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Resumo 

Cirurgias roboticamente assistidas têm vindo a substituir as cirurgias abertas com 

enorme impacto no tempo de convalescença do paciente e consequentemente em tudo 

o que isso implica, economia de recursos no sector da saúde e a retoma antecipada das 

atividades laborais do paciente. Este tipo de cirurgia auxiliada por um sistema robótico 

é guiado por uma câmara laparoscópica, facultando ao médico uma visão das partes 

anatómicas do paciente. A fim do cirurgião se encontrar apto para operar este 

equipamento tem de passar por inúmeras horas de formação, tornando o processo 

desgastante e dispendioso. Para além do referido, a manipulação dos instrumentos 

cirúrgicos em concordância com a câmara laparoscópica não é de todo um processo 

intuitivo, ou seja, os erros de natureza subjetiva não são erradicados. A diretiva desta 

tese é o desenvolvimento de um sistema automático capaz de segmentar instrumentos 

cirúrgicos, possibilitando desta forma a monitorização constante da posição dos 

instrumentos. Para tal foram explorados diferentes modelos de aprendizagem 

automática. Numa segunda fase, foram considerados métodos que pudessem ser 

incorporados no modelo base. Tendo-se encontrado uma resposta, partiu-se para a 

comparação dos modelos previamente selecionados, com o modelo base e ainda com o 

otimizado. Numa terceira abordagem, de forma a melhorar as métricas que serviram de 

comparação, procurou-se por soluções alternativas, nomeadamente a geração de dados 

artificiais. Neste ponto, deparou-se com duas possibilidades, uma baseada em sistemas 

de aprendizagem autónoma por competição e outra em sistemas de aprendizagem de 

síntese de imagens a partir de ruido com densidade espectral sucessivamente 

incrementada. Ambas as abordagens permitiram o aumento da base de dados tendo-se 

aferido a sua eficácia por comparação do efeito do aumento de dados nos sistemas de 

segmentação. O sistema proposto pode vir a ser implementado em cirurgias 

roboticamente assistidas, necessitando apenas de mínimas alterações. 

Palavras-chave: câmara laparoscópica, cirurgia robótica assistida, geração, 

segmentação semântica.  
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Abstract 

Robotic-assisted surgeries have been replacing open surgeries with a significant 

impact on patient recovery time, and consequently, on various aspects such as 

healthcare resource savings and the early resumption of the patient's work activities. 

This type of surgery, assisted by a robotic system, is guided by a laparoscopic camera, 

providing the surgeon with a view of the patient's anatomical structures. To operate this 

equipment, surgeons must undergo numerous hours of training, making the process 

exhaustive and costly. In addition, manipulating surgical instruments in coordination 

with the laparoscopic camera is not an intuitive process, meaning errors of a subjective 

nature are not eliminated. The objective of this thesis is the development of an 

automated system capable of segmenting surgical instruments, thereby enabling 

constant monitoring of their positions. Various machine learning  models were explored 

to address this issue. In a second phase, methods that could be incorporated into the 

base model were considered. Once a solution was found, a comparison was made 

between the previously selected models, the base model, and the optimized model. In 

a third approach, with the aim of improving the comparison metrics, alternative 

solutions were sought, including the generation of synthetic data. At this point, two 

possibilities were encountered, one based on autonomous learning systems through 

competition and the other on image synthesis learning systems from progressively 

increasing noise spectral density. Both approaches expanded the available database, 

and their effectiveness was evaluated by comparing the impact of data augmentation 

on segmentation systems. The proposed system can potentially be implemented in 

robotic-assisted surgeries with minimal modifications. 

Keywords: generation, laparoscopic camera, segmentation, robotic-assisted surgery         
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Chapter 1 Introduction 

In robotically assisted surgery one of the fundamental problems is merely 

mechanical in origin. Given the constitution of a mechanical arm, what is the estimated 

movement of each part of the arm to reach a target position? The answer to this 

question requires knowledge of the structure of the arm and the transmission of 

movements between the various parts of it. This knowledge can only be obtained by the 

structural representation of the arm and the instantaneous position of its parts which in 

turn can be obtained by using semantic segmentation procedures.  

The main objective of this thesis is the development of a machine learning 

algorithm to automatically segment parts of surgical instruments and the type in 

laparoscopic images. This chapter provides information of the motivation behind this 

dissertation describing the problem and the proposed objectives. 

 

1.1 Motivation 

Robotic-assisted surgery is revolutionizing surgical practices by improving 

conventional procedures and reducing the risk of postoperative complications. Unlike 

industrial robots designed for repetitive tasks, surgical robots are tailored for dynamic 

and shifting environments [1], hence a much more challenging problem requiring the 

best artificial intelligence has to offer. Despite its very high cost of approximately 2.25 

million euros per unit robotic surgical systems will be essential in modern hospitals 

because they are essential for patients’ well-being (physically and mentally), allow a 

relatively quick return on investment for the hospital by reducing length of stay and 

post-surgical complications, for the national health system by improving the overall 

performance of hospitals and for the community by reducing work complications. With 

all this panoply of advantages, assisted surgery will certainly be the most used in the 

near future for an increasingly extensive range of interventions if it proves to be reliable 
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and safe, which is a huge challenge not so much for medicine but for contemporary 

engineering. 

Prostatectomy, the removal of the prostate gland, is a common surgery often 

performed with robotic assistance. Between 2005 and 2008, the number of discharges 

for prostatectomy increased by more than 60%, according to the Nationwide Inpatient 

Sample. This surgery is frequently associated with prostate cancer, encouraging patients 

to undergo the procedure. In Portugal, the use of robotic-assisted surgery led to a 31% 

increase in prostatectomy procedures in 2011 [2],[3]. 

Beyond patient benefits, medical professionals require a clear view of the 

anatomical body and precise tactile feedback during surgery. Robotic-assisted surgery 

involves the use of laparoscopic images captured throughout the procedure. Surgeons 

may encounter challenges such as loss of visual field or obscured images due to 

inexperience or issues like tissue burning. To minimize such constraints, surgeons need 

extensive training, often requiring at least 150 procedures [2]. While robotic-assisted 

surgery incurs higher training costs than open surgery, these expenses can be mitigated 

through the implementation of computer-assisted techniques.  

Computer vision has made significant advancements in various scientific fields, 

including engineering, mathematics, and medicine. In medical image analysis, robots 

have been utilized for pre-operative planning of procedures like aortic valve surgeries 

(e.g., 3mensio Structural Heart [4]). The next logical step is integrating robotic-assisted 

surgery with these technologies. To achieve comprehensive solutions, several 

applications must be developed, including full-scene segmentation, instrument 

segmentation and monitoring, and workflow recognition. Instrument segmentation, a 

focus of this work, is fundamental for future all-encompassing solutions. Identifying 

entire instruments and their components within a surgeon’s field of view prevents 

instrument misplacement and enables real-time monitoring. Emphasis should be placed 

on developing models that can robustly handle segmentations. However, due to patient 

variability, encoding diverse clinical knowledge into AI systems presents challenges. 

These solutions require extensive and diverse datasets, which are often not readily 
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available. As a result, alternative approaches to overcome these limitations must also 

be developed. 

 

1.2 Objectives 

The main objective of this thesis is to study methods capable of segment surgical 

instruments used throughout a robotic-assisted surgery. These methods are based in 

deep learning strategies using laparoscopic images, and can be sorted into three parts:  

The first line of thinking for this work was the search for different deep learning 

models capable of doing semantic segmentation. This study focused more in models 

that could outperform models already explored for this task. 

The second phase was the study of different ways of increasing the scores 

achieved by the elected model. In this point techniques that could be implemented in 

the model without increasing exponentially the number of its parameters were 

employed. It was also witnessed that methodologies like transfer learning enhance 

models’ capabilities.  

The last point was trying to solve the problem of lack of data. The model without 

a high number of images with enough diversity, can not extract features that can fulfil 

the requirement of this thesis. Therefore, methods that can add more information about 

the data through image generation were searched. Synthetic data generation is a valid 

technique for increasing the dataset size and provides better scoring results [5], [6]. 
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Chapter 2 Robotic-assisted surgery: overview 

The laparoscopic surgery, which is a surgery guided by a laparoscope, has been 

assisted by different types of robotic forms, during the last decades. The first 

commercially available robot was the Automated Endoscopic System for Optimal 

Positioning (AESOP), a robot arm with a camera. The robot had the ability to imitate a 

human arm, allowing the surgeon to have access to a flexible operative field. The arm 

control could be made by voice commands, that were previously recorded, or by a foot 

pedal [7]. Over the years, all the developed robotic arms were passive systems, which 

means that the robots only increase the window vision of the surgeon, through a 

laparoscope, and do not directly intervene on the surgery. Until the early ’90s, the main 

developments in this area were a robotic camera synchronized with the surgeon head 

movement, which was made by Armstrong Healthcare [7] . The technology progressed 

over the years, but dexterity remained a serious problem. The first master-slave 

manipulators were developed during the 1990s. These manipulators obligated the 

surgeon to control the system from a remote cabinet. A computer was located between 

the surgeon and the surgical instruments, where the hands’ actions of the surgeon were 

reflected in movements of instruments inside the patient’s body. The main issue of this 

technique was the lack of freedom because until 1992 the robot’s arms only had 4 

degrees of freedom. During the mentioned year, in Germany, the first system with 6 

degrees of freedom was made, where the arms were controlled by a joystick. Although 

it’s a revolutionary technology, the system never had a clinical application [8]. At the 

same time, two companies from the US worked on telemanipulation systems, to make 

the surgery as minimally invasive as possible. The first one, mentioned as the ZEUS 

robotic arm surgical system, was composed of a control system that allowed the 

manipulation of three robotic arms at once on the operation table. Two of the arms had 

only 4 degrees of freedom, having a variety of surgical tools, while the remaining arm 

was an endoscope holder, that could be controlled by voice. The controller, which was 

manipulated by the surgeon, has the ability to filter the tremors making scale-down 
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movements by a factor of 2 to 10. The visual field was a screen located on the console, 

so it was a two-dimensional image [9], [10]. Although the ZEUS robot was capable of 

passing through the test and used for surgery, it was discontinued after the company 

was purchased by Intuitive Surgical. Intuitive Surgical remade the robotic surgical 

system, adapting the arms to incorporate 7 degrees of freedom and integrating force 

feedback with a 3D vision. This innovate robot model was called by da Vinci and is still 

referred to by this name up to the present[7], [9]. The most recent technology searches 

for a robotic-assisted surgery with a minimally invasive as possible. The surgical 

procedure looks after to mitigate the trauma on the surrounding tissues. During the 

surgery, the surgeon does not touch or directly see the patient’s body, but he visualizes 

the surgical field and manipulates the tools through a robot, instead [11]. This type of 

surgical procedure has three components: the surgeon console, the articulated arms, 

and the imaging system. The surgeon console is where the surgeon can control the 

different available surgical instruments and can see the operation field through a 

binocular stereoscopic camera. The control is composed by two joysticks, where one 

permits the instruments’ movements and the other adjusts the lens. The binocular 

stereoscopic camera contains two 5mm diameter cameras, each one responsible for 

transmitting information for one eye, allowing a 3D vision. The trolley, that supports the 

robotic arms, in the more recent da Vinci models, has four arms, where one holds the 

laparoscopic camera, and the other three hold the different surgical instruments. The 

last part, which is the imaging system, is composed of an insufflator, a light source, and 

a dual camera. This structure is allocated in the operating room, so the image could be 

transmitted on the surgical field[10]. 

  

2.1 Clinical context 

Robotic-assisted surgery could be applied in different type of diseases. Diseases 

can be split in two different sets: benign and malignant. Bening diseases are 

characterized for being tumors that are not cancerous, i.e., they do not spread to the 

nearby tissues or to the other parts of the body. This type of disease is armful, however 
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it can cause pain and other type of problems when they make pressure in nerves or 

bloodstreams. Usually, when they are removed do not return. In contrast to this 

condition, malignant diseases are cancerous tumors that grow rapidly and can spread to 

other organs via the bloodstream. Malignant diseases pose a significant threat to the 

individual’s life. In these types of illnesses, complete removal of the tumor is necessary 

because any remaining cells have the potential to grow and form a new tumor hence 

the need of a surgery of high precision to access all the cancerous tissue.  

The next sub-sections expose the different types of benign and malignant 

diseases that can be treated by using robotic-assisted surgery.  

 

2.1.1 Benign diseases 

Gallbladder is an organ responsible for creating the bile, which helps to digest 

fat. In this organ is very common the occurrence of benign diseases, such as gallstones, 

cholesterol polyps or even adenomas. When this illness is detected, is necessary the 

organ removal.     

Robotic-assisted surgery could be used for cholecystectomy, which is a 

procedure to remove the gallbladder. The technical approaches for the robotic 

cholecystectomy are 4: multiport technique, single port technique, robotic common bile 

duct exploration, and Robotic Hepaticojejunostomy. The multiport technique, as the 

name indicates, uses 4 entry points, where three are for the instruments and the last 

one for the camera. At the beginning of the surgery, each trocar is placed 10cm away 

from the patient body, and the distance between each other should be 6cm, to avoid 

interference. Figure 1 illustrates a schematic of the robotic surgery by multiport: 
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Figure 1. Instrumentation for robotic multiport cholecystectomy [12]. 

 

The dissection begins by grasping the Hartmann’s pouch, which is located on top 

of the gallbladder, and then to have a clear view of the cystic duct (the connection 

between the gallbladder and the bile duct), the cystic duct is pulled to a 90º angle. To 

identify the cystic duct, to achieve a critical view safety, the Calot’s triangle (small 

anatomical space in the abdomen that is located at the porta hepatis of liver) must be 

free of fatty tissue, and only two structures should be seen entering the gallbladder. 

Once the critical view safety is achieved, two clips are placed on the cystic duct and then 

the gallbladder is removed from its bed. After this process, gallbladder is detached 

following an absorbable suture to avoid hernias[12].  

In the single port technique, unlike the previous one, there is only one entry 

point for the anatomy body. The entry point is made by a 3cm vertical incision in the 

umbilicus and next a transverse incision is performed. The tools used are more flexible, 

which allows their insertion into curved cannulas, that are placed in the entry point [12]. 

The remaining process is identical to the previous one. Figure 2 illustrates a single-port 

technique for a cholecystectomy surgery: 
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Figure 2. Single port technique instrumentation [12]. 

 

The next technique, the robotic Common Bile Duct Exploration, is a common 

procedure to remove stones when they cannot be cleared via transcystic. So, this 

procedure requires an extra instrument that is placed in the left lateral abdomen [12], 

[13].  

The last one, the robotic Hepaticojejunostomy, is a surgery that seeks to create 

communication between the hepatic duct and the jejunum [14].   

The robotic-assisted surgery is a revolutionary technique that minimizes the 

post-operatory traumas and increases the recovery speed. Patients report less pain after 

the procedure, due to the lack of extensive incisions, because the incisions on the 

abdominal body are not more than 20 mm in diameter [8], [15]. Although the equipment 

is very expensive and not affordable in all countries, in a long-term perspective the 

investment could yield returns due to the absence of a long-term need nursing care. 

Robotic surgery, due to small incisions, reports less blood loss and lower risks of 

infection [11]. 
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2.1.2 Malignant diseases 

Beyond of mentioned, robotic-assisted surgery is often performed in cancer 

surgery. The cancer kills millions of persons every year. The surgical intervention is the 

primary resource to cure from solid organ cancers. According to the surgeon policy, the 

surgery should remove the tumor completely and minimize the surgical post-trauma of 

the patient. This principle guarantees quality of life and decrease the morbidity. Robotic-

assisted surgery is often the chosen approach because allows the surgeons to perform 

complex surgeries with more precision than open surgery.  This surgical procedure 

allows the physician to effectively treat the cancer from the patient, facilitating a 

significantly quicker and smoother recovery. Depending on the cancer stage, the 

surgeon has three possibilities: remove the tumor completely, reduce the tumor size so 

the patient could undergo to other treatment or relieve the pain [16].  

There are many cancers that are treated with robotic surgery, like colorectal, 

pancreatic, thoracic, and thyroid. Colorectal cancer is the third most common cancer 

diagnosed in both men and women, causing 53000 deaths per year. This type of cancer 

appears in the colon and rectum. The cancer starts when the cells’ body grow out of 

control. The colorectal cancer can be seen in Figure 3: 

 

Figure 3. Schematic of a colorectal cancer [17]. 

Robotic surgery for colorectal cancer allows the surgeon to perform the 

procedure with less blood loss, due to small incisions. Furthermore, it provides to the 
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physician a 3D visual field, helping the robotic arms manipulation, eliminated surgical 

tools vibrations, permitting a more precision surgery. Moreover, due to the robotic arms 

ergonomic, with a wrist with 180º degrees of freedom, allows meticulous dissections. 

The meticulous dissection is also useful to preserve nerves from the pelvic area. In 

Addition, the surgeon can perform the surgery seated. With robotic-assisted surgery, 

the recovery time only take 2 to 3 weeks, unlike the conventional that takes 4 to 6 week 

[17], [18].  

Pancreas is located behind the lower part of the stomach, providing enzymes 

that help to digest food. There are many types of pancreatic cancer, being the most 

common the pancreatic ductal adenocarcinoma. This type of cancer starts in the ducts 

that carry the enzymes away from the pancreas. For this oncology problem, the surgeon 

has two options: excise the entire mass of the pancreas or decrease the tumor size, 

relieving the symptoms. The main problem of this type of intervention is the pos-

operative recovery because in the open surgeries it is needed an exploration approach, 

unlike robotic-assisted surgery, in order to achieve the pancreas. Another problem in 

the conventional techniques is the blood loss because the pancreas removal, named as 

pancreatomy. In robotic-assisted surgeries, this is not the case because of the small 

incisions made in the patient’s body and the precision of the dissections [19]. Moreover, 

robotic-assisted surgery can reduce the recovery period to as little as 2 weeks, whereas 

the traditional surgery typically requires a month. For a better understanding of 

pancreatomy, Figure 4 represents a procedure assisted by robotic arms.  
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Figure 4. Pancreatectomy procedure by robotic-assited surgery [19]. 

 

The thoracic cancer is the second most common cancer in both men and women. 

According to de data, each year there are roughly 2,000,000 cases of lung cancer and 

1,800,000 deaths worldwide. In order to remove the tumor from the lungs a lobectomy 

is needed, which is a surgical intervention that removes an entire lube from the lungs.  

Figure 5 shows a traditional lobectomy intervention. 

 

Figure 5. Traditional lobectomy procedure [20]. 
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In the traditional way, it required the opening of a large incision, breaking of 

chest bones and even the spreading the chest. This procedure requires a lot of recovery 

time, which could be mitigate by the implementation of robotic-assisted surgery. The 

surgeries assisted by robotic arms avoid the breaking bones and the spreading of the 

chest because the incisions can pass through the intercostal spaces, without damaging 

the bones. This surgery must be performed with the patient in a lateral position, where 

the robot accesses to entire length of the patient back. With thoracic robotic-assisted 

surgery the patient’s recovery time is 2 to 4 weeks, while in the traditional surgery takes 

6 to 8 weeks.   

The thoracic cancer is very related to lifestyle factors, like smoke and diet, which 

are the main problems of the society today  [21]. 

The thyroid cancer is a disease that can be treated by a robotic-assisted 

intervention. The thyroid is a gland located at the throat with a shape of a butterfly. This 

type of cancer is more common in women than men. Like all cancer there are different 

types of thyroid cancer, being the most frequent the papillary thyroid cancer. This cancer 

requires the removal of the thyroid glands by a surgical intervention, named 

thyroidectomy. The traditional thyroidectomy involves the cut of the whole throat, that 

may damage the muscles and nerves, as it can see in Figure 6. 

 

Figure 6. Representation of a conventional thyroidectomy surgery [22]. 
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The thyroidectomy surgery with robotic arms avoids this issue because the organ 

access is made by the armpit. The robot is positioned so that the arms of the robot would 

be perpendicular to the patient throat. After the patient recovery, which only takes 1 

week, the individual only has a scar below his arm. Also, the patient does not require to 

be in bed all the time just 24 hours after the surgery. The conventional procedure, due 

to its invasive intervention as mentioned before, the patient needs 3 weeks to be fully 

recovered.  

Like all techniques that possess both advantages and disadvantages, this one is 

no exception. While performing the surgery, surgeon has lacks needs to remain in an 

extremely static position, which does not happen in an open surgery. Managing long 

instruments that go through the fixed entry points while looking at a screen reduces the 

feedback. Another issue is the learning curve, which is a slow process because surgeons 

during their academic phase learn the open operations and its associated tactile 

feedback. They then need to translate this tactile feedback into robotic feedback, which 

is not an intuitive process [11]. Furthermore, robotic-assisted surgery depends on the 

skillfulness of the surgeon, because, as mentioned before, he needs to coordinate the 

movement of several surgical tools with a small visible field. Therefore, machine learning 

systems play a crucial role because they can help the surgeon to identify the instrument 

location and avoid wrong organs dissection in such environments. From a futuristic 

perspective, machine learning algorithms have the potential to become an assistant 

during surgery, helping with more robust decisions.   
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Chapter 3 Machine Learning Overview 

Intelligence is vague to define being usually related with the capacity for an entity 

to reason, learn, and adapt to new situations which are the main ingredients to create 

new knowledge. Human intelligence in particular is highly complex and multifaceted, 

involving skills like language, abstract thinking, creativity, and emotional intelligence 

which allow humans to solve complex problems. Artificial intelligence (AI) is a field of 

computer science that involves the development of computer systems that can perform 

tasks that would typically require human intelligence to complete. These systems are 

designed to learn, reason, and make decisions based on data, with the goal of achieving 

human-like or superhuman performance in specific areas. Machine learning is just a 

subfield of AI that uses algorithms trained on data to produce adaptable models that 

can perform a variety of complex tasks.  

This chapter approaches general concepts of machine learning, such as the types 

of learning techniques and the main obstacles within. Then it is presented a classification 

problem and how the learning process could be addressed, including an overview of 

different objective functions what the machine learning model searches to 

minimize/maximize. Afterwards, the main process behind the model optimization and 

the proceeding optimization are both introduced. A brief overview of some conventional 

learning models and some basics of deep learning models are quoted.  

 

3.1 General concepts 

Machine learning (ML) is a sub-field of AI, consisting of a learnable system 

capable of detecting patterns in a dataset and providing an answer to a specific task, 

such as classification, object segmentation and detection, regression, and clustering. 

Overall, ML enables computers to learn from historical data using probabilistic theories, 

resulting in a model that can be used to make accurate predictions about past, current, 

and future events.  
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3.1.1 Training strategies 

ML models can be divided into three main categories depending on the task and 

the training data, namely supervised learning, unsupervised learning and reinforcement 

learning. Supervised learning is an approach whose primary goal is to map the input 𝑥 

to the output labels 𝑦. To train these models, the dataset consists of input-output pairs, 

𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑁 , where 𝐷 is the training set and 𝑁 the number of training samples. 

Each input, 𝑥𝑖, is a D-dimensional vector composed of features, attributes or covariates 

that describe the characteristics of a complex object, such as an image or a graph. 

Similarly, 𝑦𝑖 denotes the target variable which in most cases is a categorical 

(classification or patterns recognition) or nominal variable (regression to predict real-

valued outputs). The second type is unsupervised learning, where 𝐷 is an unlabeled set 

composed just of  𝑥𝑖, 𝐷 = {(𝑥𝑖)}𝑖=1
𝑁 . The main task is to find implicit patterns in data 

without any guidance from a target variable. In these problems, the decision boundaries 

are not well delineated, as the system lacks awareness of the patterns it aims to discern. 

Consequently, there is an absence of a clearly defined metric to quantify errors. The last 

type of ML is known as reinforcement learning. This type of learning involves training 

models, also known as agents, to make decisions in a trial-and-error approach to 

maximize cumulative reward over time. The system learns by interacting with an 

environment and acting according to rewards or punishments [23].  

 

3.1.2 Training control 

Controlling the training process in supervised learning-based systems is 

fundamental to obtaining an accurate model and requires a tradeoff between accuracy 

and generalizability. Systems with very high accuracy in the training set usually degrade 

significantly when used in unseen data because excessive details of data, such as noise 

and stochasticity, have been learned as essential characteristics for data modelling. 

While accuracy can be measured and controlled in the training set generalizability 

requires the use of the test set. Therefore, a third independent and usually small data 

set, the validation set, must be used to simultaneously measure accuracy and 
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generalizability allowing to establish the required trade-off. When this trade-off is not 

accomplished, we fall in one of the two obstacles in the training of machine learning 

systems: underfitting and overfitting. Underfitting happens when the model doesn’t 

acquire an error low enough during the training phase, while overfitting is when the 

model learns noise and stochastic variations from data and propagates them, 

developing a disparity between the training error and the testing error [24], [25].  

 

3.2 Conventional machine learning models 

Conventional machine learning models are nowadays considered all those that 

do not include deep learning, with the exception of transformers. In fact, the use of 

Convolutional Neural Networks (CNNs) established a border point in the classification of 

ML models since handcrafted feature extraction modules are no longer necessary being 

replaced by optimal features obtained from CNNs training. 

Regarding training strategies, the most usual is the supervised training except 

when labeling is difficult or even not possible. Supervised training strategy allows a 

better use of the training set for learning purposes, especially when compared to 

unsupervised learning where no training data is used.    Nowadays, there is a panoply of 

machine learning models, such as: Nearest Neighbor, Naïve Bayes, Decision Trees, Linear 

Regression, Support Vector Machines (SVM), Neural Networks (NN) [26]. In this section 

the Multilayer Perceptron (MLP) is used as an example of machine learning model. The 

explanation of how it works and what is behind its operating system is provided, as well 

as the backpropagation algorithm, the optimization and objective functions. 

 

3.2.1 MLP 

This type of NN is inspired by biological neurons, which is a set of processing 

elements, named nodes, interconnected with each other by weighted connections 

(weights).  These connections are arranged in a specific architecture, complemented 

by a learning algorithm. MLP has an input and output layer, with one or more paired 

neurons as hidden layers. Each neuron is seen as a regression model or logistic 
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regression, depending on whether it is a regression or a classification problem, 

respectively [27]. Figure 7 shows a schematic representation of an MLP structure:  

 

Figure 7. Schematic representation of a MLP structure [27]. 

In this structure, each node of the hidden layer receives a signal from previous 

neurons and apply to the signal an affine transformation. Subsequently, an activation 

function is employed with the aim of converting the problem into a non-linear one. The 

MLP could use non-linear activation functions, such as Sigmoid, Hyperbolic Tangent 

(TanH), Rectified Linear Unit (ReLU) and Leaky (ReLU), being the last the most resorted 

[26]. Figure 8 shows the mentioned activation functions: 
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Figure 8. Non-linear activation functions used by MLP [26]. 

MLP training with non-linear activation functions allows the model to generalize 

to unseen data. The learning process is composed by two phases: forward and 

backward. The forward phase is when the input layers receive the data, propagating it 

through the model until reaching the last layer of the MLP. But before the backward 

phase, the MLP searches for minimizing/maximizing an objective function, depending 

on the type of problem. The objective function, also called loss function, is a measure 

that denotes how well the model has adjusted to a specific dataset. To accomplish a 

good train, the model should converge to the global minimum (the lowest value in a 

function) and avoid being trapped in local minima (the lowest value in some vicinity). 

The more commonly employed approach to ascertain the minimal point is through the 

descent gradient. To choose the loss function, it is imperative to take into account 

various factors, such as the outliers or the selected machine learning algorithm. Due to 

these factors, the loss function will play a pivotal role in determining the model’s 

performance. There is a diversity of functions, so these are categorized into two groups: 

classification and regression. The main difference is the annotation format, where these 

are finite discrete values and continuous values, respectively. Table 1 shows the 

different types of objective functions, grouped according to their respective categories: 
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Table 1. Type of objective functions, grouped by their categories [24] 

Application Loss function 

Classification 0–1 loss, Perceptron loss, Logarithmic loss, Exponential loss, 

Sigmoid cross-entropy loss, SoftMax cross-entropy loss, 

Hinge loss, Ramp loss, Pinball loss, Truncated pinball loss, 

Rescaled hinge loss 

Regression Square loss, Absolute loss, Huber loss, Log-cosh loss, Quantile 

loss 

 

Classification is a process that maps different inputs, 𝑥𝑖, into outputs, where 

each output 𝑦 ∈ {1, … , 𝐶}, belongs to a predefined number of classes 𝐶. When 𝐶 = 2 

the classification is binary, while when 𝐶 > 2 the classification is named as multi-class. 

In many classification problems, the objective of MLP is to find the function 𝑓 that can 

effectively map the input data to an estimated value of 𝑦̂ ∈ {1, … , 𝐶}. However, in 

determined methods, instead of predicting a class, learning the probabilistic distribution 

of the input is the objective. In this case, the conditional probability density function of 

the output is: 

 

𝑦̂ = 𝑓(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑐∈{1,.,𝐶}

𝑝(𝑦 = 𝑐|𝑥) (3.1) 

  

The probabilistic classification does not predict directly and unequivocally the 

class, i.e., offers a probability magnitude that enables one to ascertain the level of trust 

in the model [24]. 

The 0-1 loss function delineates that if the projected value from the sample aligns 

with the annotation, the loss function assumes a value of 0, otherwise, it assumes a 

value of 1. As would be expected, this function does not consider the error associated 

with the prediction, so the function graph is not convex, where the models take many 

shortcuts to improve the performance [24]. Unlike this one, the logarithmic loss function 

makes a probabilistic prediction, i.e., the probabilistic value is obtained by the 
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distribution of conditional probability. As such, the higher the match between the 

prediction and the label lower the measured value by the loss function [24], [28]. One 

of the most known objective functions for classification purposes, is the sigmoid cross 

entropy, which is very similar to the previous one. The sigmoid cross entropy is an 

objective function that computes the value through the transformation of the 

probability value, influenced by an activation function called sigmoid, which 

characterizes the actual output of the cross entropy. The cross-entropy describes the 

distance between the current output value and the expected output, which is lower for 

closer probabilistic distributions of both entities [24], [28]. Another type of cross-

entropy; SoftMax cross-entropy, uses SoftMax as the activation function. This change 

allows to solve multi-class classification problems, which are the majority of the 

problems in machine learning systems [24], [28]. Regarding regression functions, the 

square loss function is one of the most applied, measuring the mean square error 

between the label and the predicted value. The next objective function is the absolute 

loss error and is similar to the previous one, just differing in error measure. In this 

context, it is obtained by the absolute difference between the current output and the 

expected output divided by the number of outputs. This type of function is used for 

linear regressions, however when the error is close to 0 the function does not smooth 

in 0, therefore it is not so used as square loss function [23], [28]. Huber loss function is 

another noticeable function which is an amalgam between the above-mentioned 

regression loss functions. Hubber loss uses 𝛿 as a boundary parameter to control which 

loss function should be applied. The samples that are inside of the defined border by the 

parameter, are subject to the square loss function, while in the remaining is used the 

absolute loss error. This loss function minimizes the outliers’ influence, avoiding 

overfitting [23], [24].  

The error is calculated based on the current weights, which were all updated 

during the backward stage with the main goal of minimizing the objective function.  

Unfortunately, due to non-linearity presence, the objective function becomes 

non-convex, weakening the gradient as it walks deeper into the network. This 

disadvantage could make the model be trapped in local minima. 
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It should be noted that the inclusion of regularization parameters in loss 

functions aims to prevent overfitting. These parameters enhance the performance of 

the models, as well as mitigate overfitting. There are many regularization methods, such 

as L1 and L2, that incorporate a penalization term at the end of the objective functions. 

L1 represents the cumulative sum of the absolute values of the weights from the model:       

 

 

𝐿𝑜𝑠𝑠 = 𝐸𝑟𝑟𝑜𝑟(𝑦, 𝑦̂) +  𝜆∑|𝑤𝑖|

𝑁

𝑖=1

 
(3.2) 

 

The effect made by L1 is controlled by the 𝜆 value known as weight decay. This 

parameter intends to decrease the error as much as possible. The 𝜆 can influence the 

model’s learning, so the values must be carefully selected, as a high value can lead the 

model towards underfitting. Usually, L1 is used when there is a high value of features. 

L2 parameter is one of the most popular which is the sum of squared magnitude 

coefficients: 

 

𝐿𝑜𝑠𝑠 = 𝐸𝑟𝑟𝑜𝑟(𝑦, 𝑦̂) +  𝜆∑𝑤𝑖
2

𝑁

𝑖=1

 
(3.3) 

 

L2 can influence the prediction system because penalizes insignificant predictions. These 

regularization methods aren’t the only methods of overfitting attenuation. The dropout, 

unlike the regularization, does not add penalization. Instead, it randomly interrupts the 

operation of certain neurons during the forward phase. Through dropout, the model is 

forced to have diversity [26],[27]. 

MLP is a non-convex function of its parameters, so to reach a local optimal it 

resorts to a standard gradient-based optimization process. It is usual to apply first-order 

online methods, such as Stochastic Gradient Decent (SGD), or second-order offline 

methods, like Hessian. So, before the optimization process, the gradients are calculated, 
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leading to the backpropagation. The backpropagation begins by receiving the loss, 

which is a scalar value, measures the partial derivative of the objective function 

regarding the network output. The gradient applied during the backpropagation phase 

is a partial derivative. The function that describes the backpropagation is (3.4):  

  

𝛻(ℒ, 𝑦̂) =
𝜕ℒ

𝜕𝑦̂
=
𝜕ℒ

𝜕𝑜
.
𝜕𝑜

𝜕𝑦̂
 

(3.4) 

 

Where ℒ is the loss function, 𝑦̂ is the label and o are the predicted value by the 

model. The gradient computation could be described in 3 essential steps: 

• It first performs a forward path, where the different parameters are 

computerized, such as the pre-synaptic, 𝑎𝑛 (input signal), and post-synaptic, 𝑧𝑛 

(input signal translated through transfer functions, like sigmoid, threshold, and 

Gaussian)  of the hidden layers, the pre-synaptic, 𝑏𝑛 (Weight application on the 

post-synaptic hidden layer), and post-synaptic, 𝑦̂𝑛 (non-linear application on the 

𝑏𝑛) of the output layers; 

• It is computed the error for the output layer, 𝛿𝑛
(1)

, which is passed backwards 

through the weights, so it can be calculated the error from the hidden layers, 

𝛿𝑛
(2)

; 

• Finally, the overall gradient is calculated by Equation (3.5) [23], [24]. 

 

∇𝜃𝒥(𝜃) =∑[𝛿𝑛
𝑣𝑥𝑛, 𝛿𝑛

𝑤𝑧𝑛]

𝑛

 (3.5) 

As a quote, the first point noted is referent to the forward process, but due to its 

importance for the gradient it is again highlighted. 
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3.3 Optimization process 

Optimization is a critical element for the correct performance of the different 

machine learning systems. The main directive of the networks is to find a subjacent 

function, with its foundation in the data that encapsulates the problem. To do so, it is 

necessary to discover a significant number of functions capable of describing the final 

function and then find the ideal parameters, using the objective function. The third step 

involves utilizing the discovered function from the preceding stage and performing 

predictions on unseen data. These three steps are also known as the representation, 

optimization and generalization phases where, usually, each of these is analyzed 

individually [29]. 

The optimizer to achieve the global minima, will update these parameters in the 

opposite direction of the gradient of the objective function, taking into account the 

learning rate, 𝜂, which determines the step size to reach the minimum. The optimizer 

will go after the valleys made by the objective function until reaches the plateau. There 

are three variants of the gradient descendent, that differ in the quantity of 

computerized data in the objective function, being necessary to make a trade-off 

between the parameters’ accuracy and the time taken to update. The one that has the 

higher impact is the SGD, due to its agility to deal with noisy data and outliers, where 

the parameters update is made in each sample 𝑥(𝑖) and annotation 𝑦(𝑖). SGD eliminates 

redundancy making the update one at a time, providing much faster training, and 

making it possible to do it online. Since the SGD updates the parameters with high 

variance, it triggers a fluctuation in the objective function. Due to this point, the 

fluctuation made by the SGD allows it to jump to better optimal local minima. Despite 

its various advantages, also have some challenges, such as selecting the correct learning 

rate, to avoid slow convergence in small values or lead to the algorithm divergence in 

extreme situations with high learning rate. Usually, in the deep learning context, 

learning rate adjusted over training, i.e., during the training the 𝜂 is reduced, allowing 

to take smaller strides towards the attainment of the local minima. This is done by 

setting an a priori learning rate decay factor. One of the problems associated with SGD 
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is being stuck in numerous optimal local minima. To overcome such adversities, some 

techniques have been proposed. The SGD gradient has orientation difficulties when 

faced with multiple minimal values, a circumstance that frequently arises in proximity 

to the optimal point. In these situations, it relies in momentum, which is a method that 

can accelerate the progress of the SGD (faster convergence), as well as dampen the 

oscillations. In a simplified way, the momentum is a criterion taking into account for 

parameters updates that should be maximized as much as possible. To do so, the 

momentum increases for dimensions that have gradients pointing in the same direction, 

while reduces updates for dimensions whose gradients change directions. Although the 

momentum gives these advantages, it cannot provide knowledge about which direction 

to go because the learning rate is not adaptative, it is previously set [24], [23], [30]. 

Figure 9 illustrates the SGD technique with and without momentum: 

  

 

Figure 9. Schematic of SGD with and without momentum [31]. 

As such, it resorts to methods that can adapt the learning rate, such as the 

Adaptive Moment Estimation (Adam). This method can compute adaptative learning 

rates for each parameter. The Adam stores the exponentially decaying average of 

previous squared gradients, which is the uncentered variance (quantifies how much the 

gradients vary around their means) and the exponentially decaying average of 

antecedent gradients. The iterative Adam estimate is given by Equations (3.6) and (3.7):  

 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (3.6) 
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𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (3.7) 

 

where 𝑚𝑡 and 𝑣𝑡 are estimates for the mean and uncentered variance 

respectively, and 𝑔𝑡 is the square root value of the error estimate. The Adam authors 

realized that at the beginning of the training the 𝑚𝑡 and 𝑣𝑡 were initialized as vectors of 

0’s and were biased towards 0. To avoid this situation, they defined default values 𝛽1 

and 𝛽2 of 0.9 and 0.999, respectively. At this point we have a bias estimator, so in order 

to correct this first and second order estimates are computed.   

  

𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 

(3.8) 

 

𝑣𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡 

(3.9) 

 

 

The authors of Adam realized that the optimizer was biased towards zero [23], 

[24], [31].  

 

3.4 Deep Learning 

Before the deep learning systems appeared, the feature extraction was made through 

feature engineering techniques, which are feature extractors that provide information 

from the data to machine learning systems. The advantage of deep learning is that the 

features are obtained in the training process in the form of filter coefficients which 

minimize the error output hence they are optimal in the error sense. For being effective 

more complex architectures employing novel learning mechanisms are required in the 

deep learning approach.  Following sub-sections introduce the basic concept of deep 

learning and the Convolutional Neural Network (CNN). Deep learning allows the models 
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to learn the data representation through multiple extraction layers. Due to this property, 

it was possible to improve speech and object recognition [30]. 

 

3.4.1 Convolutional Neural Network (CNN) 

This type of neural network has the role of performing data processing, such as 

1D data, signals that vary across time, or 2D, which are images made by pixels, or even 

3D, which are images with a third representation made by voxels. CNNs have been more 

applied in image context, where the input data are an array with three dimensions, such 

as number of channels, height, and width. The height and the width could extract 

information about the spatial dimensions of the data, while the number of channels 

refers to the independent properties across the spatial space. This last one, in image 

context, confers color to data, namely red, green, and blue (RGB channels). Each 

convolutional layer is organized in the following form 𝑘𝐻 × 𝑘𝑊 × 𝑘𝑐ℎ, where 𝑘𝐻 denotes 

the vertical dimension, 𝑘𝑊 signifies the horizontal dimension and 𝑘𝑐ℎ the number of 

input channels of kernel 𝑘. Usually, the kernel has a smaller dimension than the data. 

The kernel is responsible for applying a convolutional operation, which involves placing 

it at every possible position on the data. The kernel, for each spatial overlap with data 

calculates the dot product between it and the corresponding spatial domain of the input 

data as shown by Figure 10.  

 

Figure 10. Convolution operation between the input data and the kernel [32]. 
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The output will be a matrix, where each value will be the result from the dot 

product operation. As expected, the output dimensions will be smaller than the input, 

because only the regions with total overlap with the kernel undergo the scalar product. 

One of the challenges is the loss of information at the periphery of the image and to 

avoid this issue padding with the same dimensions as the kernel is usually applied. There 

are numerous kernels in each convolutional layer, where each one makes its own spatial 

output, referred to as a feature map. Each filter has as its main goal to identify patterns, 

so the model will have a higher ability to detect a large number of patterns, however, 

an exacerbated number of kernels brings in redundant features, guiding the model to 

overfitting. Typically, a convolutional network has three stages. In the first one, the 

convolutional layers make a set of linear activations where, in the second phase, each 

one of these crosses a non-linear function, being so named as the detection stage. 

Finally, with the directive to change the output for the next layers, it resorts to a pooling 

operation. The pooling layer is applied in each feature map, keeping up the number of 

feature maps. This operation doesn’t increase the number of training parameters, nor 

decrease the computational cost. The pooling is a square network (𝑝ℎ × 𝑝𝑤) that will 

affect the dimension reduction of the input, being the factor reduction of 𝑝ℎ. The spatial 

dimension reduction allows the next convolutional layers to find patterns in distant 

regions, increasing the receptive field. Like the convolutional operations, the pooling is 

translation invariant because a slight change in input does not trigger a significative 

alteration in the output. The most popular pooling layer is the Max-Pooling which 

returns the maximum value of the network, analogous to the Figure 11 representation: 

 

Figure 11. Max-pooling operation [26]. 
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Max-Pooling is used in partnership with a convolutional layer, but there are also 

other spatial aggregation operations, like Average-Pooling and Global-Pooling. These 

aren’t as used as Max-Pooling because this originates  high non-linearity [23], [24]. 

 

3.4.2 Advantages of CNN 

CNNs possess three main properties that make them a high standard to 

computer vision: translation invariant, parameters share, and a smaller quantity of 

sparse connectivity (each neuron is connected to a limited number of neurons). In a 

convolutional layer, the same kernel convolves with the input data, so the found 

patterns will be independently of spatial location within an image. This property is 

extremely important when dealing with imaging data. However, transformations like 

rotations could make different feature maps. To generate the feature map, the kernel 

parameters are used for the whole image. Subsequently, each feature map point is 

operated on by the rest of the parameters. This property avoids the necessity of many 

parameters to do features extraction. Finally, the sparse connectivity fights the scaling 

of the parameter, which is inconvenient for the fully connected layers, where all nodes 

are connected to each other. The CNN does not have total connectivity with the input 

data, just establishes connectivity with a small region, controlled by the kernel size [24], 

[26]. 

The advantages highlighted indicate that it is beneficial to apply deep learning 

models based on CNN because CNN had proven to be exceptionally effective in various 

tasks, particularly in image applications. Their ability to automatically learn and extract 

features from the data makes them a powerful choice.  
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Chapter 4 State-of-the-Art of ML Based Methods for Assisted 

Surgery 

Digital image processing has become a crucial tool for doctors because it allows 

them to filter and enhance relevant information. It is essential to study all existing 

techniques in this area, with a focus on systems that can improve relevant 

characteristics in laparoscopic images. This chapter discusses three types of tasks that 

can be enhanced using ML: classification, detection, and segmentation. Classification 

involves categorizing objects in an image, detection involves identifying the presence of 

an object, and segmentation involves separating objects from the background. 

Understanding these techniques can help doctors getting deep insights from medical 

images and improving patient outcomes. 

 

4.1 Classification Methods 

The classification approaches are mainly focused on surgical tools. This is a 

challenging task in surgical endoscopic videos but has added relevance assisting doctors 

during robotic surgery. The classification process in machine learning systems consists 

of predicting the present class in an image. Classification approaches can be of two 

types: binary classification where the purpose is to infer the presence or absence of an 

object, or multi-class classification, which is the best approach when multiple surgical 

instruments are present.  

The first approaches to surgical instrument classification involved the use of 

classical feature-engineering machine learning algorithms. Liu et. Al [33] proposed a 

method to monitor surgical tools during surgery or robotics’ applications. This system 

consists of extracting features that are used as input of a classifier. The first phase allows 

the classifier to recognize the surgical tools present on an input image. The authors 

proposed an analysis based on color images, through hue-saturation-value (HSV) color 

space, which is robust to luminosity intensity. In HSV space, hue refers to the color 
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property, varying between 0º to 360º, saturation is the color purity, fitted 0 to 1, and 

value describes the pixel intensity. From H and S histogram distributions, a threshold 

was defined to segment the image. Then, Fourier descriptors are extracted, describing 

the form and contour characteristics and presenting some transformations (rotation and 

translation) and noise invariance. Later, all the extracted characteristics were utilized as 

the input for the Naïve Bayes classifier, which is based on the Bayes’ theorem of 

maximum a posteriori estimation. The data presented in this paper was gathered under 

static conditions, where the surgical instruments were positioned at a fixed distance on 

the operating table with the camera. 

In 2015, Primus et. Al [34] performed a task for the classification of six surgical 

instruments, namely Long grasper (LG), Dissector forceps (CDF), Scissor (S), Clipping 

device (CD), Monopolar spatula (MS) and Exhauster (E). The performance of the 

classifiers was evaluated following the BoW-SVM architecture. This structure comprises 

a frameset bifurcated into distinct training and test sets. The visual features within each 

frame are grouped by k-means clustering method, where the centroids (mean for each 

group) construct a vocabulary. Features of each image are mapped to the vocabulary 

and the histogram of visual words based on the vocabulary, are used as an image 

representation. These histograms are used to train the SVM classifier. The developed 

work compares three extraction features techniques: Oriented FAST (ORB), scale-

invariant feature transform (SIFT) and speeded-up robust feature (SURF). The primal of 

these three is to find in real time the key points with correspondence to visual features. 

For the same architecture, the three techniques were evaluated in terms of precision 

(true positives divided by all positive predictions), recall (true positives divided by all 

positive cases in the dataset), and accuracy (all correct identified cases divided by all 

prediction realized) for each surgical laparoscopy tool. The reported values are shown 

in Table 2: 
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Table 2. Metric values of precision, recall and accuracy for each one of features 

extractors to the six instruments 

Classes Models Precision Recall Accuracy 

LG 

ORB 0.65 0.31 0.75 

SURF 0.48 0.47 0.73 

SIFT 0.32 - 0.71 

CDF 

ORB 0.45 0.23 0.73 

SURF - - 0.82 

SIFT - - 0.83 

S 

ORB 0.29 0.05 0.93 

SURF 0.1 0.03 0.91 

SIFT 0.18 0.02 0.9 

CD 

ORB 0.7 0.25 0.89 

SURF 0.2 0.15 0.78 

SIFT 0.38 0.2 0.67 

MS 

ORB 0.7 0.39 0.83 

SURF 0.36 0.15 0.8 

SIFT 0.1 0.02 0.88 

E 

ORB 0.61 0.09 0.9 

SURF 0.3 0.2 0.91 

SIFT 0.22 0.53 0.61 

 

Based on these values, the authors have deduced that the amalgamation of ORB 

keypoints and SVM classifier with BoW exhibits high accuracy across all six surgical 

instruments. 

Later in 2017, Petscharnig et. al [35] studied CNN behavior for gynecology organs 

classification and surgical workflow using laparoscopic videos. However, the second task 

is out of the scope of this study and will therefore not be addressed. Three possibilities 

were proposed for classification: the first approach applied AlexNet. The additional 

suggestion was GoogleNet, which introduces a module known as inception, that avoids 

overfitting through dimension reduction. Like AlexNet, this network ends in a fully 
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connected layer. Both models were trained from scratch starting from random weights 

in the first iteration. The third and last concept applied was an SVM. In this model 

features were from an AlexNet network that was pretrained on the large ImageNet 

dataset [36]. This concept of getting knowledge from one dataset to another is known 

as transfer learning and is useful in applications with scarce data. The authors studied 

extracting features from three different depths of fully connected layers as inputs of 

SVM: SVM connected to the third layer of AlexNet (SVM_Class), SVM associated with fc7 

(SVM_fc7), and SVM linkage to fc6 (SVM_fc6). Each network was trained on an 

annotated dataset, composed of five organs: colon, liver, ovaries, oviduct, and utero. 

After the training, they were tested to annotate the metrics of precision, recall, and F-

value (provides better insights under imbalanced datasets). In Table 3, the recorded 

metrics values attained by every model: 

 

Table 3. Metric values, recall, precision and F-value obtained by the 5 networks for each 

organ 

Metrics Networks Colon Liver Ovaries Oviduct Utero 

Recall 

AlexNet 0.652 0.596 0.858 0.442 0.528 

GoogLeNet 0.795 0.862 0.888 0.623 0.743 

SVM_Class 0.554 0.601 0.484 0.562 0.581 

SVM_fc7 0.663 0.891 0.755 0.374 0.801 

SVM_fc6 0.572 0.854 0.712 0.412 0.697 

Precision 

AlexNet 0.595 0.765 0.546 0.8 0.613 

GoogLeNet 0.805 0.896 0.747 0.839 0.619 

SVM_Class 0.461 0.659 0.591 0.86 0.273 

SVM_fc7 0.792 0.927 0.561 0.862 0.475 

SVM_fc6 0.751 0.882 0.535 0.874 0.408 

F-value 

AlexNet 0.622 0.67 0.667 0.569 0.568 

GoogLeNet 0.8 0.879 0.811 0.715 0.676 

SVM_Class 0.503 0.629 0.532 0.68 0.372 

SVM_fc7 0.722 0.909 0.644 0.522 0.596 

SVM_fc6 0.649 0.868 0.611 0.56 0.514 



 

32 

 

 

  

 Overall, the GoogleNet model exhibits superior metrics in the classification of 

gynecology images. 

 More recent works have focused on predicting surgical tools by using CNNs. A 

research group Jaafari et. al [37], selected three CNNs, VGG19, Inception v-4, and 

NASNet-A to study the impact of ensemble learning on the classification of surgical tools. 

To accomplish this, they have trained all three models as well as an additional one, with 

the final model being a fusion of the three, ensemble learning method. The VGG19 is a 

neural network that demonstrates that augmenting the layers of a CNN enhances the 

accuracy of classification. The Inception v-4 owns similar blocks to GoogleNet, with a 

new block that permits a boost in training, batch normalization. Contrarily to the other 

models, NASNet-A applies a distinctive learning method, Reinforcement Learning. This 

learning system consists in the search for the best parameters of filters dimensions, 

strides sizes, number of layers, among others. The model doesn’t have a fixed number 

of blocks or cellules, i.e. the quantity of iterations for the convolution layers and the 

quantity of filters are parameters that can be freely adjusted. In this network, what 

raises more attention is the presence of Normal Cell and Reduction Cell, which are 

convolution blocks that return features maps with the same dimensions and produces 

the same map with a size reduction by a factor of 2, respectively. In an ensemble learning 

system voting is the most used approach to produce an answer and consists of selecting 

the highest prediction value among all models. The networks were trained in a dataset 

with annotated surgical tools: grasper, bipolar, hook, clipper, irrigator, specimen bag 

and scissors. It is relevant to mention that all models undergo a fine-tuning process 

through transfer learning with the ImageNet dataset [36]. All models are subject an 

analyze of their precision and Receiver Operating Characteristic (ROC), which is the 

performance of the model between the sensibility (ability to correctly identify a class, 

true positives) and the specificity (capability to no identify a class when is not 

represented, true negatives). Table 4 shows that the ensemble learning has the best 

performance to classification task, achieving more than 94% in all classes for both 

metrics. 
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Table 4. Precision and ROC metrics of all models 

Metrics Classes VGG19 Inception v-4 NasNet-A Ensemble Learning 

Precision 

Grasper 0.977 0.9367 0.9854 0.9951 

Bipolar 0.979 0.9654 0.9732 0.977 

Hook 0.967 0.9433 0.9711 0.9814 

Clipper 0.998 0.997 0.9989 0.9991 

Irrigator 0.961 0.9208 0.9591 0.9779 

Specimen Bag 0.952 0.9394 0.9635 0.9729 

Scissors 0.876 0.8084 0.9006 0.9454 

ROC 

Grasper 0.998 0.9937 0.9989 0.9995 

Bipolar 0.965 0.9516 0.9631 0.9688 

Hook 0.997 0.9917 0.9953 0.9981 

Clipper 0.999 0.9979 0.9991 0.9993 

Irrigator 0.994 0.9874 0.9941 0.9985 

Specimen Bag 0.996 0.9939 0.9956 0.9981 

Scissors 0.988 0.9811 0.9918 0.9964 

 

  The classification accomplishment, without the localization of the object, does 

not add much information on a surgical process. 

 

4.2  Detection Methods 

Object detection in a laparoscopic image permit locating a surgical instrument or 

an organ and know the approximated occupied area, represented by a bounding box. 

This knowledge may augment the proficiency of surgeons in their manipulation of the 

equipment, as well as to develop a fully automated surgery, without human 

intervention. The pioneers in this section were Lee et. al [38] that searched for an 

algorithm with the ability to detect surgical tools. For that, this research group 

developed an image processing system divided into 4 steps. In the initial stage, named 

as the classification phase, different color signatures of the organs and surgical 

instruments with the goal of individual pixel classification are used. They implemented 

binary Bayesian classifier (instrument VS organ), which maximizes the predicted a 
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posteriori probability. Then, a unique label in each region with an instrument is assigned. 

The pixel identity is determined in two stages: the temporal phase where the previous 

frames' annotations are propagated to the next  frame, and the other phase which is 

annotating the surgical tools pixels not labeled through pixel adjacency. In this third 

stage, each tool was allocated inside a bounding box, a rectangular or trapeze form. The 

laparoscopy images used by the authors do not possess any type of ground truth, so 

none algorithm analyze had been performed. The only criteria used by the authors was 

visual. According to them, their qualitative results were good and promising.  

Subsequent endeavors were fashioned to assist the surgeon in discerning the 

apex of a surgical instrument. Due to camera instability, this could result in a wrong 

interpretation by the surgeon, so Climent et. al [39] developed an algorithm where they 

used the Hough transform as a mean to highlight the surgical tool from the background. 

In this case, to extract the best properties of the Hough transform, it is necessary, 

according to the authors, work with a filtered image, so they proposed to apply a 

Gaussian filter to attenuate the noise. After, as a requirement for such transform, the 

orientations of borders were extracted through a gradient operator. Lastly, the 

application of the Hough transform. The advantage lies in locating pixels that need not 

necessarily be contiguous to one another, however, the Hough transform could be 

misleading when the object is lined up with the boundary of the image. A solution to 

this preceding issue is suggested, wherein the ultimate instrument would be the 

discontinuity in the loss direction of the gradient along the linear trajectory. The pixels 

across the straight line are tracked until these orientations present an expressive change 

relative to the axis of the straight line. Each line pixel was calculated by the difference 

between the gradient direction and the straight line. In numerous instances, the 

elongated lines do not serve as surgical instruments, thus it became imperative to 

extract additional information using heuristic filters and movement data. The position 

prediction was performed knowing the previous and next frame position, where a first-

order model was implemented, that follows Equations (4.1) and  (4.2): 

𝑣𝑘 = 𝑥𝑘 − 𝑥𝑘−1 (4.1) 
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𝑥̂𝑘+1 = 𝑥𝑘 + 𝑣𝑘𝑇 (4.2) 

 

Where 𝑣𝑘 stands for speed of the instrument, 𝑥𝑘 and 𝑥𝑘−1 are two consecutive 

positions, 𝑥̂𝑘+1 is the predicted position, and 𝑇 is the time gap between the actual and 

the last frame.  

This adopted technique allowed the system to work without any color restriction 

or special marks present on instruments. Despite these advantages, the performance 

was not very good when the instrument does not possess any contrast with the 

background or when the tool vanishes from the visible area.  

In an effort to ascertain the whereabouts of surgical instruments, Haase et. al 

[40] proposed a combination of color information and a score system. With the goal of 

decreasing the computational cost and increasing the system robustness, the authors 

offered the regions of interest, i.e., regions that are more likely to contain a surgical tool. 

As a precondition, the insertion of the surgical instrument is carried out along the 

periphery of the image. Therefore, to be considered a region of interest, the proximity 

between the instrument and the sensor must be minimal. Consequently, the point 

values are diminished. Another possibility was saturation occurrences, low intensities 

mean colorless pixels which indicate the surgical tool’s presence. Once they found all 

points of interest, false positives were discarded with these hypotheses: the neighbor 

point should have similar intensities and an intensity value smaller than the intensity 

saturation value from the total image. The Sobel filter was applied to highlight the 

borders. After, the image gradients from the region were transformed to Hough space 

in order to detect marked lines in polar coordinates. Hough transform application in 

surgical instruments induced two peaks in his space, which were the two lines of 

localization that delineate the axel borders. As expected, this transformation could 

generate erroneous contenders. Therefore, an analysis of the angle between the 

candidates and the line was proposed. Finally, in terms of detection, it was assumed that 

the instrument apex extends beyond the center line, particularly within the expansive 

gradient zone. This zone serves as the intermediary region between the tool and the 
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background. The reported scores were promising however, carry some limitations 

namely if the field vision has not any value all candidate points are rejected. Another 

constraint lies in the presence of blood, as it augments the saturation, thereby hindering 

the algorithm's ability to discern the initial valid points.  

In 2017 the first deep learning models appeared, as well as annotated datasets 

that could be used for metric analysis or model comparison. For surgical tools detection, 

Choi et. al [41] proposed a CNN, based on You Only Look Once (YOLO), that can be a 

model detection candidate. This network differs from YOLO due to the presence of two 

fully connected layers instead of one, the dropout layers between those layers and batch 

normalization. These changes have the main goal of avoiding overfitting and augmenting 

performance. Another research team, Jin et. Al [42] proposed another neural network 

based on Region Based Convolutional Neural Network (R-CNN), which is the Faster R-

CNN. The network was pre-trained on the ImageNet dataset, to learn some visual 

generic features. During the model training, the search of regions of interest is done in 

Region Proposal Network (RPN). The positive notations, indicating the presence of an 

object were established when the Intersection over Union (IoU) value exceed or equal 

0.8. Contrarily, the negative label required a value lower than or equal to 0.3. The YOLO 

adaptation and the Faster R-CNN underwent training using the same dataset, m2cai16-

tool-location. The expected output is drawing a bounding box over the objects, so the 

best metric for this kind of situation is the mean Average Precision (mAP) that relies on 

the IoU between the predicted and the ground-truth. Table 5 shows the obtained values 

for each model for the seven classes. 

  

Table 5. AP values for each class from the dataset 

Autor Grasper Bipolar Hook Scissors Clipper Irrigator 
Specimen

-bag 
mAP 

Choi[41] 0.893 0.324 0.93 0.666 0.903 0.424 0.914 0.7226 

Jin[42] 0.872 0.751 0.95 0.708 0.884 0.735 0.821 0.818 
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Another deep learning application for the detection of surgical instruments, used 

a fully connected network (FCN). In medical imaging, such networks are expert at 

detecting malignant regions within images. An example is the EndoNet, which is a deep 

learning model comprising convolutional layers to extract features in a highly proficient 

manner. One of the issues with such networks is their incapacity of learning well the 

dataset which can be alleviated by using a pre-trained network. The weakly supervised 

learning networks, which is the network in question, were the first capable of detecting 

surgical instruments. These types of models are compounds by convolutional layers that 

generate in total 512 features maps. In order to acquire the semantic map for every class 

and preserve all spatial information within the network, EndoNet implemented a Spatial 

pooling mechanism in conjunction with FCN. Through this combination, it could 

transform a feature map into a vector with confidence values, providing a binary 

classification for each tool. Although it has achieved a high accuracy, with predictions 

around 90% in each category, it can only detect objects. Therefore, searching for other 

approaches, preferentially with the ability to perform the three tasks, segmentation, 

detection and classification seems to make some sense [43]. 

 

4.3 Segmentation Methods 

Image segmentation entails the process of grouping pixels according to their 

respective classes. There are three types of segmentation: semantic, instance, and 

panoptic.  Semantic segmentation entails the process of associating pixels with a specific 

class. Instance segmentation is identical to semantic segmentation, however, can 

distinguish types of entities within each class. Finally, panoptic segmentation is the 

combination of the other types of segmentation, semantic and instance. This type of 

segmentation discerns stuff from things, i.e., pixels from the background are 

semantically segmented, while the pixels classified as things are segmented as instances 

since they are entities with more interest.   

The first works tried using pre-existing or during surgery knowledge, from 

different sources, such as sensors and models of images. The first target was the 
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extraction of information of color, as it represents an inherent characteristic of an 

image.  Since all images could possess brightness or shadow points, researchers looked 

for different techniques. The RGB was initially used for surgical tools detection, 

however, due to a lack of information present in these three channels, it was only used 

as a complement of HSV and hue-saturation-lightness (HSL) scales. These two are 

alternative representations of RGB that approximate to human visual perception, 

allowing discern chromatics intensities from luminosity intensities. The dispersion of 

luminosity among the other components could potentially enable access to a greater 

wealth of information. As expected, using all these channels as input results of more 

than 8 bits per channel, increasing the processing time. To understand which color space 

could give more discrimination between the surgical tools and the anatomic parts was 

imperative to apply Bhattacharyya distance, which is a metric that measures the 

similarity of two probability distributions. Another alternative is the importance metric 

coming from the Random Forest. This consists of training the machine learning model 

so the model can select the bests features, always considering a variable importance 

[44]. Despite color is one of the dominant strategies for feature extraction, the light used 

in surgical environments, combined with soft tissues, could cause a large spectral 

reflection, corrupting the white and the gray present in metallic instruments. This 

constraint led authors to abandon this option and move on to another [45].   

The second possibility was based on gradients. Usually, gradients are generated 

from intensity values of images. They can be acquired from image derivation in both 

axis, x, and y, using a Sobel filter or Canny filter. However, as one would anticipate, 

extracting pertinent information proves to be quite arduous, thereby needing 

supplementary techniques. The other helpful techniques could be Hough transform or 

Histogram of Oriented Gradients (HOG). Although it is a method that allows border 

detection and instrument orientations, it is not very applied because the number of 

orientation positions necessary for object detection in instances matches a 6, while the 

HOG resorts an extra channel for magnitude, turning the real-time processing not 

possible [45].   
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The HOG approach is not doable, due to high latency, so a research team 

proposed an alternative linked to gradients, such as texture. The texture of an image is 

characterized by the periodic recurrence of local patterns, which enable the acquisition 

of more resilient features. Initially, the image texture was extracted applying a filter, 

such as Gabor filter or through texture descriptors, like Local Binary Patterns (LBP). 

Another solution that was widely used in extracting points of interest for object 

detection was SIFT. The SIFT technique is an adopted approach for extracting features 

that remain invariant to changes in dimensions or orientation, displaying remarkable 

resilience to variations in lighting, noise, and partial occlusion [46], [45]. Haralick 

features were proposed to improve texture description, however processing in grayscale 

and applying 14 equations in 4 angular levels, resulting in 4 values for each equation, 

becoming undoable for real-time surgical tools detection [47].  

Due to difficulties found, another research team looked for new alternatives 

based on shape. Most of instrument detectors have as input parameters the features 

dimension, which is commonly denoted by a series of numerical values to define a 

dimension. In this area, different approaches were followed: region moment, Wavelets 

transforms, and transform-domain shape. The first is used to disjoint the instruments 

from the background, applying the Otsu Threshold. Although it presents visible results, 

it is not robust to noise, occlusion, and non-rigid deformations. The Wavelets 

transforms, allow the decomposition of the information based on the gradient direction, 

with borders associated with higher frequency content. However, such as the previous, 

it is not robust to noise. Finally, the transform-domain shape, associated with Fourier 

descriptors enables the depiction of the border through the computation of Fourier 

components for every pixel along its perimeter. An advantage of these descriptors is 

being invariant to rotation and translation and, its combination with the color classifiers 

could obtain an optimal border region [48]. As expected, the transform-domain shape 

possesses disadvantages like the computation cost, due to the calculation of Euclidian 

distance for each pixel present in interesting region [45]. 

All these different methods of features extraction would be used to train 

different kinds of machine learning models, such as SVM [45].  
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Posteriors works applied machine learning systems, such as Bouget et. al [49]. 

The authors proposed a binary semantic segmentation, named SquaresChnFtrs. This 

approach is a decision tree classifier where the focus is on features channels. The input 

channels for the classifier should have the gradient, color, texture, and position 

information. The dataset applied was the ‘The NeuroSurgicalTool Dataset’. In this case, 

research team analyzed precision for semantic classification pixel by pixel, obtaining 

0.858. Despite the high precision value, the semantic map is highly distorted, particularly 

along the borders.     

García-Peraza-Herrera et. al [50], proposed an automatic segmentation method 

based on FCN-8s of non-rigid surgical tools. They simply changed the amount of scoring 

layers to two, as their primary objective was binary segmentation. In addition to FCN, 

they implemented an optical flow system that utilized the predictions generated by FCN-

8s to enhance the efficacy of tool segmentation. The model was pre-trained in ‘PASCAL-

context 59-class’ and the train and test were made in ‘MICCAI 2015 Endoscopic Vision 

Challen–e - Instrument Segmentation and Tracking Sub-challenge’ dataset. Once again  

the adopted metric was accuracy, having achieved 0.883, in binary segmentation. The 

authors also did multi-class semantic segmentation, being composed by background, 

shaft and manipulator instrument parts, and scored 0.837.  

In laparoscopy images, a research team from the Institute for Intelligent Systems 

Research and Innovation (IISRI), Attia et al. [51] proposed a model that combines CNN 

with Recurrent Neural Network (RNN) to do semantic segmentation. The RNN, which is 

the Long Short Term Memory (LSTM), was applied to preserve the local and global 

contextual dependencies and improve the quality of the generated masks by CNN.  LSTM 

can learn the special dependencies between the neighbor pixels and as expected, could 

possess four distinct frames to analyze an image (up to bottom, bottom to up, left to 

right, and right to left). The proposed architecture had an encoder phase to extract 

features, containing 7 convolutional layers, two MaxPooling, and 4 LSTMs. The second 

stage, which was the decoder phase, had a deconvolution layer to produce the semantic 

mask. The training dataset is from “MICCAI 2016 challenge “EndoVis”, getting an average 

IoU of 0.827.  
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Another system, only with CNN, was developed by Ni et. al [52]. The research 

group suggested the RASNet for semantic segmentation of surgical tools. This model 

was structurally similar to the previous one, with an encoder and a decoder. RASNet had 

the ResNet-50 as an encoder, which was pre-trained in ImageNet dataset. In the decoder 

stage, the authors introduced the concept of attention blocks, where the directive was 

to extract global features from high levels that had information about the studied object. 

The dataset was the “MICCAI 2017 challenge EndoVis”, where the achieved mean IoU 

was 0.9033. The value is ambiguous because criterion for the dataset split into train and 

test sets did not avoid the presence of similar frames in both sets since it was not assured  

that the training and test sets have different patients. 

Another team applied a network based on U-Net, named PaI-Net. The research 

team, Wang et. Al [53] made a model composed by three stages: encoder-decoder, 

attention blocks parallels, and fusion block as output. The system encoder-decoder 

shared the same ideology as a U-Net incorporating skip-connections. The attention 

blocks consist of consecutive convolutions with distinct kernels, interconnected in a 

parallel fashion to each convolutional layer. The fusion models in the output were made 

to obtain different features from the various levels of the decoder, that have many 

degrees of semantic information. The application of these techniques increased the 

precision metric. The applied dataset was the same from the RASNet, which was 

“MICCAI 2017 challenge EndoVis”. The performance accomplished by the PAI-Net was 

0.33 IoU, doing a semantic segmentation of three instruments parts, wrist, shaft and 

cappers. 

In theory, a better solution should do the three main tasks at once, classification, 

detection, and segmentation. Two models emerge with the ability to segment and 

classify, namely TernausNet and ToolNet Holistically-Nested, being both based on U-Net 

[54]. The TernausNet is a U-Net with a pre-trained VGG-11 as the encoder and the 

remaining architecture was the same as the U-Net [55]. The ToolNet Holistically-Nested 

embraces the encoder-decoder paradigm, however, in contrast to TernausNet, it 

underwent certain modifications in the decoder domain. In the decoder, each 

convolutional layer merged into a unified whole, and a deconvolution block was 
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employed to ensure that the input and output shared identical resolutions [56]. To know 

which one had the best performance, the average IoU was obtained for each model on 

the same dataset. TernausNet achieved 0.542 for instrument type segmentation, while 

ToolNet Holistically-Nested had only 0.337 [54]. 

In the field of computer vision, multi-task learning refers to a method where a 

model can perform multiple tasks simultaneously. This approach allows the model to 

handle tasks such as classification, detection, and segmentation in a single framework. 

One notable example of a multi-task method is Mask R-CNN, which stands for Mask 

Region-based Convolutional Neural Network [57]. Mask R-CNN is a network architecture 

that consists of three output heads: one for classification, one for object detection, and 

one for instance segmentation. The classification head is responsible for categorizing 

objects into different classes, such as identifying whether an object is a car, a person, or 

a tree. The detection head focuses on localizing and identifying objects within an image, 

providing information about their bounding boxes. Lastly, the instance segmentation 

head aims to segment each instance of an object, assigning a unique mask to distinguish 

it from other objects. 

To train the Mask R-CNN model, a multi-task loss function is employed. This loss 

function considers the contributions from each of the three heads, allowing the model 

to learn and improve its performance across all tasks simultaneously. 

While Mask R-CNN has been widely used for instance segmentation tasks, it may 

not always be necessary to employ this level of segmentation. In cases where there is 

no overlap of objects or instruments of interest, instance segmentation might be 

unnecessary and can be disregarded. This decision is often made based on the specific 

problem being studied and the requirements of the task at hand. 

 

4.4 Conclusion 

Over the years, computer vision in robotic-assisted surgery has undergone 

significant exploration. Initially, researchers attempted to classify the various types of 

surgical tools that appeared in the physicians’ vision field. However, it was observed that 
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this classification approach did not significantly enhance the surgeons’ knowledge or aid 

in their performance. Consequently, the scientific community began exploring 

alternative methods to detect these instruments, as providing a bounding box around 

them could offer a better understanding of their location. While instrument detection is 

crucial, the subsequent focus shifted towards instrument segmentation, which presents 

the crux of the problem.  

In the early stages of development, algorithms without learnable parameters 

were employed for classification, detection and segmentation. This was followed by a 

combination of image processing techniques with machine learning models. Eventually, 

the field progressed to utilizing deep learning models exclusively. 

The remarkable results achieved by deep learning models have led to an 

increased adoption of their approaches in this domain. By leveraging the power of deep 

learning, significant advancements have been made in accurately detecting and 

segmenting surgical instruments, thereby enhancing the overall effectiveness of robotic-

assisted surgery. 
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Chapter 5 Proposed models 

Some models mentioned in chapter 4 are based on U-Net, where the researchers 

looked for different strategies to improve the model efficiency. As such, the initial 

approach was starting with the U-Net as a baseline and exploring its several variants. 

Notably, some of these variants had not been previously applied for this specific task.   

The focus of this chapter is to describe the models that were used for semantic 

segmentation. For each model, the architecture, and the innovation within were 

explained.  This chapter focuses on the description of the U-Net, Nested U-Net and 

Transformer meets U-Net models.  

 

5.1 U-Net 

The U-Net is one of most employed networks for biomedical image segmentation 

due to its ability to generate a semantic map with more details [58]. The network is well 

known for its U shape, which coheres to the encoder and decoder. When it was 

presented to the scientific community, the original architecture had image patches as 

input, which are pixels grouped into windows of a local region. The model had to predict 

the class label of the central pixel, taking into account the surrounding region. The U-

Net has the ability to propagate context information through the network, due to its 

large number of feature channels. The encoder block has 4 layers, where each one is 

made by two convolutions with a kernel size 3 × 3, without padding, each followed by 

an activation function, ReLU, and a Max-Pooling 2 × 2 with a stride of 2. For each 

downsampling, the feature maps increase twice from the previous one. On the other 

hand, the decoder also consists of 4 layers. Each layer involves a transposed convolution 

to reduce the feature count by half, followed by concatenation with the corresponding 

feature map from the encoder block. Following this, two convolutions with a 3 × 3 

kernel size are applied, each followed by a ReLU activation function. In the end, it is 

employed a convolution 1 × 1 to decrease the feature maps for the desired number of 

classes. Figure 12 shows the U-Net architecture: 
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Figure 12. U-Net architecture [58]. 

Due to the lack of data, it is a good practice to resort to transfer learning 

techniques, that could leverage the learning of the model on big data. The transfer 

learning allows the models’ weights to not start the training with random values. The 

adopted strategy was to search for a network that was trained in a large dataset and 

then transfer its knowledge to the U-Net. The major models, that are open source, are 

Visual Geometry Group (VGG) [59] and Residual Neural Network (ResNet) [60]. These 

two networks were trained on a large dataset, such as ImageNet [36], which contains 

data for classification proposes. VGG is a convolutional neural network with different 

kinds of depths. The network is composed by 6 convolutional blocks. The first two blocks 

consist of two convolutions separated by batch normalization and a ReLU function, while 

the remaining blocks have three convolutions. Between each pair of blocks, it is applied 

a Max-Pooling. In this context the backbone was used as feature extractor therefore, 

the last layers of the original VGG network responsible to provide the classification 

answer will not be considered. A residual block comprises two convolutional layers, with 

batch normalization and ReLU activation functions applied between them. Afterward, 

the input vector undergoes a shortcut identity, where all characteristics are preserved, 
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and it adds to the output of the last convolutional layer [60]. Figure 13 represents a 

residual block: 

 

Figure 13. Residual block representation, where F(x) is the set of convolutionals, batch 

normalization, and activation functions; x is the input vector [60]. 

 

5.2 Nested U-Net  

The Nested U-Net, also called U-Net++, links the backbone (encoder) with the 

decoder through a series of nested convolutional blocks through the skip connections 

[61]. The convolution blocks, which are called “skip pathways” by the authors, consist of 

three convolutional layers, where the input feature of each convolution layer comes 

from the concatenation between the output of the previous convolution layer and the 

up-sample output originated by a lower dense block. With the implementation of 

convolutional blocks, the network could bring the semantic level within the decoder to 

the decoder features maps. For example, the data to arrive from 𝑋0,0 to 𝑋0,1, it passes 

through a convolution block in 𝑋0,0. After that,  a downsample followed by a convolution 

block is applied, obtaining the 𝑋1,0. The resulting features from the 𝑋1,0  are upsampled 

and then concatenated with the features from 𝑋0,0. Finaly, 𝑋0,1 is created, by applying 

a convolution block in the concatenated features. In addition to the aforementioned, 

the model applies another item, which is deep supervision. It is a new approach to 

calculate the loss function, where the loss is the average of the above semantic levels, 

which are 𝑋0,1, 𝑋0,2, 𝑋0,3, and 𝑋0,4. The architecture is illustrated in Figure 14: 
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Figure 14. Nested U-Net representation, being the backbone the encoder [61]. 

 

5.3 Transformer meets U-Net 

The proposed model introduced a recurrent neural network (a transformer) 

cooperating with a convolutional neural network [62]. The transformer has an encoder-

decoder architecture, where the encoder maps an input sequence into a continuous 

representation. The decoder, taking the continuous representation, generates an input 

sequence one element at a time. As it is current in recurrent networks, the transformer 

is also recursive, where takes the previous generated element as an additional input. 

The encoder is composed by a stack of 6 layers, where each layer has two sub-layers. 

The first one is multi-head self-attention and the other is a feed-forward network. Each 

sub-layer applies a residual connection followed by an add and normalization layer. The 

decoder is also a stack of 6 layers, but unlike the encoder, it introduces a new sub-layer, 

masked multi-head self-attention. To ensure that the predictions for the position t only 

depend on the known outputs before t, both the inputs and the outputs pass through 

an embedding and a positional encoding. The first adopted step is the embedding, which 

consists of converting the input and output tokens into vectors that could be interpreted 

by the following applied sub-layers. To ensure that the order is preserved, the positional 

encoder gives context to each input embedding according to its position. The embedded 
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input with positional encoding feeds the multi-head self-attention. The multi-head could 

be seen as a set of Scaled Dot-Product Attention, that has three input vectors: query, 

key, and value. This works as a retrieval process, where the query is mapped to a set of 

keys (representing context or reference). The similarity between queries and keys 

determines how much attention should be given to each key with respect to the query. 

Values represent the content that is being searched, retrieved and combined based on 

the attention scores. The self-attention is computed using the dot product of queries 

and keys, and these scores are then used to weight the values generated from the input, 

creating the final output. This mechanism is often extended to include multiple heads 

to capture different relationships and dependencies within the data or focus on different 

parts of the input sequence, each with its set of vectors. Having already the three multi-

head inputs, it is computed the Scaled Dot-Product Attention, which consists in the 

following equation(5.1): 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 

(5.1) 

 

where Q, K, and V are the queries, keys, and values, respectively, 𝑑𝑘 is the key 

dimension and 𝐾𝑇 is the transposed vector key. The authors found it beneficial to 

project linearly the queries, keys, and values. The previous process is replied many times 

as pretended, whereas the final result of the multi-head self-attention is the 

concatenation of all Scaled Dot-Product Attention. The next step is the feed-forward 

network, which is a multi-layer perceptron. Another important block, present in the 

decoder, is the masked multi-head self-attention that has the same mechanism as multi-

head self-attention, however, the main goal is to prevent positions from taking attention 

to subsequent positions. At the end of the decoder a linear transformation is applied, 

followed by a SoftMax [62], [63]. The architecture of a transformer is represented in the 

Figure 15: 
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Figure 15. Model architecture of a transformer [63]. 

The previously explained transformer describes a generic application. In this 

context, the Vision Transformer was the chosen model that only has the decoder block 

repeated 4 times, for each patch image as input. The number of multi-heads in the 

decoder is 16, so the patch size was 16×16. The Vision Transformer cooperates with a 

U-Net with ResNet as the backbone, where the segmentation map is the combination 

of these two through a spatial normalization. The spatial normalization repeats the 

elements from the vector of the transformer until they have the same dimension as the 

U-Net output. Then concatenate the resultant matrix with the U-Net output. 
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5.4 Attention gate 

One of the major problems in semantic segmentation is the lack of attention that 

the models give to specific features. To avoid this issue, attention mechanisms that 

enhance relevant features to return a better segmentation are suggested. Many had 

already been proposed, based on convolutional networks, such as the convolutional 

block attention module [64], or on recurrent networks [63]. However, these attention 

modules exponentially increase the number of parameters in a network, restricting the 

train conditions, like the input patches, batch size, and so on. A research team presented 

an attention module that could be easily inserted into a network, without a high memory 

cost. The attention block, named as attention gate, can increase sensibility and 

prediction accuracy by learning to focus on target structures, without any additional 

supervision [65].  The attention gate has two input arguments, where each argument 

passes through a convolutional layer with a kernel size of 1 × 1. Next, the attention gate 

concatenates them followed by an activation function, ReLU. The flatten array 

undergoes through a convolution layer accompanied by a batch normalization and an 

activation function, sigmoid. Finally, the flattened array is multiplied by one of the input 

arguments [65], [66]. The attention gate is illustrated in Figure 16: 

 

Figure 16. Illustration of the proposed attention gate [65]. 

The attention gate was implemented on the U-Net, more specifically in the skip-

connections. One of the arguments is from the encoder block, while the other is from 

the decoder block. As mentioned before, one of the input arguments multiplies with the 

flattened array, which in this case, would be the encoder argument. 
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5.5 Conclusion 

U-Net is a widely used deep learning model for performing semantic 

segmentation on biomedical images. Its encoder-decoder structure enables it to extract 

crucial features from the input image. Over the years, numerous approaches have been 

proposed to enhance this baseline model. Some approaches involve replacing the 

backbone of the U-Net with different architectures and incorporating pre-trained 

backbones. This allows the model to leverage the knowledge learned from large-scale 

datasets and transfer it to the task of biomedical image segmentation. Other approaches 

focus on increasing the number of layers between the skip-connections in order to 

introduce deep supervision. This helps in capturing more detailed information and 

improving the overall segmentation performance. More recently, researchers have 

explored the integration of U-Net with RNN models or incorporating attention blocks. 

These additions aim to further refine the segmentation results by incorporating 

temporal or spatial dependencies and highlighting specific regions of interest. 

By enriching the baseline U-Net model with these various approaches, it is 

expected that the segmentation performance can be significantly improved, leading to 

better scoring metrics and more accurate segmentation results in the field of biomedical 

imaging. 
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Chapter 6 Data augmentation 

Deep learning models have remarkable performance in discriminative tasks. This 

phenomenon is explained by the appearance of advanced networks architectures, 

powerful computation, and access to big data. These networks are very reliant on big 

data to avoid overfitting, but many application domains do not have access to big data. 

The deep learning system, to be useful, must presents a decreasing of the validation 

error with the training error. Data augmentation is a very powerful technique to 

guarantee this. This approach increases the information that can be extracted from the 

original dataset. The augmentation can be based on geometric transformations, such as 

flipping, cropping, rotation or even translation, or can be based on sampling from data 

distributions that can be learned by deep learning approaches. The main problem of 

geometric transformations is not having the ability to create shapes or appearances of 

the same surgical instrument. The generation of synthetic data could unlock additional 

information from a dataset if the generated data can span the entire distribution [67]. 

An effective data augmentation depends on 3 fundamental factors: 

1- The existing database does not need to be very extensive, but it needs to cover 

the entire sample space of the application. This factor doesn’t depend on the 

effectiveness of the generator machine but in the insufficiency of the dataset.  

2- The training of the generative system must adequately capture the 

distribution of the training data. 

3- As a generator, the generative system must span the entire extension of the 

distribution, even the areas of lower likelihood that tend to be discarded given that in 

estimation theory, the most likely events give better performance to the systems. 

Therefore, in practice it becomes difficult to deal with this assumption and complements 

are normally required for more efficient generation. Joining other types of information 

into conditional probability density functions, thus increasing the likelihood of the data, 

making a conditional generation on an existing sample (image), or controlling the 
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diversity of the generated image (for example through FID) are some of the approaches 

used to include unlikely samples in the generation process [67]. 

 

6.1 Generative Adversarial Network (GAN) 

Despite shown discriminative power in different areas of application, the 

deployment of current ML approaches in medical environments remains constrained. 

This limitation is due to numerous factors, such as the lack of properly annotated and 

adequately diverse datasets that would enable neural networks to comprehensively 

learn about the given problem. In other words, the first problem described above 

interferes with the following ones, without sufficient data it is not possible to estimate 

an adequate model and without it is not possible to generate data coherent with the 

application. In order to mitigate such issues, Generative Adversarial Networks (GAN) 

were proposed to generate artificial data with similar characteristics of real data. GAN 

is a convolutional network with unsupervised learning, where their major objective is 

generating images, taking into account the problem. Its operation is based on a 

competitive system, where it could discern two models: generative and discriminative. 

The generative model is responsible for image synthetization starting from the latent 

space or noise. It can create a realistic image with the aim of misleading the 

discriminative model. The discriminator has the role of discerning between a real image 

and an image made by the generative model. Its classification task, which is true or false, 

is made in percentual values, so knowing that the generative model will create an image 

the most realistic as possible until the discriminator is unable to differentiate between 

a genuine and a synthesized image. The discriminator model, to bypass this issue, will 

try to increase the percentual disparity between a real image and a false one. In a 

simplified way, this process could be represented by Equation (6.1):           

 

𝑚𝑖𝑛 
𝐺

𝑚𝑎𝑥
𝐷
[𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 log𝐷(𝑥) + 𝐸𝑍 log(1 − 𝐷(𝐺(𝑧))] 

(6.1) 
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Where G and D are the generator and discriminator respectively, having as input 

the latent space 𝑧 and parameters 𝑥 . The loss function of this network is produced by 

the accumulation of the individual loss functions, 𝐸, from the discriminator and 

generator. For being an unsupervised learning, the model will be trained without any 

knowledge of its purpose, which usually leads to the generation of blurred images. This 

phenomenon occurs in the generative model because to be capable of deceiving the 

discriminative model, the generator will decrease the Euclidian distance (distance 

between the pixel and its neighbor). However, the generative model learns the data 

distribution, without separating it by classes. So, the generator loses the ability to drop 

the Euclidian distance.  To avoid this outcome, in addition to the latent space, a 

condition is introduced. The condition could be a semantic map that is fed into the 

generative and discriminative models, so the GAN can learn the labels and their 

differences [68], [69].  

Due to the diversity of condition formats, some authors classified two major 

dataset groups, for this type of convolutional network: paired dataset and unpaired 

dataset. The paired dataset is split into two sets, maintaining a correspondence between 

each respective set, so the number of elements in each group must be equal. The other 

type of dataset has also two groups, but there is not correspondence between an image 

from one set to another. The unpaired dataset is the most common because usually it is 

intended to transfer an image to another domain. However, there will not be any 

similarity between the real and the generated images since only the original image and 

a representation from the other domain are supplied. The GAN could proceed to 

different processes of image generation, but taking into account the type of dataset 

available, it is intended a GAN capable to do a supervised image-to-image translation 

(I2I). In I2I, the generative network can model the distribution of each class label, 

producing a fake image like the target domain. The generative model presumes that the 

synthesized data follow a Gaussian distribution and tries to approach this distribution 

into a particular algorithm. With this methodology, the generative model has the 

capacity to create new data due to its modulation of the target domain. The I2I 

translation could be split into two categories: unimodal output and multimodal output. 
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The first one, the model translates an input image to another domain, while the 

multimodal translates a single input image to a distribution of possible outputs. 

Considering the previous statements and the target objectives, the following content 

looked for a conditional model that can generate images with high resolution. Since the 

goal was to generate identical samples from real data increasing diversity without 

changing domains, the selected model should be able to train in a paired dataset [70], 

[71].  

Like in other deep learning approaches, several metrics have also been proposed 

to evaluate the image quality. The most common are the following: Peak signal-to-noise 

ratio (PSNR), Structural similarity index (SSIM), Fréchet inception distance (FID), and 

Learned Perceptual Image Patch Similarity (LPIPS). The PSNR measures the intensity 

distortions between the translated image and the ground truth. This metric is expressed 

in a logarithmic scale due to the very wide dynamic range of many signals, and higher 

PSNR value means a close intensity between the two images. SSIM is a metric that 

analyzes three characteristics, namely luminance, contrast, and structure between two 

computed images. Like the previous one, a high value indicates a strong similarity in 

these parameters. The FID is a more complex evaluation system that needs to extract 

features representations from the real and generated images, like edges and higher-

order shapes, from an Inception-v3 model. Then calculates the mean and covariance 

matrix of the features in each image. Finally, computes the Fréchet distance between 

the real and generated images and unlike the priors, a lower FID means a better 

performance. The LPIPS evaluates the diversity of the generated images by calculating 

the average LPIPS distance between pairs of randomly selected translated outputs 

derived from the same input. This metric can measure diversity and similarity, where a 

high value indicates diversity in the generated image and a low value shows the 

similarity, depending on what it is looking for [72], [73]. 

The conditional GANs that fulfill the requirements are the following: pix2pix [74], 

DRPAN [75], pix2pixHD [76], ‘Semantic Image Synthesis with Spatially-Adaptive 

Normalization’ (SPADE) [77], ‘Image Synthesis with Semantic Region-Adaptive 
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Normalization’ (SEAN) [78] and ‘Full-Resolution Correspondence Learning for Image 

Translation’ (CoCosNet-v2) [79],  [71].      

 Work in image synthetization for laparoscopy surgery is still relatively low 

explored. Marzullo et. al [80], proposed an application of a conditional GAN as a data 

augmentation method. They used the pix2pix GAN to I2I translation, producing an image 

similar to the real ones. The generator in pix2pix follows a U-Net architecture, meaning 

it is a convolutional network following an encoder-decoder structure with skip-

connections. This sub-network receives as input the latent space and a semantic map. 

The discriminator, unlike other conditional GANs, has the real and generated images as 

input without semantic map. Therefore, it lacks the capability to classify the data 

distribution by class. In this work, the researchers used metrics that are more common 

for image segmentation purposes, such as Dice, precision, and F1-score, and did not 

apply the usual FID.  

Considering the lack of research conducted on laparoscopy image synthesis, the 

selection of the best model will fall on the quality of image generation by the model. To 

best models were selected relying on a state-of-the-art dataset, like ‘ADE20k’ [81], [82] 

or ‘Microsoft Common Objects in Context (COCO)’ [83], which are widely recognized by 

the scientific community. These data consist of a real image along with its corresponding 

semantic map. The choice was conducted by analyzing the FID metric because, at our 

best knowledge, it is the most used to deliberate the image quality. 

6.1.1Pix2pixHD 

Wang et. al [76] proposed a conditional GAN capable of generating images with 

high resolution. In this work, the authors declared that can synthesize 2048 ×  1024 

images with photo realism. To accomplish this claim, they applied a multi-scale 

generator as well as discriminator architectures. The generator was broken into two, 

being classified as the global generator and local enhancer. The global generator works 
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at a resolution of 1024 ×  512, while the local enhancer outputs an image with a 

resolution of 512 ×  256. Figure 17Figure 18 shows pix2pixHD architecture: 

 

Figure 17. Pix2pixHD architecture, where 𝐺1 is the global generator and 𝐺2 is the local 

enhancer generator [76]. 

The global generator, represented by 𝐺1, is composed of three elements: a 

convolutional block in the beginning, followed by a series of residual blocks, and 

concluding with a transposed convolutional block.  

The transpose convolutional block, also known as deconvolutional, reverses the 

operation of a standard convolutional layer.  

The local enhancer generator has the same three elements as the previous one, 

but, unlike the other, the input feature map of the residual blocks is obtained by the 

element-wise sum of the output from the convolutional element of the local enhancer 

and the output from the global generator. Through this procedure, they sustain that 

global information is incorporated into the local enhancement network. During the 

training, the authors proposed first training the global network and then the local 

enhancer. After the separated train, they suggested joining the networks to do fine-

tuning.         

The discriminator requires an extensive receptive field, in order to differentiate 

high-resolution real and generated images. To avoid increasing memory usage, they 

applied three discriminators that discern only in terms of the image scales they analyze. 

Both real and synthesized images are downsampled by a factor of 2 and 4 to create a 

pyramid of three scales. This pyramidal structure provides a global view complemented 

with finer details. The discriminator architecture is named Patch Discriminator, which is 
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composed by 5 convolutional layers, with an activation function and a batch 

normalization between. This Patch Discriminator classifies each 𝑁 × 𝑁 patch in an 

image. This discriminator undergoes convolutionally across the image, being the 

ultimate output the average of all responses. The patch classification permits the 

parameters reduction [74]. In Table 6 the metrics achieved by Pix2pixHD in ‘ADE20k’ 

dataset, are shown: 

Table 6. FID achieved scores by Pix2pixHD in 'ADE20k' dataset 

GAN FID 

Pix2pixHD [76] 81.8 

 

Although the GAN could generate images with high resolution, it had an 

extremely high cost on GPU memory, and it can not preserve the semantic information 

across the network. 

  

6.1.2 SPADE 

Park et. al [77], proposed a spatially-adaptative normalization to synthetize 

photorealistic images. They defended that the previous methods degrade the semantic 

information. The SPADE block is represented in Figure 18:

 

Figure 18. SPADE block, where 𝛾 and 𝛽 represent modulation parameters [77]. 
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As shown, the semantic map is projected to an embedded space and then it is 

convolved to engender new modulation learnable parameters, such as 𝛾 and 𝛽. After 

this process, the 𝛾 and 𝛽 are multiplied and added to the batch norm. The activation 

value is given by Equation (6.2): 

  

𝛾𝑐,𝑦,𝑥
𝑖 (𝑚)

ℎ𝑛,𝑐,𝑦,𝑥
𝑖 − 𝜇𝑐

𝑖

𝜎𝑐
𝑖

+ 𝛽𝑐,𝑦,𝑥
𝑖 (𝑚) 

(6.2) 

 

Where ℎ𝑛,𝑐,𝑦,𝑥
𝑖  represents the activation before the normalization, being 𝑖 the 

number of layers of a deep network, 𝑐 the channel, 𝑦 the height, 𝑥 the width, 𝑛 the 

batch sample, and 𝑚 the semantic segmentation map. Instead of feeding the network 

with the semantic map, this information was injected into all SPADE blocks that were 

placed within the generator network. Consequently, the authors discarded away the 

encoder, remaining the decoder in the generator. The final product was a generator, 

where the encoder was composed by residual blocks with SPADE blocks and up-sampling 

layers. The discriminator is a Patch Discriminator that also applies the three scale levels.  

The last point discussed by the authors was the random vector as the input of 

the generator. They applied an image encoder, which is responsible for extracting a 256-

feature vector containing the mean and the variance from the real image. The image 

encoder was built up by a set of convolutional layers, where between each one there 

was an activation function and batch normalization. In the last convolutional layer a two 

linear featurization was applied to obtain the mean and the variance. The final 

architecture is given in Figure 19: 
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Figure 19. SPADE conditional GAN architecture [77]. 

The image encoder implementation requires the addition of a new loss function, 

namely Kullback–Leibler divergence. The Kullback-Leibler divergence measures how 

much one probability distribution differs from another, over the same variable. If two 

distributions match, this measure will be 0, otherwise, the value goes from 0 to ∞ [77], 

[84]. Table 7 Shows the metrics achieved by SPADE in ‘ADE20k’ dataset: 
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Table 7. FID achieved scores by SPADE in 'ADE20k' dataset 

GAN FID 

SPADE [77] 33.9 

 

One of the problems in the SPADE is the vanishing of texture patterns. The 

texture is a crucial characteristic on medical images because it is a function of color 

variation that forms repeated patterns [85]. 

 

6.1.3 CoCosNet-v2 

Zhou et. al [79] referred that one of the main issues of the GAN was exploiting 

the information represented in an exemplar image. This network resorts to an exemplar 

image, where it transfers the information within the exemplar to the synthesized image. 

To accomplish this, the authors proposed a multi-level domain alignment, which was 

responsible for extracting features through a U-Net. The multi-level domain alignment 

involved extracting 4 levels of features from both the exemplar image and the semantic 

map. The chosen resolutions for these features were 64 × 64, 128 × 128, 256 × 256, and 

512 × 512. After the features acquisition, the authors suggested a coarse-to-fine 

strategy, which consists of correspondences between features of both exemplar images 

and semantic map. This followed a hierarchical process, meaning that the 

correspondence matching started at the lowest resolution level. In the successive levels, 

the matching results from the previous layer were used as the initial guidance. The 

research team split this phase into two parts: GRU-assisted Patch Match and 

differentiable warping function. The first part was propagation with a Patch Match. This 

network was responsible to do the matching between the features of the exemplar 

image and the semantic map, knowing the matching results of its neighbors. Patch 

Match typically examines spatially adjacent patches and can become stuck in local 

optima. To enhance propagation, the team incorporated a Convolutional Gated 

Recurrent Unit (ConvGRU) in addition to Patch Match. The Gated Recurrent Unit (GRU) 

is a type of RNN designed to mitigate the vanishing gradient problem often encountered 
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in standard RNNs. The GRU uses two types of gates: update and reset gates. The first is 

the update gate and is given by the following equation: 

  

𝑧𝑡 = 𝜎(𝑊
(𝑧)𝑥𝑡 + 𝑈

(𝑧)ℎ𝑡−1) (6.3) 

 

When 𝑥𝑡 is plugged into the network, it is multiplied by its own weight, denoted 

as 𝑊(𝑧), and then this result is added to the product of the previous information t-1 and 

its own weight, 𝑈(𝑧). A sigmoid activation function is employed afterward, making the 

values vary between 0 and 1. This gate is responsible for determining how much past 

information should be passed along to the future. The next gate, the reset gate, chooses 

the past information to forget. The reset gate follows a similar equation to the update 

gate, with the distinction lying in the weights, which are specific to the reset operation: 

 

𝑟𝑡 = 𝜎(𝑊
(𝑟)𝑥𝑡 + 𝑈

(𝑟)ℎ𝑡−1) (6.4) 

 

After the gate resolution, the current memory content is computed, which has 

the ability to preserve important information from the past. The current memory is 

obtained through this equation: 

  

ℎ𝑡
′ = tanh (𝑊𝑥𝑡 + 𝑟𝑡⨀𝑈ℎ𝑡−1) (6.5) 

 

  Where 𝑊 and 𝑈 represent weights associated with the current memory 

content. In this equation, a Hadamard product was computed between the reset gate 

and the previous information, which helped determine what information to discard 

from past time steps. The Hadamard product makes an element-wise product, resulting 

in a matrix composed of the corresponding elements multiplied from two matrices. 

After the operations, a tanh activation function is applied. In the final stage, the network 

calculates the vector that stores the information. To accomplish this, Equation (6.6) is 

employed: 
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ℎ𝑡 = 𝑧𝑡⨀ℎ𝑡−1 + (1 − 𝑧𝑡)⨀ℎ𝑡
′  (6.6) 

 

As can be seen, if 𝑧𝑡 is set to 1, the ℎ𝑡  will preserve the majority of the previous 

information and discard the current content [86], [87]. Figure 20 shows a GRU 

architecture: 

 

Figure 20. Gated Recurrent Unit architecture [87]. 

 

 

The last result of the propagation, after the data passed through the Patch Match 

and the GRU, was the addiction between the output of the Patch Match and the output 

of the GRU. Lastly, following the propagation, the subsequent step involved translation 

is applied. In this step, the warped image, created by the Patch Match correspondence 

field, which transformed the exemplar image, was passed through two convolutional 

layers to generate modulation parameters. The parameters were plugged into the 

SPADE blocks located within the decoder network. This whole process, CoCosNet-v2 

network, is shown in Figure 21: 
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Figure 21. CoCosNet-v2 architecture, where 𝑥𝐴 is the semantic map and 𝑦𝐵 the exemplar 

image [79]. 

 Like the previous GANs, it was also calculated the FID in ‘ADE20k’ dataset, as it 

can see in Table 8: 

  

Table 8. FID achieved scores by CoCosNet-v2 in 'ADE20k' dataset 

GAN FID 

CoCosNet-v2 [79] 25.2 

 

6.1.4 GANs drawbacks 

This type of generative models has some limitations. GANs suffer from collapse 

and instability during training. The mode collapse refers to the state that the generator 

only produces similar images. This shows that the GAN has difficulty achieving the Nash 

equilibrium (the optimal outcome is accomplished when there is no incentive for the 

generator or discriminator to deviate from their initial strategy). To address this issue, 

one can explore various strategies, which may involve adjusting the architecture of the 

generator. These strategies could include adding or removing layers from the generator 

network, extending the training duration to allow for more learning, or incorporating 

techniques like dropouts and batch normalization within the generator's layers [88].   

Another problem that could emerge is the vanishing gradient during the 

backward step. As it flows, the gradient gets increasingly smaller, and sometimes it stops 

learning if the gradient is extremely small prohibiting initial layers from learning by not 

changing the weight values. This issue gets worse when training bigger networks, leading 
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to non-convergence situations. Some researchers proposed balancing the discriminator 

and the generator during the training phase, but this approach is not optimal because a 

good discriminator gives good feedback. Another potential solution is to adapt the 

objective function by introducing a new probability distance metric or a different loss 

function [72], [73], [88]. 

  

6.2  Diffusion models 

A limitation of GANs is their lack of ability to insert variability/diversity in the 

generated image. The diffusion models are one possibility to generate realistic images 

with diversity very different from the ground truth, maintaining the detail. Furthermore, 

diffusion models can also be applied in classification, detection, and segmentation tasks, 

but they are categorized as generative models, due to their ability to learn the data 

distribution.     

This section explains the diffusion model mechanism. It is also approached the 

different types of diffusion models existing until now. Finally, the model applied to 

generate laparoscopic images is described. 

 

6.2.1 Description 

Diffusion model is a deep learning generative network with two stages. The first 

stage, also called by forward stage, is composed by successive steps to inject Gaussian 

noise in the ground truth image. The second phase, named by backward stage, walks 

through the steps in the opposite direction so that it can recover the original image [89]. 

All diffusion models apply this concept, being based on Markov chains. The Markov 

chain is a stochastic process with numerable states. The stochastic process foretold that 

future states depend only on the instant state and not on the previous ones. The time 

parameter, also called by step, must be a non-negative integer number. Through this 

approach, the Markov chain will converge to an equilibrium point, when the network 

trains during a certain time [90].  
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This type of diffusion model could be separated into three subcategories: 

denoising diffusion probabilistic model (DDPM) [89], noise-conditioned score networks 

(NCSN) [91], and stochastic differential equations (SDE) [92]. For the purpose of this 

work, the generative model must be conditioned by the semantic map and must be for 

image-to-image translation. Therefore, only DDPM is explained in the next sub-section, 

as it is the unique type that fulfills such requirements.  

 

6.2.2 DDPM 

DDPM has the main function of estimate the probabilistic distribution of the 

latent space variations. To achieve this, DDPM induces variations within the latent 

space. DDPM slowly injects Gaussian noise into the training data, following Equation 

(6.7): 

 

𝑝(𝑥𝑡|𝑥𝑡−1) = 𝑁(𝑥𝑡; √1 − 𝛽𝑡. 𝑥𝑡, 𝛽𝑡. 𝑰), ∀𝑡 ∈ {1,… , 𝑇} (6.7) 

 

Where 𝑝(𝑥𝑡) describes the data density. 𝑇 represents the number of steps for 

noise injection, so when t is equal to 0, the data will be the original data. 𝛽 ∈ [0, 1] are 

parameters that represent the variance across the diffusion steps. 𝑰 is the identity matrix 

with the same dimensions of the data. 𝑁(𝑥; 𝜇, 𝜎) is the normal distribution, with the 

mean represented by 𝜇, and variance by 𝜎. One property of this formulation is obtaining 

any version 𝑥𝑡 only knowing the original image and 𝛽̂. This premise is described in 

Equation (6.8): 

 

𝑝(𝑥𝑡|𝑥0) = 𝑁 (𝑥𝑡; √𝛽̂. 𝑥0, (1 − 𝛽̂𝑡). 𝑰) 
(6.8) 

 

Where 𝛽̂ = ∏ 𝛼𝑖
𝑡
𝑖=1 , being 𝛼 = 1 − 𝛽𝑡. The process to achieve 𝑥𝑡 is made by a 

reparameterization method. The method refers that the standard value from a sample 

𝑥 that follows a normal distribution, 𝑥 ∼ 𝒩(𝜇, 𝜎2. 𝑰), can be obtained by subtracting 
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the mean, and divide it by the variance, 𝑧 =
𝑥−𝜇

𝜎
. For being a reparameterization 

method, it is possible to achieve any 𝑥𝑡 value following Equation (6.9): 

 

𝑥𝑡 = √𝛽̂𝑡. 𝑥0 +√(1 − 𝛽̂𝑡). 𝑧𝑡 
(6.9) 

 

As could be ascertained, the selection of (𝛽𝑡)𝑡=1
𝑇  that induce the convergence of 

𝛽̂𝑡 to 0, makes 𝑥𝑇  to follow a normal distribution. As a default, the selected values for 

𝛽1 and 𝛽𝑇 are 10−4 and 2.10−2, respectively. It is possible to generate other samples 

from 𝑝(𝑥0) if the network starts from 𝑥𝑇 ∼ 𝒩(0, 𝑰) [93], [89]. The network needs also 

to follow the reverse steps: 

 

𝑝(𝑥𝑡−1|𝑥𝑡) = 𝒩 (𝑥𝑡−1; 𝜇(𝑥𝑡, 𝑡),∑(𝑥𝑡, 𝑡)) (6.10) 

To approximate the steps, the network is trained to receive the noisy image and 

embedding time steps as input, where it could learn to predict the mean and the 

covariance. The covariance is a constant value, so it could be represented by Equation 

(6.11): 

 

𝜇𝜃 =
1

√𝛼𝑡
⋅

(

 
 
𝑥𝑡 −

1 − 𝛼𝑡

√1 − 𝛽𝑡̂

⋅ 𝑧𝜃(𝑥𝑡, 𝑡)

)

 
 

 

 

(6.11) 

 

With this simplification, the objective function can measure the distance 

between the noise 𝑧𝑡 and the estimated noise 𝑧𝜃(𝑥𝑡, 𝑡), for any time step. The objective 

function could be simplified by Equation: 

 

ℒ = 𝔼𝑡∼[1,𝑇]𝔼𝑥0∼𝑝(𝑥0)𝔼𝑧0∼𝒩(0,𝑰)‖𝑧𝑡 − 𝑧𝜃(𝑥𝑡, 𝑡)‖
2 (6.12) 

Where 𝔼 is the estimated value, 𝑧𝜃(𝑥𝑡, 𝑡) is the predicted noise in 𝑥𝑡. The 

network does not predict the mean and the covariance directly, instead, it predicts the 
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noise from the image and through the noise determines the mean, while the covariance 

is a fixed value [93].  

 

6.2.3 Semantic Diffusion Model (SDM) 

SDM is a DDPM network and is based on U-Net. Like the other diffusion models, 

the network estimates the noise from the input image. It starts by processing the noisy 

image and the semantic map independently, where the noise is fed into the encoder, 

while the semantic map is into the decoder. The encoder is composed by semantic 

diffusion resblocks, which are blocks with convolution layers, followed by an activation 

function, SiLU (𝑓(𝑥) = 𝑥. 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥)), and group normalization (an alternative of 

batch normalization, where the channels are divided into groups and the mean and the 

variance for the normalization is computed for each group [94]). The decoder is where 

the semantic map is injected through SPADE blocks, followed by convolution layers and 

activation functions, SiLU [95].  

Being a diffusion model, for each defined step, there is a network responsible for 

estimate the mean and the covariance of the Gaussian noises the network could learn 

to map the noise distribution. The authors also proposed a classifier-free guidance for 

generating photorealistic images. They defend that by perturbing the mean, the results 

could be improved, so during this second train phase, the network has a copy of itself, 

but this copy will not be fed with the semantic map, but by an empty label. The 

conditional noise and the unconditional noise are added, and multiplied by a scalar 

value, which is responsible for creating a tradeoff between diversity and fidelity. After 

that, unconditional noise is added with the aforementioned operation, resulting in the 

estimated noise. Figure 22 represents a schematic of the Markov chain in the diffusion 

model: 
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Figure 22. Markovian chain of SDM [95]. 

 

The diffusion model, like the mentioned GANs, was also analyzed, calculating its 

FID for the ‘ADE20k’ dataset. The scoring results are in the Table 9: 

 

Table 9. FID achieved scores by the diffusion model in 'ADE20k' dataset 

Diffusion model FID 

Semantic diffusion model [95] 27.5 

 

This model attained a low FID value, like the GANs. Generation models based on 

diffusion, have great potential in terms of synthetic generation data. 

 

6.3 Variational Autoencoders 

Variational Autoencoders (VAE) are unsupervised generative models with the 

main goal to learn complicate distributions. VAE consists of an encoder, which is 

responsible for compressing the input data into a latent space, and a decoder that has 

the capability to reconstruct the data from the latent space. In this class of generative 

models, the focus shifts from directly learning the encoding to modeling the latent space 

as a Gaussian distribution. During training, the neural network aims to minimize two key 

objective functions: the reconstruction loss and the regularization term loss. 
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The reconstruction loss plays a crucial role in ensuring that the decoder can 

faithfully recreate the original input data. For the specific task of image generation, the 

mean-squared error is a common choice for this objective function. It quantifies how 

well the generated data matches the input data, emphasizing the accuracy of the 

reconstruction. Concurrently, the regularization term loss influences the encoder's 

behavior. Its goal is to encourage the distribution of the latent space to closely resemble 

a Gaussian distribution. To achieve this, the Kullback-Leibler divergence is most 

frequently employed. The KL divergence measures the dissimilarity between the true 

distribution of the latent space and the desired Gaussian distribution, thereby 

promoting a latent space that exhibits Gaussian-like properties. By minimizing both the 

reconstruction loss and the regularization term loss, VAEs strike a balance between 

generating accurate reconstructions of the input data and shaping the latent space to 

have specific probabilistic characteristics. This duality enables VAEs to generate new 

data samples that not only resemble the training data but also exhibit useful properties 

in the latent space [96]. 

Once the network is trained, it can generate data from the learned latent space. 

These samples from the encoded space are decoded by the decoder, generating new 

data. Although VAEs leverage probabilistic encoding in a lower-dimensional latent 

space, they present innumerous disadvantages. This type of generative models is 

characterized by producing images with low quality compared to the GANs. VAEs are 

commonly created with the goal of acquiring disentangled representations in the latent 

space, where each dimension signifies a significant feature. Nonetheless, attaining 

complete disentanglement poses a challenge, and VAEs may not consistently succeed in 

effectively separating all the fundamental factors of variation present in the data. 

Furthermore, VAEs struggle to capture multimodal data distributions, such as when the 

data exhibit non-Gaussian characteristics [96]. Given the primary objective of generating 

realistic images in the context of generative models, VAEs may not be the ideal choice, 

as they might not reliably ensure the quality of generated images. Therefore, they were 

excluded from consideration for this task. 
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6.4 Conclusion 

Generative networks constitute a subset of deep learning systems, distinguished 

by their capacity to generate new data while drawing inspiration from real data. In this 

chapter, three distinct types of generative models were discussed: GANs, diffusion 

models, VAEs. GANs are founded on a competitive learning paradigm where two 

networks enhance their knowledge through mutual competition. Diffusion models, on 

the other hand, employ a Markov chain to iteratively learn the data distribution by 

introducing Gaussian noise at each step. In contrast, VAEs are unsupervised networks 

that mold a latent space to possess specific probabilistic characteristics, enabling them 

to generate novel data samples.  

The objective of employing generative models in this study was to generate 

synthetic data, thereby expanding the training dataset. This data augmentation 

technique yielded promising results.     
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Chapter 7 Experimental Results  

This chapter presents the used dataset and describes the selection of the most 

adequate models for the purpose of the detection and segmentation of parts of robotic 

harms used in assisted surgery. Discussion of results is also provided based on the 

model’s properties.  

 

7.1 Dataset description 

The dataset is from the “Surgical Instrument Multi-Domain Segmentation 

Challenge” [97] and is public. It is divided into four different surgical domains: 

laparoscopic in-vivo, laparoscopic ex-vivo, robotic in-vivo and robotic ex-vivo. For each 

domain, there are collections of images captured by the endoscope, organized based on 

the procedure/patient. For each reference image there is multiple segmentation masks, 

such as instrument type and parts. The instrument type provides information about the 

specific type of tool being represented, while the parts distinguish the different 

components of a tool. There are 11 different surgical instruments that are listed in Table 

10: 

 

 

 

 

 

 

 

 

 

 



 

73 

 

 

(a) (b) 

Table 10. Tool type used during the surgical procedure 

Tool Type 

Clipper (C) 

Coagulation Instrument (CI) 

Scissors (Sc) 

Stapler (St) 

Needle Driver (ND) 

Grasper (G) 

Holding Instrument (HI) 

Suction/Irrigation (SI) 

Specimen Bag (SB) 

Trocar (T) 

Undefined instrument (UI) 

      

As an example, in Figure 23 there are masks of instrument type, being 

represented a ND with CI and SI.  

 

 

Figure 23. Semantic map of (a) patient 01, frame 21, on the exvivo_robotic domain ;(b) 

patient 01, frame 6, on the invivo_laparoscopic domain. 
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On the other hand, each instrument could have at most 3 different parts, 

depending on its type. These parts are registered in Table 11: 

 

Table 11. Parts that compose the instruments 

Tool part 

Jaws 

Wrist 

Shaft 

  

 For a better understanding of the instruments parts, in Figure 24 is illustrated a 

representation of an instrument with the three classes: 

 

  

Jaw 

 

Wrist 

Shaft 

 

Figure 24. Semantic map of patient 01, frame 60, on the invivo_robotic domain. 

 

It is necessary to mention that for instrument type in the dataset, there were two 

missing classes that were discarded for training purposes, namely, ‘Staple’ and ‘Needle 

Driver’. As expected, the different classes mentioned before do not have the same 

representation, which could hinder the class segmentation by the lack of appearances. 

As such, the first part was to understand how many times each class appears on 

the dataset. The dataset is composed by 45 patients, making a dataset size of 2349. For 

each patient is given the semantic map of instrument parts and type. Table 12 and Table 

13 illustrate the number of occurrences of each class in tool’s type and tool’s part, 

respectively.  
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Table 12. Number of occurrences of each class of tool type 

Tool type Number of occurrences 

C 213 

CI 1310 

Sc 536 

St 0 

ND 0 

G 1282 

HI 397 

SI 95 

SB 38 

T 90 

UI 43 

 

The data for segmentation of tool parts is more evenly distributed than for 

segmentation of tool type. Observing the class distribution of tool parts, the most 

difficult to achieve a high metric will be the wrist class. For the tool type, is expected 

that less representative classes, such as SI, SB, T and UI, have a metric very close to 0.  

Although some classes have a good representation on the dataset it is not 

guaranteed that these classes will achieve a high scoring value due to other factors, like 

image quality or if the instrument/part is cut in the visual field.        

 

Table 13. Number of occurrences of each class of tool part 

Tool part Number of occurrences 

Wrist 959 

Shaft 2044 

Jaw 2115 
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7.2 Cross-validation 

Cross-validation is the most used method for error estimation. On a flawless 

world, data is split into two groups: training and validation. However, this is not a 

recommended practice when data is scarce. To contour the issue, it resorts to K-folds 

cross-validation, which applies part of the data to fit the model and a different part to 

test it. The dataset is divided into K sets with equal sizes, where the model is fitted 

exploiting 𝐾 − 1 folds of the data. Then, the model is validated on the remaining portion 

of data. In each fold, a prediction error is obtained, and the model's performance is 

determined by taking the average of these score values. Through this method, it’s 

estimated the average generalization of the model [98].  

As such, the selected models to do the semantic segmentation of the data were 

trained by cross-validation. As mentioned before, the folds should have the same 

number of patients and all classes must be represented in each fold. In total, there are 

44 available patients. Table 14 shows the patients’ IDs for each fold: 
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Table 14. Description of patients by fold, being each fold divided by the 4 domains   

Fold Patients 

 Invivo robotic ➔ 01, 04  

 Exvivo robotic ➔ 03 

Fold 1 Invivo laparoscopic ➔ 04, 14, 17,20  

 Exvivo laparocopic ➔ 01, 07 

 Invivo robotic ➔ 03, manual_sampling, 

manual_sampling 2 

 Exvivo robotic ➔  None 

Fold 2 Invivo laparoscopic ➔ 01, 05, 09, 18, 23 

 Exvivo laparocopic ➔ 02, 05  

 Invivo robotic ➔ 02, 05  

 Exvivo robotic ➔ 04, 05 

Fold 3 Invivo laparoscopic ➔ 03, 06, 13, 21  

 Exvivo laparocopic ➔ 03 

 Invivo robotic ➔ None 

 Exvivo robotic ➔ 01, 05  

Fold 4 Invivo laparoscopic ➔ 02, 07, 08, 11, 16, 

ClippingSnippets 

 Exvivo laparocopic ➔ 03 

     

These folds represent the validation folds so, for instance, during the first train, 

the model will assess its performance using patients from fold 1 for validation and train 

with the remaining folds. The main objective of this work was the application of a 

network with domain unaware, so it is not mandatory that all domains were represented 

in each fold. It is worth to mention that some patients will be only used for training 

purposes, namely: invivo laparoscopic 12, 15, 19, 22, 24; exvivo laparoscopic 04, 06, 08.  
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7.3 Results 

This sub-chapter exposes the metrics achieved by the selected models, and the 

comparison between them. Experiment results must clarify three points: which 

pretrained backbone has the best performance in the studied dataset; if the 

implementation of attention in U-Net can provide better insights than other models; 

what generative models for synthetic data augmentation improves data diversity 

towards a more robust decision.    

In order to answer the previous questions, the analysis was first directed to the 

instrument parts. Following step was migrate to the instrument type, where the 

networks performance was also performed.     

  

7.3.1 Instrument parts 

The complexity of the problem increases with the number of classes. All models 

were trained using one RTX3090 GPU with 24GB and evaluated in terms of dice and 

normalized Hausdorff distance (NHD). NHD is mostly often used to calculate the distance 

between two-point sets. Equations (7.1) and (7.2) mathematically the dice and NHD, 

respectively: 

𝑑𝑖𝑐𝑒 =
𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

(7.1) 

     

𝑁𝐻𝐷 = 𝑚𝑖𝑛{𝑁𝑂𝑀𝐷(𝑋⃗𝑖, 𝑌⃗⃗𝑗), 𝑁𝑂𝑀𝐷(𝑌⃗⃗𝑖, 𝑋⃗𝑗)} (7.2) 

 

Where TP is true positive, FP false positive and FN is false negative. NOMD, being 

the combination of two distances (cosine and Euclidian),  that  guarantees that NHD will 

be 1 (finite number) if the distance is infinite for one class that appears in the ground 

truth but not in the prediction, or vice-versa [99]. All images, before being injected into 

the model were subject to a histogram equalization. This method is a smoothing 

technique that allows the highlight of some details that were previously [100]. The 
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image intensities are evenly distributed on the full range, improving the image quality 

which benefits object perception.     

For each model, the fold with the best validation score is presented. Table 17 

shows the number of parameters and the computational time required to train each 

fold: 

 

Table 15.  Parameters and time consumption by each selected model  

Models Number of parameters Training time (h) 

U-Net + VGG16 4118932 3.717 

U-Net + ResNet101 61943564 3.759 

U-Net + VGG16 + Attention 42248464 3.47 

U-Net +ResNet101 + Attention 62295096 3.515 

Nested U-Net 58630852 4.774 

Transformer U-Net 165166436 6.561 

 

Transformer meets U-Net model has a high training time, which could be 

explained by the number of parameters of the model. The transformer, as mentioned in 

section 5.3, has a large number of multi-head self-attention modules, which originates 

a large number of parameters. Table 16 shows dice and NHD for the different models.
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Table 16. Dice and NHD of each model by class for the validation dataset 

Models 
Pretrained 

Backbone 

Dice NHD 

Wrist Shaft Jaw Avg. Wrist Shaft Jaw Avg. 

U-Net VGG16 0.5058 0.738 0.5635 0.6024  0.28 0.12 0.22 0.21 

U-Net ResNet101 0.4762 0.7388 0.5395 0.5848 0.25 0.10 0.20 0.18 

U-Net + Attention VGG16 0.4182 0.8161 0.6775 0.6372 0.22 0.09 0.18 0.16 

U-Net + Attention ResNet101 0.3907 0.7981 0.6099 0.5997 0.24 0.10 0.19 0.18 

Nested U-Net VGG16 0.4082 0.8087 0.6364 0.6178 0.32 0.12 0.23 0.22 

Transformer U-Net VGG16 0.4011 0.7898 0.6206 0.6038 0.32 0.14 0.28 0.25 
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In order to have a valid conclusion, these models were trained in the same 

conditions. Each model was trained for 50 epochs with an initial learning rate of 1E-4. 

The adopted optimizer was the Adam with a learning decay with a factor of 10 on the 

epochs 25, 35, and 45. While training, these models were validated by cross-validation, 

so in the end, there were 4 different trained sub-models for the same network structure. 

Table 16 presents the values of the best-performing fold on average NHD and average 

dice. Overall, the best fold was fold 1, despite the fold 3 could be a possibility due to its 

high value in the wrist class, for all models.  

The analysis was divided into two parts: understand which backbone has the best 

performance; and understand which is the best alternative. The U-Net model was 

trained with a VGG16 and a ResNet101 as the backbone. These encoders were 

pretrained on the ImageNet dataset [36] and no layers were frozen. VGG16 backbone 

outperformedResNet101 by 0.0172 in dice average. This improvement may be related 

to its simpler structure and the relatively small number of classes. Therefore, VGG16 

was the selected backbone for the subsequent models. By looking into the 

correspondent examples of these models in Figure 25 and Figure 26 it can be seen that 

outer borders appear to be less affected by adjacent pixels that do not belong to the 

object itself. By using the gate attention in the U-Net an average dice score of 0.6372 

was obtained, surpassing the original U-Net by 0.0348. The score of 0.6372 also beat the 

Nested U-Net, by 0.0194, and the Transformer U-Net, by 0.0334. Now taking a closer 

look at NHD, which could give a better perception since it is related to the shift of the 

predicted segmentation from the ground-truth, the NHD of baseline U-Net had a better 

performance than Nested U-Net and Transformer U-Net, with a difference of 0.01 and 

0.03, respectively. This occurrence reinforces the conclusions taken from the dice 

metrics. However, the best backbone for the U-Net was ResNet101, which did not 

happen in the dice. The ResNet101 achieved a value of 0.18, while VGG16 reached 0.21. 

Following the reasoning, it is expected that ResNet101 overtakes the VGG16 in U-Net 

with gate attention. The previous statement did not occur, the ResNet101 stagnated, 

while VGG16 decreased by 0.16, catching the ResNet101. Observing the segmentations, 

represented in Figure 25 and Figure 26,  the model of U-Net with the attention gate 
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achieved a better result. This model, in these two segmentations, obtained a 

segmentation map closer to the ground truth in all three classes. The implementation 

of the attention gate allowed the generation of segmentation with smoothed edges. The 

transformer meets U-Net model did not achieve the best results, contrary to what was 

observed using other types of data. In part, this could be due to the way patches are 

defined in this structure, i.e., although the same objects with the same parts are used 

while performing the same procedure in another patient, it cannot be guaranteed that 

those instruments will be in the same position and orientation. These variations are 

unlikely to be encompassed using datasets with a few dozen patients. 

Overall, based on the dice and NHD values, and segmentation maps the U-Net 

with gate attention with the VGG16 as a backbone is the best combination to solve the 

segmentation of these three parts in surgical objects.
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Figure 25. Semantic segmentation of instrument parts of patient 01, frame 80, on the invivo_robotic domain. 
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Figure 26. Semantic segmentation of instrument parts of patient 01, frame 60, on the invivo_robotic domain
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Ideally, overfitting should be evaluated by looking for the validation metrics, but 

also observing the model behavior in a new unseen test dataset. The test dataset should 

have different patients of the train and validation data. Often, due to the lack of data, 

which is the current case, it is not possible to divide the dataset into three distinct sets. 

Since this dataset was from the challenge “Surgical Instrument Multi-Domain 

Segmentation Challenge (MICCAI 2023)” [97] and although the test set was not publicly 

available, it was possible to test one of the models.  The results are shown in Table 17: 

 

Table 17. Scoring results for domain-unware part segmentation [97] in the test set 

Model Dice Avg. NHD Avg. 

U-Net+attention+VGG16 0.64 0.17 

  

As can be seen, both dice and HD are similar to the validation values shown in 

Table 16. As such, this model did not overtrain, therefore, overfitting was avoided, which 

is common when U-Net is used in  medical images. It is worth mentioning that the U-Net 

model with attention gate and VGG16 achieved 3rd place in this challenge. 

However, results can be improved by performing data augmentation. Synthetic 

data can replicate features presented in the original images or increase data diversity, 

providing more valuable information to the model. In the following discussion, two 

different approaches to generating synthetic images are discussed, GANs and diffusion 

models. Table 18 shows the scoring values achieved by aforementioned data 

augmentation techniques.    
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Table 18. Metric values of data augmentation on U-Net with attention gate  

Synthetic data 
Dice NHD 

Wrist Shaft Jaw Avg. Wrist Shaft Jaw Avg. 

CoCosNet-v2 0.5831 0.7838 0.7094 0.6921 0.21 0.009 0.17 0.13 

SPADE 0.5094 0.7076 0.4782 0.5651 0.27 0.15 0.24 0.22 

Diffusion 

Model 

0.5562 0.7666 0.6628 0.6619 0.23 0.11 0.18 0.17 

  

The generative models were evaluated by how they influence predictions using 

the model selected in the previous step, the U-Net model with attention gate blocks 

trained following the same strategy. Each generative model generated synthetic images 

that should be similar but diverse from the originals, increasing the dataset twice. Even 

though the stopping criteria for both GAN and Diffusion model training is not a well-

defined method, they were trained to reach the minimum loss, where for the GANs is 

the Nash equilibrium and for the Diffusion Model is the maximum likelihood. Achieving 

the minimum loss function presupposes that the model can produce data similar to the 

observed sample. This is not ensured because there is no evidence that the network is 

not trapped in a local minimum. As can be seen in Table 18, data augmentation increases 

the performance of the model. The best generative model was CoCosNet-v2, raising the 

average dice by 0.0549 (0.6921), followed by the Diffusion Model with a value of 0.6619. 

SPADE network, unlike the previous ones, could not increase the dice scoring, on the 

contrary, it hinders the model performance. It is visible in Figure 27 that when the frame 

was smoggy, the U-Net without data augmentation had difficulty on the instrument’s 

identification. For data augmentation, the network could be able to identify very clearly 

the instrument parts. Figure 28 represents another problem, when facing with several 

instruments in a frame identify all of them fails, contrarily what happens for data 

augmentation. SPADE based data augmentation underperforms dice and NHD metrics.    

The CoCosNet-v2 generates new samples taking into account a reference image. 

This approach carries several advantages in small datasets. As all the existing images are 
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used patterns poorly represented do not vanishes, they maintain its relative value of 

representability. Even if data distribution is poor modelled a good seed guaranties some 

increasing in diversity which represents an improving for the dataset.  On the other 

hand, the Diffusion Model due to its ability to create images with high diversity, made 

abnormal tools, i.e., built instruments composed of the corresponding parts but with a 

combination that does not belong to any reference object which suggests poor learned 

distributions and no way to deal with it. The SPADE network, due to lack of data and due 

to the diversity of backgrounds, where there were at least 4 distinct backgrounds, could 

not generate realistic images, explaining its performance. Some examples can be seen 

in Data augmentation sub-section. 



 

88 

 

 

 

Figure 27. Semantic segmentation of instrument parts with data augmentation of the patient 01, frame 98, on the invivo_robotic domain. 
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Figure 28. Semantic segmentation of instrument parts with data augmentation of the patient 03, frame 67, on the exvivo_robotic domain. 
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7.3.2 Instrument type 

Increasing number of classes makes the problem more complex because the 

model has more difficulties looking for the global minimum. Often, due to poor or even 

lack of representation of some classes, the model is stuck on local minima and can not 

jump to the best minimum. Such as in the instrument part, in this section all the models 

were trained using a RTX3090 with 24GB of memory. 

The main objective of this work was finding a model with the ability to answer 

the problem of segmentation of instrument type. As the metric values in Table 16 led to 

the selection of the U-Net with the gate attention model, the remaining models were 

discarded, except the U-Net, which is used as a baseline model. For this specific problem, 

the mAP was the chosen metric for the challenge “Surgical Instrument Multi-Domain 

Segmentation Challenge” [97]. It was not proposed a model to participate in this 

challenge, so unlike the instrument parts, there was not test scoring values. However, 

for comparation purposes, Table 19 illustrates the scores achieved by the teams: 

Table 19. Scoring values achieved by each team 

Team mAP (%) 

Team 1 3 

Team 2 25 

Team 3 30 

Team 4 5 

Team 5 1 

    

As shown Table 20, the mAP values are not promising, due to the complexity of 

the problem and the lack of data. Although the Undefined instrument is a class while 

training, it was not considered by the organization to the calculation of the mAP.  
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Table 20. Dice and mAP values achieved for each class in instrument type 

 

Model 

Synthetic 

data 

Dice  

mAP(%) C CI G HI Sc SB SI T UI Avg. 

U-Net None 0.1484 0.1882 0.4467 0.1231 0.1200 0.0038 0.0040 0.0038 0 0.1153 1.25 

U-Net + 

Attention 

 

None 

0.2237 0.1976 0.5918 0.2572 0 0.0053 0.0084 0.0062 0 0.1434 2.125 

U-Net + 

Attention 

 

CoCosNet-

v2 

0.1854 0.1878 0.4618 0.2037 0.3513 0.0051 0.0082 0.0050 0 0.1565 8.41 

U-Net + 

Attention 

Diffusion 

Model 

0.2192 0.1883 0.5566 0.2015 0.3678 0.0053 0.0107 0.0052 0 0.1727 9 

U-Net + 

Attention 

 

SPADE 

0.0423 0.1534 0.4327 0.1444 0.3374 0.0034 0.0005 0.0045 0 0.1242 1.95 
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All models were trained in the same initial hyperparameters for 60 epochs with 

an initial learning rate of 1E-2. Unlike the previous one, the adopted optimizer was SGD, 

due to its better results comparing with Adam. The learning rate decay was scheduled 

to 30, 40 and 50 epochs. Such as in the previous problem, the histogram equalization 

was applied in each image. 

Observing the values from Table 20 the best approach of data augmentation was 

Diffusion Model, increasing the baseline value, in average by 0.03. The CoCosNet-v2 did 

not give to the model the best metrics, only growing 0.0131. The SPADE kept its 

behavior, biasing the metrics. This last mentioned point, supports that the quality of 

generated images has impact on the network, when it is learning patterns from an 

image. Taking a closer look to the mAP, the U-Net had an extremely small value, only 

1.25%, which is the same value reached by the last team. While the U-Net plus the gate 

attention increases this value to 2.125. The result was promising, however it was far 

from the first place. The application of data augmentation, except with SPADE, increases 

the mAP metrics. The best was achieved by the Diffusion model, going in coherence with 

dice metric, getting 9%. The CoCosNet-v2 reached a mAP of 8.41, allowing it competing 

with the Diffusion Model. The worst data segmentation was U-Net VGG16 with 

attention block with SPADE data augmentation. In Figure 29 is visible semantic maps 

with classes that are not presented in the ground truth. The baseline model with 

attention gate without data augmentation shaped an instrument more similar to the 

ground truth than the original U-Net, only sinning in putting a mismatch class. The 

CoCosNet-v2 could not improve this problem. The Diffusion Model increase the 

performance not only discarding the error class, but also shaped an even better 

instrument type than the U-Net without data augmentation. On the other hand, Figure 

30 illustrates a very evidently case because the data augmentation not only allowed the 

identification of the correct class, but also mold a better surgical tool. The U-Net with 

attention could segment better the top instrument, unlike the baseline network. 

According to these results, it is always better applying data augmentation based 

in generation of synthetic data.   
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U-Net VGG16 with 
Attention 

CoCosNet-v2 

U-Net VGG16 SPADE 

Diffusion Model 

 

Figure 29. Semantic segmentation of instrument type with and without data augmentation of the patient 01, frame 21, on the exvivo_robotic 

domain. 
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Ground Truth Input image 
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CoCosNet-v2 

Diffusion Model 

 

Figure 30. Semantic segmentation of instrument type with and without data augmentation of the patient 02, frame 24, on the invivo_laparoscopic 

domain.
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7.3.3 Data augmentation 

In this sub-section, in Figure 32 and  

Figure 33, it is shown a sample of each domain from the three studied generative 

networks. We can see that due to the reference image, the CoCosNet-v2 could generate 

a very realistic and very similar image to the original one. Although the reference image 

helps mitigating the lack of data, it can not inject data diversity. This network usually 

collapses producing images too similar to the real ones. The other GAN, the SPADE, 

could not converge, generating images with noisy backgrounds. This is an example of 

destabilization of GAN parameters, where the generative network never converges. The 

Diffusion Model does not have the problem of imbalance because is not an adversarial 

network and due to its strategy of learning can inject diversity in the generated image. 

The model, based on the Markov chain, mapping the mean and the covariance of the 

noise can recover the original image with a new data distribution in the classes present 

in the semantic map. However, this network can not guarantee that the generated 

image has clinical context, i.e., the generated instruments could not make any sense and 

does not exist in the practice. An example of this statement is Figure 31: 

 

 

Figure 31. Synthetic image from Diffusion Model without clinical context.
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Figure 32. Sythetic data from the three generative models on exvivo_laparoscopic and invivo_laparoscopic domain. 
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Figure 33. Sythetic data from the three generative models on exvivo_robotic and invivo_robotic domain.
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7.4 Conclusion and future work 

The robotic-assisted surgery is growing due to its advantages compared to the 

open surgery. However, there are some limitations, such as the extensive physician 

formation program and the lack of tactile stimulations.  

The main goal of this dissertation was to propose a method to automatically 

segment the instrument parts and type following three research lines. First the search 

for models that can segment instrument parts and type. The other line was how to 

improve the baseline model and the final was what type and how data augmentation 

can be better, taking into account the problem. 

The selected model, the U-Net, could generate a semantic map of instrument 

parts and instrument type. With the employment of the attention gate, the network, in 

the instrument parts, could identify better the different classes and even define more 

smoothly the instrument borders. One of issues with the baseline model was the 

appearance of holes in the semantic map, but with the attention block that problem was 

mitigated. Although the remarkable performance achieved by the proposed network, 

there is still some work to do. The next path should be to search for multi-task models, 

with more robustness and multisensorial. A possibility is the Mask2Former [101] model 

that can create three different segmentation maps (semantic, instance and panoptic). 

The instrument type is a complex problem due to the diversity of instruments that is 

necessary to identify and due to the lack of data. However, the baseline model with 

attention blocks achieved good metrics, allowing the standard network to identify more 

clearly the different surgical tools.    

Data augmentation, especially synthetic data is a solution that could help some 

lack of data problems. GANs are perhaps the most used type of networks, however, such 

models do not have well defined stopping criteria and consequently the model never 

converges. This problem propagates to the diffusion model, but unlike the GAN, this 

model does not look for a Nash equilibrium, instead looks after to map the mean and 

the covariance of Gaussian noise. If the diffusion model does not train for a certain 

period of time, it can not capture the nonlinear nature of the real world, whereas if 
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training for too long the denoising algorithm fails on injecting diversity on the generated 

images.  The best data augmentation model for surgical tool parts was CoCosNet-v2, 

while for instrument type was Diffusion Model. The main issue of Diffusion Model in the 

instrument parts was the lack of clinical context, explaining worst values than the 

CoCosNet-v2. Diffusion Model has a big potential because is a generative network that 

learn the data by its distribution, but instead to start by the latent space, injects step by 

step noise. This method of learning allows it to generate images with high diversity. 

However, there is no measurement in the loss function that control the diversity and 

the reality of generated images at the same time. In this case, the next steps should be 

creating a trade-off between diversity and realistic generated images. 

Despite the semantic map quality from the proposed model some improvements 

should be done in order to become a robust complete system. For the next few works, 

the best approaches, in this area, should be the exploration of multi-modals networks. 

The particularity of multi-modal models is their combination of multiple sources of data 

from different types, therefore allowing the model to learn more cross-data 

dependencies and solve multiple tasks at once. It is expected that this can give the right 

tools for segmentation of instrument parts and type. The transformers have a big 

potential for semantic segmentation, however for some application with lack of data 

there is still a lot of work to do. 
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