obtained
load-de�ection relationships from the lab-
oratory tests. From the numerical models
p−y curves for the six tests were obtained
and used in a comparison with the recom-
mended curves in the current design regu-
lations. From the evaluations, the follow-
ing conclusions can be drawn:

From the numerical models the recorded
de�ection along the pile when subjected to
lateral loading showed an increase in �ex-
ible behaviour when overburden pressure
was applied. However, the primary de�ec-
tion of the piles were caused by rigid body
rotation.
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To take the overburden pressure into ac-
count in the Winkler model approach for-
mulations proposed by Hansen (1961) and
Georgiadis (1983) was evaluated. How-
ever, none of the formulations produced
results in agreement with the test results.

By means of the Winkler model approach
the formulations for the ultimate soil resis-
tance given by API (1993), Hansen (1961),
Gwizdala and Jacobsen (1992), and Ja-
cobsen (1989) were compared to the load-
de�ection relationships obtained from the
laboratory tests without overburden pres-
sure. The comparison showed that the for-
mulation given by the current design regu-
lation API (1993) provided the best agree-
ment to the test results even though the
ultimate resistance was overestimated.

Based on a comparison of the p− y curves
for the two pile diameters it was found
that the initial sti�ness, E∗py, is dependent
on the pile diameter, i.e. the initial sti�-
ness increases with increasing pile diame-
ter. Further, the p− y curves obtained in
the numerical models indicated that E∗py

is dependent on the stress state as E∗py in-
creases with increasing soil pressure along
the pile and decreases with decreasing soil
pressure.

The dependency of the diameter was eval-
uated by means of E∗py obtained in the
numerical models and by the non-linear
formulation suggested in Sørensen et al.
(2010). The models with overburden pres-
sure indicated that a value of c = 0.5 for
the diameter dependency is an appropriate
value. By employing the formulation in
a Winkler model approach the non-linear
formulation was compared to the tests re-
sults and it was found that this formula-
tion was in better agreement with the re-
sults than the formulations given in API
(1993) and DNV (1992) where E∗py is as-
sumed independent of pile diameter.

From the calibration of the numerical
models, the evaluation of p−y curves, and

the evaluation of E∗py it was found that
considerable uncertainties are related to
small-scale testing and the di�erent evalu-
ations clearly indicates that the accuracy
in small-scale testing is increased when in-
creasing pile diameter and applying over-
burden pressure.
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