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Salomé Duarte2,3[0000−0003−4645−908X], Gilberto

Martins2,3[0000−0001−7187−0538], and Paulo Novais1[0000−0002−3549−0754]

1 LASI/ALGORITMI Centre, University of Minho, Braga, Portugal
joaoprp111@gmail.com,pedro.jose.oliveira@algoritmi.uminho.pt,pjon@di.uminho.pt
2 CEB – Centre of Biological Engineering, University of Minho, Campus de Gualtar,

4710-057 Braga, Portugal
salomeduarte@ceb.uminho.pt,gilberto.martins@deb.uminho.pt
3 LABBELS – Associate Laboratory, Braga/Guimarães, Portugal

Abstract. Nowadays, human population face increasing water pollution
problems, so treating and managing this resource is crucial. Wastewa-
ter Treatment Plants (WWTPs) provide essential services for human
life since they treat wastewater and monitor its parameters to preserve
water quality standards. One of these parameters is electrical conduc-
tivity, essential in quantifying water salinity levels. Therefore, this paper
aims to forecast the influent conductivity in a WWTP for the next two
timesteps. Hence, several experiments were conducted, considering the
use of Transformers and Long Short-Term Memory (LSTMs) candidate
models that were developed, tuned, and evaluated, utilizing a recursive
multi-step forecasting approach. The best candidate model was based on
a Transformer architecture with encoding and obtained a RMSE of 155.2
µS/cm.

Keywords: Deep Learning · Influent Conductivity · Time Series · Wastew-
ater Treatment Plants.

1 Introduction

During the last decades, human activities resulted in the pollution of an exceed-
ingly significant natural resource, specifically water. Since water is essential to
human life, it is crucial to combat its pollution [1]. Thus, Wastewater Treatment
Plants (WWTPs) are essential for reducing water courses contamination and
monitoring its quality. WWTPs can identify and develop the necessary treat-
ments to transform the influent wastewater into a higher quality water [2]. There-
fore, one of the essential tasks in a WWTP is monitoring influent wastewater
indicators to control its concentrations since the wastewater is later discharged
to the environment [3]. Additionally, this task also helps to manage the WWTP
resources in order to achieve the best wastewater treatment possible.
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One of the parameters found in wastewaters, which can play an essential
role in WWTPs, is electrical conductivity. It is relevant in a WWTP because
it can provide insights about the chemical processes of these infrastructures
[4]. Conductivity describes the salinity level of the water, which can help detect
seawater intrusions, measure the concentration of ionized chemicals in the water,
and identify possible illegal water discharges sources, through seasonality [5].
Herewith, conductivity can present higher or lower values than usual, which
can help detect water pollution and environmental changes. These variations in
the values can be influenced by some factors, such as temperature, inorganic
dissolved solids, the geology of the area where the water flows, and sea tides [6].

Therefore, the present article consists of developing, optimising and evaluat-
ing some Deep Learning (DL) candidate models to forecast the influent conduc-
tivity in a WWTP for the next two days. Thus, the selected models for this task
were based on Long Short-Term Memory (LSTMs) and Transformers, utilising a
multivariate recursive multi-step forecasting approach. The former model can be
advantageous in this work because of its capacity to learn sequences and long-
term dependencies [7], while the latter can capture non-sequential dependencies
and process the elements of the sequence in parallel [8]. Many experiments were
considered to obtain the best hyperparameters set for each base model. The
succeeding sections of this document are organised as follows: the next section
describes the literature review, considering the influent conductivity forecasting
in WWTPs. The third section describes all the steps related to data collec-
tion, manipulation, conceived DL models, and evaluation metrics. The various
experiments and the discussion of the results are presented in the fourth and
fifth sections, respectively. Finally, the last section presents the conclusions and
future work.

2 State of the Art

The prediction of the conductivity parameter in a WWTP is a topic barely
explored. However, some studies present interesting approaches for conductiv-
ity prediction in a WWTP, Water Treatment Plant (WTP), or Water Quality
Station [9–11].

In a study carried out by Maleki et al. [9], the work consisted in forecasting
the influent characteristics of a WTP, using an Artificial Neural Network (ANN)
based model. The dataset contains daily records (collected over 2 years) of some
influent parameters, like alkalinity and electrical conductivity, of the Sanandaj
WTP located in Iran. Both parameters, alongside other influent characteristics,
were used as inputs, and the goal of the model was to predict each input pa-
rameter for the next day of the sequence. Some steps of data manipulation took
place, namely the linear interpolation to fill the missing data and the Box-Cox
method to transform the data into a normal distribution. Besides these tech-
niques, there is no reference to other ones, like feature engineering. Following
this step, the data is partitioned into 70% for training, 10% for validation and
20% for testing, and the implemented model is based on a Nonlinear Autoregres-



Using DL models to Predict Conductivity of the influent in a WWTP 3

sive (NAR) neural network. Regarding the model training, there is no reference
for cross-validation, overfitting analysis and hyperparameter optimization. Fi-
nally, in the evaluation phase, authors utilize the coefficient of determination
(R2) as the evaluation metric, and through the obtained results, the electrical
conductivity achieved a R2 of 0.55.

Another work by Fu et al. [10] focused on predicting wastewater quality
parameters using a model based on a wavelet de-noised Adaptive Neuro-fuzzy
Inference System (ANFIS). This study utilizes datasets that contain registers
of influent parameters, such as Total Dissolved Solids (TDS) and conductivity,
measured every 2 weeks in Las Vegas, Wash since 2007. The authors use this
information to implement an Improved Wavelet-ANFIS (IWT-ANFIS) model ca-
pable of predicting TDS and conductivity in a multivariate forecasting approach.
With this in mind, the input data is carefully selected, considering the Pearson
Correlation coefficients between some chemical parameters, such as chloride and
fluoride, in addition to TDS and conductivity. Considering the manipulation of
the data and model training, the authors did not present too much information
about it. It is possible to know that the data was divided into train and test,
but there is no indication of the percentages. In addition, techniques like cross-
validation, feature engineering and hyperparameter optimization are not men-
tioned. To complete the study, the final model is implemented and compared to
five types of models, namely Multiple Linear Regressor (MLR), Multilayer Per-
ceptron with ANN (MLP-ANN), ANFIS, ANN-ANFIS, and WT-ANFIS. Mean
Absolute Percentage Error (MAPE) and R2 are the evaluation metrics used.
Furthermore, the final results of the testing phase, in terms of MAPE and R2,
show that the conductivity forecasting reaches the scores of 0.577 and 0.985,
respectively.

Najah et al. [11] proposed a study to forecast water quality parameters util-
ising a Wavelet (WT) ANFIS-based model with hold-out validation. In order to
carry out this work, they used monthly measurements of water quality indicators,
such as temperature, conductivity, turbidity and TDS, between 1998 and 2007.
These registers correspond to the Johor River Water Quality Station region in
Malaysia. Furthermore, the main goal was to forecast conductivity, turbidity and
TDS using a multivariate approach, with parameters such as pH and tempera-
ture. The authors implemented different architectures of the WT-ANFIS model
for each predicted parameter. Using the hold-out validation technique and over-
fitting analysis, the implemented model outperformed the traditional ANFIS.
Although the authors never mention the units of measurement for conductivity,
the results show that this parameter reached a Mean Absolute Error (MAE)
of 30.6 in the testing set. Regarding the data split step, 20% of the data was
utilised for testing, 8% for validating and 72% for training. There is no reference
to their implementation in this work regarding other essential techniques like
hyperparameter optimisation and feature engineering.

Considering the mentioned studies and particularly the cross-validation tech-
niques, one specific technique, namely TimeSeriesSplit (suited for time series
problems), was not utilized. Besides, other relevant techniques utilized in Ma-
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chine Learning (ML) problems, such as feature engineering and hyperparameter
optimization, were not mentioned. Additionally, data preparation tasks and un-
derfitting/overfitting analysis are topics that were not considered in all the stud-
ies. When facing a time series problem, most of these techniques are essential for
conceiving the models. Finally, the DL models, such as LSTMs, not considered
in any of the studies, can be an advantage in this work because of their capacity
to handle temporal dependencies.

3 Materials and Methods

This section provides information about the materials used in this study, namely
data collection, exploration and manipulation, the devised DL models, and the
evaluation metrics. In addition, elucidation is provided regarding the details of
the datasets.

3.1 Data Collection

Concerning the data collection step, the dataset was made available by a por-
tuguese multimunicipal company treating urban wastewaters. In addition, this
data represents real events that occurred in a WWTP situated near the coast,
and it contains data between January 2nd, 2019 and October 31th, 2022, regis-
tered every 2 days. Another dataset was utilized regarding the weather data in
the exact location of the WWTP. This one was provided by OpenWeatherMap,
in the same date range as the first dataset but with a different periodicity. The
dataset contained hourly records between January 2nd, 2019 and October 31th,
2022.

3.2 Data Exploration

Given the data points, in the first dataset analysis, it is possible to verify that the
WWTP parameters dataset has a total of 700 observations, while the weather
dataset contains 33576. Table 1 presents the features of the WWTP parameters,
and Table 2 describes some of the weather features. A short description, the data
type and the units of measure are also presented. These tables show that most
features contain doubles, except the features that represent the measurement
date.

Table 1. Features of the WWTP parameters dataset.

# Feature Description Data type Unit of measure

1 Conductivity Influent conductivity value double µS/cm
2 Flow Rate Influent flow rate value double m3/day
3 Date Date of measurement timestamp Date

In the WWTP parameters dataset, each observation contains two features
representing wastewater indicators: electrical conductivity and water flow rate.
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Another feature is the time label, which represents the observation timestamp.
Conversely, the weather dataset contains thirteen features representing weather
characteristics, including air temperature, atmospheric pressure, wind speed and
clouds. As the first dataset mentioned, each observation is associated with the
respective timestamp, represented by the date time feature.

Table 2. Some features of the weather dataset.

# Feature Description Data type Unit of measure

1 temp Temperature double Celsius
2 pressure Atmospheric pressure double hPa
3 humidity Humidity double %
4 wind speed Wind speed double m/s
5 wind deg Wind direction double Weather degrees
6 date time Date of measurement timestamp Date

Considering the features distribution, we performed a statistical analysis and
the Kolmogorov-Smirnov test to find if the data distribution is related to a Gaus-
sian distribution. The final conclusion was that none of the WWTP parameters
and weather features present a Gaussian data distribution, because p value ob-
tained from the test was lower than 0.05.

Considering the statistical details regarding conductivity, it yields a skewness
value equal to 5.42 and 63.7 for kurtosis, which means the distribution is right
skewed and leptokurtic, respectively. Besides, the maximum, minimum, standard
deviation, and mean values are 6320, 5, 389.57, and 1136.55, respectively.

Regarding the date range of the collected data, since this is a time series prob-
lem, it is essential to analyze if there are missing timestamps or missing values.
So, after the exploration, no missing timestamps are found in WWTP param-
eters and weather datasets. However, there are missing values in the WWTP
parameters dataset. Therefore, these values needed to be filled, and this treat-
ment is explained in detail in the data preparation section.

Finally, a plot was developed to verify the monthly average conductivity
values for each year to complete the data exploration. Afterwards, this explo-
ration task consisted of finding patterns between the different years to search for
seasonality or cyclic behaviours in the data.

As shown in Figure 1, it is possible to get an overall look at the monthly
average variations of the values. There is a similarity in the values between
May and December because there is a predominant increase between May and
September, followed by a fall between September and December every year.
Thus, this could indicate a small amount of seasonality at this time. Furthermore,
it is possible to note that the graph presents the highest average conductivity
values in September 2019 and the lowest in February 2021. Hence, this could be
an insight into high and low values tendencies.
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Fig. 1. Monthly average of the conductivity values for each year.
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3.3 Data Preparation

Another essential step to having a clean source of knowledge for the learning
process of the candidate models is data preparation. The first task consisted of
changing the weather dataset date range to allow its joining with the WWTP
parameters dataset. Since this data was registered hourly, the average of the 24
daily values was calculated to get the daily values.

Subsequently, the goal was to identify possible insertion errors in both datasets.
To complete this task, the data was carefully explored, where the values pre-
sented significant deviations from the majority, i.e., near the maximum and
minimum data points. Conductivity and flow rate columns appeared to have in-
sertion errors in some cases, that is to say, some digits could be missing. However,
there were no apparent insertion errors in each weather column. So, regarding
conductivity and flow rate columns, it was decided that the possible insertion
errors would be treated later as outliers.

As mentioned above, some missing values exist in the WWTP parameters
dataset. There is a total of 13 for conductivity and 2 for flow rate. With this in
mind, the linear interpolation technique filled the missing data of the WWTP
parameters features. Afterwards, the data treatment process replaced the data
points that could be outliers. Hence, to find those data points, it was necessary
to analyze in detail the data distribution. Then, maximum and minimum thresh-
olds were selected for each WWTP parameter to define outliers’ limits. Finally,
the values greater or lower than the maximum and minimum thresholds were
replaced by the last four registers mean.

The following step consisted in joining both datasets utilising the inner join
approach. In this way, datasets were concatenated by the timestamp, and con-
sequently, some weather dataset timestamps were discarded. Subsequently, new
features related to the timestamp, namely the day, month, week, year, season,
semester and trimester, were added to the dataset. Finally, to select the best
features of the dataset, we performed a correlation analysis between all of the
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features. As mentioned in the previous section, none of the features presented
Gaussian data distribution, so we utilized Spearman’s correlation coefficient test.

Regarding the weather data, most of the features were discarded after the
correlation analysis, such as clouds, visibility and feels like. Thus, the remaining
weather features slightly correlated to conductivity were described in Table 2.
Afterwards, the features with moderate correlation coefficients concerning con-
ductivity (target) were season and temperature. Hence, all the other features
were removed from the dataset. Finally, the data were normalized between the
values of -1 and 1 in the LSTM-based models and between 0 and 1 in the case
of the Transformer-based models.

3.4 Transformers

Transformers are a type of DL model architecture introduced in 2017 [12]. The
vanilla architecture consists of an encoder and a decoder, both composed of
multiple layers of self-attention and feed-forward neural networks. Self-attention
allows the model to capture dependencies between different positions in a se-
quence, while the feed-forward networks help process and transform the repre-
sentations. The vanilla Transformer has been widely used in Natural Language
Processing (NLP) tasks and has achieved state-of-the-art performance in various
domains, including machine translation and language generation [13].

This algorithm has also shown effectiveness in time series forecasting tasks,
for example, in energy consumption prediction [14], since it can capture non-
sequential long-range dependencies and process sequences in parallel. These char-
acteristics can help achieve better results when compared to Recurrent Neural
Networks (RNNs) [15]. Although, its performance can vary depending on the
specific task and the dataset’s quality, among other factors.

3.5 LSTMs

LSTMs are a variant of RNNs frequently applied due to their ability to capture
order dependencies in sequential data problems. Additionally, they solve the
RNNs vanishing gradient problem handling long-term dependencies [16]. In their
architecture, a group of cells contains properties that allow them to remember
or forget information over time. These cells, or units, have three gates, namely
input, output, and forget gates.

Considering these three gates, the first controls how much information is
added to the cell. The output gate controls the information that continues to the
subsequent layers. Finally, forget gate manages the information that is discarded
by the network. With these characteristics, LSTM is prepared to manage and
process information over long data sequences [17]. It can remember information
over a long period because a model based on an LSTM can capture essential
features from past inputs and preserve the information taken from it [18].
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3.6 Evaluation Metrics

Since the problem faced in this work is a regression one, two evaluation metrics
were considered. These metrics help to evaluate the candidate models developed.
Hence, the metrics considered for this task are MAE and Root Mean Squared
Error (RMSE). MAE measures the average magnitude of the errors between
predicted and real values. Furthermore, calculating the absolute differences be-
tween them makes it possible to know if the models’ predictions match the true
values. MAE is less affected by outliers compared to other metrics like RMSE.
The following formula shows how MAE is calculated:

MAE =

∑n
i=1 |yi− yipred|

n
(1)

The other metric, RMSE, is similar to MAE, but instead, it calculates the
square root of the average of the squared differences between the predicted and
true values. It considers both the magnitude and direction errors. Thus, it is
more sensitive to outliers. The formula is the following:

RMSE =

√∑n
i=1(yi− yipred)2

n
(2)

In equations 1 and 2, yi, yipred and n represent the actual values, predicted
values, and the number of data points, respectively.

4 Experiments

Several experiments were developed in order to predict influent conductivity. To
obtain the best hyperparameters combination, transformer-based and LSTM-
based candidate models were included in a tuning process, following a multivari-
ate recursive multi-step forecasting approach. During this process, season and
temperature data fed the models to predict the next two conductivity values.
Regarding this tunning process, Table 3 summarizes the hyperparameters ranges
of each model.

Table 3. Hyperparameters’ searching space for each model.

Parameters Transformer value range LSTM value range

Activation Function [ReLU,tanh] [ReLU,tanh]
Batch Size [10,20] [10,20]
Dropout [0.0,0.5] [0.0,0.5]
Encoding Layers [4,8] -
Epochs [50] [25]
Layers - [3,4,5]
MLP Layers [3,4] -
Neurons [64,128] [32,64,128]
Number of heads [4,8] -
Timesteps [4,6,8] [4,6,8]
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All candidate models are evaluated in terms of performance by the two met-
rics mentioned in the previous section. Different values for each hyperparameter
were considered for both base models. One important hyperparameter in this
context is the number of timesteps. They are given as input to the candidate
models, and the values 4, 6 and 8 were considered in both models. Considering
4 timesteps as an example, a sequence of 4 records (recorded every 2 days) is
utilized to predict the following two conductivity registers (with a periodicity
of 2 days). Additionally, some of the other hyperparameters are specific to the
model, like head size and ff dim, which are used only in Transformer, with the
values of 128 and 512, respectively. During the experiment runs, all candidate
models had the same seed value, in this case, 91195003.

The conceived tests were supported by plotting the learning curves to prevent
overfitting and underfitting situations. Afterwards, these curves were analyzed
to choose the number of epochs. In addition, it was crucial to use the Time-
SeriesSplit cross-validator with a k value equal to 3, since we are dealing with a
time series problem.

Concerning the technologies used, in terms of programming language, Python,
version 3.10, was used for conceiving, tuning and evaluating the different can-
didate models. Also, libraries like Numpy, Pandas, Matplotlib, and scikit-learn,
among others, were considered. Regarding the development of ML models, Ten-
sorFlow v2.0.0 was used. Finally, all hardware used in the development of this
study was provided by Google’s Collaboratory.

5 Results and Discussion

After all the experiments were performed, it was necessary to analyze their
results. Table 4 summarizes the results according to the model’s nature, namely
Transformer and LSTM candidate models. In this table, it is possible to verify
the hyperparameters space, utilized in each of the top-five candidate models and
their scores in terms of RMSE, MAE, and training time.

Table 4. Top-five candidate models results, for Transformers and LSTMs.

Timesteps Batch Layers Neurons Dropout Activation Epochs Encoding layers Heads RMSE MAE Time(s)

Transformer candidate models

4 10 4 64 0.0 tanh 50 8 8 155.2 135.4 355.6
6 10 3 128 0.5 tanh 50 4 8 156.0 141.6 199.0
4 20 3 128 0.5 tanh 50 4 4 156.6 146.0 119.7
8 20 3 64 0.0 tanh 50 4 4 157.7 141.7 133.5
6 10 4 128 0.5 tanh 50 4 8 159.2 149.6 203.2

LSTM candidate models

4 10 4 128 0.0 tanh 25 - - 179.9 162.4 69.4
4 10 4 128 0.5 tanh 25 - - 187.1 170.4 72.1
4 10 5 128 0.0 tanh 25 - - 187.9 170.3 82.0
4 20 4 128 0.0 relu 25 - - 188.2 169.9 57.8
4 20 3 128 0.5 relu 25 - - 190.0 172.6 50.6

Regarding the Transformer-based models, some hyperparameters utilized are
specific to Transformers, like the number of encoding layers and the number of
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heads, since Transformer uses an encoding layer, and LSTM does not. Consid-
ering these candidate models, the best one achieved a RMSE of 155.2 and a
MAE of 135.4. In addition, the activation function considered was the tanh, the
dropout rate was set to 0.0, and the number of layers and neurons was 4 and
64, respectively. Considering the number of timesteps utilized as input, it was
4. Concerning the top-five Transformer-based models, there are some predomi-
nant hyperparameters such as the layers (3), encoding layers (4), and activation
function (tanh).

When considering the LSTM-based models, the best one achieved a RMSE of
179.9 and a MAE of 162.4. This candidate model needed 4 timesteps as input to
achieve the best performance and utilized 0.0 as the dropout value. Additionally,
tanh was utilized as the activation function, and the number of neurons was 128.
Finally, the batch size was 10, and the number of layers of this model was 4.
Considering the top-five LSTM-based models, there are homogeneous hyperpa-
rameters, namely the timesteps (4) and the number of neurons (128). Apart from
this, the other parameters are not homogeneous but show some predominance
in the values, like the dropout (0.0) in the majority of the candidate models and
the activation function (tanh).

Finally, considering both LSTM-based and Transformer-based models, it is
possible to observe that Transformer performed better in this time series task
when considering top-five candidate models. However, these models required
longer times to train (more than 100 seconds), and the number of epochs was
superior to the ones utilized in the LSTM-based models (50 instead of 25). Fi-
nally, in the fourth Transformer-based model of the top five, the required number
of input timesteps was more significant (8). Figure 2 illustrates four predictions
of the influent conductivity of the best candidate model, the Transformer-based
one. As can be observed in the figure, the number of timesteps used as input
was 4 to forecast the next four timesteps recursively.

Fig. 2. Four multi-step forecasts of influent conductivity.
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6 Conclusions

Monitoring the water conductivity in a WWTP can be extremely helpful during
wastewater treatment and management tasks since it can give important infor-
mation about the water’s salinity and help detect problems in water quality. In
fact, it can be possible to detect saltwater intrusions, and consequently, adjust
the wastewater treatment, since this phenomen might dilute the influent and
present higher flow rates. Influent conductivity, in particular, provides earlier
insights about the overall water quality entering the WWTP. Besides, WWTP
operators can make adjustments to make the treatment process more efficient
in the following stages of the WWTP. With this in mind, this work consisted of
forecasting the next two timesteps (in a periodicity of two days) regarding the
influent conductivity using LSTM and Transformer-based models.

Therefore, several experiments were considered to achieve the best hyperpa-
rameter set and performance for LSTM and Transformer architectures. Addi-
tionally, two features of the weather dataset were considered in the conception
and training of the models, namely the temperature and season of the year,
which presented a correlation with conductivity. The best model was based on a
Transformer with encoding, achieving an RMSE of 155.2 and an MAE of 135.4.

In the future, this work could be improved by utilizing more models for com-
parison with the models utilized in this study, such as CNNs and ANFIS. More
specifically, hybrid models that might achieve better performances in influent
conductivity forecasting, such as CNN-LSTM and GRU-LSTM. Additionaly,
new features, such as TDS, could be used to find if the influent conductivity
forecasting performance can improve.
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