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Abstract. Recent advances in computing power and sensing technology led to a significant 
evolution of Structural Health Monitoring (SHM) techniques, transforming SHM into a “Big Data” 
problem. The use of data-driven approaches for damage identification purposes,  specifically 
Machine Learning (ML) methods, has gained popularity. ML can help at various levels of the 
SHM process: to pre- and post-process input data, extract damage sensitive features, and operate 
pattern recognition in measured data and output valuable information for damage identification. 
In this paper, the role of ML in SHM applications is discussed together with a new scheme for 
classifying ML applications in SHM, especially focusing on vibration-based monitoring, given its 
consolidated theoretical base. Finally, the implications of the application of these methods to 
historic structures are discussed, with a brief account of existing case studies. The proposed 
classification is exemplified using the most recent studies available in the literature on cultural 
heritage structures. 
Introduction 
Structural Health Monitoring (SHM), as the process of implementing strategies for Damage 
Identification (DI) [6], is an interdisciplinary field which has been successfully investigated over 
the last decades. Meanwhile, advancements in computational power and data science have opened 
new avenues for the development of data-driven approaches for SHM and Machine-Learning (ML) 
[7]. The research effort in this direction led to a literature explosion in ML, with the number of 
papers published on the topic rapidly increasing in the last 20 years (Figure 1).  

 
Figure 1 – Number of publications per year in the last two decades. Research operated on 

Scopus for words in Title, Keywords and Abstract.  
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Since the knowledge and methodologies on Data Science (DS) and Artificial Intelligence (AI) 
are increasingly being transferred to Civil Engineering, the need for a shared, clear glossary and 
framework is arising, to allow professionals and researchers to explore all capabilities of ML 
algorithms and connect transversal topics in the growing interdisciplinarity of SHM. Numerous 
published reviews have successfully formulated guidelines to approach the state-of-the-art 
research on ML applications to SHM [2], [3], [4], [8], [9], [10], [11]. However, differences in the 
classification of existing studies can still be found. The objectives of this paper are: (i) to provide 
basic notions to approach the study of ML applications to SHM, focusing on the use of vibration 
signatures, (ii) to propose a new classification methodology to operate a review of existing studies, 
and (iii) to briefly discuss peculiarities related to historic structures in the framework of ML 
applications to data-driven and vibration-based SHM.  
Definitions 
ML was introduced, as a subset of AI, to overcome the limitations of knowledge-based approaches 
[2]. ML algorithms “learn” systematically from a sufficient amount of data without the use of 
explicit programming [13]. The construction of a ML model entails the presence of input data, 
commonly divided into training, validation, and testing sets. The datasets are kept independent to 
ensure a correct assessment of the prediction accuracy over the validation set, preventing an 
overfitting of the model against the training set [12]. After repeated training, once the model is 
optimized, the testing set is fed to the model to operate a check against new data. 

The ML training process is called supervised or unsupervised, based on the type of training 
data, which can be labelled or unlabelled, respectively. If both labelled and unlabelled data are 
used, the process is called semi-supervised ML. Moreover, in reinforcement learning, the use of 
unlabelled data is accompanied by agents that positively correct predictions in a trial-and-error 
process, reducing the requirements of training data. The availability and type of data is a key 
element in the choice of ML model.  

 
Figure 2 – Relationship between techniques related to CS, AI and data mining, the process of 

extracting useful knowledge and information from the bases of data. Pattern recognition is not a 
methodology or a technique [10], it is the problem of discovering automatically irregularities in 
data through the use of computer algorithms [13]. The expression Big Data is now often used to 

indicate a “field” of CS [14]. (Image adapted from [14]). 
Basic ML algorithms require the conversion of data in a fixed number of features. Big Data will 

often present higher sparsity requiring more features to describe it [1], lowering model reliability 
and statistical significance. The higher the number of features, the larger the data requirements of 
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the ML algorithms, hence the so-called curse of dimensionality [12]. Discarding redundant 
information is often applied to overcome this issue. Moreover, to avoid the handcrafting of features 
in complex applications, Deep Learning (DL) methodologies were developed, to operate the 
feature selection process autonomously. DL algorithms explain high-level and abstract features as 
a hierarchy of simple and low-level learned features, ultimately reducing the dimension of feature 
vectors [2]. Relationships between AI, ML, DL, etc. are shown graphically in Figure 2. 

The ML model is then finally used to solve a specific learning problem, such as classification, 
regression or prediction, clustering or density estimation problems [2]. The output of the 
application of such processes can yield both true and false “predictions”.  
ML in the SHM process 
In data-driven vibration-based SHM, ML applications can be found at different levels of the 
process [11]. The most relevant are feature extraction/selection, dimensionality reduction and 
discrimination of the effect of environmental and operational variabilities (EOVs), statistical 
pattern recognition (SPR) and, finally, DI.  

In an SPR framework, detecting the presence of damage means distinguishing between an initial 
“healthy” or undamaged state and a damaged state [12]. Detection problems represent the largest 
studied level of the DI hierarchy [15], comprised of detection, localization, assessment, 
quantification and prognosis. If operated unsupervised, damage detection is referred to as 
novelty/anomaly or outlier detection, a long-established statistical technique that can also be 
addressed through ML inference. Classification between damaged/undamaged is mostly operated, 
so much that ML algorithms are often called simply classifiers [2]. 

ML applications are steadily gaining recognition as viable techniques to operate data-driven 
vibration-based SHM. Several challenges are still to be addressed. The lack of data with damage 
is a long-standing obstruction to a more widespread use of ML. Over time viable solutions are 
being identified, by creating thresholds, synthetically generating data with damage and operating 
experiments. At the forefront of this research are the studies on Population-Based SHM (PBSHM), 
seeking to group similar structures in populations and using transfer-learning to overcome the lack 
of damaged data [20].  

The selection of damage sensitive features, namely factors that make explicit the damage 
pattern to be learned from data [6], is still an ongoing research topic. Finally, going beyond the 
detection stage with unsupervised techniques is still a challenge, and damage prognosis is still 
achieved only when the physics of damage progression is included in a hybrid data/model-driven 
approach. Physics-informed ML applications are working towards this goal [21].  
Proposed classification scheme for Machine-Learning Application to SHM 
Considering the complexity of the subject and the interdisciplinarity necessary to approach the 
state-of-the-art research on ML applications, a new classification scheme for the development of 
a detailed review is proposed herein. The methodology encompasses a bottom-up strategy from a 
civil engineering perspective while gathering the necessary information to draw relevant 
conclusions from the analysed literature, in terms of recurrence of the methodologies, 
performance, success rate, etc.  

According to the proposed classification, the level of the damage hierarchy reached is identified 
first. Then, a distinction is operated among three aspects: the type of extracted features (i.e., modal 
parameters, or statistical parameters in Autoregressive models etc.), the metrics used as a 
novelty/damage index (i.e., a distance metrics like the Mahalanobis distance), and the model built 
to highlight the presence of an underlying pattern (i.e., a simple Artificial Neural Network (ANN)).  

To summarise, four elements are at the core of the classification, which should be used to 
operate a clear distinction in applications, as follows. 

• The level of the damage hierarchy. 
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• The type of features. 
• The type of SPR/ML method. 
• The damage index/indices.  

It is important to notice how ML could be used for one or both feature extraction/selection and 
SPR, but also at other stages of the SHM process, like data pre-processing or performance 
optimization. Moreover, the identification of the adopted damage index or indices is not 
highlighted in existing reviews, while it could show how the same index could apply to different 
extracted features.  

Additionally, other information on the input data should be part of the classification if available. 
The methodology may have been tested on data from various sources, numerical, experimental or 
real data. The number and type of sensors may play a role in the quality and significance of the 
data obtained with respect to the structure analysed. Feature extraction and selection techniques 
should be added to the classification as well. Together with the number and types of features, the 
classification should specify whether they are considered as stochastic variables allowing for 
uncertainty estimation, and which technique was used, for example Gaussian Processes or 
Bayesian statistical inference. Also, if a dimensionality reduction technique was employed it 
should be noted, even if it is not a ML one. These techniques are used to reduce the size of input 
parameters without losing the information content of the data, for example Principal Component 
Analysis (PCA), and they can be instrumental in the overall performance of the application. 

The algorithm for SPR is also to be specified further, in terms of architecture family, 
distinguishing for example between instance-based and clustering algorithms. The same stage of 
the damage hierarchy could be addressed with a different learning problem depending on the 
structure and the available data, for example the type of damage can be classified or clustered into 
several known damage scenarios or mechanisms. Strictly connected to the learning problem 
chosen, the nature of the output (Boolean, cluster, etc.) should also be identified. Finally, specific 
information on whether and how the performance of the algorithm was evaluated in the study 
should be included, as they could give insights into the validity of the methodology. Critical 
considerations on the pros and cons of the use of ML in the analysis application could be added, if 
provided by the paper authors. The classification should be complemented with all the necessary 
information to reference authors and publications. An example of two of the recent ML 
applications to data-driven vibration-based SHM of historic structures is provided in Table 1.  
ML applications on SHM for Historic Structures 
SHM operated on historic structures present a series of peculiarities which make the application 
of a data-driven approach and ML techniques even more challenging than in civil structures. 
Architectural heritage often encompasses complex structures in terms of geometry and mechanical 
behaviour. Materials are often heterogeneous and behave nonlinearly, with strict dependence on 
environmental conditions. Operating manual mapping of damages on these structures is even more 
expensive and time-consuming than it is on civil structures, given the ancient designs and 
construction techniques, and the fact that damage is often hidden to visual inspection.  

In historic structures, damage can present itself at a global and a local level, potentially with 
equal relevance. One challenge is to detect relevant sudden changes in the state of the structure in 
real-time, to trigger consequent inspections and controls. Another is the question of identifying 
trends of accumulation of damage over extended periods of time, filtering out the effect of 
environmental and operational parameters, learning how they factor in, in the different damage 
mechanisms. 

Many uncertainties arise when model-based approaches are pursued to monitor historic 
structures. SHM approaches based on dynamic identification are among the most widespread used 
techniques, given their strong theoretical base and the direct interpretability of the output. 
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Nonetheless, their support for engineering decisions is still limited, given the global nature of the 
output and the often local nature of the damage [5]. To date, a replicable and generalized approach 
to SHM of historic structures is yet to be reached. 

ML methods are slowly starting to gain traction also for SHM of historic structures, on different 
scales, tackling a variety of problems [17], but a lot of work still needs to be done in this direction. 

 
Table 1 – Classification of two ML applications to data-driven vibration-based SHM according 

to the proposed scheme. 

 

Conclusions 
The proposed classification is intended as a base for a future review work, aimed at critically 
examining the existing methods, applying them to benchmark case studies and providing 
meaningful comparisons in terms of computational cost and accuracy. Future work is aimed at 
identifying key factors in the successful applicability of ML techniques to SHM of historic 
structures. 
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