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a b s t r a c t 

Background and objective: Examination of head shape and brain during the fetal period is paramount to 

evaluate head growth, predict neurodevelopment, and to diagnose fetal abnormalities. Prenatal ultrasound 

is the most used imaging modality to perform this evaluation. However, manual interpretation of these 

images is challenging and thus, image processing methods to aid this task have been proposed in the 

literature. This article aims to present a review of these state-of-the-art methods. 

Methods: In this work, it is intended to analyze and categorize the different image processing methods to 

evaluate fetal head and brain in ultrasound imaging. For that, a total of 109 articles published since 2010 

were analyzed. Different applications are covered in this review, namely analysis of head shape and inner 

structures of the brain, standard clinical planes identification, fetal development analysis, and methods 

for image processing enhancement. 

Results: For each application, the reviewed techniques are categorized according to their theoretical ap- 

proach, and the more suitable image processing methods to accurately analyze the head and brain are 

identified. Furthermore, future research needs are discussed. Finally, topics whose research is lacking in 

the literature are outlined, along with new fields of applications. 

Conclusions: A multitude of image processing methods has been proposed for fetal head and brain anal- 

ysis. Summarily, techniques from different categories showed their potential to improve clinical practice. 

Nevertheless, further research must be conducted to potentiate the current methods, especially for 3D 

imaging analysis and acquisition and for abnormality detection. 

© 2022 Elsevier B.V. All rights reserved. 

1

i

o

n

r

b  

T

r

i

C

(

a

t

a

t

a

a

e  

a

h

0

. Introduction 

The fetal period is characterized by organ development, provid- 

ng the basis for subsequent long-term health. Specifically, growth 

f the head and brain structures in this period determine life-long 

eurological competencies. Disturbances in head growth and neu- 

odevelopment are associated with long-term health burden, mor- 

idity, and can have an impact on the quality of the infant’s life [1] .

hus, the monitoring the growth of head and brain in the fetal pe- 

iod is paramount. Ultrasound (US) imaging has been widely used 

n prenatal diagnosis for the examination of fetal head and brain. 
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ompared to computed tomography (CT) and magnetic resonance 

MR), US imaging presents the advantages of being radiation-free 

nd noninvasive, while providing a real-time and low-cost prena- 

al examination. Moreover, recent advances in 3D US technology 

llows the acquisition of 3D volumetric data, enabling a more de- 

ailed analysis of the fetus head and central nervous system (CNS) 

nd allowing post-exam data processing [2] . 

Applications of diagnostic US applied to fetal head/brain include 

nalysis of craniofacial abnormalities or skull deformations [ 3 , 4 ], 

valuation of CNS malformations [ 5 , 6 ], fetal biometry analysis [7] ,

ssessment of brain development, and gestational age (GA) esti- 

ation [8] . These diagnostic applications are frequently performed 

n 2D images of standard anatomical planes or 3D volumes. For 

ll cases, a robust evaluation of the image is important to extract 
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Fig. 1. Division by practical applications of image-based analysis of fetal head in US images. 
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eaningful information from it, allowing to improve the diagno- 

is and the patient’s monitoring and facilitate the decision-making 

rocess in cases where treatment or intervention is required. How- 

ver, naked-eye evaluation of US images is very challenging, being 

lso time-consuming, labor-intensive, and highly prone to intra- 

nd interobserver variability. For these reasons, robust semi- or au- 

omatic methods to process the image can aid fetal evaluation. 

This work intends to summarize the state-of-the-art of image- 

ased techniques to evaluate fetal head/brain in US. Despite few 

eviews were already developed for fetal brain MR imaging [ 9 , 10 ],

nd for fetal MR/US body [11] , no review specifically focused on fe- 

al head and brain analysis in US was previously performed. Thus, 

o the best of the knowledge, this is the first review addressing a 

omplete analysis of the fetal head and brain in US. The methods 

eviewed were divided according to their practical clinical applica- 

ions ( Fig. 1 ), namely head analysis, brain inner structures analysis, 

tandard anatomical plane evaluation, fetal development analysis, 

nd image processing enhancement. Moreover, the reviewed meth- 

ds are also categorized based on their main theoretical approach, 

ccording to the five main categories as suggested in [12] : Global 

ntensity-based (G. Intensity-based), deformable models, learning- 

ased, registration, and active shape models (ASM). Thus, the ma- 

or contributions of this review are: 

• A complete overview of the state-of-the-art methods on 

head/brain analysis in US images; 
• An exhaustive analysis of each method based on its clinical ap- 

plication ( Fig. 1 ) and theoretical approach; 
• A comparison between the different approaches along with a 

discussion on the most appropriate methods for each applica- 

tion and future research topics. 

The rest of the manuscript is organized as follows. In Section 2 , 

 brief introduction to fetal US imaging for head/brain analysis 

s provided. In Section 3 , the methodology used to conduct the 

resent review is presented. In the following five sections, the 

linical applications are individually addressed, namely fetal head 

nalysis ( Section 4 ), brain inner structure analysis ( Section 5 ), 

tandard anatomical plane analysis ( Section 6 ), fetal head devel- 

pment analysis ( Section 7 ), and image processing enhancement 

 Section 8 ). For each, the description of the reviewed methods, 

heir technical and clinical validation, and discussion of their per- 

ormance are addressed. Following, Section 9 focuses on the gen- 

ral discussion of the current state of research and future perspec- 

ives. Finally, the main conclusions are given in section 10. 

. Fetal imaging of head and brain 

.1. Anatomical structures and anatomical views 

One of the structures evaluated in prenatal ultrasound is the fe- 

al skull, where its shape and size are assessed usually using bio- 

etric measurements such as head circumference (HC), biparietal 
2 
iameter (BPD), and occipitofrontal diameter (OFD) [13] . Besides 

he fetal skull, the nervous system (mainly the brain) is also evalu- 

ted. The fetal brain undergoes significant changes in both size and 

hape during fetal development, which are quantified to analyze 

rain development [14] . The brain structures sought in fetal US are 

ateral ventricles (LV), cavum septi pellucidi (CSP), thalamus (Th), 

erebellum (Ce), choroid plexus (CP), and cisterna magna (CM), be- 

ng their lengths/diameters usually estimated for brain evaluation 

6] . A description of fetal brain structures can be found in Table 1 . 

When evaluated in 2D, the analysis of the structures is per- 

ormed on the standard anatomical planes (see Fig. 2 ) [ 15 , 16 ].

rom the axial view, three planes are usually assessed, namely the 

ransventricular (TV), transthalamic (TT), and transcerebellar (TC) 

lanes ( Fig. 3 ). The TV plane is usually used for the visualization

nd measurement of the LV. Plus, it is also used to assess the CSP 

nd CP. In the TT plane, structures such as the frontal horns of the 

V, CSP, Th, and lateral sulcus (LS) can be analyzed. Moreover, HC, 

PD, and OFD are estimated at this plane. The assessment of the 

C plane includes the visualization of the frontal horns of the LV, 

SP, Th, Ce, and CM. Thus, this plane is used to measure the di- 

meter of the CM and the width of the Ce. From the coronal view, 

our different planes are usually evaluated, namely the transfrontal, 

ranscaudate, coronal TT, and coronal TC planes. The transfrontal 

lane depicts structures such as the interhemispheric fissure, the 

rontal cortex, the frontal horns of the LV, and the ocular orbits 

hile the transcaudate plane depicts the CSP, the anterior portion 

f the CC, and also the frontal horns of the LV. Using the coro- 

al TT plane, the Th, the anterior portion of the CC, and CSP can 

e analyzed. The cerebellar hemispheres are evaluated in the TC 

lane. Finally, two sagittal planes are usually studied, namely the 

idsagittal (MS) and the parasagittal planes (PS). The assessment 

f the CC is performed in the MS plane, where midline structures 

f the brain are evaluated to diagnose midline deformations. In the 

S plane, the entire LV can be evaluated, along with the CP. 

.2. Abnormal US findings 

Several conditions are diagnosed by evaluating the fetal skull 

17] . One severe condition evaluated is anencephaly, which is rec- 

gnized by failure of development of the skull and consists in an 

bsence of parts of the brain and skull. During US examination, 

his condition is diagnosed by evaluating if the bones of the cra- 

ium are deficient above the level of the orbits. Another condi- 

ion is encephalocele, characterized by a defect of the skull re- 

ulting from nervous tissue that protrudes through skull open- 

ngs, being visible on the US. Bone integrity and density can also 

e evaluated to find defects at the skull [ 3 , 18 ]. By analyzing fe-

al skull shape, cranial indexes can be estimated and cranial de- 

ormities such as scaphocephaly, brachycephaly, or plagiocephaly 

an be diagnosed [ 3 , 19 ]. Here, an elongated skull vault corresponds 

o scaphocephaly, a flattened skull indicates brachycephaly, and an 

symmetric skull corresponds to plagiocephaly. Moreover, a lemon- 
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Table 1 

Overview of Brain anatomical structures evaluated in fetal US. 

Structure Anatomical description Ultrasound appearance Abnormal US findings examples 

Skull Bone structure that protects the brain Continuous highly hyperechogenic 

structure 

Anencephaly, encephalocele, 

microcephaly, macrocephaly, 

plagiocephaly, scaphocephaly, 

brachycephaly 

Lateral ventricles, LV Structures filled with cerebrospinal fluid Highly hyperechogenic at horns Ventriculomegaly, hydrocephalus 

Cavum septi pellucidi, CSP Fluid filled cavity that separates both LV Anechoic triangular-shaped under CC Absence of CSP, holoprosencephaly, 

agenesis of CC 

Thalamus, Th Two oval structures of gray matter Hypoechogenic structure Holoprosencephaly 

Cerebellum, Ce Butterfly-shaped structure formed by 

hemispheres 

Hemispheres connected by a 

hyperechogenic structure 

Cerebellar hypoplasia, spina bifida, Arnold 

Chiari II and Dandy-Walker malformations 

Choroid Plexus, CP Located in the LV containing cerebrospinal 

fluid 

Hyperechogenic structure within the LV CP lesions 

Cisterna Magna, CM Fluid filled space posterior to the 

cerebellum 

Anechoic structure Spina bifida, Arnold Chiari II malformation 

Corpus Callosum, CC Fibrous structure connecting right and left 

brain 

Hypoechogenic structure Agenesis of CC 

Fig. 2. Standard anatomical views for fetal head analysis. (A) Axial views; (B) Coronal views; (C) Sagittal views; TV – transventricular plane, TT – Transthalamic plane, TC –

Transcerebellar plane, TCa – Transcaudate plane, TF – Transfrontal plane, MS – Midsagittal plane, PS – Parasagittal plane. 

Fig. 3. Standard axial anatomical views. The first, second, and third row concern 

the TV, TT, and TC plane, respectively. The first column presents a scheme of the 

available features on each plane, while the second column is the real US image. 
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3 
haped head due to frontal bone scalloping can be also evaluated 

y ultrasound, indicating spinal dyspraphism and the Arnold Chiari 

I malformation. From skull size, conditions such as microcephaly 

r macrocephaly are evaluated by analyzing if the HC is below or 

bove reference values, respectively [13] . 

Concerning the fetal CNS, brain abnormalities comprise a wide 

pectrum of conditions [ 14 , 17 , 20 ]. One of the most common prob-

ems detected is ventriculomegaly, which is an abnormally dilated 

V [18] . When in the TV plane, this condition is diagnosed by mea- 

uring the ventricular atrium on an axis perpendicular to the long 

xis of the LV. In severe cases, ventriculomegaly can represent ob- 

truction of the flow of cerebrospinal fluid and consequent raise 

f the pressure within the ventricular system, indicating a hydro- 

ephalus condition. 

Midline abnormalities are also detected by US, including holo- 

rosencephaly which is a cephalic disorder that results from a fail- 

re of development of the normal forebrain. In US, this condition 

an be detected by the presence of a fused Th, absence of CSP, and 

 single dilated midline ventricle replacing the LV [20] . Agenesis or 

bnormal CC can also be found during the examination, consisting 

n the absence of the brain area that connects the two cerebral 

emispheres [18] . During US examination, this condition can be 

erceived by the lack of visualization of CC in the midsagittal and 

oronal planes. The sonographic evaluation of the CM can also be 

sed to detect abnormalities in the midline, such as enlarged CM 

r obliterated CM, which can indicate Arnold Chiari II malforma- 

ion when accompanied with distortion of the cerebellum. More- 

ver, cerebellar hypoplasia can be associated with a Dandy-Walker 

alformation which affects brain development. Usually, cerebellar 

ypoplasia is diagnosed by measuring the transcerebellar diame- 

er. Another condition is spina bifida, where an abnormal lemon- 

haped head, an abnormal shaped CER, and an obliterated CM are 
ound. 
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Fig. 4. Approaches for fetal head analysis. (A) Head location with a bounding box of the head ROI in red and landmarks at skull extremities in purple; (B) Skull segmentation 

with the segmentation result in red and an ellipse fitted to the segmentation in purple. HC corresponds to the perimeter of the ellipse and BPD and OFD corresponds to its 

minor and major axis, respectively; (C) Edge-based approach with the skull edges in red and an ellipse fitted to the edges; (D) Contour-based approach. 

a

A  

t

a

3

p

f

P

“

n

t

a

s

n

r

a

o

o

d

l

a

4

4

r

h

H

m

p

w

r

a

a

t

t

o

b

t

e

s

t

b

s

w

o

s

e

i

p

u

m

o

f

4

i

d

a

u

m

o

f

n

s

a

(

t

a

4

s

l

p

l

f

t

b  

i

M

t

s

a

m

f

m

a

e

a

a

t

t

b

s

p

f

Finally, destructive lesions are also sought during fetal US ex- 

mination, including tumors, cysts, or intracranial hemorrhage [18] . 

s a final remark, besides the use of 2D/3D US for detection of fe-

al abnormalities, Doppler US can also be used to detect vascular 

bnormalities, such as aneurysms, or anemia. 

. Review methodology 

In this section, the methodology used for conducting the 

resent review is described. A computer-assisted search was per- 

ormed by the first author in the Scopus, Web of Science, and 

UBMED databases using combinations of the following keywords: 

fetal head”, “fetal brain”, “fetal standard anatomical planes”, “fetal 

eurodevelopment”, “ultrasound”, “segmentation”, and “classifica- 

ion”. The search was carried out to cover the period between 2010 

nd 2020. The articles were analyzed based on their title and ab- 

tract, allowing to select eligible articles. Excluded works included 

on-English language papers, patents, and papers that were not 

eferent to the image processing topic. Moreover, US not related 

rticles were excluded. Articles that presented scientific work in 

ne of the five clinical applications using US were selected. More- 

ver, the reference list of relevant works was hand searched for ad- 

itional literature. After removing duplicates, 126 papers were se- 

ected for full-text analysis. 109 of these 126 papers were reviewed 

nd are described in this review. 

. Fetal head analysis 

.1. Overview of methods 

Accurate head measurements are of high importance in obstet- 

ics for fetal growth monitoring. Traditional clinical practice for 

ead analysis includes the estimation of 2D measurements such as 

C, BPD, and OFD from an ellipse representative of the fetal skull, 

anually fitted in the US image by sonographers. However, this 

rocess tends to be subjective and requires expertise. Moreover, 

hen in 3D, manual shape analysis to quantify cranial deformities 

equires manual delineation of head contours, which is a difficult 

nd time-consuming task. Thus, automatic methods for fetal head 

nalysis have been proposed. Detection methods are the ones used 

o locate the head region or landmarks in the skull. Skull segmen- 

ation methods distinguish the skull bone structure from the rest 

f the image, normally followed by ellipse fitting approaches for 

iometry estimation. In its turn, edge-based methods only intend 

o perform a coarse detection of image features, e.g. partial skull 

dges, to be used for ellipse fitting. Finally, contour-based methods 

eek to find a closed outer contour of the skull with its fine de- 

ails. An illustration of the types of head analysis approaches can 

e seen in Fig. 4 . 

An overview of the reviewed methods for head analysis is pre- 

ented in Table 2 , where the main category of the methods along 

ith their description are presented. Note that some of the meth- 

ds can be considered hybrids once the theoretical approach of the 
4 
trategy involves methods and principles of more than one cat- 

gory. However, in the present state-of-the-art, the methods are 

ncluded in the category that best fits their main theoretical ap- 

roach. The required user interaction (UI) is also presented, being 

sed the abbreviation A for fully automatic methods, MI when a 

anual initialization of the method is required (e.g. initial contour 

r seed point), and MR for works that manually define an ROI be- 

ore applying the method. 

.1.1. Head detection methods 

Khan et al. [21] and Sahli et al. [22] proposed to exploit simple 

mage information to detect skull extremities. In [21] , the Canny 

etector is used after morphological operations to detect the upper 

nd lower skull boundaries. From each boundary, the midpoint is 

sed as endpoints for BPD estimation. In [22] , two additional land- 

arks for OFD endpoints are estimated, where hysteresis thresh- 

lding and log Gabor feature extraction are applied to detect the 

our landmarks. A head ROI is detected in the work of Baumgart- 

er et al. [23] , using a deep-learning (DL) approach. In this work, 

aliency maps are obtained from the most active feature neurons 

fter processing a US image using a Convolutional Neural Network 

CNN) applied for image classification. By thresholding the map, 

he ROI is obtained. In [24] , a different network architecture was 

pplied by the same team. 

.1.2. Skull segmentation methods 

Considering the relevance of HC, BPD, and OFD measurements, 

everal authors explored a rough skull segmentation approach fol- 

owed by ellipse fitting. Satwika et al. proposed to use a sim- 

le thresholding approach to obtain a binary image of the skull, 

ater applying an ellipse approximation method [25] , Hough Trans- 

orm (HT) [26] , or randomized HT with particle swarm optimiza- 

ion techniques [27] to extract the final result. Threshold followed 

y HT was also applied by Sahli et al. [ 28 , 29 ]. While in [28] the HT

s used to find a circular shape, in [29] an ellipse shape is found. 

athematical morphology was used by Liu et al. [30] to process 

he image and to obtain its maximum connected region (i.e. the 

kull). Constraining points in this region are used to improve the 

ccuracy of the randomized HT approach. In [31] , mathematical 

orphology was also applied by Marhaban et al. to segment the 

etal skull, where direct least-square fitting on a skeletonized seg- 

entation is used to find the ellipse, similarly to the work of Saii 

nd Kraitem [32] . Ponomarev et al. [33] used shape descriptors to 

liminate objects in an initial thresholded image. More recently, 

 different global intensity-based approach was proposed by Sree 

nd Vasanthanayaki [34] . Here, a fuzzy connectedness segmenta- 

ion approach is used, after definition of seed points by the user. 

The major drawback of the abovementioned methods, especially 

he automatic ones, is the low robustness of pure global intensity- 

ased approaches to noisy regions, leading to an over segmented 

kull and resulting in incorrect ellipsoid fitting. Thus, some works 

roposed to minimize this problem by restricting the image in- 

ormation before application of the global intensity-based method, 
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Table 2 

Overview of fetal head analysis methods. 

Reference Dim. Category Method initialization Method final stage UI 

Det. Khan et al. [21] 2D G. Intensity-based Threshold and morphology Canny detector A 

Sahli et al. [22] 2D G. Intensity-based Hysteresis threshold Log Gabor feature extraction A 

Baumgartner et al. [ 23 , 24 ] 2D Learning-based – CNN A 

Skull 

segmentation- 

based 

Satwika et al. [25–27] 2D G. Intensity-based Threshold Ellipse fitting/HT A 

Sahli et al. [ 28 , 29 ] 2D G. Intensity-based Threshold HT A 

Liu et al. [30] 2D G. Intensity-based Morphology Constrained Randomized HT A 

Marhaban et al. [31] 2D G. Intensity-based Morphology Least Square Fitting A 

Saii and Kraitem [32] 2D G. Intensity-based Threshold and morphology Least Square Fitting A 

Ponomarev et al. [33] 2D G. Intensity-based Threshold and shape descriptors Contrast-based pixel score A 

Sree and Vasanthanayaki [34] 2D G. Intensity-based Fuzzy connectedness segmentation Least Square Fitting MI 

Ma’Sum et al. [35] 2D G. Intensity-based Adaboost classifier and threshold Randomized HT A 

Jatmiko et al. [36] 2D G. Intensity-based Adaboost classifier and threshold Randomized HT A 

Imaduddin et al. [37] 2D Learning-based Adaboost classifier Randomized HT MR 

Anto et al. [38] 2D Learning-based Feature extraction RF A 

Namburete and Noble [39] 2D Learning-based Simple linear iterative clustering RF A 

Rahmatullah et al. [40] 2D Learning-based Simple linear iterative clustering RF A 

Cerrolaza et al. [ 41 , 47 ] 3D Learning-based Structured feature extraction for RF RF/CNN A 

Perez-Gonzalez et al. [ 42 , 43 ] 3D Learning-based Feature extraction SVM/RF A 

Heuvel et al. [44] 2D Learning-based CNN and U-Net Least Square Fitting A 

Kim et al. [46] 2D Learning-based Image transformation and U-Net Least Square Fitting MI 

Edge-based Rahayu et al. [48] 2D G. Intensity-based Morphology and canny detector Integral projection A 

Banerjee and Krishnan [49] 2D G. Intensity-based Generation of diffusion images Diffusion and RANSAC A 

Ni et al. [50] 2D G. Intensity-based Adaboost classifier and phase analysis Iterative Randomized HT A 

Li J et al. [51] 2D G. Intensity-based RF and phase-based analysis Fast ellipse fitting A 

Yaqub et al. [52] 2D G. Intensity-based Phase analysis Template correlation A 

Foi et al. [ 53 , 54 ] 2D G. Intensity-based Random ellipse fitting Gaussian elliptical path A 

Kusuma et al. [55] 2D G. Intensity-based Random ellipse fitting Gaussian elliptical path A 

Ma’Sum et al. [56] 2D G. Intensity-based Random ellipse fitting Gaussian elliptical path A 

Stebbing and McManigle [57] 2D Learning-based Phase-based model and RF Dual ellipse fitting A 

Zhang et al. [58] 2D Learning-based Texton-based edge detection and SVM Least Square Fitting A 

Heuvel et al. [59] 2D Learning-based RF HT and dynamic programming A 

Contour-based Ciurte et al. [ 60 , 61 ] 2D G. Intensity-based Ellipses in head and background Min-cut algorithm MI 

Sun [62] 2D G. Intensity-based Circular shortest path Gradient-based edge detection A 

Chen et al. [63] 3D Def. models Eye location and template registration Active contours A 

Perez-Gonzalez et al. [64] 2D Def. models Texture and morphological analysis Active contours A 

Rawat et al. [65] 2D Def. models Threshold GVF A 

Rong et al. [66] 2D Def. models Initial contour Learning-based GVF MI 

Gadagkar and Shreedhara [67] 2D Def. models Initial contour Level-set MI 

Rajinikanth et al. [68] 2D Def. models Jaya algorithm and Otsu threshold Level-set A 

Namburete et al. [69] 3D Def. models Surface initialization Template deformation MI 

Cuingnet et al. [70] 3D Def. models Ellipsoidal shell model Template deformation A 

Wu et al. [71] 2D Learning-based – Cascade FCN A 

Sinclair et al. [72] 2D Learning-based – FCN A 

Yaqub et al. [73] 2D Learning-based – CNN A 

Xie et al. [74] 2D Learning-based – CNN A 

Al-Bander et al. [75] 2D Learning-based – Mask R-CNN A 

Sobhaninia et al. [ 77 , 78 ] 2D Learning-based – Multi-task LinkNet/ LinkNet A 

Huang et al. [79] 3D Learning-based – U-Net A 

Ye et al. [80] 2D Learning-based – U-Net A 

Budd et al. [81] 2D Learning-based – Probabilistic U-Net A 

Moser et al. [82] 3D Learning-based – U-Net A 

Yang et al. [83] 3D Learning-based – Attention encoder-decoder A 

Liu et al. [84] 2D Learning-based – SAFNet A 

A: Automatic method, MI: semiautomatic method (manual initialization), MR: semiautomatic method (ROI definition). 
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y firstly finding an ROI of the head (see Fig. 5 ). Ma’Sum et al.

35] and Jatmiko et al. [36] exploited the Adaboost classifier with 

aar features to obtain the head’s ROI. In [37] , Imaduddin et al. 

roposed to use the same classifier to binarize the skull. In [38] , 

nto et al. used a Random Forest (RF) classifier to segment the 

kull using image intensity as feature. A combination of unsuper- 

ised and supervised learning was proposed by Namburete and 

oble [39] . Here, a simple linear iterative clustering method is 

sed to create pixel clusters. Afterward, local statistics and shape 

nformation are used in an RF classifier, along with unary, binary, 

nd Haar features, to obtain the final skull segmentation. A similar 

pproach was proposed by Rahmatullah et al. [40] , where image 

oment features were added to the RF approach. In [41] , Cerrolaza 

t al. proposed a variant of the traditional RF (termed structured 

eodesic RF) that integrated semantic and structural information 

o segment the skull in 3D US volumes. 3D skull segmentation was 
5 
lso addressed by Perez-Gonzalez et al., where features related to 

exture, intensity, and edges are used in a Support Vector Machine 

SVM) classifier [42] and RF classifier [43] . 

Despite the higher accuracy of learning methods compared with 

lobal intensity-based methods, they are highly dependent on the 

eature extraction stage. Thus, Deep Learning (DL) approaches were 

roposed. In [44] , Heuvel et al. used CNN to classify the US im- 

ge concerning the presence or not of the fetal head. For the im- 

ges where the head was detected, a network inspired in the U- 

et [45] was used to segment the skull. U-Net was also used by 

im et al. [46] . However, here a preprocessing step is applied to 

ifferentiate tissue patterns according to US wave propagation. US 

hysics was also used by Cerrolaza et al. [47] to solve the problem 

f partial skull segmentation verified in the remaining methods. 

ere, a two-stage CNN is used, partially segmenting the skull in 

he first stage, and then angle incidence and shadow casting infor- 
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Fig. 5. Illustration of one example of head analysis method that uses a classification approach to detect the head and a global intensity-based method to segment the 

head. (A) Original US image; (B) Haar features used by several classification methods for fetal head segmentation/detection; (C) Head ROI after application of a classification 

approach using the Haar features (e.g. Adaboost classifier); (D) Binary image after thresholding (C); (E) Ellipse fitted the skull resulting from searching an ellipse shape in 

(D) (e.g. HT). 
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ation are added to the second stage to obtain the final segmen- 

ation. 

.1.3. Edge-based methods for head analysis 

Instead of using skull segmentation to perform ellipse fitting, 

ome methods explored different image features, e.g. skull edges. 

ahayu et al. [48] used the Canny detector to find the edges of the

kull in a morphological processed image, using an integral projec- 

ion method to find points to fit the ellipse. A different approach 

as proposed by Banerjee and Krishnan [49] where multi-level dif- 

usion images were created and the RANSAC technique was ap- 

lied to obtain a consensus of the generated maps to perform the 

nal ellipse fitting. Instead of finding edges using intensity infor- 

ation, several works proposed to use phase-based filters. Indeed, 

hase-based methods showed high accuracy and good response to 

peckle noise in US images, being useful to improve edge detection. 

hus, Ni et al. [50] and Li J et al. [51] proposed to use this type

f method to detect skull edges. Both methods performed detec- 

ion of head’s ROI before applying edge detection, using Adaboost 

lassifier [50] and RF [51] . A phase-based image was also used by 

aqub et al. [52] . However, a template-based approach was pro- 

osed, where normalized cross-correlation between a set of skull 

emplates and the phase-based image was evaluated to find the 

est template. Foi et al. [53] proposed a new way to represent the 

kull, using Difference-of-Gaussians (DoG) filter, considering that 

he skull can be represented as a gaussian-like curve with higher 

ntensities than its surrounding tissues. An optimization procedure 

s applied to a random initialization of the DoG model to obtain 

he final ellipse. A more efficient optimization was proposed by the 

ame authors in [54] , while Kusuma et al. [55] explored nature- 

ased optimizations and Ma’Sum et al. [56] investigated particle 

warm optimization. 

Machine learning methods were also used to compute the 

dge map. Stebbing and McManigle [57] investigated RF classifiers, 

here a boundary fragment model is constructed using phase- 

ased image analysis and then incorporated into the RF to detect 

kull edges for ellipse fitting. In [58] , Zhang et al. detected skull 

dges using texton features integrated into an SVM framework. In 

59] , RF was used by Heuvel et al. to compute the likelihood of 

 pixel belonging to the skull. Afterward, skull edges are searched 

sing dynamic programming. 

.1.4. Contour-based methods for head analysis 

Ciurte et al. [60] proposed to use an approach called patch- 

ased continuous MinCut for skull’s contour extraction. In this 

ethod, two ellipses corresponding to the fetal head and back- 

round are drawn in the image, and a continuous MinCut partition 

s used to obtain the skull contour through energy minimization. In 

61] , a new minimization algorithm that speeds up the optimiza- 

ion process was proposed. A graph-based method was also pro- 

osed by Sun [62] , where the circular shortest paths method was 

sed to iteratively find the skull’s boundaries, which corresponds 
6 
o the brightest optimal path. For refinement, an ellipse is fitted to 

he method’s result and the outer skull edge is retrieved by com- 

uting the image gradient in the radial direction. 

Deformable models were also applied for skull boundary ex- 

raction. This type of methods overcome the lack of robustness 

o noise of global intensity-based approaches, while obtaining a 

mooth and gapless segmentation. One illustration of a deformable 

odel approach to segment the fetal head is presented in Fig. 6 . 

ctive contours were used by Chen et al. [63] . Here, an initial 

ethod based on Gabor-features was applied to detect the eyes’ 

osition, later using it to detect the head pose. Once detected the 

ose, a feature-based registration with a model is used as the ini- 

ial surface for the active contour, being the contour evolved to- 

ards the skull boundary using intensity and edge features. In the 

ork of Perez-Gonzalez et al. [64] , texture maps were retrieved 

rom the original image and combined in one map processed using 

hreshold and morphology. An ellipse is detected in the map and 

sed as an initial contour for an active contour. Other works pro- 

osed Gradient Vector Flow (GVF) to drive the active contour. In 

awat et al. [65] , binarization is firstly applied to the image, and 

he final segmentation is obtained using a GVF computed from the 

mage edge map. GVF was also studied by Rong et al. [66] , were

he gradient maps are inferred using a CNN. Instead of active con- 

ours, Gadagkar and Shreedhara [67] explored the topological flexi- 

ility of level-sets with reaction-diffusion optimization process. Ra- 

inikanth et al. [68] also researched level-sets to obtain the skull 

ontour, firstly applying a combination of the Chan-Vese and Jaya- 

lgorithm to generate a binary image with an initial contour of the 

etal head. The last type of deformable models proposed in the lit- 

rature for fetal head extraction was template deformation. Nam- 

urete et al. [69] deformed a manually fitted surface towards the 

kull boundary using phase-based image features. In [70] , Cuingnet 

t al. proposed to apply global and local non-rigid deformations 

o a previously generated template for 3D skull segmentation. The 

nitial template was obtained by detecting an ellipsoidal model in 

he image based on the response of a plate detector, avoiding the 

eed for manual surface fitting. 

More recently, DL has been applied to segment the fetal head, 

sually in a skull stripping approach. In [71] , Wu et al. proposed a 

ascaded Fully Convolutional Network (FCN) to obtain a dense pre- 

iction map of the fetal head. Plus, an auto-context scheme was 

sed to obtain refinement of the map across different stages. An 

CN architecture was also studied by Sinclair et al. [72] to obtain 

 binary image with the fetal head, while Yaqub et al. [73] and 

ie et al. [74] explored a CNN architecture. In [75] , a CNN is firstly

pplied by Al-Bander et al. for feature extraction, being used as a 

ackbone for a faster regional CNN (R-CNN) that detects the head’s 

OI. After head detection, a mask R-CNN is used to obtain the final 

egmentation. An architecture based on the LinkNet [76] was used 

y Sobhaninia et al. [77] . Here, a multi-task DL was implemented 

o simultaneously predict a mask of the skull and to tune the pa- 

ameters of an ellipse fitted to the obtained mask, considering that 
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Fig. 6. Illustration of an active contour approach to segment the fetal head in 3D images. (A) Sagittal and axial views of the volume; (B) Initial contour (yellow) for the 

segmentation process. The yellow arrows represent the forces that drive the contour to evolve towards the skull; (C) Final contour (red) resulted from the segmentation 

process; (D) 3D representation of the initial and final contours; (E) Final 3D model of the fetal head. 
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 multi-task formulation can lead to better results when compared 

ith a single task. In [78] , a lighter network to perform the head

egmentation task was proposed by Sobhaninia et al. The U-Net ar- 

hitecture was used by Huang et al. [79] , Ye et al. [80] , Budd et al.

81] , and Moser et al. [82] . In [80] , dilated convolutions were pro-

osed to obtain a larger receptive field of the network. In [81] , a

robabilistic U-Net was applied, where different plausible segmen- 

ations are obtained and used to estimate HC. In [82] , the brain 

ask is extracted. Yang et al. [83] explored a cascade of encoder- 

ecoder deep architectures, where a hybrid attention scheme was 

ntegrated into the network to select discriminative features and 

nhance the feature maps in key sites. The addition of attention 

odules in a network was also proposed by Liu et al. [84] , where

 scale attention feature pyramid network called SAFNet was used 

or head segmentation. 

.2. Performance assessment 

In Table 3 , the performance assessment of the methods for 

ead analysis reviewed in Section 4.1 is presented. Here, perfor- 

ance assessment was divided into region-based, contour-based, 

nd biometry analysis. While region-based analysis includes met- 

ics that indicate the overlap between the segmentation result and 

he ground-truth, contour-based metrics assess the distances be- 

ween their contours. Biometry analysis evaluates the errors be- 

ween HC, BPD, and OFD estimated automatically and the manual 

nes. 

To limit the scope of the comparison between methods, a few 

apers were not included in the table. Publications that did not 

ention the number of images evaluated or that only performed 

ualitative evaluation are not shown. Plus, publications that do 

ot present direct evaluation metrics for all images evaluated (i.e. 

ts average value) were excluded. If the evaluation was performed 

gainst several ground-truths, only one is present. Similarly, if sev- 

ral experiments were conducted, only the best is shown. One im- 

ortant aspect that should be noted during the analysis of the per- 

ormance assessment table is that accuracy assessment varies be- 

ween the reviewed papers, which results in a lack of standardized 

valuation in terms of metrics and hampers the direct comparison 

etween methods. 

.3. Discussion 

After analyzing the reviewed methods for head analysis ( Table 2 

nd Table 3 ), it is possible to verify that simple global intensity- 

ased methods are often used, namely for the ones that seek to 
7 
egment the skull or to find its edges. Image-driven techniques 

resent as advantages their simple theoretical approach, while be- 

ng accurate to segment homogeneous objects. Indeed, the skull 

ppears as a highly bright object within the image and the con- 

rast between the fetal head and the surrounding amniotic fluid 

s often high, allowing the use of simple intensity-based methods. 

oreover, the fetal skull present identifiable features that can be 

etrieved from the image (i.e. its high intensity). Learning-based 

pproaches that use these handcrafted features were also used to 

lassify the skull in the US images, often achieving higher level 

f accuracy in comparison with simple intensity-based methods. 

oreover, the trend was to improve the robustness of the ma- 

hine learning techniques during the reviewed period, adding other 

eatures that such as geometry or texture. However, skull occlu- 

ions are frequently found in these images, varying their appear- 

nce across different fetal poses and gestational ages. These miss- 

ng boundaries hampers the segmentation of the entire fetal skull 

s a unique structure. To allow the extraction of biometric mea- 

urements and correct evaluation of the fetal head from these par- 

ial segmentations, shape information is integrated into this type 

f methods, by searching for an ellipsoid shape in the partial map. 

n fact, this process mimics the traditional manual clinical practice. 

ithin the methods used to integrated shape prior information, HT 

r other variants of this method are usually applied [ 25-30 , 50 , 59 ].

nother challenge in fetal skull segmentation in US is that im- 

ge artifacts or other anatomical structures can present similar in- 

ensities to the skull. In such cases, simple global intensity-based 

nd traditional learning-based methods are likely to fail since they 

annot distinguish the artifacts from the fetal structure, gener- 

ting noisy segmentation maps and hampering ellipsoid fitting. 

o solve this issue, some methods applied a pre-processing stage 

here the ROI of the fetal head is found, having the advantage 

f limiting the image area to be processed [ 37 , 50 , 51 ]. However,

imple global intensity-based and traditional learning-based meth- 

ds are still applied after this pre-processing stage, not allowing 

o retrieve the fine details of the skull shape due to the missing 

oundaries, which can be important to analyze its specific details. 

hus, contour-based methods that have the goal of segmenting the 

ead as an entire structure with its real contours were also pro- 

osed in the literature. Within these methods, deformable models 

ave been widely explored, taking as advantage their robustness 

o noise and lower sensitivity to weak boundaries. However, their 

ensitivity to the initial contour and to local minimums remains a 

rawback for segmentation tasks. On other hand, machine learn- 

ng, specifically DL, was also applied to create a model of the en- 

ire head shape. Considering the improvement of computing capa- 
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Table 3 

Performance assessment of head analysis methods. 

Reference N GA (weeks) Region evaluation Contour evaluation Biometry evaluation 

Metric Value Metric Value Metric Value 

Khan et al. [21] 27 18–34 – – – – ME BPD 0.72 ± 3.62 mm 

Baumgartner et al. [24] 510 18–22 IOU ROI 0.73 ± 0.11 – – – –

Satwika et al. [26] 60 2nd,3rd – – – – ME BPD 

ME HC 

2.19 mm 

20.41 mm 

Satwika et al. [27] 72 2nd,3rd – – – ME BPD 

ME HC 

3.87 mm 

14.6 mm 

Sahli et al. [29] 266 19 AC head 

RE head 

SP head 

DSC head 

96.6 ± 0.5% 

96.1 ± 0.4% 

98.1 ± 0.7% 

98.7 ± 0.4% 

– – – –

Ponomarev et al. [33] 90 ∗# 21–33 PR head 

RE head 

SP head 

DSC head 

87.29 ± 12.79% 

88.06 ± 12.88% 

99.48 ± 1.11% 

92.53 ± 10.22% 

ASD 

HD 

RMSD 

2.83 ± 3.83 mm 

6.87 ± 9.82 mm 

3.55 ± 5.21 mm 

– –

Sree and Vasanthanayaki [34] 50 – PR head 

RE head 

SP head 

96% 

98% 

98% 

HD 

RMSD 

2.16 mm 

1.08 mm 

– –

Jatmiko et al. [36] 100 2nd,3rd – – – – ME BPD 

ME HC 

2.20 mm 

82.14 mm 

Nadiyah et al. [140] 10 – – – – – AC HC > 92.86% 

Anto et al. [38] 50 – DSC skull 75% – – – –

Namburete and Noble [39] 10 ∗ 25–34 AC skull 

PR skull 

RE skull 

97.22% 

99.01% 

98.11% 

– – – –

Rahmatullah et al. [40] 100 – AC skull 

RE skull 

SP skull 

F1 skull 

96.92% 

41.34% 

99.55% 

53.51% 

– – – –

Cerrolaza et al. [41] 10 20–30 DSC skull 

JI skull 

RE skull 

SP skull 

AC skull 

80 ± 3% 

65 ± 4% 

80 ± 7% 

99 ± 1% 

98 ± 1% 

– – – –

Cerrolaza et al. [47] 14 20–36 DSC skull 

JI skull 

83 ± 6% 

70 ± 8% 

ASD 0.98 ± 0.52 mm – –

Perez-Gonzalez et al. [43] 5 20–24 DSC skull 

AUC skull 

86.8 ± 3.5% 

83.7 ± 3.4% 

HD 5.9 ± 1 mm – –

Heuvel et al. [44] 36 20–40 – – – – ME HC 

MAE HC 

−3.0 ± 13.3 mm 

10.3 mm 

Kim et al. [46] 70 2nd,3rd DSC head 95.39 ± 0.02% – – – –

Ni et al. [50] 175 17–38 – – – – ME HC 

MAE HC 

2.84 mm 

5.58 mm 

Li et al. [51] 145 18–33 PR head 

RE head 

SP head 

DSC head 

96.84 ± 2.99% 

96.80 ± 2.83% 

96.72 ± 3.12% 

96.66 ± 3.15% 

ASD 

HD 

RMSD 

1.74 ± 1.35 mm 

1.78 ± 1.58 mm 

1.77 ± 1.37 mm 

– –

Foi et al. [53] 90 ∗ 21–33 PR head 

RE head 

SP head 

DSC head 

95.72 ± 1.92% 

98.51 ± 1.20% 

98.28 ± 1.26% 

97.80 ± 1.04% 

ASD 

HD 

RMSD 

0.88 ± 0.53 mm 

2.16 ± 1.44 mm 

1.08 ± 0.69 mm 

– –

Foi et al. [54] 90 ∗ 21–33 DSC head 97.73 ± 0.89% ASD 

HD 

0.91 ± 0.47 mm 

2.26 ± 1.47 mm 

ME BPD 

ME OFD 

ME HC 

−1.02 ± 0.97 mm 

−0.87 ± 2.84 mm 

−2.34 ± 3.72 mm 

Kusuma et al. [55] 86 2nd,3rd DSC head 86.42 ± 11.69% – – ME BPD 

ME HC 

3.25 mm 

16.82 mm 

Stebbing and McManigle [57] 90 ∗ 21–33 PR head 

RE head 

SP head 

DSC head 

94.63 ± 1.45% 

98.86 ± 1.26% 

97.53 ± 1.29% 

97.23 ± 0.77% 

ASD 

HD 

RMSD 

1.07 ± 0.39 mm 

2.59 ± 1.14 mm 

1.29 ± 0.51 mm 

– –

Zhang et al. [58] 10 20–35 PR head 

RE head 

SP head 

AC head 

94.91 ± 2.57% 

99.16 ± 1.18% 

99.19 ± 0.62% 

99.19 ± 0.47% 

ASD 

HD 

RMSD 

0.87 ± 0.48 mm 

2.37 ± 1.46 mm 

1.08 ± 0.64 mm 

ME BPD 

ME OFD 

ME HC 

0.26 ± 2.46 mm 

−0.65 ± 4.61 mm 

−0.22 ± 9.53 mm 

Heuvel et al. [59] 335 12–20 DSC head 97.0 ± 2.8% HD 2.0 ± 1.6 mm ME HC 

MAE HC 

0.6 ± 4.3 mm 

2.8 ± 3.3 mm 

Ciurte et al. [60] 90 ∗ 21–33 PR head 

RE head 

SP head 

DSC head 

89.53 ± 2.81% 

90.19 ± 3.05% 

99.62 ± 0.48% 

94.45 ± 1.57% 

ASD 

HD 

RMSD 

2.10 ± 0.69 mm 

4.6 ± 1.64 mm 

2.47 ± 0.83 mm 

– –

Sun [62] 90 ∗ 21–33 PR head 

RE head 

SP head 

DSC head 

94.15 ± 2% 

95.63 ± 2.46% 

99.12 ± 1.12% 

96.97 ± 1.07% 

ASD 

HD 

RMSD 

1.19 ± 0.54 mm 

3.02 ± 1.55 mm 

1.48 ± 0.71 mm 

– –

( continued on next page ) 
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Table 3 ( continued ) 

Reference N GA (weeks) Region evaluation Contour evaluation Biometry evaluation 

Metric Value Metric Value Metric Value 

Chen et al. [63] 220 slices 20–24 DSC head 96.55 ± 0.7% MAE 1.82 ± 0.32 pixel – –

Perez-Gonzalez et al. [64] 10 Seg 

24 Biom 

17–30 PR head 

DSC head 

94.61 ± 1.72% 

97.19 ± 0.97% 

HD 2.64 ± 0.57 mm ME BPD 

ME HC 

−2.72 ± 2.03 mm 

−2.73 ± 2.04 mm 

Rong et al. [66] 335 + 12–20 DSC head 95.49 ± 4.11% HD 2.44 ± 1.96 mm ME HC 

MAE HC 

−1.05 ± 3.38 mm 

2.45 ± 2.55 mm 

Rajinikanth et al. [68] 25 + 12–20 PR head 

RE head 

SP head 

AC head 

DSC head 

JI head 

99.13% 

86.89% 

99.93% 

99.93% 

94.27% 

89.16% 

– – – –

Wu et al. [71] 236 19–40 DSC head 

JI head 

98.43% 

96.90% 

ASD 2.05 mm – –

Sinclair et al. [72] 539 18–22 DSC head 98.1 ± 0.7% – – ME BPD 

MAE BPD 

ME HC 

MAE HC 

0.13 ± 0.91 mm 

0.68 ± 0.62 mm 

0.54 ± 2.28 mm 

1.80 ± 1.49 mm 

Yaqub et al. [73] 5000 – PR head 

RE head 

DSC head 

JI head 

95.1 ± 2.8% 

98.9 ± 1.5% 

96.9 ± 1.6% 

94.0 ± 2.1% 

– – – –

Xie et al. [74] 1300 18–32 PR head 

RE head 

DSC head 

97.9% 

90.9% 

94.1% 

– – – –

Al-Bander et al. [75] 335 + 12–20 DSC head 97.73 ± 1.32% ME 

MAE 

HD 

1.49 ± 2.85 mm 

2.33 ± 2.21 mm 

1.39 ± 0.82 mm 

– –

Sobhaninia et al. [77] 2206 – DSC head 96.84 ± 2.89% HD 1.72 ± 1.39 mm ME HC 

MAE HC 

1.13 ± 2.6 mm 

2.12 ± 1.87 mm 

Sobhaninia et al. [78] 1998 – DSC head 93.75% HD 3.70 mm ME HC 

MAE HC 

1.53 mm 

2.27 mm 

Huang et al. [79] 45 20–29 IOU head 86.5 ± 5.1% PD 1.6 ± 1.0 mm – –

Ye et al. [80] 2000 – PR head 

RE head 

DSC head 

F1 head 

97.9% 

90.9% 

94.3% 

94.1% 

– – – –

Budd et al. [81] 540 18–22 DSC head 98.2 ± 0.8% HD 1.295 ± 0.66 mm MAE HC 1.808 ± 1.65 mm 

Moser et al. [82] 300 ∗ 14–31 DSC brain 

SC brain 

94 ± 2% 

95 ± 2% 

PD brain 

HD 

1.36 ± 0.72 mm 

4.609 mm 

– –

Yang et al. [83] 50 20–31 DSC head 

JI head 

96.05% 

92.42% 

ASD 

HD 

0.4793 mm 

4.609 mm 

– –

N: number of images; AC: accuracy, AUC: area under curve, DSC: Dice similarity coefficient, F1: F1-score, IOU: intersection over union, JI: Jaccard index, PR: precision, 

RE: recall, SP: specificity; ASD: average symmetric distance, HD: Hausdorff distance, PD: point/landmark distance, RMSD: root mean square distance; MAE: mean absolute 

error, ME: mean error. ∗INTERGROWTH-21st data, # Challenge US: Biometric Measurements from Fetal Ultrasound Images challenge, + HC18 challenge. 
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ilities and rapid development in terms of network architectures 

r models, DL-based approaches have now superseded the image 

rocessing field. Thus, in the recent years, research has been fo- 

used on DL for fetal head segmentation, due to the capability of 

hese strategies to obtain feature representations directly from the 

mages without the need of handcrafted features, while achieving 

ccurate and fast results [ 72-75 , 77-84 ]. The first approaches to 

egment the fetal head using DL consisted of networks commonly 

sed to perform image classification tasks followed by upsample 

ayers to output an image with the same size as the input image. 

he main advantage of using this type of networks is that since 

heir backbone is commonly used for other computer vision tasks, 

re-trained weights for high-level feature extraction were used in 

uch methods (mostly from ImageNet [85] ), which can be an ad- 

antage if the size of the training dataset is reduced. However, the 

ost recent DL-based approaches to segment the fetal head con- 

isted in encoder-decoder architectures (e.g. U-Net [45] ) to enable 

recise localization of the fetal head pixels. One interesting aspect 

hat was retrieved from the reviewed papers is that only one ap- 

roach found in the literature combined the task of head segmen- 

ation with the task of ellipse finding in the same network. In- 

eed, this multitask DL solution seems to be an interesting ap- 
9 
roach since training the ellipse parameters can aid in the task 

f head segmentation to output anatomical coherent results from 

here the biometric parameters can be estimated. 

One important aspect that should be analyzed in the methods 

eviewed for fetal head segmentation is their final goal. Most of 

he methods reviewed in Section 4.1 were applied for biometry 

stimation (see Fig. 7 ). As already mentioned, biometric measure- 

ents of fetal head are crucial indicators for maternal and fetal 

ealth monitoring during pregnancy. However, only a few works 

ocused on head segmentation in 3D, which can be critical to cor- 

ectly evaluate its entire shape. In fact, despite 2D measurements 

ould be used to infer some head shape conditions, such as cranial 

eformations, 3D models of the fetal head can allow the develop- 

ent of new analysis tools. However, from the reviewed methods, 

nly a few can be directly used for the assessment of cranial defor- 

ations. Concerning the remaining head analysis methods, some 

ere proposed with the final goal of estimating fetal development 

i.e. GA estimation and abnormality classification), others seek to 

e used as a preprocessing step (i.e. skull stripping approach) for 

rain structures detection/segmentation and standard anatomical 

lane analysis, and others are used during image enhancement 

echniques ( Fig. 7 ). 
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Fig. 7. Division of the reviewed methods for head analysis according to their goal. 

(Only few methods are showed in the figure for sake of exemplification). 
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. Brain inner structures analysis 

.1. Overview of methods 

Assessment of brain inner structures is essential to evaluate fe- 

al condition and to find the best anatomical plane for qualita- 

ive and quantitative evaluation. State-of-the-art methods regard- 

ng this topic can be divided into two groups: (i) detection and (ii) 

egmentation. Detection methods are the ones used to detect the 

tructure, with a bounding box or a landmark. Segmentation meth- 

ds have the goal of obtaining anatomical models of the structures. 

n overview of literature methods is presented in Table 4 . 

.1.1. Brain structures detection methods 

Machine learning approaches have been widely proposed to de- 

ect brain structures in fetal US, either for landmark/centroid or 

OI detection. For centroid detection, Yaqub et al. [86] proposed to 

se an RF that combines image features with the relative position 

f the structures to detect the center point of brain structures. Ce, 

SP, and the posterior ventricle cavity (PVC) were addressed in this 

ork. In [87] , a patch-based iterative network was proposed by Li 

 et al. to detect landmarks on the LV, Ce, and CSP, along with

andmarks on the skull. In this work, the network guides an ini- 

ial patch towards the landmark using a CNN that learns the spa- 

ial relation between an image patch and the landmark positions. 

oreover, anatomical constraints among landmarks were also im- 

osed to improve detection accuracy. Alansary et al. [88] proposed 

o use reinforcement learning based on deep Q-networks for land- 

ark detection. 

Other methods were applied for anatomical bounding box de- 

ection. Sofka et al. [89] estimated the position, orientation, and 

caling of the bounding box of the structures using an integrated 

etection network based on discriminative classifiers. A hierarchi- 

al scheme is applied to firstly detect the Ce pose and then search 

or CC using Ce as prior. In [90] , an extension of the previous

ethod is proposed, where the location and size of Ce, CM, LV, CC, 

nd CP are sequentially estimated. In [79] , a DL approach termed 

 view-based projection network was proposed by Huang et al. to 

etect the bounding box of CSP, CE, CM, LV, and Th, after head seg- 
10 
entation. A 2D U-Net is used to scan the 3D volume on each 

iew, estimating 3D positions from 2D predictions obtained on 

he three anatomical views. Known state-of-the-art object detec- 

ion methods were applied by some authors for brain structures 

etection (see Fig. 8 ). In [91] , Luo et al. proposed a Region Pro-

osal Network (RPN) to locate the CSP, Th, CP, third ventricle, brain 

idline, and LS. After using a feature extraction network, a feature 

yramid network is used to extract candidate anchors to the RPN. 

n [92] , Lin et al. used the faster R-CNN, which combines R-CNN 

ith RPN, to detect the same anatomical structures. A clinical prior 

nowledge module was added to improve the detection accuracy 

n [93] . The You Only Look Once (YOLO) algorithm was researched 

y Ramos et al. in [94] to detect CE bounding box. 

.1.2. Brain structures segmentation methods 

A global intensity-based approach was proposed by Annangi 

t al. [95] to segment the third ventricle. After finding the skull 

ased on the work in [49] , phase congruency was applied to the 

riginal image to generate edges inside the skull, being the edges 

ore symmetric to the skull ellipse assumed to be the ventricle. 

iu et al. [30] segmented the Ce with an active contour method. 

irstly, a constrained probabilistic boosting classifier was applied 

or Ce detection in multiple 2D slices, using information of the pre- 

iously detected head location, brain midline, and image intensity 

nd gradient features. The 2D Ce detections are then combined to 

nitialize a 3D active contour that performs the final segmentation. 

 deformable model approach was also explored by Sridar et al. 

o segment the Th in [96] . After detecting the head region based 

n [97] , a rigid-affine registration between the image and a refer- 

nce one containing a model that represents the spacing surround- 

ng the Th is performed, later refining the result using a level-set 

ramework. A template strategy was also proposed by Waechter- 

tehle et al. [98] for segmenting multiple structures such as Ce, Th, 

SP, and CC. This method initially applies the method of [70] to 

etect the fetal head location and orientation, later initializing a 

onstructed anatomical model and deforming it to the anatomy 

hrough a hierarchical coarse-to-fine deformation approach. 

A different segmentation class, ASM (illustration in Fig. 9 ), was 

roposed by Gutiérrez-Becker et al. [99] . In this work, a 3D point 

istribution model (PDM) of the Ce was constructed and used for 

egmenting this structure by adjusting the model through a ge- 

etic algorithm. In [100] , an improvement of the method was pro- 

osed by replacing the genetic algorithm for a function optimiza- 

ion through a Nelder-Mead simplex search. ASM for Ce segmen- 

ation was also proposed by Velásquez-Rodríguez et al. [ 101 , 102 ]. 

n this method, spherical harmonic functions are used to construct 

he anatomical model which is optimized during the segmentation 

rocess using an intensity-based energy functional [101] . In [102] , 

nstead of using gray-level information of the entire image volume, 

oxel profiles normal to each vertex of the model are used, im- 

roving the computational efficiency. In [103] , the performance of 

tatistic shape models and active appearance models for Ce seg- 

entation was compared by López and Cosío. In [104] , Hermite 

eatures were added to the active shape model to improve seg- 

entation accuracy. 

Classification techniques were also proposed for brain struc- 

ures segmentation. Yaqub et al. [105] extended their previous de- 

ection method [86] to a segmentation approach. Firstly, the fetal 

kull position and orientation are estimated as described in [70] , 

stimating a known coordinate space for the entire head and gen- 

rating rough ROIs for each structure using manually segmented 

mages. Afterward, RF are applied to segment the structure in each 

OI using intensity-based and geometric features. In [106] , Huang 

t al. addressed the segmentation of CC and CP, where the method 

tarts by finding regions with homogeneous intensities. The re- 

ions are then processed using a region descriptor that character- 
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Table 4 

Overview of brain inner structures analysis methods. 

Reference Dim. Structure Category Method 

initialization 

Method final stage UI 

Detection Yaqub et al. [86] 3D Multi-structures Learning-based Feature extraction RF A 

Li Y et al. [87] 3D Multi-structures Learning-based Random initial 

location 

Patch-based 

iterative network 

A 

Alansary et al. [88] 3D Multi-structures Learning-based Random initial 

location 

Reinforcement 

learning 

A 

Sofka et al. [ 89 , 

90 ] 

3D Multi-structures Learning-based – Integrated 

detection network 

A 

Huang et al. [79] 3D Multi-structures Learning-based Head detection View-based 

projection network 

A 

Luo et al. [91] 2D Multi-structures Learning-based – RPN A 

Lin et al. [ 92 , 93 ] 2D Multi-structures Learning-based – Faster R-CNN A 

Ramos et al. [94] 2D Ce Learning-based YOLO A 

Segmentation Annangi et al. [95] 2D Third ventricle G.Intensity-based Skull stripping Phase analysis and 

threshold 

A 

Liu et al. [30] 3D Ce Def. models Probabilistic 

boosting tree 

Active contours A 

Sridar et al. [96] 2D Th Def. models Head detection, 

registration 

Distance 

regularized level 

set 

A 

Waechter-Stehle 

et al. [98] 

3D Multi-structures Def. models Head detection, 

registration 

Template 

deformation 

A 

Gutiérrez-Becker 

et al. [ 99 , 100 ] 

3D Ce ASM Model at defined 

location 

Point distribution 

model 

A 

Velásquez- 

Rodríguez et al. 

[ 101 , 102 ] 

3D Ce ASM Model at defined 

location 

Spherical harmonic 

model 

A 

López et al. 

[ 103 , 104 ] 

3D Ce ASM Model 

initialization Statistic/appearance 

model 

MI 

Yaqub et al. [105] 3D Multi-structures Learning-based Head detection RF A 

Huang et al. [106] 2D Multi-structures Learning-based Candidate regions Boosting classifier A 

Venturini et al. 

[107] 

3D Multi-structures Learning-based Skull ROI V-Net MR 

Maraci et al. [109] 2D Ce Learning-based – FCN A 

A: Automatic method, MI: semiautomatic method (manual initialization), MR: semiautomatic method (ROI definition). 

Fig. 8. Detection of brain structures in fetal US using an object detector approach, namely faster R-CNN. 

Fig. 9. Illustration of ASM approach to segment the Ce in US images. (A) Original image in the TC plane with the Ce region outlined; (B) Zoomed view of the Ce. The red dots 

represent a PDM model, the white circles represent the best positions for the PDM model (Ce boundary), and the white lines represent the regions where local appearances 

are evaluated; (C) Final position of the PDM model and respective final segmentation; (D) 3D representation of Ce. 

11 
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zes the shape and local intensity, being the descriptor combined 

ith a boost classifier to segment the structures. More recently, 

L strategies have been proposed. In [107] , Venturini et al. used 

 V-Net architecture [108] to simultaneously generate segmenta- 

ion masks of Ce, Th, white matter, and brainstem. In [109] , Maraci 

t al. segmented the Ce using an FCN configuration in 2D US im- 

ges of the axial TC plane. 

.2. Performance assessment 

The performance of the methods for fetal brain structures anal- 

sis reviewed in section 5.1 is described in Table 5 . For the meth-

ds included in the brain structures detection category, the assess- 

ent is performed in terms of detector’s success, which evalu- 

tes the accuracy of the bounding box found for each structure, 

nd in terms of point-based evaluation, which measures the dis- 

ance between structure landmarks detected automatically and the 

anual ones. For the segmentation methods, an assessment in 

erms of region and contour-based analysis is presented, similarly 

o Table 3 . Biometry analysis for the brain structures is also pre- 

ented in Table 5 when found in the reviewed works. Finally, the 

ame criteria described in Section 4.2 to limit the scope of the 

omparison between methods was applied. 

.3. Discussion 

When analyzing the type of methods proposed in the literature 

or brain inner structure detection ( Table 4 ), it is possible to verify

hat learning-based approaches are more frequently used. Struc- 

ure detection can be performed by detecting a landmark point in 

he structure or by obtaining a bounding box for the structure re- 

ion. Due to the speckle noise, unclear structure boundaries, and 

ariation of image appearance, identification of the brain structures 

s challenging, even by naked-eye evaluation, and so, simple global 

ntensity-based methods are not suitable for either of the detec- 

ion tasks. In this sense, supervised learning is applied, where be- 

ides intensity image information, relative position features such as 

he interdependence of structures can be added. Indeed, the first 

orks using machine learning for fetal brain structure detection 

sed spatial information to perform the detection. Moreover, a hi- 

rarchical scheme was often applied in the early works for brain 

tructures detection, whether using coarse-to-fine detection at dif- 

erent resolution levels or using an iterative approach were the lo- 

ation of the structures is updated at each iteration. This aspect 

an suggest the difficulty of detecting the brain structures at only 

ne stage in a direct and accurate way. In the recent works, DL- 

pproaches are being used to perform the direct detection of the 

tructures [91–94] . 

The most recent works proposed to adapt well-known DL ob- 

ect detectors (RPN, R-CNN, YOLO) for structure detection in US 

mages, taking advantage of the fact that this type of detectors 

as been actively studied in computer vision in recent years, hav- 

ng a well-defined configuration. In fact, these detectors were pro- 

osed to combine the region search procedure needed for object 

etection with CNN features, achieving accurate results. However, 

hese DL models are typically designed to learn from a high num- 

er of images and the size of datasets of ultrasound images is typ- 

cally reduced. This issue is even more heightened by the variable 

ppearance of the fetal brain structures in the US, enhancing the 

eed of a large and bringing issues regarding the use of these DL 

etectors on such datasets. One solution applied by the works is 

o use transfer learning to initialize CNN with pretrained weights 

n non-medical images, allowing to apply the knowledge acquired 

n other tasks to the problem of structure detection on ultrasound 

mages. However, due to the difference of non-medical and medi- 

al images, a robust fine-tuning to the medical imaging task needs 
12 
o be applied to translate a computer vision task to the medical 

ontext. 

A more difficult task concerns brain structure segmentation. 

ere, the topological flexibility of deformable models and ASM was 

xplored in the early works. Besides this type of methods being 

obust to weak boundaries, they intrinsically incorporate shape in- 

ormation, which is useful to obtain an accurate segmentation of 

hallenging objects. However, the main problem associated with 

his type of methods is that they require a strong initialization. 

o provide the initialization for the segmentation methods based 

n deformable models, a template-based approach is usually per- 

ormed, where a template that will serve as initial contour is regis- 

ered with the image to evaluate. However, due to the variable ori- 

ntation of the fetal head in US imaging, this task is not straight- 

orward. For the ASM-based approaches, a searching procedure us- 

ng an objective function is usually applied to define the initial po- 

ition for the statistical model. However, such approach is subop- 

imal and highly dependent on the correct alignment, which can 

ead to a misleading position due to the low quality of the US im- 

ge. Traditional machine learning techniques were also applied for 

etal brain structure segmentation, and similarly to the methods 

or detection tasks, region descriptors and position features were 

sed in the methods. In the latest state-of-the-art, DL methods are 

eing explored. 

Overall, by analyzing the works proposed for both tasks, i.e. , 

tructure detection and segmentation, it is possible to verify that 

L approaches are now been used to supersede the state-of-the-art 

ethods. However, most of the methods are applying already de- 

cribed networks for detection or segmentation. Despite this type 

f strategy is leading to good results, for the authors’ point-of-view 

he integration of other type of information in the learning ap- 

roach (e.g. global shape or anatomical correspondences) can po- 

entiate even more the accuracy of the methods and should be an- 

lyzed by the research field. 

. Standard anatomical plane analysis 

.1. Overview of methods 

Detection of standard anatomical planes of the fetal brain dur- 

ng US examination is crucial to assess anatomic integrity and ex- 

ract biometric data. The traditional practice relies on the manual 

dentification of standard planes. However, its accurate identifica- 

ion is a challenging task highly dependent on the sonographer’s 

xpertise. Two different types of approaches were proposed in the 

iterature to automate this task. The first one relies on plane de- 

ection in a 3D US volume. The second one is a classification ap- 

roach to confirm if a 2D US image corresponds to a standard 

lane. Table 6 summarizes the methods presented in the state-of- 

he-art for both approaches. 

.1.1. Standard head plane detection methods 

Some works reviewed in Sections 4 and 5 had as the final goal 

he detection of standard anatomical planes from 3D US volumes. 

n the work of Sofka et al. [90] , the planes were automatically es- 

imated after brain structures detection. Instead of retrieving the 

lanes directly from detected brain structures, other works pro- 

osed different strategies. In the work of Cuingnet et al. [70] , it 

as also addressed the task of MS plane detection. For that, a 

lobal intensity-based approach was performed to estimate the ro- 

ation angle that must be applied to transform a plane previously 

enerated using head and eyes information in the MS plane, using 

 weighted HT transform. A deformable models was explored by 

amburete et al. [110] , where a template model with the reference 

lanes (TC, TT and TV) is deformed to the target anatomy. Thus, 

uring the template deformation, the planes are also transformed 
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Table 5 

Performance assessment of brain structures analysis methods. 

Reference N GA (week) Detector/Region evaluation Point/Contour evaluation Biometry evaluation 

Metric Value Metric Value Metric Value 

Yaqub et al. [86] 10 19–24 PR CP, RE CP, AC CP 

PR PVC, RE PVC, AC PVC 

PR CSP, RE CSP, AC CSP 

PR CER, RE CER, AC CER 

86.0, 83.4, 92.9% 

74.3, 73.8, 91.1% 

68.8, 76.3, 91.9% 

64.4, 72.4, 91.9% 

– – – –

Li et al. [87] 22 – – – PD mean 5.59 ± 3.09 mm – –

Alansary et al. [88] 21 – – – PD R-CER 

PD L-CER 

PD CSP 

2.37 ± 0.86 mm 

2.73 ± 1.38 mm 

3.66 ± 2.11 mm 

– –

Sofka et al. [89] 107 16–35 – – PD CER 

PD CC 

3.09 ± 1.71 mm 

4.20 ± 2.13 mm 

– –

Sofka et al. [90] 108 16–35 – – PD CER 

PD CM 

PD LV 

PD CC 

PD CP 

1.75 ± 0.92 mm 

1.95 ± 0.93 mm 

1.72 ± 0.93 mm 

1.89 ± 0.96 mm 

1.83 ± 0.78 mm 

ME CER 

ME CM 

ME LV 

1.37 ± 1.10 mm 

0.87 ± 0.58 mm 

1.01 ± 0.7 mm 

Huang et al. [79] 45 20–29 IOU CSP 

IOU LV 

IOU Th 

IOU CER 

IOU CM 

63.2 ± 15.2% 

48.7 ± 19.1% 

68.1 ± 14.7% 

66.5 ± 14.6% 

65.9 ± 15.3% 

PD CSP 

PD LV 

PD Tha 

PD CER 

PD CM 

1.8 ± 1.5 mm 

2.4 ± 2.0 mm 

1.9 ± 1.7 mm 

2.0 ± 1.9 mm 

2.1 ± 1.9 mm 

ME CER 

ME CM 

1.5 ± 0.7 mm 

2.0 ± 0.9 mm 

Luo et al. [91] 265 20–24 IOU TVe 

IOU BM 

IOU Th 

IOU CP 

IOU CSP 

IOU LS 

86.12% 

98.87% 

94.21% 

93.76% 

95.57% 

97.92% 

– – – –

Lin et al. [92] 1153 14–28 PR LS, RE LS 

PR CP, RE CP 

PR Th, RE Th 

PR CSP, RE CSP 

PR TV, RE TV 

96.6, 96.8% 

96.7, 96.0% 

77.1, 89.6% 

94.6, 89.3% 

72.8, 56.5% 

– – – –

Lin et al. [93] 320 14–28 IOU TV 

IOU BM 

IOU Th 

IOU CP 

IOU CSP 

IOU LS 

82.50% 

98.95% 

93.89% 

95.82% 

89.92% 

98.46% 

– – – –

Ramos et al. [94] 78 – PR CER, F1 CER 66, 100% – – – –

Liu et al. [30] 14 20–33 DICE CER 84% – – – –

Sridar et al. [96] 100 18–20 SP Th, DSC Th 77 ± 3, 74 ± 3% HD Th 1.06 ± 0.17 mm ME Th 16.74 ± 1.95 mm 

Gutiérrez-Becker et al. [100] 20 18–24 DSC CER 80 ± 4.6% – – – –

Velásquez-Rodríguez et al. [102] 10 – DSC CER 75.44 ± 5.21% – – – –

Velásquez-Rodríguez et al. [101] 10 – DSC CER 68.90 ± 2.69% – – – –

Yaqub et al. [105] 20 18–26 DSC CP, VD CP 

DSC PVC, VD PVC 

DSC CSP, VD CSP 

DSC CER ,VD CER 

79 ± 9%, 

-25 ± 26mm 

3 

82 ± 10%, 

1 ± 32mm 

3 

74 ± 11%, 

7 ± 10mm 

3 

63 ± 15%, 

2 ± 14mm 

3 

– – – –

Huang et al. [106] 52 CP 

82 CC 

20–30 AC CP, RE CP, SP CP, 

PR CP 

AC CC, RE CC, SP CC, 

PR CC 

99.4, 97.2,9.6, 

94.5% 

98.0, 94.7, 98.6, 

97.6% 

HD CP 

HD CC 

7.7 ± 3.4 mm 

2.80 ± 1.91 mm 

ME CP 

ME CC 

6.7 ± 4.5 mm 

1.81 ± 1.40 mm 

Venturini et al. [107] 48 ∗ 20–25 DSC TH 

DSC BS 

DSC CER 

DSC WM 

81.1 ± 6.1% 

82.0 ± 8.1% 

77.3 ± 14.9% 

92.1 ± 3.3% 

HD Th 

HD BS 

HD CER 

HD WM 

3.80 ± 1.95 mm 

4.14 ± 1.29 mm 

4.20 ± 2.39 mm 

5.93 ± 2.28 mm 

– –

Maraci et al. [109] 3236 16–26 AC CER, IOU CER 86.99, 81.62% – – – –

N: number of images; AC: accuracy, AUC: DSC: Dice similarity coefficient, F1: F1-score, IOU: intersection over union, PR: precision, RE: recall, SP: specificity; HD: Hausdorff

distance, PD: point/landmark distance; ME: mean error. ∗INTERGROWTH-21st data. 
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o the optimal location in the target patient. An illustration of 

his concept is presented in Fig. 10 . A similar concept was applied 

y Waechter-Stehle et al. [98] . Nevertheless, to solve potential in- 

onsistences caused by manual annotations variability, a learning- 

ased solution to correctly estimate the optimal plane definition 

ased on annotations was applied. 

In [111] , a machine learning approach based on RF was pro- 

osed by Yaqub et al. for PS plane detection. Informative voxels 
13 
ere located using a phase-based approach and their strength was 

sed to weight their contribution throughout the training. Plus, ge- 

metric features retrieved from a manually located MS plane are 

dded to the RF framework, being the output of the method the 

arameters of the PS plane. This method was improved in [52] , au- 

omating the MS plane identification based on the head skull and 

ts midline using HT. Another machine learning approach was im- 

lemented by Li Y et al. for TC and TV detection [112] . The method
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Table 6 

Overview of standard anatomical planes analysis methods. 

Reference Plane Category Method initializa- 

tion/requirements 

Method description UI 

Detection Sofka et al. [90] Multi-plane – Structure detection by 

integrated detection 

network 

Retrieved from 

structures 

A 

Cuingnet et al. [70] MS G. Intensity-based Head and eyes 

detection, plate 

detector 

Weighted HT A 

Namburete et al. [110] Multi-plane Def. models Surface initialization 

with planes 

Template deformation MI 

Waechter-Stehle et al. [98] Multi-plane Learning-based Head detection and 

template/plane 

deformation 

Annotations learning A 

Yaqub et al. [ 52 , 111 ] PS Learning-based Phase-based analysis 

and detection of MS 

plane 

RF MI /A 

Li Y et al. [ 112 , 113 ] Multi-plane Learning-based Random plane 

initialization 

CNN A 

Classification Yaqub et al. [73] TV Score-based Head detection, CNN 

symmetry and CSP 

analysis 

CNN A 

Lin et al. [ 92 , 93 ] TT Score-based Brain structures 

detection 

R-CNN A 

Luo et al. [91] TT Score-based Brain structures 

detection 

Class prediction 

network 

A 

Zhang et al. [115] No defined Score-based Head and falx 

detection and feature 

extraction 

RF A 

Yaqub et al. [116] Multi-plane Score-based Head ROI detection 

and feature extraction 

RF A 

Liu et al. [117] TT Score-based Head detection and 

ASM fitting 

Discriminative analysis A 

Kim et al. [46] TT Score-based Head detection and 

image alignment 

CNN MI 

Maraci et al. [109] TC Learning-based Image directly applied CNN A 

Qu et al. [118] Multi-plane Learning-based Image directly applied 

after head ROI crop 

CNN with transfer 

learning 

MR 

Qu et al. [119] Multi-plane Learning-based Image directly applied Differential CNN A 

Baumgartner et al. [ 23 , 24 ] Multi-plane Learning-based Image directly applied CNN/SonoNet A 

Schlemper et al. [120] Multi-plane Learning-based Image directly applied SonoNet with 

attention unit 

A 

A: Automatic method, MI: semiautomatic method (manual initialization), MR: semiautomatic method (ROI definition). 
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s  
as denominated iterative transformation network, where a CNN 

as used to learn the mapping between a plane and the transfor- 

ation needed to move the plane towards the standard plane in 

he US volume. An iterative approach was used, where the CNN is 

sed at each iteration to improve plane location. Later, the same 

uthors added additional classification probability outputs as con- 

dence measures of the transformation parameters to improve the 

esults [113] . 

.1.2. Standard head plane classification methods 

Strategies to evaluate the quality of a 2D view, i.e. if an 2D im- 

ge corresponds to one standard anatomical plane, were also pro- 

osed in the literature. In these methods, it is verified if the view 

atisfies clinical anatomical constraints. For that, several methods 

ompute a score for a US view based on factors such as presence 

f certain anatomical structures, head appearance/shape, or brain 

ymmetry properties [114] . In [92] , Lin et al. targeted the identifi- 

ation of TT plane by first detecting several anatomical structures 

nd then attributing a score to each detected structure, conse- 

uently estimating the quality of the plane. In [93] , besides scoring 

he detected structures, it was also verified the fetal skull shape, 

onfirming if it occupies the sufficient image area to meet clini- 

al standards. The work of Luo et al. [91] was also focused on TT

lane evaluation. However, instead of scoring based on detected 

natomies, a class prediction network integrated into the multi- 

ask detection architecture is used to confirm if the structures 

resent the required clinical standards. Other authors did not ex- 

licitly detect the brain structures to perform plane quality assess- 
14 
ent. For example, in the work of Zhang et al. [115] , head appear-

nce was analyzed for image quality assessment. For that, the pre- 

iously proposed method [58] is firstly used to extract the head re- 

ion and HT is applied to detect its midline falx. Head appearance, 

hape, and midline features are then extracted and integrated into 

 RF classifier to grade the image into good or poor image quality. 

F were also used by Yaqub et al. in [116] to distinguish TV and TC

lanes, along with other fetal planes. Here, ROI detection is initially 

erformed to detect the head and other fetal body structures, us- 

ng a similar approach to [52] . Features invariant to translation and 

rientation are then extracted from the obtained ROI’s and used in 

he RF framework to categorize the fetal image. Liu et al. [117] clas- 

ified the TT plane by firstly detecting head position and orien- 

ation using the method of [49] . Afterward, an ASM head model 

s fitted to the image to capture a butterfly-like shape, represent- 

ng the appearance of the Th, CSP, and midline falx. After fitting, a 

earning-based approach based on linear discriminative analysis is 

pplied to calculate the probability of the image corresponds to the 

T plane. Examination of CSP, Th, and midline falx was also stud- 

ed by Kim et al. in [46] , together with the evaluation of Ce’s ab-

ence. Here, after head detection and image alignment using prior 

natomical information, a CNN is applied to evaluate the image, 

coring each parameter evaluated. Yaqub et al. [73] used a CNN- 

ased approach to score the TV plane using information retrieved 

rom the segmented head, symmetric/asymmetric anatomical pat- 

erns, and CSP visibility. A CNN was also applied by Maraci et al. 

109] to directly classify an image as TC plane or otherwise. The 

ame concept was applied by Qu et al. in [118] , where a transfer-
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Fig. 10. Illustration of a template deformation approach to segment the fetal head and detect standard anatomical planes during the deformation process. (A) US image with 

a contour representation of the template model in yellow and respective standard anatomical planes; (B) 3D view of the template model with the planes; (C) Two views of 

the US image with the initial template; (D) Contour representation after applying global and local deformation to the template model. (E) Final contour representation after 

template deformation approach and new planes detected using the same transformation found for the head model; (F) 3D view of the final model. 
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earning CNN approach was proposed to classify a US image in six 

ifferent categories, namely: TV, TT, TC, MS, PS, and coronal TV. 

n [119] , the same team used a differential-CNN for brain planes 

lassification. In [23] , a CNN-based approach was also applied by 

aumgartner et al. to classify in real-time TV and TC planes, along 

ith other body fetal planes. A more complex very deep network 

rchitecture, denominated SonoNet, was implemented in [24] to 

mprove classification accuracy. Finally, Schlemper et al. [120] pro- 

osed to incorporate self-gated soft-attention mechanisms into the 

onoNet architecture, allowing the network to contextualize local 

nformation for improvement of the detection. 

.2. Performance assessment 

Evaluation of standard anatomical plane analysis methods is 

hown in Table 7 . Here, the performance is evaluated by measuring 

he errors of the detected planes and by analyzing the classification 

ccuracy of image quality assessment. 

The performance evaluation of the methods for anatomical 

tandard plane detection is highly variable. Indeed, when assessing 

ead/brain structures segmentation or detection methods, well- 

stablished state-of-the-art metrics can be used. However, com- 

on metrics to quantify plane detection are lacking in the liter- 

ture. Thus, once the variance of plane position and orientation is 

ifficult to interpret, different evaluation approaches were followed 

y the multiple teams. In [90] , the plane error was computed as 

he distance between the endpoints of two lines that represent 

he detected and manual 2D planes. In [110] , dihedral angles cal- 

ulated using the normal vectors of the planes were used to quan- 

ify plane errors. Plus, distance errors were also evaluated by ex- 

racting points on the cranial contour in the detected plane and 

omputing the average Euclidean distance between these points 

nd the ones on the manual plane. In [ 52 , 98 , 111-113 ], dihedral an-

les were also used, but the distance plane errors were given by 

he Euclidean difference between the center of the planes. Plus, 

n [ 112 , 113 ], image similarity of the planes is also measured us-

ng the peak signal-to-noise ratio (PSNR) and structural similarity 

SSIM). Concerning the methods that perform classification of stan- 

ard anatomical planes, few proposed to evaluate each parameter 

sed to classify the image, instead of evaluating the final classifi- 

ation result [ 73 , 92 , 93 ]. 
15 
.3. Discussion 

Concerning standard anatomical planes detection, methods with 

his finality are very important in clinical practice to avoid time- 

onsuming manual detection in 3D volumes during the sono- 

raphic examination. Here, several automatic approaches were re- 

earched. Three main types of approaches seem to be interesting 

or plane detection. The first one consists of detecting brain struc- 

ures and using their location to generate a plane that is feasible 

o be used to evaluate the structure or use the location of differ- 

nt structures to retrieve the standard anatomical plane that in- 

ludes them. The second approach consists of to embed plane in- 

ormation in a head shape model, which is afterward used to seg- 

ent the head on a deformation process, which is also applied 

o the planes to find their new location/orientation. The third one 

ses a learning-based approach to estimate the transformation that 

hould be applied to an initial plane to obtain the ideal anatomi- 

al plane. As different as the approaches may seem, all of them 

howed to be feasible to be used in this ambit. Interestingly, in 

he literature, no work exploited the main advantages of the three 

ain types, combining them to improve the overall method’s per- 

ormance for plane detection. Indeed, using a DL approach to it- 

ratively find the transformation to be applied to a random ini- 

ial plane seems to be a good strategy, but can be sensitive to the 

nitial plane. Thus, from the authors’ perspective, using a template- 

ased approach to find an initial plane closer to the real one can be 

n elegant solution. Moreover, integrating information of the brain 

tructures present in the transformed plane at each iteration can 

otentially increase the robustness of the plane detection. Another 

spect that should be noted is that no work was found to directly 

etrieve the plane parameters from the image using a DL approach. 

ere, a regression-based CNN could be an option to estimate the 

lane parameters. Moreover, different tasks can be integrated into 

he network (e.g. structures detection or segmentation) to try to 

otentiate the parameter estimation. 

Still concerning standard anatomical analysis, methods that as- 

ess image quality (i.e. if a 2D image corresponds to a specific 

lane) were also proposed. Here, two different approaches were 

sed. The first one consists of evaluating clinical criteria, such 

s presence/absence of structures, symmetry, and image appear- 

nce, to verify if an image corresponds to a standard plane. These 

arameters are often evaluated using a learning-based approach, 
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Table 7 

Performance assessment of standard plane evaluation methods. 

Reference N 

GA 

(weeks) 

Plane detector evaluation/ Classification evaluation 

Metric Value 

Sofka et al. [90] 108 16–35 PME CER-PLANE 

PME CM-PLANE 

PME LV-PLANE 

2.81 ± 1.24 mm 

2.30 ± 0.96 mm 

2.21 ± 0.98 mm 

Namburete et al. [110] 52 18–28 DA TC , PME TC 

DA TT , PME TT 

DA TV , PME TV 

1.5 ± 8.4 °, 4.31 ± 1.79 mm 

0.8 ± 6.6 °, 3.55 ± 1.58 mm 

2.6 ± 7.3 °, 4.63 ± 1.91 mm 

Waechter-Stehle et al. [98] 14 – DA TC , PME TC 4.71 ± 2.18 °, 1.20 ± 0.68 mm 

Yaqub et al. [111] 43 ∗ 23–27 DA PS , PME PS 9.0 ± 4.3 °, 8.3 ± 3.1 mm 

Yaqub et al. [52] 161 23–33 DA MS , PME MS 

DA PS , PME PS 

5.6 ± 2.6 °, 2.1 ± 1.9 mm 

10.3 ° ± 3.7 °, 10.2 ± 4.0 mm 

Li et al. [113] 22 – DA TV , PME TV , PSNR TV , SSIM TV 

DA TC , PME TC , PSNR TC , SSIM TC 

10.7 ± 5.7 °, 3.49 ± 1.81 mm, 

16.6 ± 1.8, 0.413 ±0.082 

11.4 ± 6.3 °, 3.39 ± 2.13 mm, 

16.8 ± 2.1, 0.437 ±0.110 

Li et al. [112] 22 – DA TV , PME TV , PSNR TV , SSIM TV 12.4 ± 12.8 °, 3.45 ± 1.73 mm, 

16.5 ± 1.9, 0.418 ±0.080 

Yaqub et al. [73] 19,838 – AC head 

AC symmetry 

AC CSP-visibility 

94.1% 

83.1% 

86.8% 

Lin et al. [92] 1153 14–28 RE TV , PR TV , AC TV 56.5,72.8, 44.1% 

Lin et al. [93] 320 14–28 RE TT , PR TT , AC TT , F1 TT , SP TT , AUC TT 93.57, 97.76, 96.25, 95.62, 98.33, 

98.84% 

Luo et al. [91] 265 20–24 RE TT , PR TT , AC TT , F1 TT , SP TT , AUC TT 94.73, 96.71, 93.32, 95.91, 94.49, 

95.67% 

Zhang et al. [115] 21 20–35 AC, RE, SP 95.24, 87.5, 100% 

Yaqub et al. [116] 29,858 18–22 AC mean 75% 

Kim et al. [46] 70 K 0.53 

Maraci et al. [109] 1000 16–26 RE TC , PR TC , AC TC 99, 99, 99% 

Qu et al. [118] 240 – RE mean , PR mean , AC mean , F1 mean 89.1, 85.0, 86.4, 90.1 

Qu et al. [119] 19,142 16–34 RE mean , PR mean , AC mean , F1 mean 92.39, 92.62, 93.11, 93.53% 

Baumgartner et al. [23] 201 18–22 RE TV , PR TV 

RE TC , PR TC 

96, 90% 

92, 94% 

Baumgartner et al. [24] 539 18–22 RE TV , PR TV 

RE TC , PR TC 

98, 86% 

96, 90% 

Schlemper et al. [120] 38,243 18–22 RE TV , PR TV , F1 TV 

RE TC , PR TC , F1 TC 

99.0, 98.0, 98.5% 

98.2, 98.8, 98.5% 

N: number of images; AC: accuracy, AUC: area under curve, DA: dihedral angle, F1: F1-score, K: Cohen’s kappa, PME: plane mean error, PR: precision, RE: 

recall, SP: specificity. ∗INTERGROWTH-21st data. 
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coring multiple parameters to perform a quality assessment of the 

mage. The second approach relies on a learning-based method, 

amely DL, that poses plane assessment as a classification prob- 

em, where the US image is directly fed to a network that cate- 

orizes the image. On one hand, the classification can be binary, 

here the network categorizes the image with a label if it corre- 

ponds to a specific plane or with another label if otherwise. On 

he other hand, a multi-class classification approach can be used, 

here different labels are assigned to the images according to the 

lane that they represent. Here, similarly to plane detection, the 

ntegration of structure detection or segmentation tasks in the DL- 

pproach can be studied to increase the classification accuracy. 

. Fetal head development analysis 

.1. Overview of methods 

Fetal biometric parameters such as HC, BPD, and OFD are 

onitored in obstetrics to evaluate head fetal development. An 

verview of methods that used these parameters for fetal devel- 

pmental analysis is presented in Table 8 . This section is divided 

nto two parts. Firstly, methods that aim to estimate GA, which is 

aily performed to monitor the fetal head growth, are presented. 

econdly, methods that classify a fetus as normal or abnormal are 

escribed. 
16 
.1.1. Gestational age prediction 

Despite the last period of the mother can be used to predict 

A at the beginning of the pregnancy, the clinical recommenda- 

ion for the first trimester is to use crown-rump length (from the 

ead to the buttocks) for the estimation. However, in advanced 

eeks of pregnancy, head biometry parameters, that can be esti- 

ated by image processing methods, are used for GA estimation, 

sing a simple statistical method. Here, analysis of standard tables 

r charts that correlate biometric parameters with GA is included. 

his simple approach was used by Marhaban et al. [31] , Annangi 

t al. [95] , and Saii and Kraitem [32] , where BPD was used to esti-

ate GA. In the works of Rahayu et al. [48] and Imaduddin et al. 

37] , the authors also added the femur length (FL) measurement to 

mprove the GA estimation. Instead of BPD, HC was used by Baner- 

ee and Krishnan [49] and Heuvel et al. [59] . In [109] , Maraci et al.

sed the Transcerebellar diameter to estimate GA, claiming that 

his parameter is least likely to be affected by fetal growth distur- 

ances, being more suitable for GA estimation. In [41] , Cerrolaza 

t al. proposed to use a 3D-based measurement, instead of the tra- 

itional 2D biometric parameters, to avoid the subjectivity in 2D 

iagnostic plane selection for biometry estimation. Thus, the semi- 

xis of a segmented 3D model of the skull was processed by a lin- 

ar regression method for GA prediction. In [121] , a more complex 

ethod for GA and brain maturation estimation was proposed by 

amburete et al. In this method, instead of using directly biomet- 

ic measurements, brain appearance in the image was evaluated in 

n RF framework. Firstly, the method proposed in [69] is used for 
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Table 8 

Overview of fetal development analysis methods. 

Reference Dim. Parameters Category Method description 

Age 

estimation 

Marhaban et al. [31] 2D BPD Statistics Standard table analysis 

Annangi et al. [95] 2D BPD Statistics Standard table analysis 

Saii and Kraitem [32] 2D BPD Statistics Standard table analysis 

Rahayu et al. [48] 2D BPD and FL Statistics Standard table analysis 

Imaduddin et al. [37] 2D BPD and FL Statistics Standard table analysis 

Banerjee and Krishnan [49] 2D HC Statistics Standard table analysis 

Heuvel et al. [59] 2D HC Statistics Chart analysis 

Maraci et al. [109] 2D Transcerebellar diameter Statistics Mathematical relation 

Cerrolaza et al. [41] 3D 3D skull axis Statistics Linear regression model 

Namburete et al. [ 121 , 122 ] 3D Image, local size, HC Learning-based RF 

Abnormality 

detection 

Gadagkar and Shreedhara [67] 2D HC, AC Machine learning ANN 

Rawat et al. [65] 2D HC, AC Machine learning ANN 

Sahli et al. [123] 2D BPD, AC, HC Machine learning SVM 

Sahli et al. [ 29 , 124 ] 2D Texture/Texture and geometry Machine learning SVM/PCA + ANN 

Xie et al. [74] 2D Image Machine learning CNN 
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kull stripping and to sample anatomical brain regions where pat- 

erns of fetal brain changes can be learned. Then, bespoke features, 

amely appearance, local size, and HC, are integrated into the RF 

ethod to estimate GA and the neurodevelopmental stage of a fe- 

us. In [122] , an extension of the method was presented, adding 

nary, sulcal, and Haar features. 

.1.2. Abnormality classification 

Early detection of fetal abnormality using US examination is a 

omplex task, due to poor image quality. Thus, methods that clas- 

ify a fetus as normal or abnormal have been researched. Intrauter- 

ne growth restriction (IUGR), typically associated with low fetal 

eight, is frequently searched. Artificial neural networks (ANN) 

ere used by Gadagkar and Shreedhara [67] and Rawat et al. 

65] to classify a fetus as normal or abnormal concerning IUGR, us- 

ng HC and abdominal circumference (AC) parameters. Besides fetal 

rowth analysis, automatic methods to detect abnormalities in the 

etal brain and head are needed. In [123] , SVM was used by Sahli

t al. to distinguish normal and abnormal head shape using BPD, 

FD, and HC. Here, abnormal conditions include dolichocephaly 

nd microcephaly. Hydrocephaly was addressed by the same team 

n [124] , where a SVM was used to evaluate image appearance. 

nce this pathology is related to fluid accumulation inside the ven- 

ricles, image appearance differs from normal ones. In [29] , geo- 

etrical features were also added to enhance hydrocephalus char- 

cterization, where a feature reduction by PCA and ANN for classi- 

cation are combined for the classification. In [74] , Xie et al. pro- 

osed a method to detect fetal CNS malformations. A CNN that di- 

ectly analyzes the US image of the fetal brain and classifies the 

mage as normal or abnormal is used in this work. Plus, a heat 

ap for lesion localization is also obtained by the CNN, allowing 

o locate lesions such as cysts, intracranial hemorrhage, or other 

onditions. 

.2. Performance assessment 

The performance of the methods proposed for fetal develop- 

ent analysis is presented in Table 9 , where the difference be- 

ween the automatic and manual estimation of GA is presented 

long with the errors of fetal abnormality classification. 

.3. Discussion 

Regarding the methods for fetal development analysis ( Table 8 ), 

t can be verified that most of them perform GA estimation and 

bnormality analysis by comparing automatic biometric measure- 

ents with the ideal ones. Here, several methods consider the val- 

es presented in [125] as the reference values. However, only a few 
17 
ethods used image information to evaluate fetal abnormality. De- 

pite fetal condition evaluation in the traditional clinical practice 

eing preferably performed through biometric measurements, par- 

icularly for IUGR, evaluation of the image appearance can bring 

dditional information that can be relevant to detect pathologies. 

pecifically, there are pathologies that can be diagnosed using im- 

ge information instead of using only biometric indexes, such as 

oloprosencephaly, encephalocele, or spinal dyspraphism (please 

ee Section 2.2 ). Nevertheless, no work was found to address the 

iagnosis of this type of pathologies. Moreover, methods to address 

he detection and evaluation of destructive lesions ( e.g . tumors or 

ysts) are also lacking in the literature. Here, automated methods 

o segment these lesions can revolutionize the clinical practice, al- 

owing the quantification of these lesions and enabling an accurate 

onitorization of a fetus with this type of conditions. 

. Image processing enhancement 

.1. Overview of methods 

As stated before, processing of fetal US images is not a straight- 

orward task due to image quality and presence of shadows, which 

an occlude some relevant anatomies. Moreover, due to the re- 

uced field-of-view (FOV) of US, partial head acquisitions are com- 

on. Thus, methods to ease the interpretation or to enhance the 

nformation of US images were proposed. These methods include 

ead referential estimation, US compounding, and registration ap- 

roaches. An overview of these methods is presented in Table 10 . 

.1.1. Head referential estimation 

Since US acquisition relies on the free-hand manipulation of 

 probe, fetal brain position and orientation are highly variable, 

ampering the development of automatic method solutions. Thus, 

ome teams explored strategies to estimate a referential anatomi- 

al cartesian. Cuingnet et al. [70] estimated this referential based 

n information retrieved from the previously described technique 

o detect the skull, eyes, and MS plane. In [126] , Namburete et al. 

esearched a DL for this task. Here, a multi-task FCN was used to 

erive fetal brain orientation, eye localization, and brain extraction, 

onsequently estimating the transformation matrix that aligns the 

etal head to a common coordinate space. 

.1.2. US compounding and reconstruction methods 

One problem associated with the head fetal examination is that 

he US imaging system can present a small FOV that can hamper 

ull fetus head acquisitions, mainly at the end of gestation. Another 

roblem is that shadows and artifacts present in the US images 
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Table 9 

Performance assessment of fetal development analysis methods. 

Reference N GA Metric Value 

Marhaban et al. [31] 20 14–38 ME GA 0.49 – 8.49 days 

Rahayu et al. [48] 30 15–25 AC GA 97.77% 

Imaduddin et al. [37] 50 – ME GA 0.5% 

Heuvel et al. [59] 335 – ME 1st-GA 

ME 2nd-GA 

ME 3rd-GA 

0.6 ± 4.3 days 

0.4 ± 4.7 days 

2.5 ± 12.4 days 

Cerrolaza et al. [41] 10 20–30 ME GA 0.5 ± 0.3 weeks 

Namburete et al. [121] 130 18–27 ME GA 4.62 days 

Namburete et al. [122] 157 18–33 ME 2nd-GA 

ME 3rd-GA 

5.18 ± 0.97 days 

7.77 ± 0.83 days 

Rawat et al. [65] 12 12–34 TE IUGR −0.047 - 0.387 

Sahli et al. [123] 86 17–27 RE Abnormal 

SP Abnormal 

AC Abnormal 

92.36% 

84.03% 

87.10% 

Sahli et al. [124] 10 20–22 RE Hydrochepaly 

SP Hydrochepaly 

AC Hydrochepaly 

91.84% 

94.77% 

91.80% 

Sahli et al. [29] 10 19 ME Hydrochepaly 3.3 ± 0.5% 

Xie et al. [74] 4739 18–32 RE Abnormal 

SP Abnormal 

AC Abnormal 

96.9% 

95.9% 

96.31% 

AC: accuracy, RE: recall, SP: specificity, ME: mean error, TE: target error. 

Table 10 

Overview of image enhancement methods. 

Reference Dim. Category Requirements Method description UI 

Ref. Cuingnet et al. [70] 3D G. Intensity-based Brain extraction, eye 

location, MS detection 

HT and RF A 

Namburete et al. [126] 3D Learning-based Brain extraction, eye 

location, brain pose 

Multi-task FCN A 

Compound Perez-Gonzalez et al. [127] 3D Learning-based Manual registration of 

volumes 

Weight estimation by 

SVM 

MI 

Wright et al. [128] 3D Registration Iterative spatial 

transformer network 

Averaging, groupwise 

registration 

A 

Cerrolaza et al. [129] 3D Learning-based Skull segmentation TL-Net and CVAE MI 

Cerrolaza et al. [130] 2D Learning-based Manual skull 

segmentation 

CVAE MI 

Registration Perez-Gonzalez et al. [ 42 , 43 ] 3D Registration SVM/RF for skull and 

weight estimation 

Weighted CPD A 

Fathima et al. [131] 2D Registration HC annotations and 

phase-based analysis 

Phase-based 

registration and fusion 

MI 

Namburete et al. [132] 3D Registration Head alignment and 

phase-based analysis 

Multi-channel 

groupwise Demons 

A 

Kuklisova-Murgasova et al. [133–135] 3D Registration Atlas-based 

segmentation of MR 

NCC/Block matching A 

Wright et al. [136] 3D Learning-based – LSTM spatial 

co-transformer 

A 

A: Automatic method, MI: semiautomatic method (manual initialization). 

Fig. 11. Ilustration of US compounding method. (A) US images acquired from different views; (B) Correction of image orientation using head pose (e.g. estimated manually 

or automatically); (C) Superposition of the aligned images; (D) Final enhanced US image resulting from (C). 
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an lead to acoustic occlusions that result in only partially visi- 

le fetal head and brain structures. One possible solution to mit- 

gate these issues is the compounding of multiple US volumes of 

he same patient to create an enhanced volume ( Fig. 11 ). In [127] ,

erez-Gonzalez et al. proposed a new spatial composition method 
18 
o fuse multiple US fetal brain projections in a single volume. After 

egistering all the volumes manually, a probabilistic spatial com- 

ounding is applied, where weights are estimated for each voxel 

f each volume, using an SVM that evaluates spatial histogram and 

exture features. The weights are then used to attribute to each 
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Fig. 12. Multimodal image registration of fetal head sequences. (A) MR images; (B) 

US images; (C) US image with MR information. 
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oxel of the final volume the intensity that best represents the un- 

erlying anatomy. In the work presented by Wright et al. in [128] , 

 strategy to fuse US images where the fetal head is only partially 

isualized is proposed. Here, an iterative spatial transformer net- 

ork firstly aligns US images from different views to a canonical 

eference. Then, the different US images are fused by averaging the 

ost salient features from all images, being the compounding im- 

ge iteratively refined afterward by a group-wise registration ap- 

roach with the multiple views. 

Instead of US compounding, Cerrolaza et al. [129] reconstructed 

he fetal skull from partially occluded 3D US volumes. The skull 

s first segmented in the incomplete volume [41] . Then, using the 

artial segmentation, two networks were compared for skull re- 

onstruction: TL deep convolutional network (TL-Net) and a condi- 

ional variational autoencoder (CVAE), which are used to map the 

ccluded volume to the corresponding complete skull. In [130] , the 

D fetal was reconstructed from 2D US images of standard anatom- 

cal planes, where a reconstruction architecture CVAE directly in- 

egrates the three US standard planes as conditional variables for 

earning a representation of the skull while guaranteeing anatomi- 

al consistency. 

.1.3. US registration methods 

As can be noticed from the methods of the previous subsec- 

ion, to create a patient-specific enhanced image of the fetal head 

nd brain structures, the different US acquisitions must be aligned. 

hus, some methods addressed the problem of registration of mul- 

iple US volumes from the same patient. The method proposed by 

erez-Gonzalez et al. in [42] starts by segmenting the skull in each 

S image. From the segmentation process, point-clouds of the fe- 

al head are generated and registered using a Coherent Point Drift 

CPD) method that is used to align sets of points by maximizing 

he posterior probability between them. However, in this method, 

 weighted version of the CPD is used, where weights trained by 

VM using image features are integrated into the probability esti- 

ation. In [43] , the SVM classifier was replaced with RF that esti- 

ates the weights using features composed of intensity, texture, 

nd edge information. Once known the best alignment between 

ifferent skull segmentations, aligned US volumes are obtained, 

hich can be posteriorly fused for image enhancement. 

Other works addressed the registration of US brain images from 

ifferent patients. This type of approaches can be useful for com- 

aring different fetuses or to construct a head model representa- 

ive of a population. A phase-based approach to guide registration 

f 2D US images was proposed by Fathima et al. [131] . Firstly, a

igid registration using manually annotated skull ellipses is per- 

ormed to place the images in the same reference space. Local 

hase analysis is then applied to characterize the image and to 

uide affine registration with normalized mutual information as 

he similarity parameter. After registration of the images, a prob- 

bilistic US atlas of the fetal brain was constructed by performing 

avelet-based image fusion and averaging. Fetal brain atlas con- 

truction was also addressed in the work of Namburete et al. [132] . 

ere, phase analysis is also integrated into the registration pro- 

ess which is achieved by a multi-channel groupwise Demons reg- 

stration. In this registration approach, an additional channel with 

hase-based features is added to the intensity image. After regis- 

ration, the brain atlas can be created by image fusion. 

.1.4. Multimodal registration methods 

Despite US being the primary screening modality for fetal eval- 

ation, high quality Magnetic Resonance (MR) imaging ( Fig. 12 ) 

an be used to improve soft tissues analysis or to confirm patho- 

ogic cases. Thus, some works targeted the development of US- 

R registration methods, improving, therefore, the interpretability 
19 
f US images thanks to the MR detail. In the work of Kuklisova- 

urgasova et al. [133] , the MR volume is firstly semi-automatically 

egmented using a probabilistic atlas, originating segmentation of 

rain and non-brain structures. Afterward, the segmentation im- 

ge is converted to a US-like image where each region has an in- 

ensity assigned according to their expected echogenicity in a US 

mage. The pseudo-US image is then registered with a real US im- 

ge using a similarity measure and gradient descent optimization. 

he robustness of this method was later improved by introduc- 

ng a robust block-matching algorithm for the alignment [134] . In 

135] , the segmentation of MR was fully automatized and registra- 

ions using gradient descent and block-matching algorithm were 

ompared. In the work of Wright et al. [136] , a DL strategy was

roposed for the registration of 3D US and MR images. Here, a 

ong Short-Term Memory (LSTM) network inspired in the concept 

patial transformer networks was used to simultaneously predict 

 joint isotropic rescaling and independent rigid transformations. 

lus, transformation estimations are refined iteratively over time, 

mproving the method’s accuracy. 

.2. Performance assessment 

The performance of the reviewed methods proposed for US im- 

ge enhancement is shown in Table 11 . One important aspect that 

hould be noted is that direct evaluation metrics are difficult to 

mplement for this type of methods. In [70] , the alignment was 

valuated by measuring the maximum distance inside the skull in 

stimated planes and the manual ones. Instead of using planes, 

 manual alignment of the volume was performed and the dis- 

ance between a set of pairs of skull landmarks in the predicted 

ligned volume and the manually aligned volume are calculated 

n [126] . A similar approach was used to evaluate the registration 

ethods, where registration errors are quantified by measuring the 

istance between a set of target points in the reference volume 

nd the registered one [ 42 , 43 , 131 , 136 ]. Plus, the overlap between

tructures in the reference and registered image was also evalu- 
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Table 11 

Performance assessment of image processing enhancement methods. 

Reference N GA Metric Value 

Cuingnet et al. [70] 78 19–24 ME TC 

ME TT 

ME TV 

5.8 mm 

5.1 mm 

5.3 mm 

Namburete et al. [126] 140 22–30 ME 9.3 ± 4.4 mm 

Perez-Gonzalez et al. [127] 10 20–24 SNR 

CNR 

10.53 ± 2.7 

12.13 ± 2.3 

Cerrolaza et al. [129] 26 20–36 DSC, JI 

AC, RE, SP 

80 ±4, 69 ±5%, 

99 ±2, 91 ±4, 99 ±2% 

Cerrolaza et al. [130] 14 20–36 DSC, RE, PR 91 ±2, 91 ±5, 91 ±6% 

Perez-Gonzalez et al. [42] 7 20–24 ME 6.21 ± 3.78 mm 

Perez-Gonzalez et al. [43] 18 20–24 ME 6.38 ± 3.24 mm 

Fathima et al. [131] 30 ∗ 20 ME 3 ± 1 mm 

Namburete et al. [132] 10 ∗ 23 RO 80.29 ± 4.9% 

Murgasova et al. [134] 5 ∗ 28–29 ME 0.54 mm 

Murgasova et al. [133] 27 18–22 RO 49.5 ± 10.8% 

Murgasova et al. [135] 27 18–22 RO 51 ± 11% 

Wright et al. [136] 166 20–21 ME 1.60 mm 

AC: accuracy, DSC: Dice similarity coefficient, JI: Jaccard index, ME: mean error, PR: precision, RE: recall, 

RO: relative overlap, SP: specificity; ∗INTERGROWTH-21st data. 
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ted [ 132 , 134 , 135 ]. Concerning the compound methods, evaluation 

f SNR and contrast-to-noise (CNR) ratio was performed in [127] . 

n [129] , skull occlusion was simulated to compare skull recon- 

truction with the expected skull volume. 

.3. Discussion 

Besides reviewing image processing methods for head, brain, 

nd standard planes analysis, this review also covered methods 

sed to perform image enhancement of US images of the fe- 

al head, including methods that find the head coordinate sys- 

em, compounding approaches, and US and multimodal registra- 

ion methods. As stated before, these types of approaches are use- 

ul to improve the information that can be retrieved from a US 

xamination. Regarding compounding methods to fuse multi-view 

S volumes, statistical averaging or learning-based approaches are 

sually used to find the final image, usually after manual or semi- 

utomatic image registration. Specifically, machine learning meth- 

ds showed to be feasible to quantify the weight that each indi- 

idual image must have in the final one. However, interestingly, 

he state-of-the-art learning-methods are mainly based on tradi- 

ional machine learning techniques (e.g ., SVM), not being verified 

he recent trend to replace this type of methods by DL-based ap- 

roaches as verified for other image processing tasks, such as fe- 

al segmentation/detection, anatomical plane analysis, or even for 

kull surface reconstruction reviewed in this section. Indeed, the 

ompounding of US volumes of the fetal head/brain claims higher 

ttention from the research field. Here, future research must be 

onducted to use DL approaches to create the final enhanced im- 

ge, since DL strategies may have the ability to effectively and 

ccurately learn how to maintain the importance features of the 

ultiples views without overemphasizing the speckle noise or ar- 

ifacts. 

Concerning registration methods between US images, different 

easures of similarity were applied by the works. Moreover, two 

ypes of registrations were found, namely image-to-image registra- 

ion and registration based on skull point clouds, proving both to 

e feasible. A more challenging task is the registration between US 

nd MRI. When registering images from the same modality, the 

natomical structures present similar intensity ranges, being pos- 

ible to use image similarity to optimize the registration process. 

owever, in multimodality image registration, the same anatomi- 

al structure may present different intensity values, precluding the 

se of traditional image similarity measures in the registration pro- 
20 
ess. Here, intensity relationships between the modalities or hand- 

rafted features (e.g., edges or mutual information) can be found 

nd used as similarity metrics. However, establishing accurate met- 

ics based on this information is difficult. Thus, in the literature for 

ultimodal fetal head registration, early works adopted the strat- 

gy of transforming the MR image in an US-like image, using the 

nformation of segmented brain structures. This process enables 

he use of traditional image similarity measures, easing the reg- 

stration using traditional optimization techniques. The drawback 

s that transforming a MR image into a US image still requires the 

sage of intensity relationships. Thus, more recent works for multi- 

odal registration have been focused on the use of DL networks to 

nd a similarity measure that represents the underlining correla- 

ion across modalities, also decreasing computational requirements 

n comparison with traditional registration. However, for the spe- 

ific case of fetal images, this solution was not explored, mainly 

roposing DL approaches that directly predict image transforma- 

ion parameters. Here, future improvements can be performed by 

dding information to the DL approach, such as the segmentation 

f some structures or even the use of similarity-based losses in 

ombination with the transformation-based loss. 

. General current state of research and perspectives 

Throughout the sections respecting to the five clinical appli- 

ations described in this review, a discussion concerning the re- 

iewed methods was performed. Here, the analysis of the proposed 

ethods allowed to identify the most prominent techniques for 

ach application, their advantages, and the current state of the 

esearch. A multitude of distinct image processing methods has 

een proposed for head and brain analysis in US, easing the eval- 

ation of these anatomical structures, improving diagnosis stages, 

nd therefore, providing more effective clinical routines. One of the 

ajor difficulties when comparing the methods was the fact that 

he databases used in the papers are very distinct, with a different 

umber of images, different GA, and acquired with different acqui- 

ition parameters. This hampers the correct comparison between 

he reviewed methods. Moreover, due to the variable appearance 

f a US image depending on the acquisition settings (e.g., machine 

sed, acquisition parameters, or operator experience), having an 

bjective insight concerning the performance of the methods is 

omplicated since image quality can vary significantly. Thus, the 

evelopment of methods for quantitatively assessing the quality 

f a fetal US image can be helpful to retrieve accurate informa- 
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ion concerning the comparative performance of different meth- 

ds. However, two challenges for fetal head analysis with public 

enchmarks were found in the literature. The Challenge US: Biomet- 

ic Measurements from Fetal Ultrasound Images was a segmentation 

hallenge that consisted of automatically segmenting anatomical 

tructures, including the fetal head. The methods presented in this 

hallenge were summarized in [137] . More recently, the HC18 Chal- 

enge [59] was developed to encourage the development of meth- 

ds for fetal head circumference estimation in 2D ultrasound im- 

ges, containing a dataset of training and testing images. Besides 

hese challenges, several methods relied on the INTERGROWTH- 

1st project, which is an international study focused on acquiring 

etal ultrasound image data and clinical biometrics [138] . As a re- 

ark, commercial software that includes image processing tech- 

iques to simplify fetal head/brain examination are already avail- 

ble, such as the 5D CNS + ® from SAMSUNG, SmartPlanes® from 

indray, or SonoCNS from GE Voluson 

TM . 

Considering the analysis of the reviewed methods, it can be un- 

erstood that despite different algorithmic approaches were pro- 

osed in the literature for fetal head/brain analysis, DL approaches 

eems to have been highly explored in the most recent years. In 

act, it is possible to verify that these methods were useful for 

ost tasks addressed in this review, and so, future improvements 

an be achieved using these types of methods. Here, besides the 

irect application of state-of-the-art networks, new architectures 

an be explored to boost the performance of methods (e.g., adding 

ttention modules to the networks or including shape informa- 

ion). However, the application of such methods requires a strong 

atabase, which reinforces the need for public US benchmarks and 

or the development of approaches that deal with limited data 

e.g., transfer learning approaches). Moreover, the computational 

ost associated with these methods is an important aspect once 

peration at time of acquisition can be foreseen. Thus, DL strate- 

ies with low complexity and cost should be analyzed for an effi- 

ient US evaluation. 

From the authors’ perspective, in the next years, it is needed an 

ncrease in the development of the methods for 3D shape analy- 

is. In fact, 3D head segmentation will provide at least two major 

dvantages. Firstly, it is well-known that 2D measurements pro- 

ide rough estimations of the real 3D anatomical target, typically 

nder/over-estimating the real value. Thus, potentiating 3D-based 

stimation of new volumetric biometrics, instead of the traditional 

i-dimensional ones, can be useful to obtain a more accurate and 

ealistic diagnosis. Secondly, 2D head segmentation does not al- 

ow creating an anatomical model representative of the fetal head, 

ampering the diagnose of certain abnormalities, such as cranial 

eformities. In this ambit, the creation of fetal head models can be 

chieved with a 3D delineation and subsequent shape analysis can 

e performed. The extraction of standard anatomical planes from 

 3D volume is also a topic that is worthy to be more actively ex-

lored in the research field since the 3D imaging technology en- 

bled data storage of the entire fetal head volume for offline anal- 

sis. Thus, automatic extraction of the standard 2D planes evalu- 

ted during the examination aids the evaluation of the stored data. 

ince 3D image acquisition is difficult, another application that it 

s worthy to be explored in the next years is the development of 

ntelligent systems to optimize and even guide image acquisition 

139] . 

Another application that should be explored in the next years 

s the automatic evaluation and quantification of certain fetal 

athologies. No method was found in the literature to detect com- 

on fetal conditions, such as holoprosencephaly. Moreover, despite 

everal methods were found for brain inner structures segmenta- 

ion, no method was used or evaluated to segment abnormal struc- 

ures. Furthermore, more effort should be made by the research 

ommunity for the development of methods to detect lesions such 
21 
s cysts or intracranial hemorrhage. This can bring added-value for 

he clinical practice to allow exact quantification of such lesions. 

oreover, the evaluation of the proposed literature methods and 

uture research methods in pathological cases should not be un- 

erestimated. Indeed, most of works assessed its performance in 

ealthy cases. Nevertheless, the robustness of such methods in the 

resence of fetal pathologies is paramount to be used in clinical 

ractice. 

Finally, the development of image processing methods for fe- 

al head and brain analysis is paramount for the monitoring of 

he fetus during the entire gestational period. However, as the 

ead/brain develops during the fetal period, structural changes are 

erified. Thus, the development of a framework that enables the 

nalysis throughout the pregnancy is not trivial. Indeed, most of 

he reviewed methods were proposed to address a specific gesta- 

ional age range. Once more, DL approaches can present an advan- 

age if a robust dataset that englobes all the gestational ages is 

sed. However, prior knowledge about the gestational age can be 

sed to increase the effectiveness of the methods and to provide a 

ontinuous quantitative analysis at the different evaluation stages. 

hus, the development of advanced analytical tools for detailed fe- 

al health status assessment will allow to continuously and accu- 

ately monitor neurodevelopment and head growth. 

0. Conclusion 

This work reviewed the methods related to the analysis of the 

ead and brain in the context of fetal US. A multitude of image 

rocessing methods has been proposed for this analysis, mainly for 

ve application areas: fetal head segmentation, brain inner struc- 

ures analysis, standard anatomical planes identification, fetal de- 

elopmental analysis, and image enhancement. For the five clini- 

al applications studied, different types of theoretical approaches 

ere explored, being the performance of each approach evaluated 

n terms of analysis success regarding its accuracy. Overall, differ- 

nt techniques proved their added-value for head and brain analy- 

is, and therefore, for routine clinical practice. 

Despite several methods were proposed for 2D US, the advances 

f image quality in 3D US allowed the emergence of approaches 

hat explore 3D information. However, more effort should be made 

n the research area for the development of methods to segment 

he head in 3D images. Plus, methods to detect abnormalities or 

esions in the fetal brain are also lacking in the literature. Finally, 

n effort must be made by the research community to use the 

ame standardized metrics for the assessment of the segmenta- 

ion/classification methods and more public benchmarks should be 

ade available for all the researchers, allowing to boost this re- 

earch topic and allowing a more reliable comparison between dif- 

erent approaches. 
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