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Welcome from the Chairs

Welcome to the 16th ACM SIGPLAN International Conference on Software
Language Engineering (SLE) held in October 2023 as part of SPLASH 2023. Software
Language Engineering (SLE) is a thriving research discipline targeted at establishing
an engineering approach to the development, use, and maintenance of software
languages, that is, of languages for the specification, modeling and tooling of soft-
ware. Key topics of interest for SLE include approaches, methodologies and tools
for language design and implementation with a focus on techniques for static and
behavioral semantics, generative or interpretative approaches (including trans-
formation languages and code generation) as well as meta-languages and tools
(including language workbenches). Techniques enabling the testing, simulation or
formal verification for language validation purposes are also of particular interest.
SLE also accommodates empirical evaluation and experience reports of language en-
gineering tools, such as user studies evaluating usability, performance benchmarks
or industrial applications.

In 2023, SLE called for submission in four categories:
(1) Research Papers, detailing research contributions to SLE,
(2) New Ideas and Vision Papers, describing new, unconventional SLE research
approaches that depart from standard practice,
(3) SLE Body of Knowledge Papers: surveys, essays, open challenges, empirical
observations and case study papers which provide a comprehensive description of
the concepts and best practices developed by the SLE community, and
(4) Tool Papers, focusing on tooling aspects and insights that are likely to be useful
to other tool implementers or users in the future.

As in 2022, there was a two-phase submission and review process. This gave
authors that submitted to the first round an extra opportunity to improve their work
based on the comments and feedback of the reviewers. Altogether 40 submissions
were received. Double-anonymous review guidelines were adopted for all papers.
The reviewers assessed the submissions in terms of their novelty, significance and
potential impact, and were instructed to carefully consider weightings across these
criteria depending on the paper category.

Each submission was reviewed by at least three members of the Program Com-
mittee, and ultimately 20 papers were accepted for presentation. The SLE 2023
keynote was given by Crista Videira Lopes from University of California, Irvine.

As the Organization Committee, we are indebted to the hard work of the many
people who contributed to the success of this year’s SLE. Specifically, we would like
to acknowledge the work of the Program Committee and for the timely delivery of
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reviews which resulted in a rich and diverse program. We are also grateful to SLE’s
Steering Committee and the SPLASH organization for their help. Finally, we would
like to thank the authors of all submitted papers — you represent the core of the
SLE conference, and it is your work that advances the state of the art in software
language engineering. We hope that you will enjoy reading these proceedings and
listening to the accompanying talks.

Cascais Elizabeth Scott (PC co-Chair)
Portugal Thomas Degueule (PC co-Chair)
October 2023 Joao Saraiva (Conference Chair)
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Abstract
The introduction of better abstractions is at the forefront of
research and practice. Among many approaches, domain-
specific languages are subject to an increase in popularity
due to the need for easier, faster and more reliable applica-
tion development that involves programmers and domain
experts alike. To smooth the adoption of such a language-
driven development process, researchers must create new
engineering techniques for the development of programming
languages and their ecosystems. Traditionally, programming
languages are implemented from scratch and in a monolithic
way. Conversely, modular and reusable language develop-
ment solutions would improve maintainability, reusability
and extensibility. Many programming languages share sim-
ilarities that can be leveraged to reuse the same language
feature implementations across several programming lan-
guages; recent language workbenches strive to achieve this
goal by solving the language composition and language ex-
tension problems. Yet, some features are inherently complex
and affect the behavior of several language features. Most
notably, the exception handling mechanism involves varied
aspects, such as the memory layout, variables, their scope, up
to the execution of each statement that may cause an excep-
tional event—e.g., a division by zero. In this paper, we propose
an approach to untangle the exception handling mechanism
dubbed the exception handling layer : its components are
modular and fully independent from one another, as well
as from other language features. The exception handling
layer is language-independent, customizable with regards
to the memory layout and supports unconventional excep-
tion handling language features. To avoid any assumptions
with regards to the host language, the exception handling
layer is a stand-alone framework, decoupled from the excep-
tion handling mechanism offered by the back-end. Then, we
present a full-fledged, generic Java implementation of the
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SLE ’23, October 23–24, 2023, Cascais, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0396-6/23/10. . . $15.00
https://doi.org/10.1145/3623476.3623513

exception handling layer. The applicability of this approach
is presented through a language evolution scenario based on
aNeverlang implementation of JavaScript and LogLang, that
we extend with conventional and unconventional exception
handling language features using the exception handling
layer, with limited impact on their original implementation.

CCS Concepts: • Software and its engineering → Ab-
straction, modeling and modularity; Compilers; Exten-
sible languages.

Keywords: Language Modularization, Exception Handling.
ACM Reference Format:
Walter Cazzola and Luca Favalli. 2023. Exceptions all Over the
Shop: Modular, Customizable, Language-Independent Exception
Handling Layer. In Proceedings of the 16th ACM SIGPLAN Inter-
national Conference on Software Language Engineering (SLE ’23),
October 23–24, 2023, Cascais, Portugal. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3623476.3623513

1 Introduction
Programming language development is a complex activity. It
involves the development of an ecosystem of varied software
artifacts, such as, parsers, optimizers, translators and devel-
opment environments. The traditional approach towards
language development is monolithic: language constructs
and their semantics are planned during the design phase and
rarely change overtime. The monolithic approach is consid-
ered easier to develop and more performant; however, the
final products are hard to change, update and evolve. Devel-
oping different languages with similar constructs can provide
reuse opportunities that are only possible if the implementa-
tion is modularized, so that it is easier to extract and reuse
in different contexts [41]. Language workbenches [22, 25] are
a common approach to this problem.
However, tool support does not suffice due to the inher-

ent complexity of some language features. Take exception
handling as an example. Introducing an exception handling
mechanism in an existing language implementation has a
drastic impact on the way a program executes, because each
statement might throw an exception: exception handling
is a crosscutting feature. Crosscutting features are language
features whose code is scattered across the implementation:
they are known to reduce the flexibility and maintainabil-
ity of software systems [19], and can also affect parse-tree
rewriting contexts [32]. Moreover, each language has a differ-
ent memory layout and handles exceptions in a different way.
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This makes a strictly modular and reusable implementation
of exception handling challenging. In this work, we discuss a
framework for the generalization of the exception handling
crosscutting feature, to implement it without affecting the
original implementation of the language and without making
any assumptions on the structure of the original language.

Our contribution is a general, customizable, reusable, and
extensible exception handling conceptual framework—dubbed
as exception handling layer—that can be adopted by language
workbenches to untangle the exception handling concern
from the code of other language features.
The applicability of the proposed framework is demon-

strated through a full-fledged Java implementation, then
used to refactor the exception handling mechanism of a
JavaScript [12] interpreter written in Neverlang [8, 14, 48]
Moreover, we present the flexibility of our proposal by im-
plementing unconventional exception handling language
features such as the retry and resume statements, and imple-
menting a recovery procedure for the LogLang [13] declara-
tive domain-specific language. On each step of the language
evolution scenario, we keep track of the required develop-
ment effort in terms of lines of code and modified files. This
work is validated by answering these research questions:

RQ1. How hard is it to refactor an existing language
implementation so that it can be used in tandem
with the exception handling layer?

RQ2. How hard is it to add exception handling support
to a language implementation using the excep-
tion handling layer?

RQ3. Howmuch is the achievedmodularization reliant
on Neverlang-specific mechanisms?

RQ4. Does the conceptual framework support varied
exception handling mechanisms and their lan-
guage features?

The remainder of this paper is structured as follows. Sect. 2
contains any background information relevant to this work,
including language workbenches, their capabilities and the
basics of exception handling. Sect. 3 presents the exception
handling layer as the main contribution of this work. In
Sect. 4 we present language evolution scenarios based on the
introduction and extension of the exception handling layer.
Finally, in Sect. 5 and Sect. 6 we will respectively discuss any
related work and draw our conclusions on this research.

2 Background
In this section, we discuss the background information on
language workbenches and exception handling.

2.1 Language Workbenches
Modular language development benefits from the creation of
sectional compilers [8] defined in terms of independently
developed language features. Each language feature is a

reusable piece of a language specification, formed by a syn-
tactic asset and a semantic asset, representing a language
construct and its behavior respectively. Language work-
benches [23] embrace this philosophy to improve reusabil-
ity and maintainability of linguistic assets. The term lan-
guage workbench was firstly introduced by Fowler [25] for
the tools suited to support the language-oriented program-
ming paradigm [55], in which complex software systems
are built around a set of domain-specific languages, each
used to express the problems and the solutions of a portion
of the complex system. Nowadays, language workbenches
are used to facilitate the development of modular program-
ming languages and the reuse of software artifacts through
better abstractions. These abstractions are designed to sup-
port five different composition mechanisms among program-
ming languages: language extension, language restriction,
language unification, self-extension, and extension composi-
tion [21]. There are several language workbenches in litera-
ture, each proposing its own flavor of language composition.
Some examples (among many others) are: Melange [20],
MPS [52],MontiCore [33], Neverlang [48], Rascal [31], Sil-
ver/Copper [51], and Spoofax [54].
2.2 Exception Handling
Software exceptions are anomalies that can occur during
the execution of any instruction of a program. When an
exception occurs, the application state does not conform
to the continuation of its normal execution flow [27]. In-
stead, exceptions are handled through dedicated language
control structures—called exception mechanisms—that re-
place the standard continuation with an exceptional con-
tinuation. Most modern programming languages provide
such exception mechanisms, yet adequate exception han-
dling has been proven difficult [18]. Sub-optimal exception
handling practices are associated to low software quality
and post-release defects [44]. Therefore, it is vital that each
programming language provides the exception mechanisms
that are the most appropriate with respect to the intended
behavior. Relying on the abstractions provided by the back-
end is still the most common practice in the development of
DSLs but this limits the capabilities of the exception handling
mechanism to those offered by the back-end. Each language
has its own constructs and uses a different notation, although
three common elements have been identified [27]:

— a part of a program or an operation that brings an
exceptional event to the attention of the caller; this is called
throwing or raising an exception and can either be implicit
(e.g., a division by zero) or explicit (e.g., a throw call in Java);

— the handler is a part of a program that must be executed
to handle an exceptional event; exception handling can either
be explicitly defined or provided by default;

— the handler’s reach is a syntactic construct or part of
a program (such as a block) that can launch the associated
handler if the activation point of the exceptional event falls
within it.
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Figure 1. EHL general architecture and process.

3 The Exception Handling Layer
In this section, we discuss the conceptual framework for the
implementation of a portable exception handling mechanism
whose code is not scattered across the language implemen-
tation. This conceptual framework provides language devel-
opers with a template to design modular exception handling
language extensions. We dubbed this conceptual framework
as exception handling layer (EHL). We discuss EHL’s funda-
mental data structures and procedures. We also present a
fully modular decomposition that decouples exception han-
dling from the other language features.

3.1 Architecture
Fig. 1 depicts the general architecture of EHL, its components
and their interaction. Note how an exception-unaware lan-
guage is a corner case of this architecture where all elements
except the memory layout are omitted.
Memory layout (❶). The memory layout abstracts the
stack of the machine the program is running on. We do not
make any assumptions with regards to data structure used
to represent the memory layout. Instead, the memory layout
is split into sections.1 According to this architecture, sections
are nodes arranged within a directed graph that abstracts
the entire memory. For simplicity, Fig. 1 shows the memory
layout as a stack, a common memory layout among general
purpose programming languages [1]. In fact, a stack can be
viewed as a directed acyclic graph whose nodes are arranged
in a chain—i.e., each section is connected to the previous
element of the stack. Arbitrary memory layouts allow to ab-
stract unconventional exception handling mechanisms such
as the exit function in Erlang: if a process calls exit(kill)
and does not catch the exception, it will terminate and emit
exit signals to all linked processes.2
Each section of the memory layout is either protected

or normal, depending if it is within a handler’s reach or
1Please refer to the corresponding paragraphs for more details on sections.
2https://www.erlang.org/doc/man/erlang.html#exit-1

not. However, the memory layout itself does not hold this
piece of information. In fact, to properly modularize the
exception handling concern, the memory layout is unaware
of the existence of exceptions at all. Instead, any information
regarding exceptions—such as, any exception handlers that
can reach a section—resides in a distinct data structure. The
samememory layout can therefore be used in a programming
language without exception support. Notice that the memory
layout of an exception-unaware language implementation
contains only normal sections.
Exception table (❷). The exception table contains all ref-
erences to the location of the exception handlers so that the
correct handler can be executed for each exception type. In
this context, the exception type is not a data type provided
by the back-end but a more general and arbitrary descrip-
tor. There is no assumptions wrt. the implementation of
this table, e.g., it may be a list with an index associated to
each handler or a bi-dimensional map associating each pair
(section, exception ID) to a handler.
Exception handler (❸). As in [27], an exception handler
refers to the code to be executed when an exception is caught,
e.g., a catch block in Java. The nature of the handler depends
on the language the exception mechanism is plugged on:
in a compiler, it can be the method or the function to be
executed; in an interpreter it can directly hook the AST node
representing the code to execute. A custom implementation
of the exception handler could even store the instructions to
be executed directly inside the exception table.
Normal section (❹). Each normal section coincides with
thememory reserved to the execution of a function ormethod
call, or, in some languages, to a block of code—e.g., a delim-
ited sequence of instructions. Each section also serves as
a namespace: it contains a symbol table with an arbitrary
number of scopes, each with the named constants, variables,
structures and procedures that are visible within that scope.
A normal section is unaware of the existence of exceptions
and is not within any exception handler’s reach. The mem-
ory layout contains a reference to the currently executing
section. In languages using a single stack, the current section
coincides with the top of the stack, whereas in other cases it
can be set by an external program, e.g., by the scheduler.
Protected section (❺). Protected sections represent the
handler’s reach from [27] and are parts of the program that
are capable of capturing and handling exceptions, such as a
try-except block in Python. A protected section is identical
to a normal section but it is within the reach of an exception
handler. If a section is normal or protected is determined by
a procedure called selector (more on that later).
Thrower (❻). The thrower is a section that threw an ex-
ception, according to [27]. The thrower may be implicit, such
as a section that caused a division by zero, or explicit, such
as a section containing a throw statement in Java.
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Secure area (❼). The secure area is a special buffer re-
served to the thrower to store all the relevant information
(if any) for the exception handling mechanism. The secure
area is needed to avoid any assumptions on the exception
handling mechanism: the EHL treats exceptional events as
simple signals, whereas any additional information is carried
by the secure area. E.g., in Java the secure area would hold
an instance of the Throwable class, whereas JavaScript ap-
plications can throw the result of any expression. The secure
area is also used to store other information, such as the list
of all sections visited during the exception handling event.
Dispatcher (❽). The dispatcher is an arbitrary graph tra-
versal algorithm that is fired when an exception is thrown.
Starting from the current section, the dispatcher navigates
the memory layout. On each section, the dispatcher runs a
secondary procedure called selector to determine if the cur-
rent section is protected. The traversal ends when a protected
section has a viable exception handler, as determined by the
selector. Otherwise—i.e., when there are no more sections to
be visited in the queue—the dispatcher terminates abruptly
and delegates to a procedure called finalizer. For instance,
a stack-based implementation of the dispatcher may pop
frames from the stack until finding a handler.
Selector (❾). The selector is an arbitrary procedure return-
ing a viable handler for the thrown exception when a section
is protected. Its result may be determined by inspecting the
contents of the symbol table—i.e., a section is protected if
the exception table maps that section to at least one handler.
The selector could be customized to implement implicitly
protected sections—i.e., sections with a default exception
handler without a need for the programmer to declare one—
even without inspecting the exception table.
Finalizer (❿). The finalizer is an arbitrary procedure that
runs when no viable handler is found and the dispatcher
cannot reach any more sections within the memory layout.
The finalizer implements the ultimate recovery procedure
and allows the runtime environment to smoothly shut down
the application when a thrown exception cannot be handled
by any handler of any protected section. Finalizers can also
be used to attempt restoring the application to a suitable
state without stopping the execution (see Sect. 4).

3.2 Process
In this section, we discuss the life-cycle of an exceptional
event according to EHL. This process evolves according to
four sequential phases: normal execution, exception throwing,
exception carrying and exception handling.
Normal execution. During normal program execution,
the memory expands and shrinks according to the creation
and destruction of sections. Traditionally—i.e., when the
memory is a stack—a new section is created and pushed on
the top of the stack upon entering a new scope, such as at the

beginning of a block or on function calls. Sections are then
popped from the stack after their code completes its execu-
tion. Different languages may use a different memory layout,
adding and removing sections accordingly. For instance, if a
section spawned several threads, the memory layout graph
can contain several sections with an edge towards that sec-
tion, one for each thread. In EHL, each time a new protected
section is added to the memory layout, any handler for that
protected section is added to the exception table. When a
protected section ends its execution, it is removed from the
memory layout and its handlers are (optionally) unregistered
from the exception table. This execution flow is continued
until a thrower is encountered, as shown by the red dot in
Fig. 1, then an exceptional event occurs and the execution
proceeds to the exception throwing phase.
Exception throwing. The system halts the normal exe-
cution when an exception is thrown. Such an exception is
identified with a descriptor—e.g., its class in Java and the
secure area is populated. Finally, a signal is sent to the EHL
runtime to start the exception carrying phase.
Exception carrying. The thrown exception travels across
the system according to the dispatcher algorithm until the
correct handler is found, if it exists. During this phase, it must
be possible to inspect the memory state, to feed handlers
with any relevant information—e.g., the variables in scope.
Fig. 1 shows that the exception carrying phase is handled by
the dispatcher and the selector. The dispatcher traverses the
memory layout graph; on each visited section, the dispatcher
delegates to the selector to determine if the current section
is protected and if any of its handlers can handle the carried
exception. This is usually done by inspecting the exception
table, but some languages, particularly DSLs, may imple-
ment default handler procedures that are not held within
the exception table. For instance, if the layout is a stack,
the dispatcher may iteratively inspect the section on top of
the stack, popping any normal section and any protected
section with incompatible handlers. The process proceeds
to the exception handling phase if a compatible handler is
found (as shown by the blue box in Fig. 1). Otherwise the
dispatcher is resumed to continue browsing the memory
layout according to the traversal algorithm. The exception
carrying mechanism fails and control is given up to the final-
izer when the dispatcher ends its execution—i.e., when there
are no more sections to be visited. The finalizer performs
any procedure needed to ensure that the system is safely
shut down or recovered, possibly reporting any failures to
the user. For instance, in Java the finalizer prints the stack
frame before terminating the execution. A finalizer could
also be used to roll back to a globally-known safe state.
Exception handling. The exception handling procedure
starts when the selector finds a handler that is compatible to
the thrown exception. The handling procedure retrieves the
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Figure 2. Language modularization according to the EHL.

information stored inside the secure area and—optionally—
the scope of the protected section. There is no requirement
on how the secure area is implemented: two possible op-
tions are either a globally accessible object or a instance that
is created upon exception riding and then tunneled across
the dispatcher, the selector and eventually the handler or
the finalizer. Once the exception has been handled, the nor-
mal application flow is resumed. In many programming lan-
guages the execution flow is resumed after the end of the
protected section, but other resumption mechanisms may
be in place. Some examples are resumption from the instruc-
tion in which the exception has been thrown (resume) and
from the first instruction of the thrower (retry). These mech-
anisms usually assume the handler changed the memory to
a safe state or with additional information before resuming
the normal execution. The EHL is agnostic wrt. exception
handling mechanism chosen by the language and supports
these mechanisms (see next sections).

3.3 Exception Handling Modular Decomposition
A language can be decomposed to leverage the EHL, untan-
gling the exception handling code from the code of unrelated
language features. Fig. 2 depicts such a modularization. Fig. 2
is comprised of two main components: the base language
(red box) and the exception handling implementation built
on its top. Fig. 2 also splits the exception handling mecha-
nism into exception handling language features (black box)
and EHL (blue box). The part about the base language imple-
mentation is not relevant to this discussion and is omitted.
Each node in Fig. 2 is either a language feature (oval shape)
or a component of the EHL architecture (rectangular shape,
data structures are represented with a darker color and algo-
rithms with a lighter color). The EHL components mirror the
architecture discussed in Sect. 3.1. Each arrow represents a
dependency between coupled components. Double and sin-
gle arrows represent semantic and syntactic dependencies

respectively. Dashed and normal arrows represent depen-
dencies to external and internal components respectively.
The key element of this decomposition is dependency

management. To minimize coupling between components
and to maximize reuse, the decomposition uses EHL data
structures as adapters [26], so that exception handling lan-
guage features are not directly coupled with the underlying
exception handling mechanism and the semantics can be
changed freely. In fact, no feature from the base language
depends on the exception handling, neither syntactically
nor semantically. Exception handling features can instead
depend on features of the base language, which they can
extend, override and specialize depending on the exception
handling mechanism to be implemented. For instance, in
Fig. 2, the Throw language feature syntactically depends on
the Expression language feature, because in this case the
throw statement can throw an exception based on the return
value of an expression. Similarly, the CanThrow language fea-
ture extends the semantics of any expression by declaring
that its evaluation may cause an exceptional event—e.g., a
division by zero. Notice how such a decomposition is com-
pletely modular, so that exception handling features can be
used independently. E.g., it is possible to create languages
where i) the throw statement is present but expressions can
never cause an exception, ii) expressions can cause excep-
tions but the throw statement is absent, and iii) exceptions
can be thrown but never caught (no try-catch statements).

Internal dependencies among components of the EHL are
similarly structured: the Throw Exception component acts
as glue code that depends on all other elements of the ex-
ception handling mechanism, namely exception table, dis-
patcher, selector, handlers, finalizer and secure area. A dif-
ferent exception handling mechanism can be deployed by
swapping the Throw Exception component with a similar
component that shares the same interface but connects dif-
ferent elements. For instance, it is possible to create a new ex-
ception handling in which the dispatcher is replaced whereas
all other elements remain the same. Similarly, elements can
be shared across several Throw Exception components, pos-
sibly pertaining different programming languages. To ensure
that data is properly carried throughout the entire exception
handling process, all elements depend on the exception table,
on the secure area, and on the memory layout. Thus, in the
EHL the dependencies between components are limited to
the data representation (darker color), rather than on the
behavior: as long as the data representation stays the same,
the exception handling mechanisms can be extended and
replaced at will. Some specific language features may break
this rule. For instance, the Catch language feature depends
on the Handler, because it needs to register a new handler
within the exception table upon entering a protected section.
However, such dependencies are always limited to one lan-
guage feature and do not impact the rest of the language: in
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1 public class JEL {

2 public static void raise ( ExceptionID exceptionID,

3 ExceptionTable exceptionTable, Memory memory,

4 Section thrower, Dispatcher dispatcher,

5 Selector selector, Optional<Finalizer> finalizer,

6 Optional<SecureArea> secureArea) {

7 var handler = dispatcher.dispatch (

8 exceptionID, exceptionTable, memory,

9 thrower, selector, secureArea);

10 handler.ifPresentOrElse (

11 h -> h.handle(secureArea),

12 () -> finalizer.ifPresent (f ->

13 f.finalize(secureArea, exceptionID)));

14 }

15 }

Listing 1. Glue code that connects all the elements of JEL.
Please note that redundant generic data types are omitted
to save space; refer to the text of this section for the generic
data types associated to each element.

Fig. 2, the Catch feature can be replaced with a different one
without affecting the Throw and CanThrow features.

3.4 Exception Handling Layer in Java
In this work, we implemented the EHL as a library dubbed as
Java exception layer (JEL). JEL behaves like an intermediate
layer between the running application and the underlying
JVM execution environment. The JEL library is intended to
be used instead of the default exception handling mechanism
offered by the JVM to support additional language features,
such as retry/resume operations and handlers for arbitrary
types—instead of just members of the Throwable hierarchy.
While the underlying Java exceptions still exist within the
runtime environment, they should be transparent for the
user: assuming the language provides a full-fledged imple-
mentation of its exception handling mechanism using JEL,
all Java exceptions are captured and translated into a JEL ex-
ceptional event. According to the modularization constraints
discussed in Sect. 3.3, notice how JEL does not refer to any
language-specific implementation aspect, such as the sup-
ported operations and their syntax. JEL is implemented as a
library of generic interfaces with a default implementation.
Generic Data Types. Since the dependencies among com-
ponents is EHL are based on the data representation, JEL
data structures and algorithms can be customized according
to five different data types (classes, in Java):

— EX_ID the exception identifier;
— SEC_ID the unique identifier for a section;
— VAR_NAME_TYPE the type used for variables identifiers;
— VAR_TYPE_TYPE the type used for variables types;
— PAYLOAD the type of data carried by the secure area.

Default implementation. Mirroring the EHL architec-
ture, JEL provides the interfaces for three data structures:

i) the memory layout, ii) the exception table and iii) the
secure area, as well as their default implementations.
The memory layout is shared between the base language

and the exception handling module. To fit the modulariza-
tion requirements, the memory layout is implemented in an
agnostic way wrt. the exception handling and is populated by
generic Section objects. JEL provides two default implemen-
tations for the memory layout interface: a graph and a stack
sharing the same Section objects. Both implementations
can be adapted to the language by specifying the SEC_ID,
VAR_NAME_TYPE and VAR_TYPE_TYPE generic data types.

The default exception table is implemented as a two-dimen-
sional look-up table that takes the ID of the exceptional
event and the ID of the thrower Section and maps them to
the respective handler method. The exception table can be
interacted with to register and unregister exception IDs and
exception handlers upon entering and exiting sections during
execution. The default exception table can be customized
according to all five generic data types.
The default secure area is implemented as a wrapper for

an object with store and retrieve operations. The type of
wrapped data is set by specifying the PAYLOAD generic data
type. The responsibility of correctly populating this data
structure is delegated to the thrower, which will change
depending on the language the EHL is being plugged on.

JEL also provides a default implementation for dispatcher
and selector routines that can be customized according to
all five generic data types. The default dispatcher is a traver-
sal algorithm for a stack-based memory layout, that pops
elements from the top, delegating to the selector on each
element, until finding a handler or reaching the bottom. The
default selector queries the two-dimensional exception table
for the handler for a (SEC_ID, EX_ID) pair, if any.

Finally, JEL provides a static raisemethod that is in charge
of starting the exception throwing event and that acts as the
glue code connecting all the elements, as shown in Listing 1.
Given this code, the execution of an exceptional event from
the perspective of a language feature coincides with a call to
the raise method with the correct arguments.

4 Case Study and Discussion
This section presents and discusses a language evolution
scenario that uses EHL to add exception handling support to
a base exception-unaware language. TheNeverlang language
workbench [48] is used to implement both the exception-
unaware base language and its exception-aware variants.

4.1 Neverlang Overview
Neverlang [48] is a language workbench for the modular de-
velopment of programming languages and their ecosystems.
It is based on the language feature concept [9], each devel-
oped as separate units called slices that can be independently
compiled, tested, and distributed. Syntactic and semantic
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1 module nl.jel.JELTryStatement {

2 reference syntax {

3 try_part: TryPart ^ "try" ProtectedSection;

4 protected: ProtectedSection ^ Block;

5 }

6 role (evaluation) {

7 try_part: .{

8 eval $try_part[1];

9 Section<Long,String,JSReference> section =

10 $try_part[1].section;

11 JELSymbolTable jst = (JELSymbolTable)$$SymbolTable;

12 Stack<Long, String, JSReference> stack =

13 jst.getStack();

14 stack.push(section);

15 stack.peek().get().getCode().execute();

17 if($try_part[1].shouldRaise) {

18 JSSecureArea secure = $$SecureAreaBuilder.build (

19 $try_part[1].error;

20 );

21 JSJEL.raise($$JSExceptionTable, stack,

22 section, $$JSDispatcher, $$JSSelector,

23 $$JSFinalizer, secure

24 );

25 }

26 stack.pop();

27 }.

28 protected: .{

29 /*Code to generate the Section executable object*/

30 }.

31 }

32 }

33 endemic slice nl.jel.JELEndemic {

34 declare {

35 static JSExceptionTable: nl.jel.JSExceptionTable;

36 static SecureAreaBuilder: nl.jel.SecureAreaBuilder;

37 static JSDispatcher: nl.jel.JSDispatcher;

38 static JSSelector: nl.jel.JSSelector;

39 static JSFinalizer: nl.jel.JSFinalizer;

40 }

41 }

42 language nl.jel.JSLangJEL {

43 slices nl.jel.JELTryStatement /* ... */

44 endemic slices nl.jel.JELEndemic /*...*/

45 roles syntax <+ evaluation

46 }

Listing 2. Syntax and semantics for the JavaScript try block
language feature in Neverlang.

assets are contained in a compilation unit called module. A
module contains a reference syntax block—in which the
productions are defined—and any number of roles. Each role,
is preceded by the role keyword, and represents a visit of
the parse tree: each role is made by one or more semantic
actions [1] that are executed when some nonterminal sym-
bol is encountered in the parse tree. Syntactic definitions
and semantic roles are exogenously composed using slices.
Please refer to [48] for a full Neverlang overview.
Basic capabilities. Listing 2 shows a modular implemen-
tation of the try statement and part of the compositionmech-
anisms offered by Neverlang. The Try module (lines 1-32)
declares a reference syntax for the try part of a try-catch

block (lines 2-5), made of two production rules. The first
is labeled “try_part” (line 3) and the second is labeled “pro-
tected” (line 4). The semantics are declared within a role

block (lines 6-31) defining several semantic actions; each
action is attached to a nonterminal of any of the productions
of the reference syntax by referring to their label3—e.g., the
semantic action at line 7 refers to the production at line 3,
whereas the semantic action at line 28 refers to the produc-
tion at line 4. Nonterminals within a production are accessed
using square brackets, in an array-like fashion as highlighted
by the red arrows in Listing 2. Following the syntax directed
translation technique [1], attributes are accessed from non-
terminals by dot notation as done for retrieving the section
attribute on line 10. Neverlang semantic actions are written
in Java with some syntactic sugar. The semantic action at
lines 7-27 retrieves the Section object from a child node
(line 10), pushes it on the stack (line 14), and tries to execute
it (line 15). A new exception is thrown (line 21) if any error
occurs. Regardless of the result, the section is eventually
popped from the stack (line 26).
Other capabilities. Neverlang supports composition be-
tween module units using other units called slice and bundle,
hereby not shown for brevity. Neverlang endemic slices

units can be used to declare instances that are globally acces-
sible throughout all semantic actions within the language.
E.g., lines 33-41 of Listing 2 declare several instances needed
for the correct execution of JEL, one for each of its customiz-
able elements, as discussed in Sect. 3.4. These instances can
be accessed using the $$ operator, as done when throwing
an exception on lines 21-24. Thanks to this mechanism, the
exception handling process can be customized simply by
swapping the nl.jel.JELEndemic endemic slice with a dif-
ferent endemic slice that re-declares the same instances by
changing their class. Instead, the semantic action of module
nl.jel.JELTryStatement remains unaltered. Modules, bun-
dles, slices, and endemic slices are composed into a complete
and executable language specification using the language

unit, as done in lines 42-46. Neverlang supports language
product line engineering [10, 11] through AiDE [34, 35, 49,
50], FeatureIDE [24], and the Gradle build tool.

4.2 JavaScript Evolution Scenario
We present a three-staged evolution for a JavaScript inter-
preter written inNeverlang [12] conform to the EcmaScript 3
specification, with the exception of part of the standard li-
brary. The variant V1 is the base language with its own imple-
mentation of both the memory layout and of the exception
handling. Variant V2 removes exception handling support
and replaces the original implementation of the memory lay-
out with a JEL-based symbol table. Variant V3 adds several
exception handling language features on top of variant V2.

3Neverlang also provides an alternative mechanism, based on absolute
position of nonterminals within the reference syntax, not discuss for brevity.
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Table 1. The effort to evolve JavaScript from V1 to V2 and
from V2 to V3 wrt. the memory layout (Memory) and excep-
tion handling features (Exceptions). Data are collected by
using the svn diff and the diffstat Linux commands.

Evolution step effortCode edit Change type V1 → V2 V2 → V3

Total 7 1
Memory 6 0
Exceptions 0 0Files changed

Glue 1 1

Total 7 20
Memory 5 0
Exceptions 0 17Files added

Glue 2 3

Total 369 489
To new files 292 485
Memory 322 0
Exceptions 0 448

Insertions
(LoC)

Glue 47 41

Total 71 0
Memory 70 0
Exceptions 0 0

Deletions
(LoC)

Glue 1 0

On both evolution steps, we measured the implementation
effort, as summarized in Table 1. The first step is intended
to measure the effort needed to render an existing language
compliant to JEL and, by extension, to the EHL, thus an-
swering RQ1. The second evolution step aims at measuring
the effort needed to implement varied exception handling
language features in JEL, thus answering RQ2. In both steps,
we discuss how much this refactoring is affected by Never-
lang, thus answering RQ3. The resulting implementation of
JavaScript V3 is available on Zenodo.4

JavaScript V1. JavaScript V1 supports many of the most
important features offered by the language, including (but
not limited to):

— numeric, boolean, string and reference types;
— prototype-based classes and constructors;
— expressions between basic, reference and object types;
— if-else, switch, while, and for statements;
— standard output;
— functions declaration and invocation;
— throw, try, catch, and finally statements.

Most notably, JavaScript V1 uses a custom memory layout
based on a linked list; since this interpreter runs on the
Neverlang runtime and therefore on JVM, it leverages the
default exception handling mechanisms provided by Java
to implement throw and try-catch statements. While this
allows for a easy solution, the end result is hard to extend, due
to Java not supporting unconventional exception handling
language features by default.
4https://doi.org/10.5281/zenodo.8328246

1 public class JSStack

2 extends Stack<Long, String, JSReference>

3 implements JSEnvironment.Instance<JSStack> {

4 @Override

5 public Class<JSStack> genericType() {

6 return JSStack.class;

7 }

8 }

Listing 3. Adapting generic JEL datatypes to the needs of a
specific language interpreter.

Overall, JavaScript V1 is comprised of 144Neverlang units—
for a total of 5,409 lines of code (LoC)—and 73 Java classes—
for a total of 6,475 LoC: 318 LoC are needed to implement the
memory layout, with an additional 1,983 LoC to represent
types and variables within memory. 43 LoC are needed to
implement the throw statement, and 135 LoC are needed to
implement try, catch, and finally, with an additional 109
LoC to implement the errors of various types.
This is the baseline against which the following variants

will be evaluated, to measure the effort of replacing this
implementation with a JEL-based one.
JavaScript V2. The JavaScript V2 interpreter replaces the
default implementation of the linked list symbol table pro-
vided by JavaScript V1 with the default stack memory layout
provided by JEL. Moreover, it removes any support for excep-
tion handling, meaning that JavaScript V2 programs cannot
throw nor catch any exceptions. To minimize the impact
on the original code, the symbol table was implemented as
an adapter [26]—dubbed JELSymbolTable—that extends the
LinkedListSymbolTable class, so that the old implementa-
tion still works just by changing the runtime class of the
symbol table. Then, calls to the JELSymbolTable are dele-
gated to the actual JEL stack. As shown in Listing 3, the
implementation of this stack is minimal because it does not
provide any functionality, but simply specifies the generic
types introduced in Sect. 3.4 according to data types needed
by JavaScript, in particular:

— SEC_ID is instantiated to Long;
— VAR_NAME_TYPE is instantiated to String;
— VAR_TYPE_TYPE is instantiated to JSReference.

The JSReference class is particularly important in this con-
text, because we could reuse most of the existing types with
the new data structures. The JSEnvironment.Instance in-
terface replaces the naïve singleton LinkedListSymbolTable
instance with a more customizable alternative that allows
instances of any subclass to be registered as the singleton.
Although limited, some modifications were required to

change the original implementation of JavaScript V1. Table 1
reports the effort required to make these changes. The refac-
toring required the modification of 7 files (6 Java classes and
1 Neverlang unit) and the creation of an additional 7 files
(5 Java classes and 2 Neverlang units). All three Neverlang
units are a form of glue code: we implemented a new lan-
guage unit and two endemic slices, but no modules. This
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refactoring required 369 insertions and 71 deletions, for a
total of 440 modifications; removing the existing implemen-
tation of the exception handling mechanisms required no
modifications. Considering the size of the whole JavaScript
V1 project, changing the memory layout to support JEL re-
quired a modification of 440/(5, 409 + 6, 575) = 3.67% of the
project. Moreover, Table 1 shows that out of 369 insertions,
292 were made to newly created files, therefore changes to
existing files are limited to 71 deletions and 77 insertions. In
fact, using the diffstat command with the -m flag, reveals
that the actual results are 306 insertions, 8 deletions and 63
modifications. We can now answer RQ1.

How hard is it to refactor an existing language
implementation so that it can be used in tandem
with the exception handling layer?

Refactoring an existing and full-fledged implementation of a
language interpreter such as JavaScript V1 so that it can be
used in tandem with a EHL implementation for Java requires
modifying about 3.67% of its code. We can conclude that
an existing memory layout can be replaced with a memory
layout based on EHL with limited effort, especially if part of
the default implementation can be reused. Of course, differ-
ent languages may require a different effort—e.g., a smaller
project may require more changes wrt. the project total size.
JavaScript V3. The JavaScript V3 interpreter adds several
exception handling language features on top of JavaScript
V2. This includes the generic types specification for the JEL
exception table, dispatcher, selector, finalizer and secure area
according to the following types:

— EX_ID is instantiated to String;
— PAYLOAD is instantiated to JSExceptionPayload.

The remaining three generic types must conform to the mem-
ory layout definition and therefore they are the same used in
JavaScript V2. We used the default JEL implementation for
all data structures and algorithms (akin to what shown in
Listing 3), with the exception of the finalizer and the secure
area. The finalizer stops the application, whereas the secure
area holds a JSExceptionPayload that keeps the stack trace
during the exception handling process. We also implemented
the following exception handling language features: throw
statement, retry, and resume statements, and try catch

block, finally blocks. Most notably, throw, try, catch, and
finally are fairly common exception handling language fea-
tures, whereas retry and resume are rather unconventional.
Both are resumption mechanisms that drive the execution of
the program after running an exception handler. The retry
(inspired by design by contract [40]) continues the execution
from the first statement of the thrower and the resume (in-
spired by hardware pipelines) continues the execution from
the next statement after the one causing the exceptional
event. The implementation of the try block was already
shown in Listing 2 and discussed in Sect. 4.1. We do not re-
port the implementation of all other features for brevity and

1 module neverlang.js.jel.exceptions.JELStatementList {

2 reference syntax from neverlang.js.JSStatementList

3 role (evaluation) {

4 s_list_0: .{

5 ▶baseActionList;

6 JSCompletionValue s = $s_list_0[0].cvalue;

7 if (s.getType() == JSCVType.THROW)

8 $$JELResumeArea.push($s_list_0[2]);

9 }.

10 s_list_1: .{ ▶baseAction; }.

11 }

12 }

13 slice neverlang.js.jel.exceptions.JELResumeBlock {

14 concrete syntax from neverlang.js.JSStatementList

15 module neverlang.js.jel.exceptions.JELStatementList

16 with role evaluation delegates {

17 baseActionList ⇒
18 neverlang.js.JSStatementList ▶ evaluation[0],

19 baseAction ⇒
20 neverlang.js.JSStatementList ▶ evaluation[3]

21 }

22 }

23 module neverlang.js.jel.exceptions.JELResumeStatement {

24 reference syntax {

25 stat: Statement ^ ResumeStatement;

26 resume: ResumeStatement ^ "resume" SemiColonOpt;

27 }

28 role(evaluation) {

29 resume: .{

30 ASTNode resume = $$JELResumeArea.peek();

31 $ctx.eval(resume);

32 $resume.cvalue = resume.getValue("cvalue");

33 }.

34 }

35 }

Listing 4. Throw statement using Neverlang and JEL.

1 var a = 1;

2 try {

3 throw 1;

4 a = a + 42;

5 } catch (x) {

6 a = a + x;

7 resume;

8 }

(a) JavaScript program us-
ing the resume statement.

1 var a = 1;

2 try {

3 if ( a <= 10 )

4 throw 1;

5 } catch (x) {

6 a = a + x;

7 retry;

8 }

(b) JavaScript program us-
ing the retry statement.

Listing 5. Unconventional exception handling language fea-
tures in JavaScript V3.

instead we focus on the most interesting aspects. With re-
gards to the catch and finally blocks, both are registered as
handlers for the corresponding protected section within the
exception table, with the difference that the handler for the
finally block is always executed, regardless of an exception
being thrown or not. From an implementation standpoint,
this was achieved by creating a composite [26] handler that
runs both the catch part and the finally part when an excep-
tion is caught whereas only the finally part is executed if
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no exception occurs. To implement the throw statement in a
way that also supports the resume statement, we leveraged
the original implementation provided by the JavaScript V1
interpreter: the node of the parse tree associated to each
statement is assigned an attribute called cvalue that marks
if that statement keeps the normal flow (JSCVType.NORMAL)
or not, such as upon execution of a break or a continue.
Similarly, when a throw statement is found, the exception
is not thrown right away, rather the cvalue attribute is set
to JSCVType.THROW. If that value is found when executing a
statement, then all other statements within the same block
are skipped. Listing 4 shows how to achieve reuse for this
implementation. The JELStatementList imports its syntax
from the JavaScript V1 statement lists (line 2) and it over-
rides its semantics by leveraging the delegation operator [4]
(lines 5 and 10). Upon encountering the delegation opera-
tor, the actual semantic actions to be executed are specified
within the slice unit, as shown at lines 17 and 19. There-
fore, the same code may use different delegates by using a
different slice with a different delegates block. While the
semantics of the semantic action labeled as s_list_1 stay
the same (it calls the delegate but it adds no code), the se-
mantic action labeled as s_list_0 is overridden. After the
delegation, if the current statement of the list was a throw
(line 7), then the parse tree node for the next statement is
pushed to an endemic instance called JELResumeArea: this in-
formation is the resumption point of any resume statements
within the exception handlers (line 8). This information is
then retrieved (line 30) and executed (line 31) in the current
context by the semantic action of the resume statement itself.
Listing 5(a) shows a JavaScript V3 program in which variable
𝑎 evaluates to 44 because the execution of the try block is
resumed after executing the exception handler. The retry
statement leveraged a similar technique: the node associated
to the first statement of a protected section is pushed to the
JELRetryArea endemic instance and can be retrieved upon
executing the retry. In Listing 5(b) the protected section is
retried until 𝑎 > 10. For both the JELResumeArea and the
JELRetryArea the latest resumption point is popped upon
exiting the protected section.
Table 1 reports the effort associated to the implementa-

tion of the language features hereby discussed. Overall, the
implementation required the creation of 20 new files and
the modification of just one existing file—i.e., the Neverlang
language unit was updated to include the new language
features. Notice how no files had to be modified to achieve
these results, therefore this evolution step required no dele-
tions. This result is important because it shows that once
the memory layout for JEL is in place, the exception han-
dling language features can be implemented without further
modifications to existing code. Moreover, out of the 489 in-
sertions (only 81.6 LoC per exception handling language
feature on average), none was used to add features to the
memory layout–e.g., by adding additional informationwithin

the sections on the stack—instead insertions were limited to
the implementation of the language components and their
interaction with JEL. We can now answer RQ2 and RQ3.

How hard is it to add exception handling support
to a language implementation using the excep-
tion handling layer?

Adding an exception handling language feature to a lan-
guage that uses a memory layout compliant to the EHL such
as JavaScript V2 took 81.5 LoC per feature on average. In
total, we implemented 6 different language features: try,
catch, and finally blocks, and throw, retry, and resume

statements using 489 LoC and without affecting any of the
pre-existing implementation, except for 4 lines of glue code.
The total effort may increase if the interpreter needs to im-
plement different exception handling mechanisms, such as
a dispatcher different from the JEL default. However, such
a change can also be achieved without changing the origi-
nal code, but simply by adding pieces of glue code such as
Neverlang endemic slices.

Howmuch is the achievedmodularization reliant
on Neverlang-specific mechanisms?

In the first evolution step (V1→V2), we achieved the refactor-
ing by writing only 3Neverlang units used as glue code. Most
of the modifications involved the reliance of Java classes
on the singleton instances; we refactored this into a more
customizable mechanism using only Java, as exemplified in
Listing 3. Thus, we believe that the same refactoring could
be performed in other language workbenches with similar
results. In the second evolution step (V2→V3) we could add
the exception handling features without changing the orig-
inal code partly thanks to Neverlang features, especially
the delegation operator shown in Listing 4. Although del-
egation can be used to compose semantic actions [4], in
this context it was simply used as an overriding mechanism
for semantic actions, a feature that is supported by most
language workbenches such as MontiCore [29], MPS [7],
Lisa [42], Spoofax [30], andMelange [20]. The same can also
be achieved with aspect-oriented superimposition [36]. Sim-
ilarly, Listing 2 shows the composition among JEL elements
using the Neverlang endemic slice construct. However, the
same result can be achieved with an additional layer be-
tween the semantic action and the JEL interface, as shown
in Fig. 2 with the Throw Exception component: instead of
performing the composition directly within Neverlang, the
same composition could be performed within a Java class.
We conclude that the reliance of our implementation on Nev-
erlang was very limited and was a form of opportunistic
reuse rather than an actual requirement.
4.3 LogLang Evolution Scenario
The EHL and JEL by extension are intended to be used across
different languages with different characteristics. Since this
model is meant to work in tandem with the modularization
options offered by language workbenches, it is particularly

10



Exceptions all Over the Shop SLE ’23, October 23–24, 2023, Cascais, Portugal

1 task SomeTask {

2 backup "/foo/bar.txt" "/backup/bar.bak"

3 remove "/foo/bar.txt"

4 }

(a) Exemplary task written in LogLang.

./gradlew runLogLang

> Task :runLogLang

executing task SomeTask

File ./foo/bar.txt does not exist, do you want to create it?

(b) LogLang finalizer in action.
Listing 6. LogLang with exception handling support.

relevant that it is compliant to the needs of domain-specific
languages (DSL), that are typically the main output of lan-
guage workbenches. To test this, we stretched JEL capabil-
ities to implement a recovery procedure for the LogLang
DSL, used for file system tasks declarations [13]. LogLang
tasks are declarative, do not support any form of exception
handling nor run on any memory layout. The DSL also does
not include any language features to catch errors, nor to
define handlers. In this case, the idea was to verify if the
same model is applicable to a scenario in which most ele-
ments of the EHL can be omitted. To achieve this goal, we
extended LogLang, so that LogLang tasks throw a JEL excep-
tion whenever the file on which the task must be performed
does not exist. Such an example is shown in Listing 6. Since
there are no memory, no sections, and no handlers, both the
dispatcher and the selector always fail their search, therefore
according to Listing 1, control is eventually taken by the
finalizer. The finalizer is a custom procedure that prompts
the users by asking them if they want to create the file. For
instance, when running the task reported in Listing 6(a), file
“foo/bar.txt” does not exist, therefore the user is prompted
accordingly, as in Listing 6(b). The users can either accept
or decline: in the former case the file is created and the task
execution is resumed normally; in the latter the finalizer
stops the application. This language evolution required the
creation of just one class5 of 70 LoC, added 1 LoC to three
different Neverlang modules—i.e., the code needed to throw
the exception—and modified an endemic slice to include the
JEL-related endemic instances. In total, the refactoring took
77 LoC. We can now answer RQ4.

Does the conceptual framework support varied
exception handling mechanisms and their lan-
guage features?

Thanks to JEL we could implement varied exception han-
dling language features. Some features were fairly traditional,
such as the throw statement, and the try, catch, and finally
blocks in JavaScript, while others are rather unconventional,
such as the retry and resume statements. Most notably, these
features are not supported by the exception handling mech-
anisms offered by the JVM, but they could be easily imple-
mented with JEL in a modular way. Moreover, we applied the
5For simplicity, we created only one class that implements the Dispatcher,
Selector, and Finalizer interfaces at the same time.

same architecture for the implementation of an unconven-
tional recovery procedure for a DSL without any memory
layout and that does not support any exception handling
by default. We believe that these two evolution scenarios
prove the applicability of the EHL to the creation of varied
exception handling mechanisms and their features.

4.4 Threats to Validity
External validity. The language evolution scenarios are
based on Neverlang and Java and they may not be possible
to reproduce it in different contexts. To prevent this issue,
we implemented JEL without making any assumptions nei-
ther with regards to the base language nor to the language
workbench. In particular, JEL does not rely on the Neverlang
runtime and can be used by any program running on the
JVM. We also tried to limit our reliance on Neverlang to
perform the language evolution, as discussed in the answer
to RQ3. Similarly, JEL was created from scratch and does
not rely on specific characteristics of Java to work. Even the
infrastructure based on the five generic types is just a pro-
grammer convenience to improve error messages at compile
time, since those types are affected by type erasure and do
not exist at runtime. In summary, we believe that a similar
library with data structures and algorithms compliant to the
EHL could be implemented in any other general purpose
programming language other than Java.
Construct validity. The answer to RQ1 and RQ2 is based
on a specific evolution scenario, therefore a similar imple-
mentation of the EHL on other languages may require ad-
ditional effort. To avoid this issue, we strictly defined the
EHL first, then developed JEL following the EHL and finally
performed the evolution experiment. We never reiterated
on any prior step to accommodate the evolution experiment.
Whenever a change was necessary to perform the evolution,
it was made to the host language implementation and never
to the library nor to the EHL therefore our measures should
be able to represent the actual development effort.
Internal validity. We defined the EHL and answered RQ3
and RQ4 based on our experience with exception handling
mechanisms and with language workbenches. This may
cause an issue due to exotic exception handling mechanisms
and language workbenches we may be unaware of. To pre-
vent this issue, we did not make any assumptions on the
language, even allowing for arbitrary memory layouts; we
also tested an unconventional exception handling mecha-
nism in which most of the elements of the EHL are optional.
This convinced us of the generality of our architecture, as
well as of its implementation.

5 Related Work
Modular language development is a popular research topic.
Many language workbenches have been proposed, each with
its own take on language composition. Their contribution
is related to ours due to their focus on providing ways to
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avoid the monolithic approach to language implementa-
tion. Melange [20] integrates tools from the Eclipse Mod-
eling Framework (EMF) ecosystem [46]and supports lan-
guage extension and language merge [20]. Meta Program-
ming System (MPS) [52] is a development environment for
non-textual DSLs based on projectional editing [53] using
concepts (abstract syntax nodes) and behaviors (semantics).
MontiCore [33] generates abstract data types for the parse
tree and uses Java visitors for the semantics. It supports reuse
through the extension of abstract data types and grammar
inheritance. Rascal [31] is a meta-programming language
that supports the implosion of parsed text and parse tree
transformations. The evaluation leverages the pattern-based
dispatch technique [3]. Spoofax [54] provides several DSLs
for language development; the semantics are called rules and
strategies and can be defined as a sequence of functions over
the AST. To the best of our knowledge, there are no contri-
butions using language workbenches to directly address the
exception handling mechanism and its portability, but, as we
discussed in Sect. 4.2, we believe that the EHL is applicable
to all aforementioned language workbenches and Java-based
ones could even use the JEL library.
Development of crosscutting features such as exception

handling have been discussed mainly with regards to aspect-
oriented programming. For instance, Liebig et al. use the
superimposition operator to handle crosscutting features in
Mobl [37]. Hadas and Lorenz switch the perspective by intro-
ducing language orientedmodularity [28]: instead of tackling
the problem of crosscutting features in languages, they lever-
age the ease of use of language workbenches to create sev-
eral DSLs, each tackling a different crosscutting concern in
other systems. However, interactions among language-based
tools are hard to understand without good integration [5];
compared to the EHL, their work is not applicable to the
definition of modular exception handling language features
in a unique language.

On the topic of exception handling, some contributions fo-
cus on exception handling in management systems: Chiu et
al. [17] address the importance of reusing exception handlers
to deal with workflow exceptions and propose the ADOME
exception handling environment for the definition of dy-
namic bindings for exception handlers, run-time modifica-
tions of exception handlers and exception handler reuse.
Similarly, the VIEW scientific workflow management system
provides customizable and hierarchical exception handlers;
the authors also propose a language for user-defined excep-
tion handling mechanisms [45]. Celovic and Soukouti [15]
describe the proper use of exception handlers for the devel-
opment of large scale enterprise systems. In their work, they
defined six groups of responsibilities, including the thrower
and the catcher; our conceptual framework is similar and
reflects these responsibilities. In all these cases, the applica-
bility to traditional programming languages is not discussed.
The contribution from Ogasawara et al. [43] addresses on the

optimization of stack unwinding and stack cutting in Java
and could be used to create an optimized version of the excep-
tion handling layer. More in general, using an intermediate
layer to abstract the memory layout and exception handling
introduces an overhead that requires optimizations such as
by limiting the costs of metaprogramming capabilities used
by the language workbench [39] and using optimized AST
interpreters with partial evaluation [38].
Cabral and Marques implement retry semantics on lan-

guages lacking this language feature using aspect-oriented
programming [6]. Bagge et al. [2] present a layer that can
be used on top of any platform-specific error reporting to
generalize error reporting and handling through the alert
concept. The proposed implementation also supports retry
semantics, but it is implemented as an extension to the C
language, therefore replication in other languages requires
the development of a similar extension. Chase [16] also dis-
cussed exception handling in C, although his remarks are
general enough to be valid for any language. Chase observes
that the exception handling mechanism should be smoothly
integrated with the rest of the host programming language,
but the contribution focuses on low level details instead of
defining a general and abstract framework such as the EHL.

In their contribution, Brinke et al. [47] discuss a tailorable
control flow, including exceptional flow. In their view, all
exception handling mechanisms should be supported within
the same language and application programmers should be
able to choose which kind of exception handling mechanism
they want to use. Their work is closely related to ours, since
they propose an intermediate layer to customize exception
handling, but the code is written using continuations, thus
compared to the EHL the base language must support first-
order functions and the resulting code may be less readable.

6 Conclusions
Exception handling is a collection of language features whose
implementation is usually hard to reuse because scattered
across several parts of the implementation. The EHL frame-
work permits to untangle the code of the exception handling
language features from the code of other language features.
The EHL architecture is very flexible, allows for arbitrary
memory layouts, dispatching algorithms and handling proce-
dures, and most of its elements are optional. We proved the
EHL applicability by developing the JEL library and using it
to add exception support to a full-fledged implementation
of JavaScript without changing its implementation. Our ex-
perience shows that several exception handling language
features—both conventional and unconventional—can be
achieved with an high degree of modularity and with limited
development effort.
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Abstract

Python is a popular programming language whose
performance is known to be uncompetitive in comparison
to static languages such as C. Although signi�cant e�orts
have already accelerated implementations of the language,
more e�cient ones are still required. The development of
such optimized implementations is nevertheless hampered
by its complex semantics and the lack of an o�cial formal
semantics. We address this issue by presenting an approach
to de�ne an executable semantics targeting the development
of optimizing compilers. This executable semantics is
written in a format that highlights type checks, primitive
values boxing and unboxing, and function calls, which are all
known sources of overhead. We also present semPy, a partial
evaluator of our executable semantics that can be used to
remove redundant operations when evaluating arithmetic
operators. Finally, we present Zipi, a Python optimizing
compiler prototype developed with the aid of semPy. On
some tasks, Zipi displays performance competitive with that
of state-of-the-art Python implementations.
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1 Introduction

Python is a dynamic language known for its extensive
standard library, object-oriented approach and admittedly
poor performance in comparison to static languages such
as C and dynamic languages such as JavaScript [12]. It is
nonetheless among the most popular languages in use today
and its popularity shows no sign of decline [32].

The Python language speci�cation is The Python Language
Reference [31]. While the syntax is formally speci�ed, this is
not the case of the semantics, leaving room for ambiguities
and making it di�cult to reason about programs [21].
In our experience, these challenges are related. Python’s

complex semantics and absence of formal speci�cation
complicate the development of a compiler compatible with
CPython, the reference implementation. The e�ort spent
getting the semantics right leaves little time for optimization.
Furthermore, part of the semantics makes Python

implementations susceptible to execute redundant type
checks, extensive boxing and unboxing of primitive values,
and abundant method calls, which a�ects performance [14,
34]. Optimization of operations on atomic types (such as
int and float) has been suggested to resolve this issue [34].
This paper o�ers two main contributions. First, we

describe an executable semantics for Python that is
written in a Python syntax to allow reuse in existing
compilers. Second, we present a tool that applies partial
evaluation to remove redundant type checks, boxing and
unboxing, and method calls from arithmetic operations
on atomic types. We use this executable semantics to
automate the implementation of arithmetic operations in
an optimizing compiler and demonstrate that it provides
run time performance competitive with those of PyPy [5], a
state-of-the-art Python implementation.
This paper is organized as follows. In Section 2, we

provide an overview of Python’s semantics. In Section 3, we
de�ne an executable semantics that describes the behavior of
various Python operations. In sections 4 and 5, we present a
technique for partial evaluation of our executable semantics
that focuses on removing redundant type checks, boxing
and unboxing, and method lookups and invocations from
Python operations. In Section 6, we show how we reused
our executable semantics in the implementation of Zipi, our
partial implementation of a Python optimizing compiler.
Finally, in Section 7 we provide an overview of performance.
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2 Overview of Python’s Semantics

Python’s semantics is highly dynamic. This is an obstacle to
the implementation of an optimizing compiler. This section
gives an overview of this problem.
As of today, Python does not have an o�cial formal

semantics. The reference manual [31] uses prose instead of
a formal speci�cation, which leaves room for ambiguities.
When such ambiguities arise, we refer to the behavior of
CPython [28], the reference implementation.

2.1 Data Model

Python’s abstraction for data are objects, which are entirely
de�ned by their identity, type and value. The identity is a
unique integer value that never changes across the life of
the object and is available by calling id(obj). The value is
the data represented by the object, for example an integer, a
�oating point number or a pointer to another data structure.
Finally, the type determines the operations allowed on the
object. An object’s type is itself an object that can be obtained
with type(obj). Under certain conditions, an object’s type
can be modi�ed. However, this is not possible for objects
whose type is a built-in type such as booleans, �oats, integers,
strings, lists, tuples, sets and dictionaries.
All values in a Python program are objects. For example,

Python boolean values are represented by the singleton
objects True and False, which belong to the bool type, a
subtype of the int type. This contrasts with other object-
oriented languages such as JavaScript where primitive data
types such as number and boolean exist [20]. In the absence
of primitive values, the operations allowed on an object are
de�ned entirely by the methods available on its type. Such
methods governing operations are called magic methods.
Figure 1 shows the semantics of the operation (x + y).

It attempts to invoke the __add__ magic method of x’s
type. If the __add__ method is found, it is invoked with x
and y as arguments and returns the result of (x + y). If
__add__ is not found, or if it is found but returns the special
singleton object NotImplemented, addition falls back on the
__radd__ method of the type of y (the r in the name stands
for re�ected). Otherwise, it raises a TypeError exception
with an explicative message (which is omitted for brevity).

The semantics of other arithmetic operations are similar,
only the names of the required methods change. For example,
the semantics of the subtraction operator is identical to that
of addition, but calls the methods __sub__ and __rsub__.

The only operators that cannot be overloaded are the “is”
operator, which compares objects by identity, and the “and”,
“or” and “not” boolean operators. All other operations are
governed by magic methods. For example, iteration in a for-
loop calls the __iter__ method, which returns an iterator.
The syntactical form obj.attr for attribute access calls the
__getattribute__ method. The same applies for function
invocation, truthiness, type casting and so on.

py_add(x, y): # semantics of x + y

if type(x) has a method __add__:

result = type(x).__add__(x, y)

if result is the object NotImplemented:

return py_radd(y, x)

else:

return result

else:

return py_radd(y, x)

py_radd(y, x): # reflected addition

if type(y) has a method __radd__:

result = type(y).__radd__(y, x)

if result is the object NotImplemented:

raise TypeError

else:

return result

else:

raise TypeError

Figure 1. Pseudocode for the semantics of the + operator

2.2 Method Resolution Order

The Python language supports multiple inheritance.
Inheritance expands the features of a type by enabling
it to access its parents’ magic methods. When recovering a
method on a type, such as the __add__ method in Figure 1,
Python executes an ordered search across the type and its
parents. The expression type(x).__add__ �rst looks for
__add__ on type(x) itself. If no such method is found, it is
looked up recursively on the parents of type(x).
To avoid inconsistencies in the context of multiple

inheritance, searching for a magic method (or any attribute)
requires an order in which to traverse the parents, called the
method resolution order (MRO). The MRO is a property of a
type computed at the creation of the type object by using the
C3 superclass linearization algorithm [23]. The MRO cannot
be altered afterward, but the types contained in the MRO
are often mutable. Their attributes may be updated, new
ones may be introduced, or existing ones may be removed.
This prevents determining a result of the lookup of each
magic method at the creation of a type.
An important exception is that attributes of all built-in

types are read-only. That is the case both in CPython and
PyPy [27], another popular implementation of the language.
Immutability of built-in types is part of Python’s semantics.

2.3 Dynamic Environments and Attributes

Python incorporates features such as dynamic typing, late
binding, and dynamic code evaluation. It also o�ers a deep
level of introspection that allows altering the behavior of a
program in ways that a compiler can hardly predict through
static analysis [17].
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Python supports modular programming through module
objects. No syntactical distinction is made between a code
�le intended to be run directly and one intended to be
imported. When a �le is executed, an object of type module
is created. All global assignments executed in its code
are stored as attributes of the module. Conversely, any
modi�cations applied to a module’s attributes is re�ected
on its global environment. Other Python programs can then
import this module to access and also update its attributes.

Python also allows the global scopes of its modules to be
rei�ed by invoking the globals() built-in function. This
function returns a dictionary (a hash table) that allows
the global environment to be read and written. Since the
returned dictionary is a Python object, any program can keep
a reference to it and update it. The prospect of dynamically
loaded code updating the environment at any point of the
execution always remains. This makes static analysis of
global variables impracticable.

2.4 Dynamic Type Checks

In Figure 1, we showed that two objects can be added if
the left-hand operand’s type has a __add__ method that
does not return NotImplemented for the given right-hand
operand. This process requires two forms of type checks1:
(1) looking up whether the left-hand operand’s type has an
__add__ method and (2) checking if the type of the right-
hand operand is suitable for the operation. No explicit type
check is required on the left-hand operand since the method
__add__ was recovered on its type. This ensures that the
magic method receives a �rst argument of a suitable type.
However, magic methods are not private and can be

called with unexpected arguments. Figure 2 shows the
result of directly calling int.__sub__ and float.__rsub__
with various arguments. The �rst call returns the expected
result of the operation (43 − 1). The second call shows that
int.__sub__ does not know how to handle an argument
of type float. Subtraction between an int and a float is
handled by float.__rsub__ (third call). The last call shows
that if the �rst argument of int.__sub__ is not an int then
a TypeError is raised. We conclude that the int.__sub__
method contains a type check of its �rst argument. When
computing the result of the “−” operator, this check is
redundant since the left-hand operand is already known to
be an instance of int. We observed similar behaviors for
other built-in magic methods.

2.5 Sources of Overhead

The features presented in this section explain the poor
performance of a naive implementation of Python. An
operation as simple as subtracting an integer and a �oating
point number requires two method searches in the MRO

1We employ type check in a broad sense to refer to any operation that
requires a test on the type of an object, including magic method dispatches.

>>> int.__sub__(43, 1)

42

>>> int.__sub__(43, 1.0)

NotImplemented

>>> float.__rsub__(1.0, 43)

42.0

>>> int.__sub__(43.0, 1.0)

TypeError: descriptor ' __sub__ ' requires a

' int ' object but received a ' float '

Figure 2. Results of direct calls to magic methods in CPython

of int and float respectively. Both methods are called due
to the �rst returning NotImplemented. In both cases, the
magic methods apply a redundant type check on their �rst
argument.
In particular, implementing number arithmetic with

method calls introduces a major overhead on operations
that could otherwise be computed with a single assembly
instruction as C would do. In the case of CPython, function
and method calls are the primary source of overhead [34].
Furthermore, in the context of arithmetic operations,

magic methods are required to extract the values from int
and float objects and generate a new object to store the
result. This procedure, known as boxing and unboxing, leads
to additional overhead [14].

3 Executable Semantics for Python

Wenow present an executable semantics aimed at developing
optimizing Python compilers. Our goal is for such a
formalization to (1) automate the implementation of a
Python compiler, (2) be easily reusable by existing Python
compilers and (3) yield performant implementations.
Writing the numerous magic methods of Python’s built-

in types by hand is tedious and error-prone. We ought to
automate this process to accelerate development, including
that of existing compilers, independently of the language
and tools chosen for its implementation. We achieve this by
writing the semantics in the syntax of Python. Hence, it is
possible to interface with the semantics by using the parsing
infrastructure of an existing compiler.
Our strategy is similar to that of RPython, which

implements a subset of Python with limited dynamic
features [1]. It di�ers in that we instead use a superset of
Python to highlight parts of the semantics causing overhead
such as boxing and unboxing of primitive values, type
checking, and method calls. In this section, we introduce
this superset of Python and use it to write an executable
semantics. We will show how this semantics can be read
by a compiler to implement optimized versions of various
operators in sections 5 and 6.

17



SLE ’23, October 23–24, 2023, Cascais, Portugal Olivier Melançon, Marc Feeley, and Manuel Serrano

3.1 The Compiler Intrinsics Statement

To express the semantics of operators, we extend Python
with the compiler intrinsics statement. Its syntax is the same
as that of an import statement, except that the module name
must be __compiler_intrinsics__ followed by a sequence
of names. The imported names correspond to low-level
primitives that we call intrinsics (we detail all intrisincs
in Appendix A). Intrinsics imported with the compiler
intrinsics statement are static, they cannot be shadowed
by another assignment or assigned to a variable. Since the
compiler intrinsics statement reuses the syntax of Python’s
import, its implementation requires no change to the parser.
The compiler intrinsics statement has been su�cient

to implement all arithmetic operators, unary operators,
comparison operators, truthiness, length, type casts,
attribute access and assignment, subscript access and
assignment, and context managers [15]. These operators
are magic-method-dependent, which the compiler intrinsics
statement is well suited to implement. We have yet to extend
our executable semantics to describe control �ow, scoping
rules and other features that do not rely on magic methods.
In sections 3.2 and 3.3, we provide two examples of

operators for which an executable semantics can be
written with the compiler intrinsics statement: addition
and truthiness. These examples e�ectively illustrate why
seemingly simple operations incur a signi�cant overhead.

3.2 Example: Semantics of Addition

In Figure 3, we translate the addition semantics from
Figure 1. We import three intrinsics: (1) define_semantics,
which indicates that a decorated function is not a Python
function, but rather the de�nition of an operator’s semantics,
(2) class_getattr, which implements the MRO lookup of a
magic method, and (3) absent, a sentinel value returned by
class_getattr if no corresponding magic method is found.
The addition semantics in Figure 3 de�nes the nested

function normal (line 6) and reflected (line 17). Since those
are in the scope of a define_semantics, the compiler can
avoid the allocation of function objects and de�ne low-level
procedures instead. It is also possible to apply lambda-lifting

to prevent the creation of closures capturing ‘x’ and ‘y’. All
arithmetic operators can be de�ned in similar fashion.

When a function is decorated with define_semantics, we
refer to it as a semantics or the semantics of a given operator.

3.3 Example: Semantics of Truthiness

An object’s truthiness is computed when it is used as the
condition of an if statement or while statement, or if
converted to a boolean using bool(x). Objects considered
to be falsy include False, None, zeros of numeric types and
empty sequences (e.g., an empty list or string).

The operation of truthiness is especially convoluted since
it falls back on recovering the length of objects whose type

1 from __compiler_intrinsics__ \

2 import class_getattr , define_semantics , absent

3

4 @define_semantics

5 def add(x, y):

6 def normal():

7 magic_method = class_getattr(x, "__add__")

8 if magic_method is absent:

9 return reflected()

10 else:

11 result = magic_method(x, y)

12 if result is NotImplemented:

13 return reflected()

14 else:

15 return result

16

17 def reflected():

18 magic_method = class_getattr(y, "__radd__")

19 if magic_method is absent:

20 raise TypeError

21 else:

22 result = magic_method(y, x)

23 if result is NotImplemented:

24 raise TypeError

25 else:

26 return result

27

28 return normal()

Figure 3. Semantics of the + operator written with the
compiler intrinsics statement

does not have a __bool__ magic method. Computing the
length of an object has its own semantics, which must assert
that the resulting length is a small integer.2 In Figure 4, we
implement the truthiness operation. It attempts to call the
__bool__ method, but may fall back on the maybe_length
operation. The latter computes the length of an object, but
returns absent if the object’s type does not have a __len__
method (in which case the object is always truthy).
The maybe_length semantics must assert that the

computed length is a small integer. This operation is
implemented by the index semantics in Figure 5. To abstract
the notion of small integers, we introduce two intrinsic
types: sint and bint, which respectively stand for small
and big integer. Those are abstract subtypes of int that
di�erentiate between small and big integers using the
isinstance built-in function (�g. 5, lines 12 and 14) while
leaving room for implementation-dependent details. The
result of the index semantics is returned and compared to
zero. The object is truthy only if its length is non-zero.

2Small is implementation-dependent, but typically means an integer that
�ts in a machine word.
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1 @define_semantics

2 def truth(obj):

3 magic_method = class_getattr(obj, "__bool__")

4 if magic_method is not absent:

5 result = magic_method(obj)

6 if type(result) is bool:

7 return result

8 else:

9 raise TypeError

10 else:

11 len_result = maybe_length(obj)

12 if len_result is not absent:

13 return len_result != 0

14 else:

15 return True

16

17 @define_semantics

18 def maybe_length(obj):

19 magic_method = class_getattr(obj, "__len__")

20 if magic_method is absent:

21 return absent

22 else:

23 len_result = magic_method(obj)

24 index_result = index(len_result)

25 if index_result < 0:

26 raise ValueError

27 else:

28 return index_result

Figure 4. Semantics of computing the truthiness of an object

1 from __compiler_intrinsics__ \

2 import class_getattr , define_semantics , absent, \

3 sint, bint

4

5 @define_semantics

6 def index(obj):

7 magic_method = class_getattr(obj, "__index__")

8 if magic_method is absent:

9 raise TypeError

10 else:

11 result = magic_method(obj)

12 if isinstance(result, sint):

13 return result

14 elif isinstance(result, bint):

15 raise OverflowError

16 else:

17 raise TypeError

Figure 5. Semantics of casting an object to an index-sized
integer

3.4 Magic Methods

We cannot fully describe Python’s semantics without
describing the magic methods of its built-in types. For
instance, the add semantics from Figure 3 fails to predict the
speci�c result of the expression (41 + 1.0). In this section,
we introduce intrinsics to describe magic methods.

Applying an operation requires boxing and unboxing
objects’ values. An unboxed value is not a Python object.
Its exact format depends on the host language used by a
compiler, we thus call it a host value. To write magic methods,
we need to express how host values are manipulated.
Therefore, we introduce a family of intrinsic functions that
are named X_to_host and X_from_host.

The intrinsic function X_to_host takes a single argument
of type X and returns the host value of that argument.
For example, the expression int_to_host(42) returns the
numerical representation of 42 in the host language. If the
argument is not an instance of X, then the behavior of the
function is unde�ned.
The intrinsic function X_from_host is the inverse of

X_to_host. It takes a host value as argument and returns an
object of type X that encapsulates this value. While X could
be any built-in type, we limit ourselves to numerical types
such as int and float for now.
We also introduce the builtin intrinsic, which is similar

to the define_semantics decorator. It is used as a class

decorator and indicates that a given class de�nition is the
de�nition of the corresponding built-in type.

In Figure 6, we use these new intrinsics to implement the
__add__ and __floordiv__ (�oor division) magic methods
of int. Notice the redundant type check of both methods
on lines 7 and 18 (yet, they are necessary when calling a
magic method directly). In the case of __floordiv__, we also
check that there is no division by zero on line 20. These
magic methods introduce arithmetic operations in the host
languages. In the expressions on lines 10, 20 and 22, the left-
hand and right-hand sides are all host values. However, the
usage of int_to_host can be detected statically, allowing
to generate code for host integers addition. Throughout
the remainder of this paper, examples will frequently show
overloading of operators to execute arithmetic in the host
language.
Magic methods de�ning the behavior of arithmetic

operators are numerous, but they can be generated
from templates to automate writing down the executable
semantics [15].
For non-numerical types, it is straightforward to extend

our pool of intrinsics to manipulate other types of host
values. For example, we introduce the str_len_to_host
intrinsic function, which takes a Python string as argument
and returns a host integer representing its length. In Figure 7,
we use it to implement the __len__ method of str (string
type).
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1 from __compiler_intrinsics__ \

2 import builtin, int_from_host , int_to_host

3

4 @builtin

5 class int:

6 def __add__(self, other):

7 if isinstance(self, int):

8 if isinstance(other, int):

9 return int_from_host(

10 int_to_host(self) +

11 int_to_host(other))

12 else:

13 return NotImplemented

14 else:

15 raise TypeError

16

17 def __floordiv__(self, other):

18 if isinstance(self, int):

19 if isinstance(other, int):

20 if int_to_host(other) != int_to_host(0):

21 return int_from_host(

22 int_to_host(self) //

23 int_to_host(other))

24 else:

25 raise ZeroDivisionError

26 else:

27 return NotImplemented

28 else:

29 raise TypeError

Figure 6. The __add__ and __floordiv__ methods of int

1 from __compiler_intrinsics__ \

2 import builtin, int_from_host , str_len_to_host

3

4 @builtin

5 class str:

6 def __len__(self):

7 if isinstance(self, str):

8 return int_from_host(str_len_to_host(self))

9 else:

10 raise TypeError

Figure 7. The __len__ magic method of str

3.5 Redundant Operations in the Semantics

Now that we de�ned somemagicmethods for int and strwe
can analyze the extent of the semantics’s overhead. Consider
what happens if we recover the truthiness value of a string.
The truth semantics looks up for the __bool__ method
(�g. 4, line 3). Since this method cannot be found on str,
the __len__ method is looked up (�g. 4, line 19). So is the

__index__ method later on (�g. 5, line 7). Both the __len__
and __index__ methods are invoked.

Once we know that the object is a string, multiple checks
are super�uous. For example, the __len__method checks the
type of its argument (�g. 7, line 7). Furthermore, the length
of a string will always be a positive small integer. Thus the
whole invocation of the index semantics is unneeded, as well
as the assertion that the length is positive (�g. 4, line 25).
A naive implementation of the truth semantics would

execute these redundant operations. Yet, once we know that
the object is a string, only recovering the length of the string
(�g. 7, line 8) and checking whether it is non-zero (�g. 4,
line 13) is relevant. The required computation boils down to
int_from_host(str_len_to_host(obj)) != 0.
The same exercise with the expression (1 + 2) reveals

redundant operations despite the required computation
boiling down to int_from_host(int_to_host(1) +

int_to_host(2)). Expressing the semantics of primitive
operators using our formalism enables a compiler to
implement that sort of optimization.

4 Behaviors

A compiler can implement arithmetic operators from the
semantics de�ned in Section 3. Yet, by doing so in a naive
way, that is calling each magic method, the implementation
would likely o�er poor performance.

We pointed out that the magic methods of built-in types
cannot be changed. Given an operator and built-in types
for its operands, we can thus predict which magic methods
will be looked up and which of these will contribute to
computing a result. This makes looking up or calling some
magic methods super�uous, for instance if a method is
known to be absent or if it can be predicted that it will
return NotImplemented. We exploit that fact to generate
optimized versions of Python operators.

We de�ne a behavior to be a procedure that describes how
to compute the result of an operator for a given combination of

built-in types without redundant type checks or super�uous
method calls. Behaviors are written in a similar fashion to
operators’ semantics by using the define_behavior intrinsic
decorator, which behaves identically to define_semantics,
but labels functions di�erently.
In Figure 8, we implement the behaviors for addition

of an integer and a �oat (add_intX_floatY), �oor division
between two integers (floordiv_intX_intY) and truthiness
of a string (truth_strX).

We use operation_ltypeX_rtypeY as naming convention
for behaviors, where operation is the short-circuited
semantics, ltype is the required type of the left-hand
operand and rtype is the required type of the right-hand
operand. We also include the types in the annotation of
the behavior (annotations are the types written after each
argument and are part of Python’s syntax) as it is more
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1 @define_behavior

2 def add_intX_floatY(x: int, y: float):

3 return float_from_host(

4 int_to_host(x) + float_to_host(y))

5

6 @define_behavior

7 def floordiv_intX_intY(x: int, y: int):

8 if int_to_host(y) != int_to_host(0):

9 return int_from_host(

10 int_to_host(x) // int_to_host(y))

11 else:

12 raise ZeroDivisionError

13

14 @define_behavior

15 def truth_strX(x: str):

16 return int_from_host(str_len_to_host(x)) != 0

Figure 8. Behaviors for addition of an integer and
a �oat (add_intX_floatY), integer �oor division
(floordiv_intX_intY) and string truthiness (truth_strX)

convenient for a compiler to read them from the annotation
than from the behavior’s name. Unary behaviors are written
by omitting the right-hand type, for example truth_strX.
We can use partial evaluation to generate all behaviors

for arithmetic operations on numeric types by identifying
whichmethods return a result for each operator. This is made
possible by the fact that a built-in magic method returns
NotImplemented for a value of a given type if and only if it
returns NotImplemented for all instances of that type.
Within a given magic method, most if statements’

conditions are type checks that can be resolved from the
operands’ types. The only exceptions are division and
bitwise-shift, which respectively check for zero division and
negative shift. These are left to be evaluated at run time (see
Figure 8, line 8).

5 A Partial Evaluator to Generate Behaviors

This section presents semPy, a Python tool for generating
behaviors by removing redundant type checks, boxing and
unboxing, and method calls whenever possible.3

semPy is a Python partial evaluator supporting the
compiler intrinsics statement. It takes as inputs a semantics
and a context that consists of built-in types for each of the
arguments. It outputs a specialization of the semantics given
that context, which is a behavior. The behaviors presented
in Figure 8 were generated by semPy. For example, the
add_intX_floatY was generated from the add semantics
(Figure 3) in a context where the left-hand operand is an int
and the right-hand operand is a float.

The structure of operators and built-in magic methods is
su�ciently homogeneous that behaviors can be generated by

3The semPy source code is available online [16].

def __pos__(self):

if isinstance(self, int):

return int_from_host(int_to_host(self))

else:

raise TypeError

Figure 9. The __pos__ magic method of int

using only three transformations: (1) aggressive inlining of
method calls, (2) branch resolution based on type information
and (3) removal of redundant boxing and unboxing.

5.1 Inlining

When a semantics or magic method is invoked, semPy

systematically inlines the callee’s code at the call site. This
removes method calls from semantics specializations. Magic
methods are returned by invocations of the class_getattr
intrinsic function. This function is always called on the
arguments of a semantics, whose types are provided in
the type context, so it is always possible to resolve which
method is to be called, or if that method is absent.

5.2 Branch Resolution

When semPy successfully computes the truthiness of
the condition of an if statement, we can get rid of the
branch that is not executed. Since semantics are written
without using Python dynamic features, we can resolve
the value of expressions that would normally be hard
to evaluate statically. We can resolve conditions such as
isinstance(X, Y), which checks whether X is an object of
type Y. Comparisons of the form (magic_method is absent)
can always be resolved since built-in magic methods are
immutable. We can also resolve comparisons of the form
(result is NotImplemented). In this case, we usually
cannot infer the exact value of result, but we can at least
infer that it is not the object NotImplemented.
Most branches are removed by resolving the

aforementioned conditions. Some branches may still
depend on the value of an object and can only be resolved if
its origin provides su�cient information (such as lengths
being non-negative). If not, the branch must be evaluated at
run time.

5.3 Removal of Redundant Boxing and Unboxing

A naive implementation of Python’s semantics sometimes
causes unnecessary boxing and unboxing. For example, the
pos semantics, which corresponds to unary +, is equivalent
to the identity operation when applied to an integer. Yet, the
magic method __pos__ of int applies boxing and unboxing
to account for the possibility that the argument is of a strict
subtype of int in which case the result should be cast to an
int (see Figure 9). A simple example is that of the expression
+True, which must return 1.
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@define_behavior

def pos_sintX(x: sint):

return x

@define_behavior

def pos_boolX(x: bool):

return int_from_host(int_to_host(x))

Figure 10. Removal of unboxing in unary + of int by semPy

In the context of a behavior where the argument is known
to be of type int, semPy removes this type conversion.
When the cast must occur, for example in the case of unary
+ on a bool, semPy preserves it as shown in the generated
behaviors of Figure 10. This simpli�cation occurs after
inlining and branch resolution. At this point, unnecessary
boxing manifests as chains of calls to primitives that are one
another inverses and can be removed from the behavior.

5.4 The test Behavior

We present another example of unnecessary boxing removal.
Consider the semantics of the if statement where Python
evaluates the truthiness of a value and branches accordingly.
This truthiness is determined by the truth semantics (see
Figure 4), which returns either True or False. We show
the behavior for truthiness of an integer in Figure 11.
This behavior requires the bool_from_host_bool intrinsic
function, which maps booleans in the host language to the
corresponding Python boolean objects.

@define_behavior

def truth_intX(obj: int):

return bool_from_host_bool(

int_to_host(0) != int_to_host(obj))

Figure 11. Behavior for truthiness of int

In the condition of an if, this behavior takes the host result
int_to_host(0) != int_to_host(obj) and converts it to a
Python bool that the if statement immediately needs to
convert back to a host boolean. Thus, the call to the intrinsic
bool_from_host_bool is a form of unnecessary boxing.
We solve this by introducing the test semantics (�g. 12,

line 2) and the intrinsic bool_to_host_bool, which acts as
the inverse of bool_from_host_bool. The purpose of the
test semantics is solely to express a variant of the truth
semantics where we prefer the output to be a host boolean
rather than a Python object. This semantics can be fed to
semPy to return behaviors in which the unnecessary boxing
was removed, such as the test_intX behavior (�g. 12, line 6).

This strategy is expandable to other cases where a
condition is tested but a Python bool is not required, for
example when the condition of an if statement is the result

1 @define_semantics

2 def test(obj):

3 return bool_to_host_bool(truth(obj))

4

5 @define_behavior

6 def test_intX(obj: int):

7 return int_to_host(0) != int_to_host(obj)

Figure 12. The test semantics and behavior of test for int

of a comparison. This would generally invoke one of the
comparison semantics (eq, ne, lt, le, gt or ge), then check
the truthiness of the result (Python comparison operators
can return a value other than True or False). Instead, semPy

can generate behaviors for those speci�c cases. To those
behaviors we assign the names test_comp_ltypeX_rtypeY
where comp is the partially evaluated comparison semantics.

Figure 13 shows the result of semPy partial evaluation of
le(x, y) (semantics of the <= operator) and its counterpart,
the test_le(x, y) comparisonwhere x and y are respectively
an int and a float.4

@define_behavior

def le_intX_floatY(x: int, y: float):

return bool_from_host_bool(

float_to_host(y) >= int_to_host(x))

@define_behavior

def test_le_intX_floatY(x: int, y: float):

return float_to_host(y) >= int_to_host(x)

Figure 13. The le and test_le behaviors for int and float.

6 Zipi: a Compiler Using Behaviors

We now detail how the tools described in this paper can
be used to implement an optimizing Python compiler.
We present Zipi, a compiler prototype that implements
arithmetic operators and magic methods using the compiler
intrinsics statement.

6.1 Zipi

The Zipi compiler [15] is an ahead-of-time (AOT) compiler
from Python to Scheme [6]. It implements arithmetic
operations using behaviors generated by semPy and extends
this strategy to other operators. Zipi compiles Python to
Scheme code, which is then compiled to an executable using
either the Bigloo [22] or Gambit [10] Scheme compilers.

4In Figure 13, the le_intX_floatY and test_le_intX_floatY behaviors use
the >= operator instead of the expected <= operator. Comparison magic
methods can also return NotImplemented, which may lead to their re�ected
magic method to be called. In that case, the __le__ method of int returns
NotImplemented and the comparison resorts to the __ge__ method of float.
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# A Python program that sums a list of integers

s = 0

for x in [1, 2, 3]:

s = s + x

1 ; The main body of the code generated

2 ; by Zipi from the above program

3 (define x #f) ; #f indicates the variable

4 (define s #f) ; is not yet bound

5 (global−register! global (& "x")

6 (lambda () x)

7 (lambda (v) (set! x v)))

8 (global−register! global (& "s")

9 (lambda () s)

10 (lambda (v) (set! s v)))

11 (set! s (py−int−from−scheme 0))

12 (py−for−each

13 #:target

14 (py−make−list (py−int−from−scheme 1)

15 (py−int−from−scheme 2)

16 (py−int−from−scheme 3))

17 (begin

18 (set! x #:target)

19 (set! s

20 (py−add (or s (global−get (& "s")))

21 (or x (global−get (& "x")))))))

Figure 14. An example of Scheme code generated by Zipi

In Figure 14, we present a snippet of code generated by
Zipi from a small Python program. The compiler maps most
operations directly to a procedure or macro provided by
Zipi’s runtime system. For example, the forms py−for−each
(line 12), py−make−list (line 14) and py−add (line 20) are all
Scheme macros whose expansions implement for-loops, list
allocations and addition, respectively. Only relevant parts
of the generated code are shown and variable names have
been demangled for readability.
Zipi supports all compiler intrinsics statement. In

Figure 15, we show the Scheme version of the add semantics
from Figure 3. Note that Zipi compiles the semantics to the
py−add−fallback macro. The full semantics is used only as
a fallback when no specialized behavior exists. Behaviors
are generated and compiled once, at Zipi’s build time.
When generating behaviors for Zipi, we distinguish

between small integers (sint) and big integers (bint). This
allows semPy to generate more specialized behaviors and the
Zipi runtime system to further optimize integer arithmetic
by representing small integers with Scheme �xnums.
In Figure 16, we show the compiled add behaviors for

small integers. The fx+? operator applies small integer
addition with an over�ow check. In case of over�ow, the
+2 operator applies addition and returns a Scheme big

1 (define−macro (py−add−fallback x y)

2 `(let ((x ,x) (y ,y))

3 (py−add−fallback:normal x y)))

4

5 (define (py−add−fallback:normal x y)

6 (let ((magic_method (getattribute−from−obj−mro

7 x (&& "__add__"))))

8 (if (py−test−is magic_method py−absent)

9 (py−add−fallback:reflected x y)

10 (let ((result (py−call magic_method x y)))

11 (if (py−test−is result py−NotImplemented)

12 (py−add−fallback:reflected x y)

13 result)))))

14

15 (define (py−add−fallback:reflected x y)

16 (let ((magic_method (getattribute−from−obj−mro

17 y (&& "__radd__"))))

18 (if (py−test−is magic_method py−absent)

19 (py−raise−binary−TypeError−fallback

20 (&& "+") x y)

21 (let ((result (py−call magic_method y x)))

22 (if (py−test−is result py−NotImplemented)

23 (py−raise−binary−TypeError−fallback

24 (&& "+") x y)

25 result)))))

Figure 15. Scheme version of the add semantics

# Python add behavior for small integers

@define_behavior

def add_sintX_sintY(x: sint, y: sint):

return int_from_host(int_to_host(x) +

int_to_host(y))

; add behavior compiled by Zipi

(define−macro (py−add−sintX−sintY−inline x y)

`(let ((x ,x) (y ,y))

(or (fx+? x y) (py−bint−to−scheme (+2 x y)))))

(define (py−add−sintX−sintY−fallback x y)

(or (fx+? x y) (py−bint−to−scheme (+2 x y))))

Figure 16. add_sintX_sintY behavior compiled to Scheme

integer. The py−bint−to−scheme procedure is the Scheme
equivalent of the int_to_host intrinsic for big integers.

6.2 Behaviors in Zipi

To dispatch an operation to a speci�c behavior at run time,
Zipi stores the procedures of each behavior within an array,
called a behavior array. Each operator has its own behavior
array, for example the add behavior array contains behaviors
of addition. Once the type of each operand is known, it is
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possible to recover the corresponding behavior from that
operand’s array and invoke it.
To recover behaviors from a behavior array, we assign a

unique identi�er to each type. We call this identi�er the class
index of a type. Since we generated separate behaviors for
small integers and big integers, those have separate class
indices despite having the same Python type. For example,
small integers may have the class index 1, big integers the
index 2, bool the index 3 and so on. We reserve the index 0
for all types that have no specialized behavior.
When an arithmetic operator is applied, we recover the

class index of the types of each operand. In the case of unary
operators, this index is the position of the corresponding
behavior in that operator’s behavior array. In the case of
binary behaviors, we apply the formula (right + N ∗ left)

where right and left are the class indices of both operands
and N is the number of existing class indices (Zipi currently
has 17). The procedure at that computed index can be safely
invoked without further type-checking.
In some cases, the procedure stored at the class index

is not a behavior, but rather the full semantics without
specialization. For example, if we add two objects whose
type is user-de�ned, the resulting index will be 0. The
add behavior array contains the py−add−fallback:normal
procedure (�g. 15, line 5) at that index.

A special case of the dispatch of a behavior happens when
operands are both small integers or both float objects,
which are represented by Scheme fixnum and flonum values
respectively. Since those are common arithmetic operations,
we inline the corresponding behavior for those cases. We
limit inlining to those frequent use cases to avoid code bloat.

Figure 16 shows that Zipi generates two versions of each
behavior. The inline version is a macro allowing to invoke
a behavior inline while the fallback version is a �rst-class
procedure, which we store in the behavior array.

In Figure 17, we show this inlining processwith the py−pos
macro, which implements the unary + operation. Whenever
the operand x is either a fixnum (line 4) or a flonum (line 5),
we execute the corresponding inline behavior. Otherwise,
we recover the class index of the object and invoke the
corresponding behavior from the add behavior array (line 7).

1 (define−macro (py−pos x)

2 `(let ((x ,x))

3 (cond

4 ((fixnum? x) (py−pos−sintX−inline x))

5 ((flonum? x) (py−pos−floatX−inline x))

6 (else

7 ((vector−ref py−pos−behaviors−array

8 (py−obj−class−index x))

9 x)))))

Figure 17. Dispatch of the behavior for unary +

The code for dispatching behaviors is similar in the case of
binary operators. Behaviors are inlined when both operands
are either fixnums or flonums, otherwise the behavior is
recovered from the corresponding behavior array. The same
happens for comparisons, and the truth and test semantics.

7 Performance

In this section, we discuss Zipi’s performance in comparison
to CPython and PyPy [27], the current state-of-the-art
implementation performance-wise. Performance was
measured through microbenchmarks as well as regular
benchmarks implementing well-known algorithms.

Initialization and compilation times vary across CPython,
PyPy, and Zipi. CPython compiles code ahead-of-time (AOT)
into bytecode that is then interpreted by a virtual machine.
PyPy uses a tracing just-in-time (JIT) compiler [5]. Lastly,
Zipi is AOT and has a deep pipeline that compiles Python
code to Scheme, then to C, and �nally to machine code5.
As this occurs before execution, we do not consider it in
this evaluation report. We con�gured our benchmarks to
only measure the run time performance after initialization.
We also allow PyPy’s JIT to warm up by executing a dry
run that does not count toward execution time for each
benchmark. Benchmarks measure real time using the Python
time module, which all implementations provide.

Results were generated by Forensics, our tool for tracking
performance. Both Forensics’ source code [8] and the
benchmarks results are available online [9]. Benchmarks
were executed on a machine with an Intel Core i7-7700K, 48
GB of RAM, and under Debian 10.13 with kernel version SMP
Debian 4.19.269-1. We used CPython 3.9.0 with pro�le guided

optimization enabled [29]. As for PyPy, we used version
7.3.5. Each PyPy release implements more than one version
of Python, we used the newest version at the time, which
was Python 3.7. Zipi was compiled with Gambit 4.9.3-1380,
with single−host enabled, and GCC 10.3.

7.1 Microbenchmarks

We use microbenchmarks to evaluate the performance of
individual operations and determine whether a targeted
optimization, such as behaviors for arithmetic operators,
is e�ective. The microbenchmarks have been useful to focus
our optimization e�orts on operations su�ering from poor
performance. The operation being evaluated is wrapped in a
loop to reach ameasurable time on the order of one second on
CPython. To minimize the loop overhead, its body contains
several repetitions of the measured operation (typically 20).
The microbenchmarks allow a direct comparison between
Zipi and CPython on individual operations. Unfortunately,

5To provide an idea of compilation time, the deltablue program discussed
in Section 7.2 contains 440 lines of code and takes about 50 seconds to
compile. This compilation time could be improved by compiling Python
code directly to machine code.
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Figure 18. Microbenchmarks results of Zipi compared to CPython v3.9.0. A ratio higher than 1 (green) indicates an execution
faster than CPython. A ratio lower than 1 (red) indicates a slower execution.

it does not allow a comparison with PyPy, which treats the
kernel of many of our benchmarks as dead code. Neither Zipi
nor CPython do this, so every operation is actually executed.
Figure 18 shows the results of our microbenchmarks. All
microbenchmarks are described in more details in [15].
Microbenchmarks indicate that behavior optimizations

provide a signi�cant performance boost for binary operators
on small integers (between 15× and 30× faster) and floats
(between 3.0× and 7.2×), truthiness of bools (between 8.7×
and 14×), ints (20x) and strs (between 4.2× and 6.7×), and
comparison between ints (18×) and floats (7.2×).
Performance improvements from other optimizations

unrelated to behaviors also show up in the microbenchmarks.
For instance, assignment to global variables, function calls
and iteration on built-in types are all faster than with
CPython. On the other hand, some microbenchmarks
display poor performance. Those are unoptimized features
that we implemented in a naive way, such as function calls
with keyword arguments.

7.2 Benchmarks

We compared Zipi to CPython and PyPy using custom
benchmarks and benchmarks from PyPerformance, an
authoritative suite of benchmarks for Python [26]. Zipi
being at an early development stage, only four benchmarks
from PyPerformance are supported at the moment, hence
the need for custom benchmarks.
Our custom benchmarks include ack, fib, queens, bague

and sieve. The code for all custom benchmarks is available
in [15]. Benchmarks from PyPerformance include deltablue,
fannkuch, richards and float and are available online [30].
Each benchmark is executed once using parameters that
result in a run time on the order of one second on CPython.
Figure 19 compares the execution time of Zipi and PyPy
using the CPython execution time as a baseline.

Zipi fares especially well on programs that extensively use
small integer arithmetic: ack (38× faster than CPython), fib
(24×) and queens (14×) execute faster than with PyPy. The
bague (3.9×) and sieve (1.2×) benchmarks are slightly faster
than CPython with Zipi. These benchmarks use small integer
arithmetic, but also list and attribute access. The behavior
optimization has a noticeable but limited e�ect in those cases.
Finally, fannkuch (0.8×), richards (0.7×), deltablue (0.5×)
and float (0.3×) execute slower than with CPython. These
benchmarks make extensive use of user-de�ned types, which
we did not optimize, our focus being on built-in types.

Overall, Zipi’s performance on benchmarks making
intensive use of small integer arithmetic rival with PyPy.
Yet, this speedup does not translate to benchmarks that
make a limited use of arithmetic. This is expected since
behaviors speci�cally target arithmetic. We wish to extend
the behavior optimization to other operations in the future
to further analyze its impact on performance.

7.3 Threats to Validity

The validity of our results faces the common potential issues
of assessing the performance of a prototype compiler.
Despite implementing Python’s core features, including

those identi�ed as the main source of overhead in CPython
(see Section 2), Zipi only supports a subset of the language.
It lacks features such as threads, async functions, and most
of the standard library. It remains to measure the impact of
introducing these features in our prototype.

Our benchmarks show a clear performance increase when
executing arithmetic-heavy programs. Nonetheless, the
absence of most modules from Python’s standard library
limits our ability to measure the extent of this speed up on
real-life programs. The PyPerformance benchmark suite also
makes use of external libraries (such as django, a high-level
web framework written in Python) [25], which prevents
executing some of its benchmarks with Zipi.
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Figure 19. The execution time of Zipi (green) and PyPy3.7 v7.3.5 (yellow) is compared to that of CPython v3.9.0. A ratio higher
than 1 indicates an execution faster than CPython. A ratio lower than 1 indicates a slower execution.

8 Related Work

We attribute the �rst instance of compiler generation from a
formal semantics to Mosses [18], who developed a compiler
generator based on denotational semantics. However, the
generated compilers were ine�cient. Mosses later outlined
the pragmatic issues of denotational semantics for compiler
generation. First, extension to a language’s semantics
often requires to completely reformulate the denotational
semantics. Furthermore, denotational semantics fail to
convey how a program must be executed, hindering the
generation of performant compilers [19].

Executable semantics have been implemented for various
languages, including C [7], Java [4], JavaScript [2], LLVM
IR [33], Lua [24], PHP [11], POSIX shell [13], Python [21],
and R [3]. Nowadays, these typically employ frameworks
such as K [4, 7, 11], Redex [24], or a proof assistant such as
Coq to extract an executable semantics [2, 3, 13, 33]. This
generally results in signi�cantly slower implementations
than modern, hand-optimized compilers.
Politz et al. [21] proposed an alternative strategy for

de�ning a Python executable semantics. It involves
translating code into a lambda calculus equipped with
key features such as method lookup. While not focused on
performance, the technique demonstrates how the semantics
can be described by desugaring code into key features.
Our approach was inspired by the RPython experiment,

which allows to express high-level details about a language’s
semantics while remaining easy to analyze statically [1].

9 Conclusion

We presented an approach to de�ne an executable semantics
for Python operators allowing reuse in optimizing compilers.
We expressed this semantics using a syntax similar to that

of Python for seamless integration to an existing compiler.
Our approach enhances Python with primitive functions to
describe operations at a lower level. This allows us to de�ne
the notion of behavior, a specialization of an operator for a
given combination of built-in types. In particular, we showed
how behaviors remove redundant type checks, magicmethod
calls, boxing and unboxing.

We implemented semPy, a tool for partial evaluation of the
semantics, to generate behaviors automatically. The overall
structure of Python’s operators and magic methods allows to
generate behaviors using straightforward function inlining
and branch resolution.

We integrated these behaviors to Zipi, an AOT optimizing
Python compiler prototype. Zipi dispatches operations to
their corresponding behaviors at run time. This increases
execution speed, o�ering performance that rivals PyPy.
Although this speedup is limited to arithmetic-heavy
programs, behaviors could be extended to other operations
or serve alongside other optimization techniques.
We hope semPy and the behavior optimization can

contribute to the ongoing optimization e�orts of Python
implementations. It appears to us that they would be well
suited for CPython, as they speci�cally address the known
overhead of this implementation.

Data Availability Statement

The semPy source code is available online at [16].

Acknowledgements

This work was supported by the Natural Sciences and
Engineering Research Council of Canada.

26



An Executable Semantics for Faster Development of Optimizing Python Compilers SLE ’23, October 23–24, 2023, Cascais, Portugal

A Compiler Intrinsics

This appendix describes the full speci�cation of all intrinsics
encountered in this paper. Some intrinsics’ names have been
shortened in the context of this paper for readability.

define_semantics

The define_semantics intrinsic is used as a function
decorator. It indicates that a given de�nition is not that of
a Python function, but rather the de�nition of a semantics.
Thus, the compiler does not need to allocate a function
object and is free to store the semantics in its preferred
format (such as a function in the host language). The
targeted semantics is de�ned by the name of the function.
Labelling a function with define_semantics declares to the
compiler that, within the code of the semantics, the compiler
can assume that:

1. Built-in names such as int and isinstance have their
standard binding;

2. The built-in functions globals(), locals(), vars()
and super() are never called;

3. No global variable is used except to refer to other
semantics

This precludes the use of problematic Python features,
which in turn allows the compiler to apply optimizations
such as inlining built-in function calls. Preventing the usage
of global variables allows the compiler to skip the creation
of a module altogether as it removes the need for a dynamic
global environment. The behavior of define_semantics is
unde�ned if not used as a function decorator.

class_getattr

The class_getattr intrinsic function takes a Python object
and a string literal as arguments. It traverses the MRO
of the object’s type to recover the attribute speci�ed by
the string literal. If the attribute is found, it is returned.
Otherwise, the value absent is returned to indicate that
the attribute was not found. Figure 20 shows a pseudocode
implementation of class_getattr. In most cases, the result
of a call to class_getattr is a magic method. However, due
to Python’s dynamic nature, any object could be returned in
which case calling the returned value may raise an exception.
The behavior of class_getattr is unde�ned if it is called
with anything but the aforementioned arguments.

class_getattr(obj, name):

for each class in the mro of type(obj):

if class has an attribute name:

return class.name

return absent # instrinsic value ' absent '

Figure 20. Pseudocode for the class_getattr intrinsic

absent

The absent intrinsic is a primitive value similar to the
JavaScript undefined [20]. It has an identity and can be
compared with the is operator. It is not a Python object and
so any other operation on it is unde�ned.

sint

An abstract subtype of int representing small integers. It is
not a proper Python type, but allows to di�erentiate between
small and big integers using the isinstance built-in function,
while leaving room for implementation-dependent details
regarding the exact threshold between small and big integers.
For instance, isinstance(x, sint) returns True if x has
type int and is a small integer, and returns False otherwise.
Usage of sint in another context than as second argument
of isinstance is unde�ned.

bint

Similar to sint, but for big integers.

builtin

The builtin intrinsic is used as a class decorator. It indicates
that a class de�nition is that of a built-in type. Similarly to
the define_semantics decorator, it declares that the class
body does not use Python’s most dynamic features.

define_behavior

The define_behavior intrinsic is used as a function
decorator. It indicates that a function is the de�nition
of a behavior. Similarly to the define_semantics decorator,
it declares that the function does not use Python’s most
dynamic features.

X_from_host

A family of primitive functions where X can be any built-
in type, although we limit ourselves to int and float in
the scope of this paper. The primitive X_from_host takes
the host representation of an object of type X and returns
the corresponding Python object of type X. This applies the
operation of boxing a native value into an object.

X_to_host

The primitive X_to_host takes a Python object of type X and
returns its corresponding native representation. This applies
the operation of unboxing a native value from an object.
There exists one case where X_to_host does not behave

as the inverse of X_from_host. The bool type is a subtype of
int and the boolean values, True and False, are respectively
equal to 1 and 0. Thus, int_from_host(int_to_host(True))
must in fact return 1. This is why the bool_from_host_bool
and bool_to_host_bool primitive functions are required.
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bool_from_host_bool

A primitive function that maps booleans in the host language
to the corresponding Python boolean. It does not allocate a
new object, since Python booleans are singleton objects.

bool_to_host_bool

A primitive function that maps Python booleans to the host
language representation of booleans. This function is the
inverse of the bool_from_host_bool intrinsic.

str_len_to_host

A primitive function that returns the length of a Python
string as an integer in the host language.
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Abstract
Software systems evolve more and more in complex and
changing environments, often requiring runtime adaptation
to best deliver their services. When self-adaptation is the
main concern of the system, a manual implementation of
the underlying feedback loop and trade-off analysis may be
desirable. However, the required expertise and substantial de-
velopment effort make such implementations prohibitively
difficult when it is only a secondary concern for the given
domain. In this paper, we present ASOS, a metalanguage ab-
stracting the runtime adaptation concern of a given domain
in the behavioral semantics of a domain-specific language
(DSL), freeing the language user from implementing it from
scratch for each system in the domain. We demonstrate our
approach on RobLANG, a procedural DSL for robotics, where
we abstract a recurrent energy-saving behavior depending
on the context. We provide formal semantics for ASOS and
pave the way for checking properties such as determinism,
completeness, and termination of the resulting self-adaptable
language. We provide first results on the performance of our
approach compared to a manual implementation of this self-
adaptable behavior. We demonstrate, for RobLANG, that our
approach provides suitable abstractions for specifying sound
adaptive operational semantics while being more efficient.

CCS Concepts: • Software and its engineering→ Speci-
fication languages; Semantics; Source code generation.

Keywords: DSL, Operational Semantics, Self-Adaptation
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1 Introduction
In a constantly evolving world, the need to design programs
malleable to varying execution conditions (i.e., self-adaptive
programs) is an important issue that has been worked on for
many years by the adaptive systems community [16]. While
there exist many frameworks (e.g., [15, 37]) and architectural
approaches (e.g., [5, 21]), one of the difficulties in the field of
domain-specific languages is for the average domain experts
to be in a position to have to handle this concern, that is
naturally outside their expertise. Indeed, this goes against
the intuition that a domain-specific language (DSL) allows
a domain expert to focus on their domain and generally
leads to incorporating dedicated concepts for implementing
self-adaptation in domain-specific languages.

To solve this problem, we propose a metalanguage, named
ASOS (Adaptive Structural Operational Semantics), aimed
at freeing the domain expert from the task of implementing
self-adaptation. ASOS allows to define context-adaptable se-
mantics for domain-specific languages. Built as an extension
of MSOS [25], our approach aims to:

• Provide modular abstractions for defining and apply-
ing adaptations in the DSL’s operational semantics;

• Leverage a static introduction mechanism for compos-
ing the definition of an adaptation;

• Ensure that the adaptations introduced within the se-
mantics of a DSL do not break the fundamental prop-
erties of programs written in the DSL, such as deter-
minism, completeness, and termination.

The contributions of this paper encompass (1) the defini-
tion of the ASOS metalanguage, (2) ASOS formal semantics
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for reasoning over self-adaptable operational semantics, and
(3) a first implementation through a translational semantics
fromASOS to SEALS [17], a framework for self-adaptable lan-
guages. This paper illustrates the concepts of the approach in
the definition of a DSL for robot behavior (named RobLANG).

We then present the applicability of the approach on Rob-
LANG. Next, we define the formal semantics of the ASOS
metalanguage and discuss the alignment of the implementa-
tion with the formal semantics. Furthermore, we hint at the
capability of verifying properties such as determinism, termi-
nation, and completeness of a program bound to an adaptive
semantics. Lastly, we evaluate the performance overhead as-
sociated with the approach. We conclude that ASOS provides
the foundations for specifying sound adaptive operational
semantics while introducing little performance overhead
compared to a manual implementation.
The remainder of the paper is as follows. Section 2 pro-

vides background and motivation, and introduces RobLANG.
The following section gives an overview of our approach,
including the definition of the abstract syntax and semantics
of a self-adaptable language and the configuration of the
self-adaptation loop. Section 4 details the syntax and seman-
tics of ASOS. The last three sections present the evaluation,
related work, and our conclusion and future work.

2 Motivation and Illustrative Example
While a manual implementation of the self-adaptation con-
cern may be desirable when it is the main concern of the
system, the required expertise and substantial development
effort often does not justify a manual approach when it is
only a secondary concern for the given domain. A more
automated approach is needed. Hence, we first provide back-
ground information on self-adaptive system design and de-
scribe the limitations of the current approaches in the context
of domain-specific languages (DSLs). Finally, we present the
RobLANG DSL as an illustrative example that would benefit
from the abstraction of self-adaptation at the language level.

2.1 Design of Self-Adaptive Systems
Self-adaptive systems are designed to adjust their behavior
based on changes in the system or its environment. This
changement of behavior is called an adaptation. They use
sensors to gather data, analyze the current situation, decide
on a new behavior if necessary, and implement the changes
through effectors. This process is known as the feedback loop
scheme, which consists of four main functions: Monitoring,
Analysis, Planning, and Execution (MAPE-K) [19].

Previous work helps in the design of self-adaptive sys-
tems providing architectural solutions (e.g., three layer ar-
chitecture [21], MORPH [5], PLASMA [35]) and frameworks
(e.g., Executable Runtime Megamodels [37], DCL [27], Ac-
tivFORMS [15], Ponder2 [36]). While architectural solutions
give guidelines, they generally do not support designers dur-

ing the implementation. Meanwhile, frameworks provide
support to the designer. However, those frameworks are
restricted to the languages they were designed for, likely
requiring re-implementation for other languages.

Another way to design a self-adaptive system is to define
self-adaptation at the meta-level. SEALS [17], e.g., supports
language engineers in the implementation of self-adaptable
virtual machines, providing abstractions and avoiding to
re-implement a known framework for self-adaptation from
scratch. SEALS provides facilities to support the definition
of the language abstract syntax and operational semantics,
the feedback loop and associated trade-off reasoning, and
the adaptation semantics and the predictive model of their
impact on the trade-off (Impact Model). However, SEALS
does not readily enable formal verification of properties such
as determinism, completeness, and termination.

2.2 Limitations of Current DSL Approaches
In the context of DSLs, the re-implementation of frameworks
for self-adaptation can be tedious or impossible, depending
on the expressiveness of the language. E.g, the difficult task
of implementing a constraint solving algorithm for trade-off
analysis or monitoring the execution environment (e.g., CPU,
RAM) may not be supported. Moreover, this implementation
requires the language user to be an expert in the design of
self-adaptive systems, which is often not the case. However,
designing self-adaptation at the meta-level offers appropriate
tooling to language engineers for the implementation.

2.3 Illustrative Example: Energy-Aware RobLANG
RobLANG1 is a representative of procedural DSLs used, in
this case, for specifying the actions of a robot. The domain
concepts manipulated in RobLANG include speed changes,
movement (forward and backward), orientation (turn left-
/right), and use of the sensors (e.g., battery, distance). To or-
chestrate these actions, RobLANG also has functions, control
structure (if and while), arithmetic and boolean expressions.
Often, the domain of robotics requires developers to im-

plement the behavior of the robot with energy efficiency
in mind to avoid battery depletion. One way to reduce the
energy consumption of a robot is to reduce the speed of
the motors. This is due to the exponential increase in motor
energy costs as a function of speed [2].
However, speed is often also an important factor in the

robot mission. Therefore, it is necessary to dynamically apply
this speed reduction, depending on the trade-off between
energy consumption and speed, taking into account various
potentially dynamic pieces of information (e.g., availability of
the power supply, current level of the battery, time estimation
to complete the current task, importance of the task).

In this context, RobLANG would benefit from the abstrac-
tion of this recurrent adaptive behavior in a metalanguage

1Implementation : https://www.gwendal-jouneaux.fr/SLE2023/RobLANG
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to free the language user from the implementation of the
feedback loop and trade-off analysis.

3 Approach Overview
This section presents a general overview of our approach and
describes ASOS (Adaptive Structural Operational Semantics),
a metalanguage to specify and reason on self-adaptable oper-
ational semantics. Figure 1 depicts the design of a language
with adaptive operational semantics, i.e., a Self-Adaptable
Language (SAL), and the generation of an interpreter in
SEALS [17], an implementation framework for building self-
adaptable virtual machines (see Section 2.1). SEALS is used
as the target of the generation because of the suitable abstrac-
tion. The goal is to allow, through ASOS, to reason about
such semantics, rather than on SEALS Java code. The execu-
tion of the ASOS semantics rules of the SAL are presented
in Figure 2, starting from the Evaluate step, with first the
feedback loop and then the rule executions.
The definition of a self-adaptable language, as in other

languages, includes the definition of its abstract syntax and
semantics. The abstract syntax specifies the domain concepts
of the language and their relations, whereas the semantics
define the meaning of those concepts. In this paper, with
SEALS as the target implementation framework, we focus on
operational semantics as a way to define language semantics.

3.1 Abstract Syntax Definition
In the modeling community, the abstract syntax is often
expressed with a metamodel. Since SEALS relies on a Java-
based definition of abstract syntax, we choose to use Ecore [34]
as the metalanguage to express the metamodel. In addition,
a generator from Ecore to Java classes using EMF [34] exists
and can be modified to generate the SEALS-based interpreter.
This allows a language engineer to define the abstract syntax
as they would normally do for any Ecore-based DSL defini-
tion (e.g., EcoreTools [34]). Figure 1 represents this by the
language engineer defining the abstract syntax conforming
to the Ecore metamodel, and the SEALS-based interpreter
being generated for the language implementation.

Figure 1. Approach overview

Figure 2. Overview of ASOS semantics execution

3.2 Operational Semantics Definition
Operational semantics define the meaning of the language
concepts by expressing the computational steps (evolution
of the state of the execution at runtime). The operational se-
mantics of a language can be expressed using metalanguages
such as Structural Operational Semantics (SOS) [29], and is
typically implemented through an interpreter or a compiler.

In particular, SEALS defines operational semantics in the
form of an interpreter composed of three components: a de-
fault semantics for the language, a feedback loop performing
analyses, and modular adaptations modifying the default
semantics. SEALS, through this decomposition, ensures a de-
fault behavior and allows the delegation of the development
and/or configuration of adaptations to the language users,
or even the end-users. ASOS keeps this decomposition for
the same reasons. These three components are represented,
in Figure 2, through the stack of Default Rule at the bottom,
the Feedback Loop dashed box, and the stack of Adaptation
Module on the right, respectively.
To support a modular approach and the ability to rea-

son on operational semantics, we choose to base our defi-
nition of default and adaptation semantics on Modular SOS
(MSOS) [25] and its extension I-MSOS [26]. Among the po-
tential frameworks to formally specify semantics, such as
K [32] and its matching logic [31], we choose MSOS for its
focus on modular definition of operational semantics and the
implicit propagation of auxiliary components of its extension
I-MSOS, reducing redundancy in the rule writing and fitting
the propagation of models through programs execution.
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3.2.1 Default Semantics (Rules). The definition of the
default semantics is a set of transition rules for all the con-
cepts of the language. I-MSOS transition rules can be decom-
posed into several components, presented in Figure 3. First,
the conclusion of the rule represents the effect of the transi-
tion on the state. This transition from a pattern used to match
a particular term structure, i.e., the input pattern, results in a
new term to be evaluated or a computed value to return, i.e.,
the result of the rule. When a transition is performed, we say
that the term matching the input pattern progressed to the
result. In addition, this transition can affect auxiliary entities
such as the memory. In I-MSOS, these auxiliary entities are
implicitly propagated and only expressed when a rule makes
use of them. This conclusion is conditioned by two other
components of the rule: side-conditions and premises.
Side-conditions allow to limit the application of the rule

to a subset of the terms matching the structure defined in
the conclusion of the rule. For example, a rule performing a
division would only apply if the divisor is not zero. These
conditions are also used to describe computations over com-
puted values. For instance, a rule performing an addition
would define a condition 𝑛 = 𝑛1 + 𝑛2 such as 𝑛1 and 𝑛2 are
the computed values of the left and right expressions. In this
case, rather than evaluating the predicate, those conditions
require an instance of 𝑛 to make the predicate true, thus
computing the value for 𝑛.

On the other hand, premises define assertions on the abil-
ity of subterms (terms contained in themain term) to progress,
i.e., perform transitions. It differs from the side-condition
computations, as it represents computations of terms using
rules.For example, a rule in charge of evaluating the condi-
tion of an if statement progresses to a term representing the
same statement but replacing the original condition by the
result of its progression. However, this makes sense only if
the condition can progress. Hence, this rule is conditioned
by a premise on the ability of the condition to progress.
ASOS reuses these concepts in the definition of its rules,

which are detailed in Section 4.1. The key difference with
I-MSOS is the clear separation between side-conditions and
computations present in ASOS. In ASOS, computations are
explicit and grouped, with assignment of values to/from
the propagated auxiliary entities, in a dedicated section of
the rule. Hence, making the side-conditions, as for the pat-
tern matching, has no side effects. In the proposed imple-
mentation, these auxiliary entities are defined using a meta-

Figure 3. Structure of I-MSOS rule

model representing the structure of the semantic domain.
The merge of the abstract syntax metamodel and the meta-
model for the semantic domain forms the execution meta-
model. Instances of this execution metamodel (execution
models) represent the runtime state of the program, which
is implicitly propagated in the runtime in the same way as
the I-MSOS auxiliary entities.

3.2.2 Feedback Loop and Trade-Off Reasoning. At the
core of a self-adaptable language, there is a feedback loop
selecting the adaptations to perform depending on moni-
tored resources and the desired trade-off between the ad-
dressed properties of interest. The resources represent the
environment uponwhich the decision to adapt is taken, while
properties of interest denote the specific properties that we
seek to maximize through adaptations. To implement the
feedback loop, SEALS requires the implementation of the
Monitor, Analyze, Plan, and Execute phases (red boxes of the
feedback loop in Figure 2) and Knowledge base, providing
the resources to monitor, the properties of interest, and the
function reading the desired trade-off. ASOS provides an
implementation for the Analyze, Plan, and Execute phases of
the feedback loop based on the modeling approach provided
by the framework. However, the feedback loop still requires
configuration. The resources and properties of interest needs
to be configured in SEALS, andmonitoring hooks must be im-
plemented to update resources values. They are represented
in the Knowledge box of the Feedback Loop, and by the "read"
and "update" arrows in Figure 2 (see also the Feedback Loop
in Figure 1). In this first version of ASOS, we do not provide
abstractions for the configuration and monitoring hooks to
retain flexibility to implement various strategies.

3.2.3 Defining AdaptationsModules. Finally, to express
the adaptations of the operational semantics, ASOS requires
adaptation modules.An adaptation module can be defined
by the language engineer, or delegated to other stakeholders
(e.g., language users, end-users). However, while the inclu-
sion of external adaptation modules is facilitated by SEALS
and generated code from ASOS, the method used to manage
external adaptations (e.g., link in command line, dedicated
folder) is left to the language engineer to implement.
An adaptation module is defined by three components:

adaptation rules, matching clauses, and a model of expected
impacts of the adaptation on the properties of interests. Adap-
tation rules are defined similar to default rules but with an
additional description on how to introduce them in the oper-
ational semantics dynamically and under which conditions.
We propose three ways to introduce adaptation rules: (i) spe-
cialization, where the new rule replaces an existing rule,
(ii) before, where the new rule is executed before another
rule, and (iii) after, where the new rule is executed after an-
other rule. It means that before executing the default rule,
as depicted in the Rules execution box of Figure 2, the appli-
cable before adaptations are called, then either one of the
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specialization rules or the default rule is applied, and finally
the applicable after adaptations are called.
Of course, an adaptation may not always apply. To spec-

ify when the conditions are met and the adaptation can be
introduced, we propose a matching system based on a struc-
tural matching on the Abstract Syntax Tree and conditions
on the runtime values in the execution model. As shown in
Figure 2, every adaptation module define Matches, that are
used during a Matching step verifying if the adaptation is
applicable on the current AST node.
In addition to this matching system, an adaptation also

needs to be activated by a feedback loop evaluating its rel-
evance to the current trade-off and environment. To do so,
the adaptation module must declare a predictive model of
its impact on the properties of interest, the Impact Model.
This model is used in the Plan phase of the Feedback Loop
(see Figure 2) to select the set of adaptations based on the
trade-off given the current context. The adaptations are then
enabled in the Execute phase.

The SEALS implementation for adaptation modules is de-
rived from the ASOS specification for this module. However,
the impactmodel for this module still needs to be defined. It is
left as future work to provide the appropriate abstractions for
the impact models in ASOS because there are multiple alter-
natives to implement the Analyze and Plan phases and define
the impact models (e.g., Goal Modeling, Machine Learning).
When using the base implementation of the feedback loop
provided by ASOS, the language engineer will have to define
a goal modeling-based impact model using the constructs
provided by the SEALS framework.

4 The ASOS Metalanguage
ASOS2 is a declarative language to specify operational seman-
tics based on MSOS [25]. ASOS extends MSOS by providing
abstractions to define runtime dynamic adaptation of the
operational semantics of the language. The definition of the
operational semantics is done through transition rules in the
same fashion as MSOS. The additional adaptation concern
is managed using adaptation rules, i.e., transition rules with
additional information on how and when to introduce them
in the set of applicable transition rules. This is defined us-
ing the ASOS matching system because it allows to express
structural patterns that are not possible to express using
typical MSOS rule format [9].

4.1 ASOS Syntax
This section describes the abstract syntax of the ASOS meta-
language. Figure 4 shows the main concepts of the ASOS
metamodel. Adaptive Operational Semantics is the top-
level concept representing the adaptive operational seman-
tics of the implemented DSL, and is composed of a set of rules
and a set of adaptation modules representing the default se-

2Implementation: https://www.gwendal-jouneaux.fr/SLE2023/ASOS

mantics and the adaptation semantics of the language. We
use RobLANG3 as an illustrative example with the concrete
syntax provided by the implementation (Section 4.2).

4.1.1 Structure of Transition Rules. The Rule concept
is at the core of ASOS, describing the computation to per-
form for a given concept. These computations are mainly
described using the Transitions components of the rule.
Two types of transitions exist, the conclusion of the rule and
the premises. Both represent the same concepts as the ones
from MSOS described in Section 3.2.
1 rule IfCond ,

2 RobLANG.If(cond , then , else)

3 ->
4 RobLANG.If(newcond , then , else)

5 resolve

6 cond -> newcond

7
8 rule IfTrue ,

9 RobLANG.If(sd.ValueBool(b), then , else) -> then

10 where

11 b == true

12
13 rule IfFalse ,

14 RobLANG.If(sd.ValueBool(b), then , else) -> else

15 where

16 b == false

Listing 1. Transition rules to compute an if condition

Listing 1 presents the definition of three Rules for the If
concept. Transitions are represented using an arrow (→),
with the conclusion defined as the first transition in the rule
(e.g., lines 2-4 for rule IfCond) and premises defined in the
resolve section (e.g., line 6). The LHS and RHS of transitions
are Terms except that the LHS of the conclusion transition
(e.g., line 2) must be a Configuration defined in the abstract
syntax of the DSL. Such a Configuration is prefixed with
RobLANG and defines the concept on which to execute the
rule. A concept prefixed with sd is also a Configuration but
defined in the semantic domain structure and represents the
computed values. The constructor notation4 is used to denote
a Configuration (e.g., RobLANG.If(...)), whereas Symbols
are represented as identifiers (e.g., cond, then, else).
The subterms in the parenthesis of the constructor nota-

tion correspond to the elements contained in this concept as
defined in the DSL’s abstract syntax. This could represent a
computed value constructor (e.g., sd.ValueBool(...) in line 9)
or it could bind a name to the subterm of a configuration for
further use in the premise (e.g., cond). The subterms allow us
to represent part of the state of the evaluation of the concept,
and update it. When defining a computed value construc-
tor (prefixed with sd) for a subterm (see line 9), this implies
that this subterm has been computed. Moreover, premises
assert that a subterm, via a transition, can change state. In
line 6 of IfCond, the state of evaluation of the if condition
changed, and the newcond Symbol is bound to this new state.
3Specification: https://www.gwendal-jouneaux.fr/SLE2023/ASOSRobLANG
4A constructor notation is the pattern : prefix.Concept(subterms...)
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Figure 4. ASOS Metamodel (ConditionalExpression, Expression, and Location omitted to focus on main concepts)

The constructor notation akin to algebraic data allows us to
express the impact of this change in the evaluation state of
the If concept by changing cond to newcond in the output
term (RHS of transition) using the Symbol as a reference.
Just like in I-MSOS, memory and other auxiliary entities are
propagated implicitly and do not need to be represented.
In addition to the premises assertion, rules can be condi-

tional. The IfTrue rule includes a Condition (line 13) in the
where section of the rule. A condition could be used to de-
fine first-order logic predicates over values. For instance, the
choice of the branch of the if statement to execute depends
on the condition truth value.

1 rule Break ,

2 RobLANG.BreakLoop ()

3 ->
4 termination sd.BreakSignal ()

5
6 rule LoopTrueBreak ,

7 RobLANG.Loop(sd.ValueBool(b), body)

8 ->
9 sd.NilValue ()

10 where

11 b == true

12 resolve

13 body -> termination sd.BreakSignal ()

Listing 2. Abrupt termination using loop breaking

To ease handling abrupt termination (e.g., errors, breaks,
returns), transitions can emit and receive abrupt termina-
tion signals using the keyword termination. Conclusion
transitions using the termination keyword emit a signal
containing the usual output (e.g., line 4 in Listing 2). On
the other hand, premises with a termination nature (e.g.,
line 13) are the only premises matching a transition emitting
such signal. This allows the language engineer to receive
and handle this abrupt termination, while remaining obliv-
ious of the upward propagation of these signals when not
managed. Furthermore, support of termination allows for
default handling to be embedded in the ASOS metalanguage.

Transitions may require computations and/or storing ca-
pabilities to describe the arrival state (e.g., arithmetic ex-
pressions, assignments). In ASOS, both are managed using
the Binding construct. Bindings associate the result of an
expression to a location. This location can be either a new
Symbol (e.g., line 6 in Listing 4), allowing reuse of the expres-
sion result in the output of the transition, or a "dot" notation
allowing to set values in the execution model propagated
during the execution. Expressions support the "dot" notation
to access the execution model, symbol reference, the usual
arithmetic and boolean operators, and constants.
Finally, some concepts involve an external component

either for Input or Output. For example, print statements
require access to a communication interface, i.e., the console.
This access is managed through external functions conform-
ing to a predefined signature in the semantic domain struc-
ture definition. In addition, the on keyword can be used to
specify the object on which to call the function. An Input
is denoted through the assignment of a function result (e.g.,
lines 8-9 in Listing 4), while an Output is just a function call
(e.g., lines 10-12 in Listing 4).

4.1.2 Adaptation Modules Definition. Adaptations are
defined in modules. An Adaptation Module groups a set
of transition rules representing the adaptation of a concept.
These transition rules are defined like other transition rules
as explained earlier. However, an adaptation developer needs
to additionally define the conditions to apply the adaptation
at the module level, and how the adaptation rules are added
to the operational semantics at the rule level.
1 recursive match RobLANG.Loop(

2 RobLANG.GreaterEqual(

3 lhs ,

4 RobLANG.DoubleConstant(d)),

5 body)

6 where

7 d == 0.0

Listing 3. Match clause of an adaptation module
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The conditions are defined using a Match clause. This
match clause is composed of a recursive (or not) nature, a
structural match, and conditions, the latter two being similar
to the input pattern (LHS of conclusion transition) and where
section of a rule, respectively. Listing 3 gives an example of
an adaptation module’s match clause. In this example, the
structural match targets a while loop of the form: while(lhs ≥
d){body}. Moreover, the where section condition ensures that
the constant d is equal to 0. The match describes a configura-
tion which leads to the dynamic introduction of the module
adaptation rules in the operational semantics when the cur-
rent term to evaluate is matched. The new rules introduced
can be used for the evaluation of this term and/or all of its
descendant in the AST. If a descendant of the matched term
happens to be of the same nature (here the Loop concept)
but is not valid with respect to the match clause, there are
two possibilities. If the match clause possesses the recursive
nature, nothing changes and the introduced rules remains.
However, if the match is not recursive, the introduced adap-
tation rules are removed from the operational semantics for
the descendant and the associated sub-tree of the AST.

To define how to introduce adaptation rules in operational
semantics, we propose three types of adaptation rules pre-
sented in Listing 4. A Specialization adaptation defines a
rule that will replace a target rule in the operational seman-
tics. For instance, the adaptation rule HalfSpeedForward is a
rule that replaces the ForwardAct rule to perform the mov-
ing forward action at half of the speed. Before and After
adaptation also target an existing rule, but the rule defined
is executed respectively before or after the target rule.
1 Specialize ForwardAct rule HalfSpeedForward ,

2 RobLANG.MoveForward(sd.ValueDouble(d))

3 -> sd.NilValue ()

4 bind

5 half = 0.5 * s

6 IO

7 ctx = RobLANG.WithContext.getContext ();

8 s = sd.Context.getNominalSpeed () on ctx;

9 sd.Context.setSpeed(half) on ctx;

10 sd.Context.moveRobot(d) on ctx;

11 sd.Context.setSpeed(s) on ctx

12
13 Before TargetRule rule BeforeTargetRule ,

14 ...

15 After TargetRule rule AfterTargetRule ,

16 ...

Listing 4. Three types of adaptation rules

4.1.3 Well-Formedness Rules. To specify a well-formed
ASOS semantics, additional constraints on the abstract syn-
tax need to be followed. First, all transitions in a rule are
not defined in the same way. The transition representing the
conclusion of the rule requires a Configuration defined in
the abstract syntax of the DSL as left Term (from), which is
not the case for premises. Second, List terms, representing
subterms with cardinality greater than 2, can only be used as
subterms to decompose, for instance, the list of statements

in a loop. Finally, adaptation rules require well-formedness
constraints to ensure their applicability. Thus, a Before adap-
tation requires, as result, a valid term that can be executed
by the adapted rule.

4.2 ASOS Translational Semantics
In this section, we detail the current implementation of the
ASOS language. This implementation takes the form of a
translational semantics to a Java implementation based on
Ecore [34] and the SEALS framework [17].

4.2.1 Derive Java Code from ASOS Transition Rules.
To derive a Java implementation of a transition rule, we
divide the rule into two parts: effects and guards. Effects
represent the effects of the rule on the state, such as the
resulting term of the rule, bindings, inputs, and outputs.
Guards represent the conditions to apply a rule, such as the
input pattern, premises, and conditions. The overview of the
rule guards and effect generation is presented in Figure 5.
Solid arrows represent the generation of one element of the
rule, while dashed arrows represent the generic generation
repeated for all instances in a section. Arrows pointing to
adaptations represent the call site of this type of adaptation.
To generate the effect of the rule, we first generate the

inputs, then the bindings, the computation of the resulting
term, and finally outputs. Input and Output are defined as
callable functions in ASOS. In the implementation, we use
Ecore EOperations tomodel these functions.We first generate
the processing of the function arguments, then create a call
to the appropriate EOperation for each input and each output.
This is presented in Figure 5 by the dashed arrows from the
Input and Output of the IO section. For Input, the result of
each function is stored either in a temporary variable if the
Location is a Symbol, or in the executionmodel by resolving
the associated "dot" notation. Each Binding generates, as
for Input, an assignment of the computed expression to a
temporary variable or a call to the appropriate setter of the
executionmodel. The expression of the Binding is translated
to its Java equivalent, with executionmodel accesses resolved
as calls to the appropriate getters.
Finally, we generate the computation of the output Term

depending on its form: a Configuration of the same concept
as the input, a Symbol, or a Configuration with a different
concept. In the case of a Configuration of the same concept,
the rule is an update of the state of evaluation of the current
concept. The update of the current state is generated from
the difference between the two configurations. For instance,
the Term resulting from a premise can be retained in the new
state of evaluation of the current concept, as is the case in the
IfCond rule (line 6 in Listing 1). If the transition resolves to a
Symbol, we do not know what it represents (term or value).
To manage this, we generate a conditional assignment to
a return variable, that will affect the value if computed, or
the term if not. At the end of the rule’s semantics, the con-
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Figure 5. Overview of rule generation (ASOS to Pseudo-code)

tents of this variable are returned or executed, depending
on whether it is a value or a term. Finally, if the output is
another Configuration, we generate the expected structure
using the object factory provided by the Ecore model. Sub-
terms represented with a Configuration generate a new
concept instance and subterms represented with a Symbol
are resolved and set in the correct concept instance. This
structure is assigned to the return variable, and is returned
or executed depending on whether it is a value or a term.
To generate the guards, we first generate the input pat-

tern matching condition, then check the conditions of the
where section, and finally the premises. The generation of
the input pattern condition is done by checking the type
of the subterms of the associated Configuration. Symbols
does not impose constraint, hence generating no condition.
For Configuration and List, we generate the condition on
the associated type, and recursively generate conditions for
their subterms. This guard is the first generated, ensuring
the structure required for valid symbol resolution in the re-
maining of the rule. The generation of a Condition is done
by translating its expression to its Java equivalent. If there
are multiple conditions, they are represented as nested in
the order of definition in the ASOS rule.

Finally, the Premise generation produces three statements:
a condition checking that the subterm has not been evaluated,
a call for the evaluation of the Symbol, and a verification of
abrupt termination signals. In Figure 5, the first statement is
implicitly shown in the evaluate method as values cannot be
evaluated. This condition is necessary as a premise is an as-
sertion on the transitions of subterms, whereas a computed
value can never transition. If it has not been computed, we
compute it and store its result for reuse in the effect of the
rule. If the right hand side of the premise is a Configuration,
we also check that the resulting term is matching its pattern
A final condition is generated to check the normal or abrupt
termination of the premise computation.
If the premise does not expect a termination signal, or if

this signal is different than the expected one, the rule is not
applied, and the termination signal is stored for potential
propagation if no other rules handle this termination. To

avoid re-executing a premise when its result is the only dif-
ference in rule guards (e.g., termination vs normal execution),
the result of premise evaluation is shared across those con-
flicting rules, as a failing guard does not apply a rule, hence
does not change the state of execution.

4.2.2 Generate Default Semantics and Feedback Loop.
In SEALS, the default semantics is defined through Operation
classes, providing the complete semantics for one concept in
an "execute" function. From those Operation classes, SEALS
provides a visitor who can evaluate the AST of the language.
Moreover, SEALS allows adaptations on those Operation
semantics by explicitly defining it as an AdaptableOperation
and providing its interface with adaptations, requiring ASOS
to generate one pair for each concept. Finally, SEALS requires
the specialization of its FeedbackLoop, AdaptationContext,
and SelfAdaptableLanguage concepts, generated by ASOS.

To generate the content of the execute function, presented
by Figure 6, all the ASOS rules defined for the concept are
retained from the set of rules defining the default semantics.
Since we consider the provided semantics definition as

deterministic, the generated rules, presented in the yellow
box in Figure 6, preserve the ASOS definition order. To store
the computed value during the execution of the concept, we
automatically generate a data class that contains one field for
each subterm and the associated getters and setters. We have
two instances of this data class, one for the data kept across
rules, and one to store the result of computed premises.

Figure 6. AdaptableOperation execute function overview
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At the end of a rule execution, there are three cases: the
rule returns a value, the rule reduces to a term to evaluate, or
the current concept state is updated and needs to be executed
further. All of these cases are shown in the green box on
the right of Figure 6. In the first case, the computed value is
simply returned as a result of the execution of the concept. In
the second case, the visitor is called on this term to execute it,
then the resulting computed value is returned. Finally, if the
current concept requires more rule applications to complete,
we jump back to the top of the rules list. In the case that no
rule can be applied and because the semantics is considered
complete, we know that a termination signal was not handled
at this concept level and should be propagated to the calling
concept. This is represented by "Propagate termination" at
the end of the last rule in Figure 6.

Because adaptations are based on the introduction of new
rules in semantics, we generate a language-wide interface
defining three adaptationrule fields for each rule of the
default semantics, corresponding to the Before, After, and
Specialization adaptations. These AdaptationRules rep-
resent a callable adaptation rule, and therefore, will be de-
tailed in the next section. The arrows on the right part of
Figure 5 denote the call to these AdaptationRules if they
exist for this rule in the current context. This is done inside
the guards to ensure that we call adaptation only if the rule is
effectively called. The effect of the original rule is generated
in a way that either the specialization or the effect will be
executed but not both. Finally, the After adaptations are
called on the output of the current rule.
In addition, generic implementations of the three main

classes of a SEALS language (AdaptationContext, Feedback-
Loop, and SelfAdaptableLanguage) are generated. The Feed-
backLoop implementation make use of SEALS proposed mod-
eling approach for impact and trade-off analysis. However,
the AdaptationContext still requires the definition of the re-
sources and properties of interests, and implementation of
the trade-off monitoring function.

4.2.3 Generate SEALS Adaptation Modules. In ASOS,
adaptation rules achieving part of the same adaptation logic
are grouped in modules. These modules contain, in addition
to the set of adaptation rules, a matching expression enabling
the adaptation to occur on the term and its subterm. On the
other hand, the concept of adaptation module of SEALS
provides the adapt and trigger method. The trigger method
verifies if the adapt method should be called on the current
term, while the adapt method performs the adaptation.

To map the behavior specified in ASOS, we chose to gen-
erate a set of AdaptationRule classes representing each
adaptation rule, implementing an adapt function with the
code for the adaptation rule. To evaluate the adaptation rule,
the implementation requires an access to the subterms, and
a way to evaluate premises of the adaptation rule. The first
point is managed by passing the node and the current state of

execution of the node. The second is achieved by providing
the store of computed premises and the visitor, giving access
to computed premises and a way to evaluate the others.
These rules are the ones used in the pattern managing

adaptation, at the right on Figure 5. When a match occurs,
an instance of these classes will be created and added to
the pool of executable rules by adding it to the interface
for adaptations. However, SEALS recreates an interface at
each step of the evaluation, hence this new set of rules is
not propagated. This issue can be resolved by adding some
information at the AdaptationModule level. Rather than per-
forming the matching for the current node like SEALS, we
save the state of the matching at the module level. When eval-
uating a term that matches the Match clause of the module,
we save this information in a boolean in the module. Then
for every node, if an ancestor node matched the clause, we
add the AdaptationRule instance to the interface. Depend-
ing on the Match recursive nature, we potentially invalidate
this match when going deeper in the structure. In the end,
only the impact model of the adaptation remains for the
adaptation designer to specify.

4.3 ASOS Formal Semantics
In this section, we introduce a formalization for the ASOS
meta-language and its alignment with the implementation
(Section 4.3.1). The formalization allows us to reason about
certain properties, in particular, how the adaptation pro-
cess affects determinism (Section 4.3.2), termination (Sec-
tion 4.3.3), and completeness (Section 4.3.4). To formalize
ASOS we build upon earlier work of generalized transition
systems (GTSs) as defined for MSOS by Mosses [25].

Definition 4.1. A GTS is a tuple ⟨Γ,A,−→,𝑇 ⟩, where A is a
categorywithmorphisms𝐴,−→⊆ (Γ×𝐴×Γ) is the transition
relation, and𝑇 ⊆ Γ are terminal configurations. ⟨Γ, 𝐴,−→,𝑇 ⟩
is a labeled terminal transition system5 (LTTS) [30].

The category is referred to as a label category and is an
(indexed) product category of component categories

∏
𝑖∈𝐼 A𝑖 .

For a full account of the different types of component cate-
gories we refer the reader to [25].
With the category, it is ensured that the labels of subse-

quent transitions compose. So when we have 𝛾
𝛼1−−→ 𝛾1

𝛼2−−→ 𝛾2
for some 𝛾,𝛾1, 𝛾2 ∈ Γ and 𝛼1, 𝛼2 ∈ 𝐴, we have that 𝛼1;𝛼2
holds in the category A. Using the theory of MSOS, we de-
fine our formalization as follows.

Definition 4.2. Let 𝐵 = ⟨Γ,A,−→,𝑇 ⟩ be a GTS, then we
define our formalization as a tuple ⟨𝐵,∆, 𝜋, 𝜅, 𝜁 ,⇝⟩ such
that the discrete category with P(Δ) as its objects is one of
the component categories of A; ∆ = (Δ, lab : Δ → {0, 1})
is a structured set of symbols that we call adaptation sig-
nals, and 𝑙𝑎𝑏 is a labeling function which maps adaptation
5An LTTS is simply an LTS with an extra component representing the termi-
nal configurations, i.e. the configurations for which there are no transition.
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signals to either 1 or 0, denoting to apply or not apply re-
cursive activation, respectively; 𝜋 : Γ → (P(Δ) → P(Δ))
is an adaptation projection function; 𝜅 : 𝑂 → P(Δ) is an
adaptation activation function with 𝑂 being the set of ob-
jects; 𝜁 : P(Δ) → 𝛿 is an adaptation selection function;
and⇝ ∈ (Γ,Δ) ×𝐴 × Γ is an adaptable transition relation.
Furthermore, we define the ↠ relation inductively as fol-
lows, where 𝐷 ⋄ 𝐷 ′ = {𝛿 | 𝛿 ∈ 𝐷 ∪ 𝐷 ′ ∧ lab(𝛿) = 1} with
𝐷,𝐷 ′ ∈ P(Δ), and 𝑋 denotes the label of the↠ transition,
so 𝑋 is a morphism of the category A.

adaptation

𝜋 (𝛾) (𝜅 (𝑠𝑜𝑢𝑟𝑐𝑒 (𝑋 ))) = 𝐷 ′

𝜁 (𝐷 ∪ 𝐷 ′) = 𝛿 ′

𝐷 ⋄𝐷 ′ ⊢ (𝛾, 𝛿 ′) ⇝ 𝛾 ′

𝐷 ⊢ 𝛾 ↠ 𝛾 ′

default

𝜋 (𝛾) (𝜅 (𝑠𝑜𝑢𝑟𝑐𝑒 (𝑋 ))) = 𝐷 ′

𝜁 (𝐷 ∪ 𝐷 ′) = 𝛿 ′

𝐷 ⋄𝐷 ′ ⊢ (𝛾, 𝛿 ′) ⇝̸
𝐷 ⋄𝐷 ′ ⊢ 𝛾 −→ 𝛾 ′

𝐷 ⊢ 𝛾 ↠ 𝛾 ′

These rules state that when there is an active adaptation
for the current configuration and the current adaptation
signal, then that rule is picked. Otherwise, the transition
in the base GTS is used. In addition, we require that the⇝
relation respects the terminal configurations of the base GTS.
I.e., for all 𝛾 ∈ 𝑇 and for all 𝛿 ′ ∈ Δ we have (𝛾, 𝛿 ′) ⇝̸.

4.3.1 Alignment with the Implementation. To explain
our formalization in a bit more detail, we discuss the align-
ment of the ASOS model and our formalization.

Γ and 𝑇 represent the terms to evaluate and is reflected
in the implementation by a metaclass in the language meta-
model. While Γ ranges over configuration with an arbitrary
metaclass representing the term, the terminal configurations
𝑇 are the subset that use metaclasses from the semantic
domain structure definition. Adaptation signals(Δ), repre-
sent all the combinations of activated adaptation modules.
Moreover, before and after adaptations obtain an annotated
adaptation signal to differentiate between them within the
⇝ relation. An adaptation signal is reflected in the imple-
mentation by an adaptation interface instance that contains
adaptation rules. The addition of two module rules to the
interface makes it contain the union of the two sets of rules,
hence representing the same set of rules as the adaptation
signal of the merge of the signals of the two modules. Thus,
the composition in the interface is similar to the adaptation
signal merge for composition in formal semantics.

The three functions 𝜅, 𝜋, 𝜁 model the feedback loop, adap-
tation activation, and adaptation selection. The matching on
terms in the meta-language to activate an adaptation corre-
sponds to the 𝜋 function. To ensure that only one signal is
active at a time, the 𝜁 function selects one signal based on
the current active adaptation signals.

The −→ relation makes up the original semantics of the
programming language and corresponds to the rules outside
of adaptation modules. The⇝ corresponds to the specializa-
tion adaptations as defined in the adaptation modules. The
syntax of⇝ is similar to −→ with the addition of the adap-
tation component, corresponding to the adaptation module
that captures the ASOS rule. The Δ component of the⇝
ensures that the specialization activates iff the module is
activated. For both relations, the arrows in the premises cor-
respond to the↠ relation. For the⇝ relation, premises can
also contain before and after steps that model the before
and after adaptations. The final semantics of the language is
defined by the↠ relation, which combines the −→ and⇝
relations. The↠ relation thus corresponds to the Adaptive
Operational Semantics component in Figure 4.

Finally, the category A models the auxiliary entities avail-
able to rules. This corresponds to the Binding, Input, and
Output components in Figure 4. In the implementation, we
implicitly propagate these entities represented by the execu-
tion model, the feedback loop state, and the modules state.
Therefore, successive modification of these elements forms
a trace similarly to label composition in the category.

4.3.2 On Determinism in an ATS. In our model, deter-
minism is controlled by the designer and not introduced by
the adaptation process. In other words, iff the three relations
⇒,⇝ and −→ are deterministic, then↠ is deterministic.
To demonstrate this, we give a proof sketch that shows

that for every configuration and for all 𝛼 ∈ 𝐴 we have either
𝛾 g and 𝛾 ∈ 𝑇 or ∃!𝛾 ′ ∈ Γ such that 𝛾 ↠ 𝛾 ′. This is only
true whenever we have no derivation tree or we have a
unique derivation tree. The first case holds by definition. For
the second case, we show that under the assumption, the
adaptation and default rules are deterministic. Let us assume
they are not deterministic, then we can construct multiple
derivations trees for some 𝛾 ∈ Γ and some 𝛼 ∈ 𝐴. For the
adaptation rule we can construct multiple derivation trees
whenever one of premises 𝜋 (𝛾)◦𝜅 (𝑠𝑜𝑢𝑟𝑐𝑒 (𝑋 )), 𝜁 (𝐷∪𝐷 ′), or
𝐷⋄𝐷 ′ ⊢ (𝛾, 𝛿 ′) ⇝ 𝛾 ′ has multiple solutions and the resulting
conclusion configurations are distinct. By definition, both
the first and second component have exactly one solution.
So, for some 𝛿 ′ ∈ Δwe have ∃𝛾1, 𝛾2 ∈ Γ and𝛾1 ≠ 𝛾2 such that
𝐷 ⋄𝐷 ′ ⊢ (𝛾, 𝛿 ′) ⇝ 𝛾1 and 𝐷 ⋄𝐷 ′ ⊢ (𝛾, 𝛿 ′) ⇝ 𝛾2. However,
this contradicts our assumption that⇝ is deterministic. The
same process can be used for the default rule. Finally, the
adaptation and default rule are non-overlapping by definition
due to the conflicting premise of the ⇝ relation. Hence,
under the assumption, the↠ is deterministic.

4.3.3 On Non-Termination in an ATS. Non-termination
in an ATS can arise due to the interplay between the ⇝
and −→ relations. For example, we might have 𝛾 → 𝛾 ′ and
then (𝛾 ′, 𝛿) ⇝ 𝛾 for some 𝛿 ∈ Δ, which can result in non-
termination. It might not, because the outside environment,
e.g., sensors, can change resulting in a different adaptation or
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no adaptation being performed. In addition, such occurrences
might be intentional. For example, when a while term is
adapted but a term in the body of the while is not adapted.

So far, we have not yet identified a reasonable restriction
on the adaptations that prevents this from occurring. Never-
theless, using our formal model, we can reason about such
occurrences, and we aim to utilize model checking to identify
adaptations that introduce such sequences.

4.3.4 On Completeness of the Original GTS. With our
model, we wanted to retain the completeness of the original
GTS This means that for all 𝛾 ∈ Γ we either have ∃𝛾 ′ such
that𝛾 ↠ 𝛾 ′ or𝛾 ∈ 𝑇 . This holds trivially in our formalization
due to the↠ relation definition and by our requirement that
the⇝ relation respects the terminal configurations.

5 Evaluation
To evaluate the proposed implementation, we discuss: the
applicability of the approach on RobLANG, and the perfor-
mance overhead.To discuss the applicability , we compare
the number of actions performed by the robot with and with-
out adaptations. Finally, we assess the performance of our
approach, i.e., self-adaptation at language level, to the perfor-
mance of the same adaptive behavior written in the program,
i.e., self-adaptation at program level.

5.1 ASOS Applicability to RobLANG
To assess the applicability of ASOS to RobLANG, we compare
the number of actions performed by the robot until battery
depletion with and without adaptations, to show that we
can express meaningful adaptations despite the fact that we
abstracted the adaptation at language level. In addition, we
also evaluate the ability to react to change in the environ-
ment by dynamically changing the trade-off at run-time. The
adaptation used in this case is the reduction in motor speed
discussed in Section 2.3, with themotor running at 75% speed.
The action performed by the robot is a movement in square
pattern, repeated until the battery depletion. The number of
squares completed is 49898 without adaptation and 87475
with adaptation always active. In addition we also manually
verified the change of semantic used when changing the
trade-off from energy focused to performance focused, later
refered as "Switch" configuration. The results shows that the
application of the adaptation allowed the robot to perform
1.75 times the number of actions and that the language-level
adaptations correctly change based on the context.

5.2 Assessing ASOS Performance
For this experiment, we choose RobLANG, presented in Sec-
tion 2.3, as object of study. We use two implementations of
this language, a self-adaptive one using ASOS, and a classic
one using well known tools for DSLs implementation. For
both implementations, the abstract syntax of the language
was defined using an Ecore [34] metamodel and the concrete

syntax using an Xtext [13] grammar. Since these are imple-
mentations of the same language, only small changes were
made in the syntax, due to the operational semantics imple-
mentation method. Both metamodels define concepts that
include: (1) Functions definition and calls, (2) Simple arith-
metic and boolean predicates, (3) Access to the robot sensors,
(4) Effectors to move the robot. The grammars for these con-
cepts are the same for both implementations. However, in
the case of ASOS, the structure of the semantic domain (e.g.,
metaclasses of runtime values, attribute storing dynamic
information) needs to be defined in the form of an Ecore
metamodel, that is merged with the abstract syntax to define
the execution metamodel. In addition, the abstract syntax of
the ASOS RobLANG also defines a new statement allowing
a language user to define their trade-off and change it at
run-time. For the definition of operational semantics, ASOS
is used to specify the adaptive version of RobLANG, while
the classic version uses Xtend [4] dispatch to define a visitor.

5.2.1 Experimental Setup. To evaluate the overhead of
our approach, we compare execution time of a program
requesting adaptations. We compare the RobLANG ASOS
implementation (ASOS) to a manual implementation of the
self-adaptation concern at the program level (Program) us-
ing the classic implementation. The adaptation used is a
reduction in motor speed in robot movement. This adapta-
tion applies depending on the trade-off selected. If Energy is
more important, the adaptation is applied. If Time is more
important, it is not applied. We use a program that iteratively
moves the robot in a square pattern, andwemeasure the over-
head for three configurations: (i) the adaptation never applies
(Without), (ii) the adaptation always applies (With), and (iii)
the adaptation is activated and deactivated periodically at
runtime (Switch). For each configuration, we measure 30 ex-
ecutions in a row, repeated three times with reboot between
each repetition to mitigate the effect of the initial state [18].
Measurements were performed on a computer with 31Gb of
RAM and an Intel(R) Core(TM) i7-10850H CPU (12 cores at
2.70GHz) with Manjaro 22.0.5. The language runtimes are
executed using the OpenJDK Runtime Environment 11.0.18,
and run alone on the computer.

Table 1.Mean time(ms) and 95% confidence intervals, rela-
tive speedups, and speedups geometrical mean

Implementation Speed-
upConf. Program ASOS

Without 1245.72 ms
[1239.12, 1252.32]

1120.92 ms
[1109.65, 1132.20] x0.90

With 2075.72 ms
[2065.50, 2085.95]

1979.91 ms
[1968.42, 1991.40] x0.95

Switch 1817.19 ms
[1807.57, 1826.81]

1445.49 ms
[1429.55, 1461.42] x0.80

Speedups Geometrical Mean x0.88
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5.2.2 Results. Table 1 summarizes the performance of
both the ASOS implementation and the manual adaptation
implementation for each configuration. We compute the
mean execution time, the speedup for each configuration,
and provide the geometrical mean of these speedups when
comparing the two implementations.With an overall speedup
of 0.88, the implementation of the self-adaptation concern is
more efficient with ASOS. The biggest speedup comes from
the Switch configuration with a factor of 0.80, followed by
theWithout configuration (x0.90) and finally theWith con-
figuration (x0.95). These results shows that ASOS does not
introduce problematic performances pitfalls, and can even
surpass a manual implementation for non-optimized DSLs.

5.2.3 Discussion. First, we can observe the speedup of
ASOS compared to the handcrafted adaptation. With the
biggest speed-up coming from the Switch configuration, we
deduce that the implementation of the feedback loop is more
efficient using ASOS. This is probably because the usual Rob-
LANG interpreter running the feedback loop is not optimized,
whereas the JVM optimizes the feedback loop when using
ASOS. The second observation is that theWith configuration
speedup is less important than the Without configuration.
These two configurations make the same use of the feedback
loop, as their trade-off does not change. In both cases, the
handcrafted version performs a call to the speed-setter state-
ment. Hence, this difference in the speedups comes from the
difference in performance to call an adaptation compared to
the original rule. To conclude that these hypotheses are true,
further experimentation needs to be done.

6 Related Work
Adaptable Systems. In this paper, we have introduced

the idea of adaptable structural operational semantics to cap-
ture the essence of adaptable languages. Earlier work on
describing adaptable systems exists. Adaptable interface au-
tomata [6] are an extension of interface automata [11] with
atomic propositions that model state observations. Adapta-
tions are then transitions where the two states of the tran-
sition give different results for some (or all) proposition(s).
Self-Adaptive Abstract State Machines [3] use multi-agent
abstract state machines to formalize self-adaptable systems.
Compared to our approach, the adaptive system is not cen-
tralized but is distributed among several agents. There are
two types of agents: managing and managed. Synchronous
Adaptive Systems [1] is another approach to the formaliza-
tion of adaptive systems. In this approach, a system is divided
into several modules which can be in different configurations
— each representing a different behavior. Configurations are
activated and deactivated via guards — somewhat resembling
the matching in our approach. A rewriting approach [7] is
used by modeling self-adaptive systems in Maude [10] re-
lying on computational reflection [22]. The approach takes
an unbounded layered approach in which (partial) knowl-

edge flows downwards and effects flow upwards. A layer can
modify the rules of the layer below it, modeling adaptation
in the approach. Recurring in these different approaches is a
separation of an adaptable system in two or more layers. This
idea is also present in our approach, exemplified by the two
transition relations in our approach. The idea behind ASOS
clearly falls within the line of adaptable interpreters [8] that
enable the creation of dynamic systems. The ASOS approach,
by proposing semantics based on MSOS, additionally enables
the construction of verification tools for language engineers.

Abstraction at Language Level. The quest to abstract
non-functional properties (e.g., adaptability, security) and
incorporate their effects in the behavior of an existing appli-
cation has been a longstanding endeavor. This approach is
rooted in Model-Driven Engineering methodologies that aim
to provide a software creation process through a series of
transformations, enabling the specialization of such proper-
ties [33]. It is also rooted in modern programming languages
where annotations/attributes may be used to abstract non-
functional features as first level entities [28]. Additionally,
this is also observed in the community of dynamic software
product lines [12, 14] and their implementation based on
Aspect-Oriented Programming (AOP) [20], thereby allowing
the weaving of non-functional concerns based on software
design decision. In these approaches, we recognize the quest
to abstract non-functional concerns from the design phase
carried out by a domain expert. While certain approaches
have focused on investigating the correctness of system be-
havior for various configurations [24], the ability to reason
compositionally about this correctness remains limited [23].
Abstracting the adaptation concern at the language level,
while providing a clear semantics for the composition of
adaptation modules with a base program, allows the lan-
guage designer to reason about the impact of an adaptation
module on a set of behavioral properties of a base program
written using an ASOS-defined DSL.

7 Conclusion and Future Work
This paper proposes the ASOS framework to define modular
and adaptable semantics of a DSL. ASOS paves the way
for checking determinism, completeness, and termination
properties based on the proposed formal semantics. ASOS
also provides the possibility of generating an implementation
of a modular and adaptable interpreter based on SEALS, an
implementation framework for adaptable interpreters.
Perspectives of this work are (1) evaluating the complex-

ity for a language designer to use ASOS , (2) allowing the
definition of correctness envelopes at the rule level, (3) al-
lowing the configuration of the feedback loop in ASOS, and
(4) showing that the declarative nature of ASOS rules allows
language composition, facilitating the construction of self-
adaptable language fragments, enabling the scenarios where
a DSL is built by assembling existing language fragments.
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Abstract
The Generalised-LL (GLL) context-free parsing algorithm

was introduced at the 2009 LDTAworkshop, and since then a

series of variant algorithms and implementations have been

described. There is a wide variety of optimisations that may

be applied to GLL, some of which were already present in

the originally published form.

This paper presents a reference GLL implementation shorn

of all optimisations as a common baseline for the real-world

comparison of performance across GLL variants. This base-

line version has particular value for non-specialists, since

its simple form may be straightforwardly encoded in the

implementer’s preferred programming language.

We also describe our approach to low level memory man-

agement of GLL internal data structures. Our evaluation on

large inputs shows a factor 3–4 speedup over a naïve im-

plementation using the standard Java APIs and a factor 4–5

reduction in heap requirements. We conclude with notes

on some algorithm-level optimisations that may be applied

independently of the internal data representation.

CCSConcepts: • Software and its engineering→Parsers;
• Theory of computation → Grammars and context-
free languages.

Keywords: Programming language syntax specification, GLL

parsers, GLL implementation
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1 Introduction
GLL was introduced at the 2009 LDTA workshop [10] in the

form of a generator that produces generalisations of sim-

ple recursive descent recognisers; this is extended to a full

parser in [11]. A variety of extensions to the basic GLL al-

gorithm have been reported, including direct handling of

EBNF constructs [13] and multi-parsing with applications

to generalised lexing [14, 16]. The control flow within GLL

parsers naturally lends itself to combinator-style GLL im-

plementations which are particularly suited to functional

programming languages, and several combinator GLL im-

plementations have been reported [4, 17, 21]. The Rascal

meta-programming language [7] deploys GLL style parsers.

Performance optimisations of classical GLL include the

FGLL variant which improves performance on left-factored

grammars, and the RGLL variant which requires fewer in-

dependent processing threads [12]. Space and performance

optimisations arising from encoding derivation forests using

Binary Subtree Representation sets are explored in [15] lead-

ing to a discussion of clustering and the development of the

Clustered Nonterminal Processing (CNP) variant. Machine-

level approaches to optimising the data structures required

by the GLL algorithm are explored in [5].

This paper provides a new presentation of GLL as a fixed-

form ‘interpreted’ parser which is parametrised by an in-

memory representation of the grammar. We have two main

objectives (i) to provide an easily accessible ‘reference’ ver-

sion of GLL that we hope will facilitate adoption, and (ii) to

provide a baseline implementation that allows the through-

put and memory consumption of GLL variants to be com-

pared in a principled fashion.

The approach taken here is avowedly procedural in style.

The code is written in Java, but is trivially portable to ANSI-C.

We have done this so as to provide a reference implementa-

tion thatminimises dependencies on particular programming

styles such as object orientation or functional combinators.

At the datastructure level we provide two implementa-

tions (i) gllBL (baseline) and (ii) gllHP (hash pool). The first

uses the standard Java API methods to implement sets and

lists; this allows for a more readable presentation. The gllHP

variant explains how we use low level memory management

to enhance performance in our production parsers. We have

previously compared and contrasted an idiomatically ‘pure’

object oriented implementation to an optimised procedural

implementation. In that study we found the OO variant to

impose a performance overhead [6]. However, there have
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been significant advances in Java compiler and Java Virtual

Machine performance in the intervening years, and it would

be interesting to revisit that work.

By way of introduction, we review the way in which stan-

dard recursive descent parsers can be extended to a wider

class of grammars by incorporating backtracking. We call

our particular approach Ordered Singleton Backtracking Re-

cursive Descent (OSBRD), and note some of its failure modes.

We then show how GLL generalises recursive descent by di-

rectly handling the parse function call stacks in a combined

graph, and by recording parser configurations in process

descriptors, allowing all parsing choices to be explored in

worst case cubic time and space.

In the rest of this section we summarise the background

material needed to describe our implementation. In Section 2

we focus on control flow, moving from a compiled (non-

general) OSBRD parser to the state-based interpretive style

that we use for GLL. In Section 3 we give a detailed account

of gllBL, our baseline GLL algorithm. In Section 4 we present

an efficient data representation for the GLL data structures,

and in Section 5 we evaluate the performance of these GLL

variants on a small number of large and diverse examples.

Section 6 contains notes on opportunities to improve the

performance of our baseline algorithm, and we conclude in

Section 7 with an informal ‘practicality’ test.

Software artefacts corresponding to this presentation are

available in a public repository at

https://github.com/AJohnstone2007/referenceImplementation.
Grammar notation A Context Free Grammar (CFG) is a
4-tuple Γ = (𝑁,𝑇 , 𝑆, 𝑃) denoting respectively, a set of non-

terminals, a set of terminals, a start nonterminal and a set

of productions with 𝑁 ∩ 𝑇 = ∅, 𝑆 ∈ 𝑁, 𝑃 ∈ 𝑁 × (𝑁 ∪ 𝑇 )∗.
An Extended Context Free Grammar (ECFG) has productions
𝑃 ∈ 𝑁 × 𝜌 where 𝜌 is a regular expression over (𝑁 ∪𝑇 )∗.
For small examples, we use the following conventions.

𝜖 denotes the empty string; 𝑎, 𝑏, 𝑐, 𝑥,𝑦, 𝑧 are elements of 𝑇 ;

𝑋,𝑌, 𝑍 are elements of 𝑁 (along with 𝑆); 𝑢, 𝑣,𝑤 are elements

of 𝑇 ∗
; and 𝛼, 𝛽,𝛾 ∈ (𝑁 ∪𝑇 )∗.

We may specify a grammar simply by enumerating its set

of productions in the form 𝑋 → 𝛼 with the convention that

the left-hand side of the first production is the start symbol;

where we have multiple alternate productions with the same

left hand side 𝑋 → 𝛼 𝑋 → 𝛽 𝑋 → . . . we may use the

shorthand 𝑋 → 𝛼 | 𝛽 | . . .
The derivation step relation ⇒ captures the notion of lan-

guage generation from a grammar; if we have 𝛼𝑋𝛾 and

𝑋 → 𝛽 ∈ 𝑃 , then 𝛼𝑋𝛾 ⇒ 𝛼𝛽𝛾 . We write

∗
=⇒ to denote

the derives relation: for instance 𝑆
∗
=⇒𝛼 is the set of sentential

forms derivable from the start symbol, and 𝑆
∗
=⇒𝑢 is the set of

sentences derivable from the start symbol, that is 𝐿(Γ) the
language of Γ.

The special symbol $ (with $ ∉ 𝑇 ) denotes the end of input
stringmarker which is appended to putative sentences before

input to our parsing and recognition algorithms.

Grammar representation This paper is about implementa-

tion, so we must present concrete representations of gram-

mars. We use a set of trees, one for each nonterminal in

𝑁 . Grammar tree nodes are labelled with a unique integer

node index ni, a grammar element el and two child refer-

ences named alt and seq. An appropriate Java declaration is

class GNode{int ni; GElement el; GNode alt, seq;}
Using instances of GNode, the grammar

Γ1 = {𝑆 → 𝑏 𝑆 → 𝑎𝑋𝑧 𝑋 → 𝑥𝑋 𝑋 → 𝑦𝑋 𝑋 → 𝜖}
is represented as

12 N
S 13 ALT

14 T
b

16 ALT

15 END 
(12,13)

17 T
a

18 N
X

19 T
z

20 END 
(12,16)

21 N
X 22 ALT

23 T
x

26 ALT

24 N
X

25 END 
(21,22)

27 T
y

30 ALT

28 N
X

29 END 
(21,26)

31 EPS

32 END 
(21,30)

In this visualisation, alt references are shown as horizontal

arrows, and seq references as vertical arrows. The instance
numbers for grammar nodes are allocated sequentially from

a base value which equates to |𝑇 | + |𝑁 | + 𝐸 (in this example

5 + 2 + 5 = 12) where 𝐸 is the number of element types in

the grammar—we shall enlarge on this in Section 4.

Each rule’s right-hand side is represented by a sequence of

nodes linked by their seq reference, terminated with an END
node and headed by an ALT node; all ALT nodes for a given
nonterminal are linked via their alt references and headed

by an LHS node labelled with the left hand side nonterminal.

For END nodes, seq references the nearest ALT ancestor and

alt references the nearest ancestor ALT-header, which for

ordinary (non-extended) CFGs will be an LHS node. To avoid
cluttering the visualisation, END references are shown as an

ordered pair of reference numbers rather than arrows.

Grammar elements are tuples (ei, kind, str) where ei is a
unique element index, kind is one of EOS, T, EPS, N, ALT,

END (for end-of-string, terminal, empty string, nonterminal,

alternate and end of production) and str is a nonterminal or

a terminal appropriately. In Java these may be declared as

class GElement {int ei; Kind kind; String str ;}
enum Kind {EOS, T, EPS, N, ALT, END}
Derivation trees and ambiguityAny productionwithmore

than one nonterminal on its right hand side gives rise to

multiple derivations in an uninterestingway. For instance the

grammar Γ3 = {𝑆 → 𝑋𝑌 𝑋 → 𝑥 𝑌 → 𝑦} can generate

𝑥𝑦 in two ways; 𝑆 ⇒ 𝑋𝑌 ⇒ 𝑥𝑌 → 𝑥𝑦 and 𝑆 ⇒ 𝑋𝑌 ⇒
𝑋𝑦 → 𝑥𝑦. A leftmost derivation contains only derivation

steps in which the first nonterminal in a rule is expanded,

and by convention we shall use only leftmost derivations.

A derivation tree is a useful graphical representation of a

class of derivations of some string. A derivation tree is an
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ordered tree in which the root node is labelled with 𝑆 , each

interior node is labelled with an element of 𝑁 and each leaf

is labelled with some element of𝑇 or 𝜖 . If an interior node 𝑋

has children labelled 𝑥1, 𝑥2, . . . 𝑥𝑛 then𝑋 → 𝑥1, 𝑥2, . . . 𝑥𝑛 ∈ 𝑃 .

The leftmost derivation of 𝑢 ∈ 𝐿(Γ) corresponds to the pre-

order traversal of the derivation tree of 𝑢.

A CFG Γ is ambiguous if there is some 𝑢 ∈ 𝐿(Γ) which has

more than one leftmost derivation, and thus more than one

derivation tree. For instance the grammar

Γ4 = {𝑆 → 𝑋𝑌 𝑋 → 𝑎 | 𝑎𝑏 𝑌 → 𝑏𝑐 | 𝑐} generates the
string 𝑎𝑏𝑐 in two leftmost ways; 𝑆 ⇒ 𝑋𝑌 ⇒ 𝑎𝑌 ⇒ 𝑎𝑏𝑐 and

𝑆 ⇒ 𝑋𝑌 ⇒ 𝑎𝑏𝑌 ⇒ 𝑎𝑏𝑐 . The corresponding derivation trees

are

S

X Y

a b c

S

X Y

a b c

The yield of a derivation tree node is the substring whose

terminal nodes are descendants of that node. In the example

above, we see that the terminal nodes and the root node have

the same yield in each derivation, but the nodes labelled X
and Y have different yields in the two derivations. In any

derivation tree, we can find the yield of a node by descending

to its leaves, but when dealing with ambiguities it is con-

venient to annotate each node with its yield. An annotated
derivation tree is a derivation tree whose node labels have

been extended by the left and right indices of the node’s

yield

S 0,3

X 0,2 Y 2,3

a 0,1 b 1,2 c 2,3

S 0,3

X 0,1 Y 1,3

a 0,1 b 1,2 c 2,3

With these annotations we can directly see that the start and

terminal nodes of both derivations are ‘the same’ because

their yields are the same in each case, but that the 𝑋 and 𝑌

nodes are different because their corresponding derivation

steps generate different substrings of the input.

Recognisers, partial parsers and general parsers A recog-
niser for Γ tests a string 𝑢 for language containment, i.e.

whether𝑢 ∈ 𝐿(Γ). A partial parser tests a string for language
containment and returns at least one derivation for at least

one string in 𝐿(Γ) . A general parser returns all derivations.
Most current programming language processors employ par-

tial parsers which (i) admit only a subset of the context free

grammars and (ii) return at most one derivation. For many

parsing algorithms, (i) is well characterised, but the con-

straints imposed by (ii) are less well understood in practice

for non-trivial cases, which can lead to puzzling outcomes.

As programming languages become more complex, anec-

dotal evidence shows that implementers increasingly strug-

gle with classical near-deterministic parser generators and

resort to hand written front ends. There is a useful discussion

at [18] which notes that GCC abandoned Bison based parsers

nearly twenty years ago [2, 3]. We hope that the availabil-

ity of well engineered GLL parsers will allow a return to

principled engineering of compiler front ends.

Compiled vs. interpreted parsers We distinguish between

interpreted parsers which are fixed pieces of code that are

parameterised by a data structure encoding the grammar,

and compiled parsers where the parser code itself encodes
the grammar. Classical recursive descent parsers are com-

piled parsers in that they have a parse function for each

nonterminal, and the body of a parse function reflects the

nonterminal’s productions.

Traditionally, shift-reduce parsers are implemented as in-

terpreted parsers operating over a table that represents an

automaton derived from the grammar. However, Penello [9]

describes Recursive Ascent (a compiled LALR parser), and

Aho andUllman give a table-driven predictive LL(k) parser [1,

pp338–341].

Parser context Parsing is a search problem in which we

traverse both a grammar and an input string to locate deriva-

tions. The algorithms we shall examine in this paper all work

by processing a current parser context comprising an index i
into the input string, a current grammar node gn, a current
stack, whose top is stack node sn, and a current derivation

whose most recent step is derivation node dn.
In detail (i) compiled parsers do not have an explicit gn

since the grammar positions correspond to locations in the

code; (ii) recognisers do not generate derivations and so do

not require a dn and (iii) some parsers make use of the host

languages call stack, and thus do not need an explicit sn.
Lexicalisation Most programming language grammars are

defined over terminals which have internal structure rather

than simple characters, and the input character string is

usually lexicalised into a sequence of non-overlapping sub-

strings called lexemes each of which belongs to a lexical class

which is given a number called the token. There are several
advantages to this scheme—whitespace may elided from

the grammar rules; the alphabet of the grammar is the set of

lexeme classes not the set of characters and that improves

the resolution of lookahead tests; and for many languages

regular recognisers may be used for lexicalisation rather than

the full power of a context free parser, and that improves

performance. The parser itself then works with strings of

tokens, not strings of characters.

The algorithms presented here all assume that inputs

have been lexicalised into a string of tokens using longest

match.Token number zero is reserved for the end of string

symbol $.

Representing derivation forests A general parser must

return all derivations for any string in the language. Simply

returning individual derivation trees is impractical as the

number of derivations can grow very quickly. Consider the

grammar Γ5 = {𝑍 → 𝑆 | 𝑆𝑍 𝑆 → 𝑋𝑌 𝑋 → 𝑎 | 𝑎𝑏 𝑌 →
𝑏𝑐 | 𝑐} which is Γ4 extended with a new start rule, allowing

one or more 𝑎𝑏𝑐 substrings to be generated. Each instance
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of 𝑆 will have two ways to generate its substring, hence the

total number of derivations will be 2
𝑘
where 𝑘 is the number

of substrings.

We noted above that some of the elements of the two

derivations in Γ4 are the same in that they have matching

labels, and thus generate the same substring of the element.

Tomita [20] observed that derivation trees may be combined

by sharing and packing into a directed acyclic graph called

a Shared Packed Parse Forest (SPPF). We say that an SPPF

embeds derivation steps and derivations. If𝑢 ∈ 𝐿(Γ) then the

SPPF for 𝑢 in Γ will contain a node labelled 𝑆, 0, 𝑛 where 𝑆 is

the start symbol and 𝑛 is the length of 𝑢, in other words a

node labelled with the start symbol whose yield is the entire

string.

In Tomita’s original formulation, SPPFs embed standard

derivation trees in which internal nodes are labelled with a

nonterminal and have out-degree 𝑘𝑝 where 𝑘𝑝 is the length

of some production 𝑝 . Whilst building derivations, we need

to know both the production we are working on and the

position within it. If we were to use this form of SPPF, then

in general the dn element of our parser context would need

to be a pair 𝑝, 𝑗 (0 < 𝑗 < 𝑘) where j specifies a position

within the production. Instead, we binarise our derivation

trees by adding additional intermediate nodes.

This binarisation of derivations allows us to encode a com-

plete grammar position into a single SPPF node, so that the

dn field in our parser context can comprise a single node. For

the grammar Γ6 = {𝑆 → 𝑎𝑏𝑐} the single derivation in ‘flat’

and binarised forms are

S 0,3

X 0,2 Y 2,3

a 0,1 b 1,2 c 2,3

S 0,3

S ::= X . Y 0,2 Y 2,3

X 0,2

X ::= a . b 0,1 b 1,2

a 0,1

c 2,3

The binarised annotated derivation trees for Γ4 are

S 0,3

S ::= X . Y 0,2 Y 2,3

X 0,2

X ::= a . b 0,1 b 1,2

a 0,1

c 2,3

S 0,3

S ::= X . Y 0,1 Y 1,3

X 0,1

a 0,1

Y ::= b . c 1,2 c 2,3

b 1,2

The binarisation or ‘intermediate’ nodes are labelled with a

position within a production. We use Knuth’s ‘item’ notation

and mark the position with a dot. In visualisations, we shade

the binarisation nodes.

The corresponding SPPF constructed from the two anno-

tated derivation trees for Γ4 is

S 0,3

S ::= X Y . 1 S ::= X Y . 2

S ::= X . Y 0,1 Y 1,3

S ::= X . Y 0 Y ::= b c . 2

X 0,1

X ::= a . 0

a 0,1

Y ::= b . c 1,2 c 2,3

Y ::= b . c 1

b 1,2

S ::= X . Y 0,2 Y 2,3

S ::= X . Y 0 Y ::= c . 2

X 0,2

X ::= a b . 1

X ::= a . b 0,1

X ::= a . b 0

2 Backtracking Recursive Descent Parsers
To motivate the GLL approach, we begin by examining the

simplest useful CFG parser we know of; a compiled non-

general backtracking parser with only a single thread of

control. We then present the same algorithm implemented

in two interpreted styles; the first a ‘folding’ of the com-

piled parser and the second a state-machine implementation

closely related to the interpreted GLL parser to be discussed

in the next section.

Compiled style - osbrdG Here is one style of backtracking

parser for

Γ1 = {𝑆 → 𝑏 | 𝑎𝑋𝑧 𝑋 → 𝑥𝑋 | 𝑦𝑋 | 𝜖}
1 boolean p_S() { // Attempt to match nonterminal S
2 int eI = i; DNode eDN = dn; //store global variables at entry
3

4 if (input[i]==2/∗b∗/) {i++; du(13); return true;}
5

6 i = eI; dn = eDN; //recall global variables for next production
7 if (input[i]==1/∗a∗/) {i++; // bump input pointer on success
8 if (p_X()) { // call parse function for nonterminal Z
9 if (input[i]==5/∗z∗/) {i++; // bump input pointer on success
10 du(16); return true;}}} // end; update derivation
11 return false;
12 }
13

14 boolean p_X() { // Attenmpt to match nonterminal S
15 int eI = i; DNode eDN = dn; //store global variables at entry
16

17 if (input[i]==3/∗x∗/) {i++;
18 if (p_X()) { du(22); return true;}}
19

20 i = eI; dn = eDN; //recall global variables for next production
21 if (input[i]==4/∗y∗/) {i++;
22 if (p_X()) { du(26); return true;}}
23

24 i = eI; dn = eDN; //recall global variables for next production
25 /∗ epsilon ∗/ du(30); return true; // epsilon always matches
26 }

A parse begins by loading the input with the lexicalised

sequence of tokens, setting i to zero, dN to null and then

calling p_S(). The string is accepted if on return, input[i]
is the end of string symbol.
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We call this algorithm Ordered Singleton Backtrack Re-
cursive Descent (OSBRD) to emphasise that it (i) treats the

productions of a nonterminal in an ordered fashion (which

may cause some productions to be ignored) and (ii) returns

at most one derivation.

This particular implementation is called osbrdG because
the code has been generated from an input grammar. If we

change the grammar, then we must regenerate a new parser.

The generated code is effectively a bidirectional ‘pretty print’

of the grammar, in the sense that one may read the grammar

in a single pass and output the parser code, and one may

read the code in a single pass and output the grammar. Nigel

Horspool calls this the Recursively Decent property.
Each nonterminal 𝑍 has a corresponding boolean parse

function p_Z(). On entry, parse functions record the input

index at entry eI and the entry derivation node eDN. The
productions 𝑍 → 𝛼 are then examined in the order they

were written. The sequence of elements in 𝛼 is tested using a

nest of if statement. Nonterminals are tested by calling the

corresponding parse function, and terminals by testing the

current input character against that terminal’s token num-

ber (with the current index being incremented on success).

If all of a production’s tests return true, then the deriva-

tion is extended by one step using function du(n) and the

parse function returns true, otherwise the current index and

derivation node are reset to their entry values and the next

production is tested. If no production matches, the parse

function returns false.

The leftmost derivation is encoded as a linked list of pro-

duction number— function du(int n) updates the current
derivation by head-inserting a node; in detail the production

number is the number of the corresponding ALT node in our

representation. A suitable Java declaration for derivation

nodes is class DNode {int altn; DNode next;}
There are threemajor deficiencies in the OSBRD algorithm

(i) on some inputs it does not terminate; (ii) on some inputs

it will require exponential time to terminate; and (iii) on

some inputs it will terminate but incorrectly reject strings

that are in the language.Versions of this algorithm have been

reported many times. The most comprehensive treatment is

in Aho and Ullman’s 1972 monograph [1, pp.56–469] where

the technique is called TDPL; they note that It can be quite
difficult to determine what language is defined by a TDPL
program which should be read as a warning. We do not

recommend the approach for serious work; we use it here

merely as a stepping stone to understanding GLL parsing.

Interpreting via a function - osbrdF There is a closely

related interpreted implementation that ‘folds’ all of the

parse functions into a single function osbrdF which takes a

grammar node representing the nonterminal to be tested—

in our implementation, we use the corresponding LHS node

from our representation.

Instead of laying out the productions as nests of if state-

ments, we have an outer loop over the alt references and an

inner loop over the seq references enclosing a switch state-

ment which performs the appropriate action for each kind

of grammar node. Java (and many other languages) use the

dot operator to specify fields from composite data structures

hence, for instance, gn.s refers to the string field of the cur-

rent grammar node. We make use of Java’s named-continue

feature to allow a failed match to immediately proceed to the

next alt iteration. An implementation in C or C++ might

use a goto to achieve the same effect.

1 boolean osbrdF(GNode lhs) {
2 int ei = i; DNode edn = dn;
3 altLoop: for (GNode alt = lhs.alt; alt != null; alt = alt.alt) {
4 i = ei; dn = edn;
5 GNode gn = alt.seq;
6 while (true) {
7 switch (gn.el.kind) {
8 case T: if (mt(gn)) {i++; ; gn = gn.seq; break;}
9 else continue altLoop; // failure; next alternate
10 case N: if (osbrdF(lhs(gn))) {gn = gn.seq; break;}
11 else continue altLoop; // failure; next alternate
12 case EPS: gn = gn.seq; break; // epsilon always matches
13 case END: du(alt.ni); return true; // end; update derivation
14 }}}
15 return false;
16 }

Interpreting with explicit stack management - osbrdE
A general parser must handle non-determinism; during pro-

cessing of some parser context we may identify more than

one successor context that must be explored. OSBRD handles

some (but not all) nondeterminisms through limited back-

tracking. Both the osbrdG and osbrdF implementations rely

on the host language’s function call mechanism to implictly

manage a single stack of nonterminal instances. This is a

fundamental weakness, because the sequence of parser con-

texts that may be examined is limited to those that conform

to a last-in, first-out discipline. In a conventional procedural

language such as Java without continuations, there is no way

of loading the function call stack with a particular state.

A GLL parser works by saving parser contexts for later

processing in a way that allows any context to be processed

independently of the others, and not surprisingly it uses

an explicit stack data structure to allow switching between

contexts. Our next step (osbrdE) is to implement OSBRD

using explicit stack management in a style that matches our

GLL baseline implementation. At this stage we still only have

a single stack for all contexts since this is only an OSBRD

implementation.

As before, derivations are also developed within a linked

list of DNodes, with the most recent derivation step held in

variable dn.
Stack entries must contain all of the information in the

stack frame for function osbrdF(); that is a return position

in the grammar and the local variables eI and eDN. A suitable
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Java declaration is

class SNode {GNode rN; int eI; SNode next; DNode eDN;}
We model the stack with a linked list of SNodes and hold

the stack top in variable sn. A perhaps unexpected side-effect

of removing reliance on the runtime function call stack is

that we may no longer use the unwinding of recursive calls

to handle some aspects of backtracking. Instead, we explictly

traverse the grammar representation, executing stack pops

as we go, and this adds complexity to the match fail code at

lines 7–13 in osbrdE.
Termination of a parse is triggered by popping the root

element. If this occurs during back tracking (line 10) then

the parse has failed and osbrdE() returns false. If the root
element is popped whilst processing an END node (line 18)
then we have reached the end of a production in 𝑆 , and

osbrdE() returns true; the caller must then check to see

whether the entire string has been consumed.

1 boolean osbrdE() {
2 initialise();
3 while (true)
4 switch (gn.el.kind) {
5 case T:
6 if (mt(gn)) {i++; gn = gn.seq; break;}
7 else { while (true) { // On failure, backtrack
8 while (gn.el.kind != Kind.END) gn = gn.seq;
9 if (gn.alt.alt == null) { // No more productions; return
10 gn = ret();
11 if (sn == null) return false;} // No more stack frames; fail
12 else { // restore context
13 i = ((StackNode) sn).ei; dn =((StackNode) sn).edn;
14 gn = gn.alt.alt.seq; break;}}}
15 break;
16 case N: call(gn); break;
17 case EPS: gn = gn.seq; break;
18 case END:
19 du(gn.alt.ni); gn = ret(); if (sn == null) return true; break;
20 }}

3 A Baseline Interpreted GLL Parser - gllBL
The GLL algorithm takes the basic control flow patterns of

our recursive parse functions and recasts them as a collection

of separate threads that may be independently executed. The

only data items required by a thread are the unchanging

input and the four context elements identified earlier— a

grammar node gn, an input index i, a top-of-stack node sn
and a most-recent derivation step node dn.

Each parse thread may thus be uniquely characterised by a

4-tuple descriptor, declared in the style we have been using as
class Descriptor {GNode gn; int i; SNode sn; DNode dn;}A
descriptor captures the starting context for a thread which

is loaded into global variables gn, i, sn and dn. These values
then evolve during execution of the thread, and often poten-

tial new starting contexts are identified for later processing.

At the outermost level, GLL is a worklist algorithm that

selects descriptors from a collection of awaiting descriptors.

During execution of a thread, new descriptorsmay be created.

For instance when an instance of a nonterminal is encoun-

tered, the algorithm will create descriptors for each of that

nonterminal’s productions.

A GLL parse begins with a single awaiting descriptor

(lhs(S), 0, gssRoot, null), that is the LHS grammar

node for the start nonterminal, input index zero, a reference

to the GSS base node and an empty derivation step. The

parse terminates when the descriptor collection is empty.

Good performance of the algorithm relies on efficient im-

plementation of the collection of descriptors, the collection

of stacks and the collection of derivations. We delay consid-

eration of those mechanisms until after we have examined

the control flow aspects of the algorithm.

1 void gllBL() {
2 initialise();
3 nextDescriptor: while (dequeueDesc())
4 while (true) {
5 switch (gn.el.kind) {
6 case T: if (input[i] == gn.el.ei)
7 {du(1); i++; gn = gn.seq; break;}
8 else // abort thread on mismatch
9 continue nextDescriptor;
10 case N: call(gn); continue nextDescriptor;
11 case EPS: du(0); gn = gn.seq; break;
12 case END: ret(); continue nextDescriptor;
13 }}}

This top level control flow is pleasingly simple. It has the

same structure as for osbrdE, but is relieved of the complex

backtracking code. This is because descriptors are created for

each production by the call() function. When a terminal

mismatch occurs, we can simply abandon the current thread

by executing continue nextDescriptor. We do not need to

backtrack to find the next viable alternate because it will

already either have been processed, or be in the queue for

processing. The call(), ret() and du() functions update
the SPPF and GSS and are described below.

Thread management In a context free parser, a context

once processed need never be processed again (although

see notes on contingent pops below). The key to achieving

a cubic upper bound on performance is to maintain a set of

previously encountered descriptors descS in addition to a

set of descriptors descQ awaiting processing. The call()
function (line 9 above with definition below) then uses func-

tion queueDesc() to only load a descriptor to descQ if it has
never been seen before. In this implementation we use the

Java double-ended queue Deque for descQ. Since additions
to descQ are guarded by checks on descS, descriptors can
never appear more than once within descQ.

1 Set<Desc> descS; Deque<Desc> descQ;
2 GNode gn;
3 GSSN sn;
4 SPPFN dn;
5
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6 void queueDesc(GNode gn, int i, GSSN gssN, SPPFN sppfN) {
7 Desc tmp = new Desc(gn, i, gssN, sppfN);
8 if (descS.add(tmp)) descQ.addFirst(tmp);
9 }
10

11 boolean dequeueDesc() {
12 Desc tmp = descQ.poll();
13 if (tmp == null) return false;
14 gn = tmp.gn; i = tmp.i; sn = tmp.sn; dn = tmp.dn;
15 return true;
16 }

The dequeueDesc() function polls descQ to remove the

head element and unloads its fields into the global context

variables, or returns false if no descriptors are available.

Stack management In the parsers discussed here, the pur-

pose of the stack is to store a return point from the call to

a nonterminal. A general parser starts with a single stack

but new stacks may diverge from it. The shared bases of

these stacks naturally need only be represented once, but

Tomita [20] observed that when two stacks for a context

free parser show the same stack top, their future behaviour

will be indistinguishable. As a result, stacks may be merged
together when they have the same top state, and the whole

set of stacks may be represented by a directed acyclic graph

called a Graph Structured Stack (GSS). (As an aside, the struc-

ture is perhaps more reasonably called a stack structured

graph, but the term GSS is in common use.)

This visualisation shows the GSS that results from a GLL

parse of Γ5 and string 𝑎𝑏𝑐𝑎𝑏𝑐 . Each node has a grammar posi-

tion (shown as a production with a dot after the nonterminal

that was called) and a left index which is value of the input

index at the point of call. The GSS is initially loaded with a

stack root node labelled (EOS, 0) which ensures that all stacks

are tied to a common base node.

Z ::= S . Z
3

Z ::= S Z .
3

$EOS
0

Z ::= S . Z
6

Z ::= S Z .
6

S ::= X Y .
4

Z ::= S .
3

S ::= X Y .
5

Z ::= S . Z
0

Z ::= S .
6

Z ::= S .
0

S ::= X . Y
0

S ::= X Y .
2

S ::= X . Y
3

S ::= X Y .
1

S ::= X . Y
6

Paths between the top and bottom node represent the

result of successful matches to the whole string. The other

paths result from parses which ultimately failed to match

the entire string.

GSS nodes contain a grammar node which acts as the

return point; an input index i which will be the leftmost

index for the substring matched by this call; a set of out

edges which references the stacks converging on this node;

and a set of contingent pops which will be discussed below.

A suitable Java declaration is

class GSSN {GNode gn; int i;
Set<GSSE> edges; Set<SPPFN> pops;}

In a parser GSS edges are also labelled with the derivation

node that was current at the time of their creation. A GSS

edge also requires a reference to the destination of the edge.

An appropriate Java declaration is

class GSSE {GSSN dst; SPPFN sppfnode; }
The call() and ret() functions manage the evaluation

of threads involving nonterminal instances. The basic re-

quirement is to extend a stack on call, and to retrieve the

return point in the grammar on return. In addition, a call()
must queue descriptors for the start of each production in

the called nonterminal (lines 18 and 19 below), and a ret()
must check to see if we have reached the bottom of the stack,

in which case we check for acceptance (lines 23–25).

1 Map<GSSN, GSSN> gss;
2 GSSN gssRoot;
3

4 GSSN gssFind(GNode gn, int i) {
5 GSSN gssN = new GSSN(gn, i);
6 if (gss.get(gssN) == null) gss.put(gssN, gssN);
7 return gss.get(gssN);
8 }
9

10 void call(GNode gn) {
11 GSSN gssN = gssFind(gn.seq, i);
12 GSSE gssE = new GSSE(sn, dn);
13 if (!gssN.edges.contains(gssE)) {
14 gssN.edges.add(gssE);
15 for (SPPFN rc : gssN.pops)
16 queueDesc(gn.seq, rc.ri, sn, sppfUpdate(gn.seq, dn, rc));
17 }
18 for (GNode p = rules(gn).alt; p != null; p = p.alt)
19 queueDesc(p.seq, i, gssN, null);
20 }
21

22 void ret() {
23 if (sn.equals(gssRoot)) {
24 if (accepting(gn)) accepted |= (i == input.length − 1);
25 return;
26 }
27 sn.pops.add(dn);
28 for (GSSE e : sn.edges)
29 queueDesc(sn.gn, i, e.dst, sppfUpdate(sn.gn, e.sppfnode, dn));
30 }

Perhaps the most subtle part of the GLL algorithm is the

handling of contingent pops. When we perform a return at

a GSS node sn we want the parse to continue at all of the

return points encoded by the out-edges of sn. Edges can be

added to a GSS node after a pop has occurred, and in such a

case the earlier pop (or pops) must be applied to that new

edge. Thus each GSS node contains a pop set which records

pop actions (line 27) so that they may be applied to any new

edges that subsequently may be added (lines 15–16 above).
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Derivation updates Derivations, as discussed above, are

represented using binarised SPPFs.

class SPPFN {GNode gn; int li; int ri;
Set<SPPFPN> packNS;}

class SPPFPN {GNode gn; int pivot; SPPFN lC; SPPFN rC;}
A derivation update may be triggered in two ways (i) the

main gllBL algorithm adds elements via function du() when
a terminal or an 𝜖-rule is matched, and (ii) the call() and
ret() functions add elements associated with nonterminals.

The SPPF is modelled as a set of SPPF nodes that carry a

set of pack node children which in general will be updated

during a parse. A Java quirk is that the standard Set API

does not easily support updates to set elements. Now, Java

sets are implemented as maps from elements to themselves,

and so without loss of performance we can explicitly use

such a map to allow retrieval of elements.

1 Map<SPPFN, SPPFN> sppf;
2

3 SPPFN sppfFind(GNode dn, int li, int ri) {
4 SPPFN tmp = new SPPFN(dn, li, ri);
5 if (!sppf.containsKey(tmp)) sppf.put(tmp, tmp);
6 return sppf.get(tmp);
7 }
8

9 SPPFN sppfUpdate(GNode gn, SPPFN ln, SPPFN rn) {
10 SPPFN ret = sppfFind(gn.el.kind == Kind.END ? gn.seq : gn,
11 ln == null ? rn.li : ln.li,
12 rn.ri);
13 ret.packNS.add(
14 new SPPFPN(gn, ln == null ? rn.li : ln.ri, ln, rn));
15 return ret;
16 }
17

18 void du(int width) {
19 dn = sppfUpdate(gn.seq, dn, sppfFind(gn, i, i + width));
20 }

Function sppfFind() returns an existing SPPF node, or

adds a new SPPF node with empty pack node set.

Function sppfUpdate() takes a grammar node and two

existing SPPF nodes and either identifies or creates the cor-

responding subtree.

Initialisation The core data structures are re-initialised for

each parse. Lines 2-3 create new, empty, data structures, lines

4-5 creates the base node for the GSS, line 6 initialises the

global context variables and lines 7-8 load desriptors for each

production of the start symbol.

1 void initialise() {
2 descS = new HashSet<>(); descQ = new LinkedList<>();
3 sppf = new HashMap<>(); gss = new HashMap<>();
4 gssRoot = new GSSN(grammar.endOfStringNode, 0);
5 gss.put(gssRoot, gssRoot);
6 i = 0; sn = gssRoot; dn = null;
7 for (GNode p = grammar.startNode.alt; p != null; p = p.alt)
8 queueDesc(p.seq, i, sn, dn);
9 }

4 Data Structure Optimisation
In The Design and Evolution of C++ [19, p.211] Stroustroup

wrote

Many programs create and delete a large number of small
objects of a few important classes . . . The allocation and deal-
location of such objects with a general-purpose allocator can
easily dominate the run time and sometimes the storage re-
quirements of the programs.

The GLL algorithm is a perfect exemplar of this situation

since it performs very little actual calculation since the al-

gorithm is dominated by the conditional creation of small

elements under control of tests based on simple integer com-

parisons. When built with the native Java APIs in an object

oriented fashion as we have done in gllBL, runtime is domi-

nated by allocation of small objects.

Stroustroup advocated the use of custom heap manage-

ment for these kinds of programs, and claimed speedups of as

much as an order of magnitude for applications in which the

heap became heavily fragmented. GLL does not fragment the

heap in that our core data structures (the GSS, the SPPF and

the descriptor set) only ever grow— essentially the only deal-

locations that occur are the worklist elements that reference

descriptors (which themselves are not deallocated). As a re-

sult we might not expect Stroustroup’s fragmentation-driven

factor ten speedup, but as we shall show in section 5, the

scheme discussed in this section does yield speedup factors

of 3–4 over the matching Java API implementation, whilst

reducing memory demands by a factor of between 4 and 5.

The general approach is to (i) map all grammar objects

including grammar positions onto the integers in a single

sequence and (ii) to allocate elements sequentially from a

pool of memory blocks. Essentially we eschew the use of Java

objects, and make each grammar ‘object’ a small sequence

of integers with contiguous memory addresses.

Enumeration of grammar elements The primitive objects

manipulated by the GLL algorithm are: The end of string

symbol, the terminals, the epsilon symbol, the nonterminals

the elements not otherwise accounted for (such as ALT and
END) and finally the grammar nodes. We arrange all of these

in a sequence, and number them from zero. So, for Γ1 the
sequence is 0:EOS 1:a 2:b 3:x 4:y 5:z 6:EPS 7:S 8:X 9:ALT

10:END

The sequence then continues with the grammar nodes,

the first of which is always the node which labels the GSS

root (11 in this case), followed by the nodes representing the

grammar rules as shown on page 1. Hence the node numbers

there start at 12.

The purpose of this enumeration is to avoid the need to

carry type information around. We can tell, for instance, if

an element of the sequence is a terminal simply by checking

that it is greater than zero and less than the sequence value

for 𝜖 . Terminals appear first in the sequence because algo-

rithms employing lookahead test input tokens against sets
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of terminals, and a bit vector representation is more space

efficient if the elements in the set have small values.

Pool basedmemorymanagement gllBLmaintains six sets —

GSS nodes, GSS edges, pop elements, SPPF nodes, SPPF

packed nodes and descriptors. Our main goal is to reduce the

volume of calls to the system’s heap allocation routines for

these sets. We do this by explictly coding C-like structures

for each set element and allocating them sequentially into a

pool of memory blocks. The elements require 5, 5, 5, 7 and 6

integers each respectively, and our memory blocks are 2
26

integers long (that is 256MByte each for 32-bit integers), so

the number of calls to the system allocator is negligible.

Our memory references are 32-bit integers which canman-

age up to 4G integer locations, or 16Gbyte of memory. Since

our blocks sizes are always a power of 2, we can use shift

and mask operations to extract block number and address

within the block

1 int poolGet(int index) {
2 return
3 pool[index >> poolAddressOffset][index & poolAddressMask];
4 }
5

6 void poolSet(int index, int value) {
7 pool[index >> poolAddressOffset][index & poolAddressMask] =
8 value;
9 }

The sets themselves are implemented as hash tables using

separate chaining. The chain link is at offset zero in each

of the structure elements. As always with hash tables, the

effectiveness of the hash function and the table’s load factor

will dictate performance. We will illustrate the load factor

impact in Section 5.

The GLL Hash Pool implementation – gllHP Our final

implementation is gllBL modified to use this Hash Poolmem-

ory management scheme. The full code is available in the

repository. This is the top level control flow. It is essentially

identical to gllBL except that all context elements are inte-

gers which are used as references into the pool data; the

lookup table kindOf is used to encode the grammar ele-

ment’s type; and advancing gn to the next sequence element

simply requires gn to be incremented, since grammar nodes

are numbered sequentially.

1 void gllHP() {
2 initialise();
3 nextDescriptor: while (dequeueDescriptor())
4 while (true) {
5 switch (kindOf[gni]) {
6 case T: if (input[i] == elementOf[gni])
7 {d(1); i++; gni++; break;}
8 else continue nextDescriptor;
9 case N: call(gni); continue nextDescriptor;
10 case EPS: d(0); gni++; break;
11 case END: ret(); continue nextDescriptor;
12 }}}

5 Performance Evaluation
Our intention is that gllBL and gllHP will provide reference

performance data for future studies. To that end, the repos-

itory includes large corpora of Java 18 and Standard ML

code with associated grammars, and we expect to expand

those holdings in future. In this paper we restrict ourselves

to six grammars and only five strings, but these strings are

large— in the range 84–130 kBytes.We take this approach be-

cause we want to concisely present throughput and memory

consumption figures for large real-world examples.

Aswell as gllBL and gllHP, we present some data for gllOpt

which is an older implementation of GLL that is compiled,

uses lookahead on both descriptor creation and pops and

has the same hash pool data structure mechanisms as gllHP.

gllOpt is not as tightly engineered for performance since

it has support for trace messages and statistics gathering

code, as well as support for some of the other GLL variants

mentioned above. Results in all categories improve as we

move from gllBL to gllHP to gllOpt; we would expect to

see further improvements in gllOpt when a performance

engineered version is available.

We use a range of programming language grammars— the

ANSI-C grammar from the Kernighan and Ritchie textbook;

the ANSI C++ grammar from the 1997 Public Review Docu-

ment which underpinned C++98; the C# version 1.2 grammar

and the Java Language Specification version 1 and 2 gram-

mars. Larger studies using Java 18 and Standard ML may be

found in the repository. The JLS2 grammar uses extended

CFG constructs. We produced two variants by expanding

closure using left or right recursion; we would expect the

left recursive version to be more demanding of a GLL parser.

Test strings include the full source code for the parser

generators RDP (C), GTB (C) and ART (C++) along with a

Twitter client (C#) and multiple concatenations of an imple-

mentation of Conway’s Game of Life (Java).

Data structure cardinalitiesWe begin by looking at the

cardinalities of the various GLL data structures (Table 2).

Of course, gllBL and gllHP generate exactly the same car-

dinalities so we only compare gllBL to gllOpt which uses

lookahead. As expected, the lookahead significantly reduces

the number of descriptors and indeed the cardinalities of the

other sets too. It is clear from this table that the amount of

ambiguity encountered drives the size of these sets. That is

as we should expect since were the grammars LL(1) then

there would be no nondeterminism and we might hope to

approach a linear cost. GLL performance is worse case cubic

in the length of the input, and as the level of nondeterminism

goes up we would expect to move towards that cubic bound.

Thus the rightmost column is important. We can see that

ANSI C++ is much more ambiguous than ANSI C when run

on gtbSrc and rdpSrc.

Throughput Speed measurements in Table 3 were made

using a Dell XPS 15 9510 laptop with 16GByte of installed
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Table 1. Heap utilisation for ANSI C++

String Heap BL Heap HP Factor Pool

artSrc 3,165,999,856 545,260,192 5.81 562,135,472

gtbSrc 3,637,287,192 817,889,952 4.45 666,862,111

rdpSrc 2,814,125,624 545,260,192 5.16 506,684,413

memory and an Intel Core i7-11800H eight-core processor

running at 2.3GHz. The experiments were run from the com-

mand line under Microsoft Windows 10 Enterprise version

10.0.19042 using Oracle’s Java HotSpot(TM) 64-Bit Server

VM (build 14.0.2+12-46, mixed mode, sharing).

The nanosecond timing routines in the Java System API

do not accurately reflect computational load in multicore

systems and can even return negative values. As a result we

used the System.currentTimeMillis() to measure runtimes

even though its resolution is only around 0.03 seconds; for

each experiment we made 10 runs and report here the mean

run time in milliseconds.

We deliberately disabled the resizing of hash tables in

gllHP and gllOpt, and set the size of the tables to be twice that

required to handle the gtbSrc input when run with the ANSI-

C grammar (the highlighted first line). The throughput in

tokens per second ranges from 113,458 for JLS2 right down to

6,701 for gtbSrc and ANSI C++. Looking at the cardinailities

table, it is clear that much of this variation arises from the

hash table load factor.

Hash table load factor To further investigate this effect,

Table 4 shows partial histograms of bucket occupancy in

the hash tables. The ANSI C++ examples show significant

hash table congestion, with in one case more than 10% of

the bucket lists having four or more elements.

Heap utilisationWe wanted to get a measure of memory

consumption, comparing gllBL to gllHP. It is quite difficult to

measure heap utilisation in Java but we can approximate it

by asking for the free heap size before and after a run. Table 1

shows the results for the three pieces of C/C++ source code

runningwith the ANSI C++ grammar. As a consistency check

we have also included (in column Pool) the computed size

of all of the data structure elements which we can derive

from the known data structure cardinalities and the size

of their elements. These figures should clearly be treated

with great caution, but they do indicate that a factor four

reduction inmemory footprint is achievedwith theHashPool

implementation. This is unsurprising.

6 Potential Future Work on Optimisation
GLL was introduced at the 2009 LDTA workshop [10]. A

variety of improvements to the basic GLL algorithm have

been reported since then which we summarise here along

with some ideas that have not (as far as we know) appeared

yet in the literature. In future work, we shall present imple-

mentations of some of these ideas in the same style as our

baseline (gllBL) and hashpool (gllHP) implementations so

as to produce a consistent evaluation of their strengths and

weaknesses. In what follows, each paragraph is a separate

optimisation opportunity.

Threadmanagement gllBL and gllHP do not use lookahead.
Wherever there is a break in control flow, we can reduce the

number of descriptors being created by using lookahead to

suppress descriptors for threads that will immediately ter-

minate; the lookahead effectively allows us to pre-compute

whether the first match operation in a thread will fail. In fact

the effect can be quite large, since where we have rules of the

form 𝑋 → 𝛼𝑌𝛽 𝑌 → 𝑍𝛾 𝑍 → 𝛿 and gn corresponds to
𝑋 → 𝛼 ·𝑌𝛽 , a failing lookahead test will suppress descriptor
creation for both 𝑌 and 𝑍 . We can also use lookahead in

the ret() function to suppress descriptor creation when the

current input symbol is not in the follow set of the left

hand side of the current rule. We give some initial results

from lookahead implementations in the next section.

Scott McPeak reported on Elkhound [8] which is a table-

driven generalised LR parser which runs deterministically

on those parts of the table which are context free. In GLL,

descriptors also only need to be created when true nondeter-

minism is detected. The conditions under which descriptor

creation may be suppressed are yet to be fully studied, but we

note that a combination of lookahead and FIFO-style short

circuiting effectively ensure deterministic execution for calls

to rules which are LL(1), since the alternate rules will have

disjoint first sets so at most one new thread can exist.

The presentation here uses the language of threads to de-

scribe GLL control flow, and it is natural to wonder whether

a truly multi-threaded implementation running on a modern

multi-core processorwould demonstrate significant speedups.

Initial experiments using Java threads have not been encour-

aging, which is perhaps to be expected since as we have

already noted, GLL performs very little actual computation

since nearly all actions are conditional data structure updates,

and those data structures are global to all threads. Hence the

ratio of inter-thread communication to in-thread computa-

tion is high. However, our experience with gllHP has shown

that the general purpose Java libraries cannot compete with

a tuned implementation, and so we might imagine that there

are highly tuned approaches to distributing the GLL algo-

rithm over multiple processors that might be worthwhile.

The current ubiquity of multi-core hardware makes this an

attractive goal for further research.

In principle, the number of contingent pop actions may

be reduced by choosing a suitable execution order for the

descriptors. In practice it is not clear whether there are signif-

icant gains to be had since the work associated with the pop

has to be performed under any ordering, and the overhead of

scanning the pop list for each GSS node is not great. There

may be cache effects that can be exploited if we achieve

spatial locality of actions, and that suggests that processing

52



A Reference GLL Implementation SLE ’23, October 23–24, 2023, Cascais, Portugal

Table 2. Effect of lookahead on data structure cardinalities

Grammar String Tokens Mode Descriptors GSS Node GSS Edge Pops Symbol Packed Ambig

ANSI C gtbSrc 36,828 Opt 4,178,345 564,437 2,042,843 559,859 297,677 261,401 515

gllBL 6,578,603 946,975 2,989,166 776,934 881,128 829,463 526

ANSI C rdpSrc 26,552 Opt 3,122,638 417,204 1,510,486 425,730 222,206 195,799 138

gllBL 4,803,532 699,089 2,219,720 567,128 637,043 602,230 139

ANSI C++ artSrc 36,445 Opt 9,493,519 1,036,075 4,755,333 874,868 473,257 475,542 27,362

gllBL 20,250,528 2,496,038 8,069,723 1,227,578 1,310,876 1,306,193 49,682

ANSI C++ gtbSrc 36,828 Opt 13,061,222 1,270,903 6,392,785 1,110,400 561,139 562,843 26,081

gllBL 24,091,341 2,647,731 9,650,268 1,430,990 1,531,742 1,513,670 50,039

ANSI C++ rdpSrc 26,552 Opt 9,687,071 942,742 4,709,390 841,963 425,385 426,291 18,925

gllBL 18,294,156 2,056,206 7,427,350 1,061,367 1,142,989 1,125,019 35,806

C# 1.2 twitter 33,841 Opt 2,024,014 443,304 1,056,916 390,990 255,343 225,052 2,670

gllBL 4,659,342 1,140,430 2,170,525 555,474 639,254 604,999 11,460

JLS1 life 36,976 Opt 2,302,532 505,179 1,249,154 402,501 260,377 223,401 0

gllBL 4,175,967 883,950 1,948,492 599,751 710,803 655,277 0

JLS2 left life 36,976 Opt 858,335 262,104 395,704 316,328 343,729 313,678 24,725

gllBL 3,475,876 699,565 1,022,346 462,108 745,514 620,736 30,650

JLS2 right life 36,976 Opt 783,455 266,303 375,252 296,777 336,505 305,478 23,500

gllBL 3,196,289 642,062 822,362 413,005 719,486 582,283 30,650

Table 3. Throughput using hash table tuned for load factor 2 on ANSI C parsing gtbsrc

Grammar String Characters Tokens CPU seconds Speedup Throughput tokens s
−1

BL HP Opt HP Opt BL HP Opt

ANSI C gtbsrc 117,557 36,828 4.14 1.32 0.85 3.13 4.90 8,888 27,801 43,537

ANSI C rdpsrc 84,778 26,552 2.76 0.92 0.63 3.00 4.39 9,605 28,833 42,126

ANSI C++ artsrc 118,922 36,445 14.67 5.30 3.87 2.76 3.79 2,485 6,870 9,425

ANSI C++ gtbsrc 117,557 36,828 18.82 6.92 5.50 2.72 3.42 1,957 5,321 6,701

ANSI C++ rdpsrc 84,778 26,552 13.95 4.64 3.84 3.01 3.64 1,903 5,728 6,923

C# 1.2 twitter 131,323 33,841 3.38 0.84 0.67 4.02 5.06 9,998 40,239 50,554

JLS 1 life 125,594 36,976 2.67 0.81 0.62 3.31 4.30 13,871 45,899 59,639

JLS2 left life 125,594 36,976 1.89 0.56 0.35 3.40 5.46 19,543 66,539 106,651

JLS2 right life 125,594 36,976 1.75 0.49 0.33 3.58 5.36 21,182 75,802 113,458

descriptors in a first-in, first-out manner might be advanta-

geous. In the gllBL implementation we have used a double

ended queue so as to explore such effects. gllHP uses a stack

to hold the descriptors, and thus is FIFO.

If we are using FIFO descriptor scheduling then we can

short circuit the enqueue/dequeue operations for the final

descriptor in a call action, since once loaded it will be im-

mediately unloaded, so we might as well directly load the

context variables.

Derivation representation The binarised SPPF as described

here has obvious redundancies. In the binarisation scheme

above, the last element of each production has an interme-

diate node parent with only one child, and this can be sup-

pressed with the element directly attached as the left child

of the preceding intermediate node, so in general we would

only need 𝑘 − 2 binarisation nodes for sequences of length

𝑘 (𝑘 > 2), and no binarisation node for a sequence of length

1 or 2.

Terminal nodes themselves can be omitted since the parent

pack node and its parent symbol node contain the indices

into the string for that terminal.

Pack nodes are only required where there is ambiguity,

and as we shall see in Table 2 below, for current programming

language grammars the proportion of symbol and interme-

diate nodes that are ambiguous is small, thus large potential

savings are possible.

If pack nodes are labelled with the left and right indices

from their parent symbol, then they contain all of the in-

formation required to encode the derivation forest and the

parent symbol and intermediate nodes are redundant. This is
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Table 4. Effect of suboptimal hash table load factor

Grammar String Mode Pool bytes Pool/tok 1 2 3 ≥ 4 % ≥ 4

ANSI C gtbSrc Opt 119,434,167 3,243 5,249,823 1,065,880 139,023 25,498 0.39

gllHP 191,663,728 5,204 7,937,594 1,960,621 320,110 44,516 0.43

ANSI C rdpSrc Opt 89,192,035 3,359 4,235,001 701,905 69,906 11,063 0.22

gllHP 140,115,278 5,277 6,652,636 1,193,682 143,439 14,323 0.18

ANSI C++ artSrc Opt 266,870,915 7,323 7,738,658 2,994,531 757,995 257,778 2.19

gllHP 560,677,098 15,384 8,812,860 5,823,056 2,723,507 1,381,572 7.37

ANSI C++ gtbSrc Opt 364,085,364 9,886 8,237,055 4,063,565 1,352,693 581,128 4.08

gllHP 665,091,529 18,059 8,216,549 6,298,134 3,450,289 2,182,890 10.83

ANSI C++ rdpSrc Opt 270,071,141 10,171 7,638,987 2,995,175 762,042 260,622 2.24

gllHP 505,374,437 19,033 9,034,932 5,393,298 2,293,843 1,019,367 5.75

C# twitter Opt 60,884,465 1,799 3,495,829 397,677 30,893 2,880 0.07

gllHP 138,587,616 4,095 6,672,188 1,269,676 163,048 17,001 0.21

JLS1 life Opt 68,910,630 1,864 3,820,275 485,504 43,484 5,234 0.12

gllHP 125,525,127 3,395 6,319,822 1,108,786 128,263 12,761 0.17

JLS2 left life Opt 29,385,111 795 2,204,270 132,437 6,585 242 0.01

gllHP 102,413,841 2,770 5,227,440 761,699 82,727 6,671 0.11

JLS2 right life Opt 27,315,451 739 2,102,990 121,011 5,915 251 0.01

gllHP 93,771,492 2,536 4,848,491 651,856 65,324 5,844 0.10

the basis if the Binary Subtree Representation (BSR) described
in [15]. As well as reducing memory requirements, this ap-

proach reduces derivation updates to set-addition of BSR

elements which simplifies and speeds up the operation.

The use of the Kleene and Positive closures can act as

hints to the parser to use iteration rather than recursion

which may yield performance improvements. Extended con-

text free grammars offer opportunities to both reduce stack

activity and compress derivations. Extending a GLL recog-
niser to handle extended CFG constructs is straightforward,

but correctly embedding all derivations in the SPPF for a

GLL parser requires care. A complete scheme is given in [13]

in which extended constructs are referred to as ‘bracketed’

constructs.

7 Concluding Remarks
We have discussed two reference implementations of GLL

(i) gllBL which uses standard Java API objects to implement

the core data structures and (ii) gllHP which uses explicit

memory management.

The key question is whether GLL is a plausible engineer-

ing option compared to classical approaches. There is no

question that the approach is very expensive compared to

the near-deterministic techniques developed in the 1970s;

in some cases gllHP needs as much as 8kbytes of memory

per input character. However even for very long inputs of

over 100kByte characters parsed using the ANSI C++ gram-

mar with its many ambiguities, gllHP needs no more than

0.8Gbyte of memory which is only 5% of the memory on a

typical modern 16GByte laptop computer, thus these gargan-

tuan memory demands are not a practical problem.

Throughput is also much less than for a classical parser,

but similarly manageable on modern hardware. We propose

the informal metric Good Enough for Gnu (GEG) as a thresh-

old test for utility. We imagine that the current GNU C com-

piler is re-engineered with a GLL parser. Assuming that the

existing classical parser takes negligible resources, a parser

is GEG if it slows GNU C down by no more than 10%.

The underlying source code for the gtbSrc string comprises

996,776 characters which when compiled with GNU C++ in

its default mode requires 10.5s, and when compiled with

-Ofast, 18.8s. Hence we would like our general parsers to

process this string in at most 1–2 seconds.

gtbHP processes gtbSrc in 1.35s using theANSI C grammar,

and 7.02s for the much more challenging ANSI C++ grammar.

However gtbHP is a baseline implementation (albeit with

efficient memory management), is interpreted and is written

in Java. Informal experiments indicate that adding in looka-

head and using a compiled parser will improve throughput

by a factor of around two; that converting the code to ANSI

C will produce another factor two improvement; and that

setting the hash table load factors appropriately for ANSI

C++ (rather than ANSI-C as here) may give a further factor

1.5 improvement.
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Abstract

It is not uncommon to design a programming language as
a core language with additional features that de�ne some
semantic analyses, but delegate others to their translation
to the core. Many analyses require contextual information,
such as a typing environment. When this is the same for
a term under a new feature and under that feature’s core
translation, then the term (and computations over it) can be
shared, with context provided by the translation. This avoids
redundant, and sometimes exponential computations. This
paper brings sharing of terms and speci�cation of context to
forwarding, a language extensibility mechanism in attribute
grammars. Here context is de�ned by equations for inher-
ited attributes that provide (the same) values to shared trees.
Applying these techniques to the ableC extensible C com-
piler replaced around 80% of the cases in which tree sharing
was achieved by a crude mechanism that prevented sharing
context speci�cations and limited language extensibility. It
also replaced all cases in which this mechanism was used to
avoid exponential computations and allowed the removal of
many, now unneeded, inherited attribute equations.
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lator writing systems and compiler generators.
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1 for i in 0 to f(x) { g(i); }

1 { var i : int = 0;

2 var _v0 : int = f(x);

3 while i < _v0 { g(i); i := i + 1; } }

Figure 1. A for-loop example (top), introduced as a feature
that translates to the code with a while-loop (bottom).

1 Introduction

De�ning all semantic analyses, optimizations, and transla-
tions for all constructs in a full-featured programming lan-
guages can be a daunting task. One way to address this is
to design the implementation with a smaller core language
containing some collection of the essential language con-
structs and semantic analyses. Additional features are then
layered on top of this core and provide a translation of the
new feature into the core language, e.g. a for-loop with inte-
ger bounds may translate down to a while-loop in the core,
as shown in Figure 1. This alleviates the need to specify cer-
tain semantic analyses or tasks, such as code generation, on
non-core features by delegating them to the translation.

While other tasks, such as type checking, can also be del-
egated to the translation, this leads to reporting error mes-
sages on generated code instead of the code written by the
programmer. If, e.g. the expression f(x) for the upper-bound
on the for-loop in Figure 1 is not of type integer then an error
about a type-mismatch on a variable declaration (line 2) may
be reported and be nonsensical to the programmer. Thus, it
is helpful to explicitly manage some aspects of compilation,
such as type checking and error reporting, but dispatch other
tasks, such as code generation, to the translation. Note that
this requires managing the contextual information needed
by sub-terms by passing this information down the syntax
tree, e.g. an environment mapping variables to their types.
In doing so, the language indicates that some semantic as-
pects of the non-core feature are equivalent to those of its
translation but that some are not.

Not only does designing languages in this way save e�ort,
it also leads to a more modular development as work on the
core language (once it is established) can be isolated from
work on non-core features and be carried out by di�erent
language developers. With proper tool support, modular
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...

forLoop

env errs, asm

forLoop

env1 errs1

B

env2 errs2

env

asm

forLoop

env′1 asm1

B

env′1

asm1

B

env′2 asm2

B

Figure 2. A portion of the decorated tree resulting from
for ... in ... { for ... in ... { s }}. For clarity, the
loop variable and bounds are not shown.

design can enable a particular form of extensible languages
in which new, often domain-speci�c, language constructs
and static analyses can be developed independently, and
composed together to form a language for problems that
involve multiple domains. ExtendJ [3] and SugarJ [5] allow
new features to be added to Java, andXOC [2] and ableC [11]
allow new features to be added to C in a modular way.
Figure 2 shows aspects of the syntax trees created in er-

ror checking and code generation of the for-loop example
in Figure 1; it also illustrates a potential problem with this
approach. For two nested for-loops, the original tree with
body B is shown on the left (the loop variables and bounds
are not shown). The propagation of a typing environment for
error checking (errs) is indicated by env that is propagated
along those edges. The squiggly edges facing right indicate
the translation of the loops, with the clouds representing the
while-loop code containing B . Note that the translation of the
outer for-loop includes the inner for-loop, an approach used
in the forwarding technique [26] used in ableC to handle
independent language extensions. This avoids inappropri-
ately translating-away constructs from other independent
extensions. The assembly language translation process to
construct asm (which may also depend on types and thus
env) is dispatched from the for-loops to their translations
and this process takes place on right-most trees, the ones
whose nodes have an env propagated down (or over) to them.
This will provide two copies of B with an environment, but
the middle two instances of B would not be constructed nor
visited in these two compiler tasks.

In some cases, this incremental translationmay even result
in an exponential number of trees to traverse. This can hap-
pen in some instances of type-based operator overloading, in
which the type of the result of an overloaded construct is not
determined explicitly, but is instead computed on the over-
loaded construct’s translation, through forwarding. Consider
an overloaded negation operator ~ and the type-checking
of the expression ~ (~ (~ e)). Following this pattern, type

...

neg

env type

neg’

env

type

neg neg’ neg neg’

neg neg’ neg neg’ neg neg’ neg neg’

4 4 4 4 4 4 4 4

Figure 3. The resolution of operator overloading on a unary
negation expression ~ (~ (~ e)) resulting in an exponential
number of trees being created and traversedwhen computing
type. neg' is the specialized implementation of neg for the
type of 4 . Some labels are omitted for clarity.

checking results in creating and traversing an exponential
number of trees, 8 in this case, as illustrated in Figure 3. The
overloaded ~ operator, represented as neg, will type-check
its sub-expression since that type is used to determine the
translation, the neg' nodes in Figure 3. The type of a neg

expression is determined by its neg' translation and thus
we need to type check 4 under both operators. An enclos-
ing (middle) neg expression queries its child to determine
its translation and that translation will do the same. The re-
sults in type checking 4 4 times. Another enclosing negation
operator repeats the process and then 4 is checked 8 times,
an exponential growth in the number of trees created and
traversed results. In fact, this phenomenon can also occur
with seemingly predictable constructs like the for-loop when,
e.g. another extension uses both errs and asm results from a
child for-loop to compute asm.
A second problem faced in specifying language features

in this manner is the need to explicitly manage the �ow
of contextual information down to the components of the
new language feature. In some cases this can be di�cult, in
others only tedious. In Figure 2, a forLoop construct extends
its incoming environment 4=E to include the declaration
of the loop variable. This extended environment is passed
as 4=E1 to the nested loop, which does the same to pass
4=E2 for the body s. It is important to make sure that the
environments supplied by a production are the same as, or at
least compatible, with those determined on the translation.
Here, this entails ensuring that 4=E1 (or 4=E2) is compatible
with 4=E ′

1
(or 4=E ′

2
) as determined on the translation. As we

will see, this is straightforward for a forLoop, but in the more
sophisticated language extensions found in ableC this can
be more di�cult.
A solution to both of these problems is for component

trees to be shared by the non-core feature and its translation.
This is depicted on the left in Figure 4, in which the loop
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...

forLoop

env errs, asm

forLoop

errs1

B

errs2

env

asm

env1 asm1

env1

asm1

env2
asm2

...

neg

envtype

neg’

neg neg’

neg neg’

4

Figure 4. Alternative versions of the trees in Figure 2 and
Figure 3 in which decorated children are shared between the
forwarding and the forwarded-to trees.

body B exists only once and the env context is speci�ed by
the translation. (The lower and upper bounds of the for-loop
are shared in a similar way.) Thus, the for-loop construct
can still access type information on those expressions and
generate appropriate error messages when those expressions
do not have an integer type. Tree sharing also eliminates
the exponential number of trees in the negation example, as
seen on the right in Figure 4. The ableC system frequently
uses a crude approach to sharing that avoids this duplication
of trees but limits the extensibility of the language feature,
the primary goal of ableC.
In addition to these concerns, there are also instances

when a new language construct needs to supply contextual
information to its components that di�ers from that supplied
by the translation. For example, a pretty-printing task may
provide an indentation level to its sub-terms and this value
would di�er for the loop body under these two constructs.
If for a language feature the translation is not “macro-like”
(as in the for-loop example) but instead must be computed
from semantic information, such as the types of sub-terms,
then these explicit contextual speci�cations are required.
Additionally, there are situation in which sharing of sub-
components may not be feasible and two versions of the
tree are needed. For example in translating “repeat 1>3~

until 2>=3” to “1>3~ ; while (not 2>=3) do 1>3~” the 1>3~
tree cannot be shared in both places; some attribute (e.g. a
data-�ow analysis) may need to have di�erent values for
each instance of 1>3~.

This paper examines this problem and poses solutions in
the context of attribute grammars (AGs) with forwarding [26]
— a technique that constructs translations and automatically
copies contextual information to the translation. Computed
semantic information on the translation is automatically

copied back to the original construct, when it is not over-
ridden (e.g. error messages) by an explicit de�nition on the
“forwarding” construct.

The primary contribution of the paper is a newmechanism
for sharing trees and their attribution under a new (forward-
ing) construct and its translation (forwarded-to) construct.
In attribute grammars, a production de�nes synthesized at-
tributes for the left-hand side nonterminal and inherited
attributes for the right-hand side nonterminals. Forwarding
provides default/implicit equations for synthesized attributes.
We extend this so that for shared trees, forwarding can now
do the “other half” of this work and now provide default-
/implicit equations for inherited attributes for right-hand
nonterminals too. Critically, this mechanism does not limit
the extensibility of the language like the crude mechanism
currently used in ableC. This is discussed in Section 3 af-
ter Section 2 continues the discussion of the shortcomings
of the existing approach to forwarding. Section 3 also in-
troduces translation attributes, a means for sharing context
when translation trees are constructed over a number of
productions in a higher-order attribute.

Section 4 validates the techniques by implementing them
in the Silver [25] attribute grammar system and applying
them in the large ableC speci�cation and several extensions
to it, �nding that around 80% of the uses of the crude non-
extensible technique (and all exponential cases) could be
replaced by the new extensible approach.1

Section 5 describes how the modular well-de�nedness
analysis [12] can be extended to handle this new feature
to ensure that there will be no missing or duplicate equa-
tions in an attribute grammar composed from independently-
developed language extensions. It also discusses challenges
in ensuring non-circularity with this approach.
We discuss limitations of this approach, and alternatives

to it, in Section 6 before discussing related in Section 7 and
future work and concluding in Section 8.

2 Background

In this section we provide background on attribute gram-
mars, forwarding [26], its use in extensible languages, its
limitations, and its realization in the Silver AG system [25].
Background on the modular well-de�nedness analysis [9, 12]
and its extension in this paper is discussed in Section 5.

2.1 Attribute grammars and Silver

Attribute grammars are a declarative formalism for specify-
ing the semantics of context-free languages [15, 16] and can
be formally de�ned as a four-tuple ⟨� = ⟨#),) , %⟩, �,$, �⟩

where� is a context free grammar with nonterminal sym-
bols #) , terminal symbols ) , and production rules % . � is
a set of synthesized (�( ) and inherited (�� , � = �( ∪ �� )

1Silver, ableC, extensions and other examples are available at h�ps://melt.

cs.umn.edu and archived at h�ps://doi.org/10.13020/badh-qf44.
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attributes that may decorate nodes of trees in the language
of � , and $ is a mapping of which attributes in � occur on

which nonterminal symbols in #) . � is the set of equations
on productions, that de�ne the values of attributes on trees.

Since AGs process abstract syntax, as opposed to specify-
ing concrete syntax, a grammar � supports a wider variety
of types for tree nodes than simply nonterminal and termi-
nal symbols. Thus, productions in % have a signature of the
form G0 :: #)0 ::= G1 :: +1 ...G= :: += , with = ≥ 0 in which +
includes #) , ) , primitive types such as integers, and others.
These signature items are labeled with names so that nodes
in a syntax tree can be referred to by these labels instead of
their position in the production.
Attribute grammars have been extended in a wide vari-

ety of ways since their introduction to better support the
speci�cation of tasks common in language implementation.
For example, higher-order attributes [29] hold tree values
that are passed to new locations in the syntax tree where
they are then provided with inherited attribute (that is, dec-
orated) so that synthesized attributes can be computed on
them. Another commonly used extension is reference [7] or
remote [1] attributes. These can be seen as pointers, or refer-
ences, to the root node of remote decorated trees somewhere
in the syntax tree from which attributes can be accessed.

In Silver decorated trees in reference attributes are known
to have been provided with a set of inherited attributes called
a reference set. When decorated tree types are written as
Decorated #) this set is, by default, the inherited attributes
occurring on #) that were declared in the same grammar
module as #) . The reference set can be given explicitly to
override this default; e.g. Decorated Expr with {env} iden-
ti�es the environment attribute env as sole attribute in the
reference set for this type of decorated expression.

Figure 5 show an implementation of the for-loop construct
as seen in Figure 1 in the Silver AG system. Declarations
of attributes, and their occurrences, are not shown but can
be inferred from the forLoop production. This production
computes a synthesized errors attribute on the left-hand
side s, de�nes the inherited environment attribute env on the
three child trees, computes a local fresh variable upperVar.
This is used in the construction of the while-loop trans-
lation, seen in Figure 1, that the for-loop will forward to.
The productions decl for declaring and initializing variables,
seq for statement sequencing, etc. should be clear from the
example in Figure 1. The forLoop production takes (undeco-
rated) terms of type Expr and Stmt in constructing the syn-
tax tree. In the body of the production (in the curly-braces)
these labeled terms are decorated by inherited attribute equa-
tions, e.g. lines 7–9, and thus the labels refer to trees of type
Decorated Expr and Decorated Stmt. Similarly, local tree-
valued production attributes can also be declared and de�ned
as an undecorated nonterminal type (e.g. Expr) and decorated
using inherited attribute equations in a production body to
be typed as decorated (e.g. Decorated Expr).

1 production forLoop s::Stmt ::=

2 iVar::String lower::Expr upper::Expr body::Stmt

3 { s.errors =

4 checkInt(lower.type, "loop lower bound") ++

5 checkInt(upper.type, "loop upper bound") ++

6 lower.errors ++ upper.errors ++ body.errors;

7 lower.env = s.env;

8 upper.env = s.env;

9 body.env = addEnv(iVar, intType(), s.env);

10 local upperVar::String = freshName(s.env);

11 forwards to block(seq(

12 decl(iVar, intType(), new(lower)),

13 seq(decl(upperVar, intType(), new(upper)),

14 while(intLt(var(iVar), var(upperVar)),

15 seq(new(body), assign(iVar,

16 intAdd(var(iVar), intConst(1))))))));

17 }

Figure 5. A forLoop implementation. The children are ex-
plicitly decorated with the environment to support error
checking, and are decorated again in the forwarded to tree.

2.2 Forwarding and extensible languages

Forwarding is a technique developed to support the modular
de�nition of languages [26] and has been used extensively in
the ableC extensible C compiler and a wide variety of com-
posable extensions to it [10, 11]. Any queries for synthesized
attributes on the production’s left-hand side nonterminal
that are not explicitly de�ned by equations are “forwarded”
to the forwards to tree to be answered there. Likewise, any
queries for inherited attributes on the forwarded-to tree are
passed back to production’s left hand side and their values
are retrieved from there. In Figure 5, s de�nes a value for the
errors attribute using the function checkInt that reports a
message when a type is not an integer. This takes precedence
over the value for errors on the while-loop construct, thus
providing proper error messages that reference the code writ-
ten by the programmer, not the code to which it translates. A
query to s for an assembly language translation asm attribute
would automatically and implicitly copy the value from of
asm from the forwards-to tree back to s. Any queries of an
inherited env attribute on the outermost block construct in
the forwards-to tree would get is value from the env attribute
passed down to the left-hand side symbol s.
Forwarding supports the automatic composition of inde-

pendent extension speci�cations. If another extension de-
�nes, e.g. a new translation to Web Assembly in a wasm at-
tribute, then all computations involved in that e�ort take
place on the forwards to tree and automatically provide a
value for wasm for s, even though the author of the forLoop
extension knew nothing of this Web Assembly extension.
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1 production neg e::Expr ::= n::Expr

2 { n.env = e.env;

3 forwards to case n.type of

4 | intType() -> intNeg ( new(n) )

5 | boolType() -> boolNeg ( new(n) )

6 | _ -> errorExpr ("incorrect types")

7 end; }

1 production decExpr

2 e::Expr ::= de::Decorated Expr with {env}

3 { e.type = de.type;

4 e.errors = de.errors; }

5

6 production neg e::Expr ::= n::Expr

7 { n.env = e.env;

8 forwards to case n.type of

9 | intType() -> intNeg ( decExpr(n) )

10 | boolType() -> boolNeg ( decExpr(n) )

11 | _ -> errorExpr ("incorrect types")

12 end; }

Figure 6. The exponential neg production (top) and the e�-
cient but crude “decExpr” hack (bottom).

2.3 Limitations of forwarding

While forwarding provides implicit attribute de�nitions for
synthesized attributes for a production’s left-hand side sym-
bol, it provides no support for the “other half” of what equa-
tions associated with a production do: provide values of
inherited attributes to the child trees. This is shown in Fig-
ure 5 where equations for env are required for child trees
since their synthesized attribute errors (whose computation
depends on an environment) is demanded on line 6. An im-
portant consideration when overriding errors on forLoop is
that any problems in the forward tree should still be re�ected
in the new errors equation. To ensure this, the environment
given to lower, upper and bodymust match the environment
computed through the equations of the productions enclos-
ing these children in the forward tree; e.g. body must receive
an env containing iVar bound to the appropriate type. This
requires extension developers to familiarize themselves with
host language details in order to write the appropriate equa-
tions. Doing so may be especially burdensome in a more
sophisticated host language where the inherited dependen-
cies of errors could be more than just env.
Performance is another concern; see the duplication of

for-loop (Figure 2) and negation trees (Figure 3). In the spec-
i�cation of the forwards-to tree for a for-loop in Figure 5 the
child trees lower, upper, and body must be replicated (using
new) This “undecorates” these trees, retrieving the origi-
nal terms prior to decoration, and re-decorates them with

...

neg

env type

neg’

decExpr

neg neg’

decExpr

neg neg’

decExpr

4

Figure 7. The e�cient
but non-extensible im-
plementation of over-
loaded negation from
the bottom of Figure 6.

new attribute values under the
forwards-to tree. For the for-
loop in Figure 2 this is not so
expensive, but it is a signi�cant
problem with the negation op-
erator in Figure 3. The speci�-
cation of the overloaded nega-
tion operator is given at the top
of Figure 6. It queries its child
term’s type (n.type) to deter-
mine which type-speci�c nega-
tion production to forward to.
Since there is no explicit equa-
tion for e.type that value is de-
termined on (and copied from)
the forward tree, resulting in
the duplication in Figure 3.

The speci�cations at the bot-
tom of Figure 6 demonstrate
the crude “decExpr” hack that
avoids the exponential duplica-
tion of trees. The decExpr pro-
duction wraps up a Decorated

expression tree that has been al-
ready provided with its env attribute (written with {env}),
thus allowing the evaluation of the type and errors attribute
on de. This production is used to wrap up the decorated child
n in the optimized neg production instead of using new. This
results in the tree shown in Figure 7 in which each negation
child is shared between the original and forwarded-to trees.
While this is e�cient, it severely limits the extensibility

of the language. Recall the extension adding equations for
a synthesized wasm attribute to host language productions.
It would de�ne wasm on intNeg and boolNeg but any new
inherited attributes needed for this computation will not be
propagated down past the decExpr node. The needed inher-
ited attribute equations cannot be added to the host-language
decExpr production since they would have no e�ect — its
child is a reference to a tree that was decorated elsewhere,
and inherited attribute equations are not permitted here.
This technique is used frequently in the ableC speci�cation
and, while e�cient, limits the kinds of language features that
can be developed as composable language extensions.

3 Forwarding with Tree Sharing

Here we describe a new “tree-sharing” operator @ that al-
lows trees, and the speci�cation of inherited attributes, to be
shared between a forwarding and a forwarded-to tree, thus
avoiding the duplication and redecoration seen in Figure 2
and Figure 3 and instead producing shared trees like those in
Figure 4. We also describe di�erent scenarios in which this
can be used.
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1 production forLoop s::Stmt ::=

2 iVar::String lower::Expr upper::Expr body::Stmt

3 { s.errors =

4 checkInt(lower.type, "lower bound") ++

5 checkInt(upper.type, "upper bound") ++

6 lower.errors ++ upper.errors ++ body.errors;

7 local upperVar::String = freshName(s.env);

8 forwards to block(seq(

9 decl(iVar, intType(), @lower),

10 seq(decl(upperVar, intType(), @upper),

11 while(intLt(var(iVar), var(upperVar)),

12 seq(@body, assign(iVar,

13 intAdd(var(iVar), intConst(1)))))))); }

Figure 8.An alternative version of Figure 5 inwhich children
are shared with the forward tree, avoiding the need to specify
inherited env equations.

3.1 Sharing with a static forward tree

In order to achieve the pattern of sharing seen in Figure 4,
we introduce the tree-sharing operator @, which takes a dec-
orated tree and wraps it as an undecorated term. Decorating
this term simply yields the original tree, updated with any
newly-supplied attributes added; thus the syntax @a can be
read as “a gets decorated with more attributes here.” This op-
erator can be seen as a improved, built-in version of decExpr
and similar "wrapper productions", except that there is no in-
termediate node for @ in the decorated tree, like the decExpr
one seen in Figure 7. The tree-sharing operator can be used
in specifying the forward for the forLoop production, as seen
in Figure 8. With the nested forLoop scenario, this gives rise
to the tree in Figure 4 instead of Figure 2; now the innermost
statement B is only decorated once.
When a shared child or local appears beneath statically

speci�ed productions in the forward tree, inherited attributes
supplied to the child/local by these productions can be uti-
lized in the original forwarding production. This e�ectively
permits child inherited attributes to be implicitly computed
through forwarding. For example on lines 4–6 of Figure 8,
type and errors can be accessed on the children without
supplying explicit equations for env since, as seen on the left
in Figure 4, env is de�ned for those trees by the forward tree.
Silver uses a demand-driven approach to attribute eval-

uation [8], which now presents some complications. Tradi-
tionally, one knows what equations will be used to compute
inherited attributes on a tree before any attributes are evalu-
ated. This is now no longer the case, as inherited attributes
supplied to a child shared in a forward tree are only de-
�ned when the portion of the forward tree containing the
child is demanded. For example in Figure 8, the equation for

1 production neg e::Expr ::= n::Expr

2 { n.env = e.env;

3 forwards to case n.type of

4 | intType() -> intNeg ( @n )

5 | boolType() -> boolNeg ( @n )

6 | _ -> errorExpr ("incorrect types") end; }

Figure 9. An implementation of operator overloading, in
which the forward tree is determined based on the operand
types. Computing these types requires supplying the envi-
ronment to the operands.

s.errors does not directly depend on forwarding; demand-
ing lower.errors seemingly would not cause the forward
tree to be created and decorated, which would lead to a
missing equation for env on lower.
To avoid this, any use of the original child tree must de-

mand the corresponding portion of the forward tree. This
is conceptually like pattern matching on the forward tree,
with a pattern that mirrors the term containing the child. For
example, the access of lower.errors could be translated as

1 case forward of

2 | block(seq(decl(_, _, lower))) -> lower.errors

3 end

In reality, this can be implemented more e�ciently than pat-
tern matching, as the forward tree is known to have been
built with these constructors and we do not need to check
that it has the expected shape. Note that this problem would
not exist if a similar approach of decoration through a shared
tree was used in an ordered attribute grammar [14]; an at-
tribute supplied through sharing (like env) could be fully
computed before being used on the shared tree by another
attribute (like errors.)

In prior versions of Silver, children and locals could be ref-
erenced with an undecorated type, implicitly un-decorating
trees in these cases. For example, the calls to new on lines 4–6
of Figure 5 could have been omitted. We now recognize this
to be a language design �aw, as children can be inadvertently
un-decorated, and included in the forward tree to be deco-
rated again, without any indication of a potential problem.
To address this, we simplify the type semantics of Silver so
that any reference to a child or local tree gives a decorated
type. This requires one to explicitly write new or @ when
incorporating a sub-tree that has previously been decorated
into a new term.

3.2 Dynamic forwarding

Sometimes, a child may appear in the forward tree un-
der di�erent productions, depending on the result of some
analysis. This is the case for the negation operator from
Figure 6, where n.type is computed to determine the target
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1 production neg e::Expr ::= n::Expr

2 { local nVar::String = freshName(e.env);

3 local impl::Expr = case n.type of

4 | intType() -> intNeg ( var(nVar) )

5 | boolType() -> boolNeg ( var(nVar) )

6 | _ -> errorExpr ("incorrect types") end;

7 forwards to let_(nVar, @n, @impl); }

Figure 10. An alternate version of Figure 9, in which the
portion of the forward tree containing the child n is static.

production. Computing type on an expression depends on
env, which must be supplied to n; to avoid a circularity, this
must be done with an explicit equation rather than through
forwarding.
However, one would still wish to share n in the forward

tree, to avoid the exponential explosion seen in Figure 3;
this can be done using the tree sharing operator as seen in
Figure 9. For this to be possible, the writer of a forwarding
production such as negmust ensure that the values of any ex-
plicit inherited equations on a shared child match the values
that would otherwise be supplied through forwarding.

3.3 Partially dynamic forwarding

Often, an intermediate approach between static and dy-
namic forwarding is possible: children can be shared (and
receive attributes) beneath a static portion of the forward
tree, while other portions of the forward tree are computed
dynamically. For example in Figure 10, the operand to neg can
be bound to a fresh temporary variable in a let-expression.
The implementation, dynamically determined from the type
of n, can then refer to the variable instead of using n directly.
Lazy evaluation means that the portion of the forward tree
containing n can be decorated with env to compute type,
before impl is computed. Note that impl is also marked as
being shared, since it is a local that gets decorated implicitly.
Note that without care this approach can give rise to cir-

cularities, between computing an analysis on a child that is
needed to determine part of the forward, and decorating the
forward tree to determine inherited attributes on the child.
To avoid this one must sometimes supply some inherited
equations explicitly, which take precedence over equations
supplied in the forward tree.
For example, the ableC-closure extension [10] intro-

duces lambda functions, e.g. lambda (int x) -> x + y, where
free variables such as y referenced in the body can be cap-
tured. To implement this, a lambda function is implemented
as a function pointer, paired with a struct containing the val-
ues of captured variables. Thus, the above lambda expression
would forward to a function pointer to the following func-
tion that is lifted to the global scope along with the following
struct declaration:

1 var res : bool = table { b1 && b3 : T F

2 ~ b2 : T *

3 b2 || b3 : F T };

1 var res : bool =

2 let _v0 : bool = b1 && b3 in

3 let _v1 : bool = ~b2 in

4 let _v2 : bool = b2 || b3 in

5 (_v0 && _v1 && ~_v2) || (~_v0 && _v2);

Figure 11. A simple language extension for condition tables
(top), provides an alternate concise notation for complex
boolean expressions (bottom)

1 struct _lam_env_19 { int y; };

2 int _lam_fn_19(struct _lam_env_19 _env, int x) {

3 const int y = _env.y;

4 return x + y; }

The free variables from the body to be captured are com-
puted as a synthesized attribute freeVariables, which on
expressions depends on env. However, the env given to the
body in the forward of the lambda production depends on
the variable de�nitions (e.g. line 3 in the above) generated
from the free variables. This circularity can be avoided by
the lambda production supplying an explicit env equation
to its body expression. For correctness, this equation must
match the env supplied through forwarding, in this case by
making all captured variables constant.

3.4 Computing a forward over multiple productions

Sometimes, an extension may introduce its own nonter-
minals to provide richer syntax, and the computation of the
translation it will forward to is spread across the productions
for these new nonterminal symbols. For example, the condi-
tion tables extension, seen at the top of Figure 11, provides
convenient syntax for writing complex Boolean expressions.
A condition table expression is true if there is a columnwhere
the expression is true for every row with a T, and is false for
every row with an F, while * indicates that we don’t care if
that expression is true or false. This expression translates
to the code seen in the bottom of Figure 11, creating a let-
binding for every expression, with the conditions translated
into conjunctive normal form as the body.

A portion of the implementation of this extension is seen
in Figure 12. Table rows are represented by the TRows nonter-
minal (line 7), with an inherited attribute conds to construct
the needed Boolean result expression. We require in the syn-
tax of the extension that the table has at least one row, such
that rs.conds is non-empty in nilRow. On line 16, the trans
attribute then wraps the result in the needed let bindings for
the row expressions.

62



SLE ’23, October 23–24, 2023, Cascais, Portugal Kramer and Van Wyk

1 production condTable e::Expr ::= rows::TRows

2 { e.errors = rows.errors;

3 rows.conds = [];

4 forwards to @rows.trans; }

5 inherited attribute conds::[Expr];

6 translation attribute trans::Expr;

7 nonterminal TRows with errors, conds, trans;

8 production consRow rs::TRows ::=

9 e::Expr tf::TruthFlags rest::TRows

10 { rs.errors = e.errors ++ tf.errors ++ rest.errors

11 ++ checkBoolean(e.type, "row expression");

12 local eVar::String = freshName(rs.trans.env);

13 tf.rowExpr = var(eVar);

14 rest.conds = if null(rs.conds) then tf.rowConds

15 else zipWith(andOp, rs.conds, tf.rowConds);

16 rs.trans = let_(eVar, @e, @rest.trans);

17 }

18 production nilRow rs::TRows ::=

19 { rs.errors = [];

20 rs.trans = foldr1(orOp, rs.conds); }

Figure 12. A portion of the implementation of condition ta-
bles, computing a forward tree containing children decorated
across multiple productions using a translation attribute.

...

condTable

enverrors, asm
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trans, errors
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errors′1
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env1asm′
1

env2
asm2

conds
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Figure 13. A tree corresponding to the condition tables
extension in Figure 12. trans and errors is computed on the
TRows nodes on the left, while env and asm are computed on
the decorated form of trans on the right.

As seen previously with neg in Figure 10, we would like to
decorate these host-language Exprs with inherited attributes
supplied through their translation. However, consRow is not
a forwarding production since its left-hand side is not a host
language nonterminal. If trans were an ordinary higher-
order attribute, we would construct an undecorated transla-
tion term and decorate it in the forward of condTable. This

would then decorate the condition expressions in the table
rows again, thus returning to the situation in Figure 2.
Instead, we would like to create the pattern seen in Fig-

ure 13. Here we �rst construct the translation of the table
rows into let-expressions, and decorate it as the forward of
condTable. The environment �ows down the forward tree
to the condition expressions, where it is used to compute
errors, which are collected up the original TRows tree.
This can be achieved using translation attributes, which

are synthesized attributes that serve as decoration sites for
terms, similar to locals. Translation attributes are similar
to higher-order attributes in that their equations create un-
decorated terms; the declared type of a translation attribute
must be a nonterminal. However like reference or remote
attributes, they hold decorated trees and may be supplied
with inherited equations. On line 4 of Figure 12, accessing
rows.trans gives back a Decorated Expr. On line 10, consRow
can access e.errors, which depends on e.env, using the env
supplied through the equation for rs.trans.
Synthesized and inherited attributes occurring on Expr

may be treated like additional synthesized and inherited
attributes occurring on TRows; for example, the consRow pro-
duction uses rs.trans.env to compute eVar, which must
have been supplied to rs.trans by the parent of this produc-
tion. We can again use the @ tree-sharing operator to indicate
that the tree constructed by a translation attribute should be
shared with (and receive inherited attributes from) another
decorated tree. In condTable, the env supplied to rows.trans

(through the use of @ and forwarding here; once could also
write rows.trans.env = e.env;) �ows down through the
Expr tree built by rows.trans. Thus in consRow one can ac-
cess e.errors, which depends on e.env, using the env sup-
plied through the equation for rs.trans on line 16.

Demand-driven evaluation creates complications for trans-
lation attributes, like was seen with sharing children in Sec-
tion 3.1. Any use of a tree shared in a translation attribute
equation must demand the decoration of the tree constructed
by the attribute, which may involve recursively demanding
the decoration of the translation attribute from further up
the extension tree. For example, accessing errors from 42 in
Figure 13 must ultimately demand the forward tree from its
root decoration site in the forward of condTable. To achieve
this, the implementation involves another implicit inherited
reference attribute to pass corresponding portions of the
translation tree down from its root decoration site.

4 Evaluation

We evaluated the utility of this new approach to forwarding
in the ableC [11] host language speci�cation of C. There
are many di�erent extensions to ableC [10, 11, 17] and we
evaluated 10 non-trivial extensions that are representative
of the other ableC language extensions. The full list of ex-
tensions and detailed results of the evaluation can be found
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in Appendix A. Overall, 94% of uses of decorated wrapper
productions like decExpr in Figure 7 could be replaced by
the tree sharing operator, and those that could not were not
needed to avoid exponential decoration. These changes allow
the removal of many complex and now-unneeded inherited
attribute equations, making the extension speci�cations sig-
ni�cantly easier to understand and maintain.

All unary and binary operators in ableC, as well as some
expressions like function call and array index, support oper-
ator overloading. Each operator has a production that for-
ward based on the types of the children; these explicitly
supply inherited attributes and wrap the decorated children
in decExpr, similar to neg in Figure 9. In total, decExpr is
used 168 times in the ableC speci�cation; all of these uses
could be replaced with uses of the tree sharing operator.
Across the 10 considered ableC extensions, there are 74

instance of decorated wrapper productions. Of these, 39
appear in a statically-determined forward tree, where the
tree-sharing operator can be used to avoid some inherited
equations, and 5 appeared in a dynamically-forwarding pro-
duction similar to overloading, where inherited equations
are still needed. In 30 cases, wrapper productions were used
in a translation passed as an attribute to be decorated else-
where. Of these, 15 could be easily replaced using translation
attributes.

The ableC-Prolog extension uses a combination of multi-
ple higher-order synthesized and inherited attributes for con-
structing a translation, where some host language children
may appear in the trees constructed by more than one at-
tribute. This pattern is not amenable to translation attributes;
thus there are are 15 uses of decorated wrapper productions
in the Prolog extension which could not easily be replaced.
However, the constructs introduced in this extension are not
typically nested, and thus would not su�er from exponential
recomputation if these subtrees were decorated twice.

In some ableC extensions, e.g. condition tables, we found
instances of tree re-decoration that had not been addressed
with wrapper productions. We have not yet attempted to
identify all instances of trees being re-decorated that could
potentially be addressed with tree sharing. This is because
these speci�cations were developed with a prior version of
Silver, with the problematic implicit undecoration seman-
tics that we mentioned in Section 3.1. Changing the type
rules to require explicit undecoration or sharing creates an
error �agging every potential place where a tree could be re-
decorated; however this constitutes a major breaking change
to all existing Silver code, and we had not yet completed
this change as of performing this evaluation.
For this reason we have not attempted a comprehensive

refactoring of ableC and its extensions to use the new shar-
ing mechanisms, or quanti�ed the number of unaddressed re-
decoration issues. Instead, we refactored 3 ableC extensions
to use the new sharing mechanisms: closures, condition-
tables, and algebraic datatypes. In all cases this led to simpler

code and the removal of inherited attributes and equations.
In the datatypes extension, the use of translation attributes
to translate pattern matching saved 36 lines of speci�cation
(out of a total of 900.)

The tree-sharing operator provides a small optimization
over the old approach of wrapper productions, as the new
approach does not require introducing an extra node in the
decorated tree, as seen in Figure 7 vs Figure 4. The perfor-
mance was evaluated by comparing the runtime of building
the examples for the closure and datatype extensions be-
fore and after refactoring; the refactored versions yielded a
roughly 4% speedup. We did not attempt to compare the per-
formance of speci�cations with exponential re-decoration
behavior to ones in which sharing is used, as prior to refac-
toring these were clearly unusable for nontrivial programs.
Overall, tree sharing has proven to be a very bene�cial

technique, with signi�cant improvements in code quality,
and avoiding excessive recomputation of analyses without
limiting extensibility.

5 Modular Well-De�nedness

Kaminski andVanWyk [12] proposed amodularwell-de�ned-
ness analysis for attribute grammars with forwarding, to
ensure that all potentially needed attribute equations are
present in compositions of independently-designed language
extensions. This analysis is based around the idea of con-
structing �ow graphs for productions, as in Knuth’s original
analyses [15]. Flow types are inferred for every occurrence of
a synthesized attribute on a nonterminal, consisting of the
set of inherited attribute dependencies. Attribute equations
are checked against the production �ow graphs and �ow
types, ensuring that all needed equations are supplied.

The data structures and algorithms used in Kaminski and
Van Wyk [12]’s analysis, used in Silver, must be slightly
extended to accommodate the new features proposed here.
While space limits preclude a full presentation of the ex-
tended analyses here, we present the issues at hand and give
some intuition about the required changes below.

5.1 Avoiding duplicate equations

Since we are adding the ability to supply inherited equations
to the same tree from multiple sites, we must avoid there
being multiple equations for the same attribute when some
precedence between them cannot be determined. First, the
operand to the @ tree-sharing operator must correspond to a
decoration sitewhere inherited attribute equations could ordi-
narily be speci�ed, i.e. a nonterminal child, local, or instance
of a translation attribute on a child or local.
If an explicit inherited equation is given to a child in a

forwarding production, in addition to an equation through
a production in the forward tree, then the explicit equation
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takes precedence. This is analogous to the explicit synthe-
sized equations on the forwarding production taking prece-
dence over those in the tree forwarded-to. We must also
ensure that if a child is shared, it only appears in one place,
to avoid multiple competing equations. This means that a
shared child can only appear in the original production, and
not in independently-introduced aspect productions. Simi-
larly, a local tree can only be shared once and in the same
module as the local, and a translation attribute instance can
only be shared once per production in the same module as
the attribute occurrence. It is permitted for the same tree to
be shared in multiple mutually exclusive positions, such as
separate branches of a pattern match as seen in Figure 9.

The expression in which a shared child appears also must
not decorate the term containing the child more than once,
for example a shared tree cannot appear in an arbitrary
higher-order attribute equation, which may be arbitrarily
used and re-decorated elsewhere. The tree-sharing operator
must only appear in unique contexts, which can be a forward
equation, local equation, translation attribute equation, or
as an operand to a production call or conditional expression
in a unique context. This is enforced by a straightforward
syntactic analysis, termed the uniqueness analysis.
A more subtle issue exists if a production in the forward

equation were to un-decorate and re-decorate its own child,
perhaps intentionally to perform an analysis in a di�erent
environment. The behavior of calling new on a tree in Silver

is to simply return the original term that was decorated to
create the tree. If the term provided to this production con-
tains a wrapped child from use of the tree-sharing operator,
this may result in the child being decorated twice.

Instead, we change the semantics of un-decoration in Sil-

ver to perform a deep-copy of the term that was decorated,
such that calling new on a decorated tree never returns a
term containing a wrapped tree. Thus in the above scenario,
the un-decorated and re-decorated tree does not share any
subtrees. As an optimization, all constructed terms track
whether they contain a wrapped tree, such that the deep
copy operation only needs to happen down to the level of
any wrapped subtrees.

5.2 Enforcing e�ective inherited completeness

Recall the intuition given in Section 3.2 for the runtime se-
mantics of tree sharing in terms of pattern matching. The
treatment of the tree-sharing operator in the modular well-
de�nedness analysis is also similar to pattern matching, as
discussed fully in previous work [9]. A new sort of �ow ver-
tex is introduced corresponding to unconditionally-decorated
sub-terms of a forward or local equation. The existing analy-
sis has a notion of �ow projection stitch points, used to update
a production’s �ow graph with edges corresponding to in-
herited equations from productions referenced in patterns.
Flow projection stitch points are also used here, to add edges
for inherited equations between sub-term vertices.

A synthesized attribute may now depend on an inherited
attribute being supplied to a translation attribute on a tree.
Thus, �ow types are extended to include inherited attributes
occurring on translation attributes on a nonterminal, in ad-
dition to inherited attributes occurring on a nonterminal.

For inherited attribute equations to be reliably supplied to
a child through forwarding, the requirements for the term in
which the child appears are somewhat stricter than imposed
by the uniqueness analysis. The child must be decorated
unconditionally, meaning that it cannot appear under any
conditional expressions. For example as seen in Figure 9, n
can be shared in the forward tree, but we cannot rely on any
inherited equations supplied through forwarding.

The checks performed on equations using the inferred �ow
types and production �ow graphs are essentially unchanged,
except that we do not check for the presence of inherited
equations within a production for a shared, unconditionally
decorated child or local. There is an additional check required
for inherited override equations on children or locals that are
shared, even conditionally: the dependencies of the override
equation must not exceed the dependencies of the remote
equation. This is because the production constructed with
the shared child will be checked with the �ow graph created
from the inherited equations that it supplies; if we override
this equation with one that has additional dependencies, this
may lead to additional transitive dependencies that were not
checked, and potentially missing equations.

5.3 Limited feasibility of circularity analyses

Kaminski and VanWyk [12]’s modular well-de�nedness anal-
ysis does not include a non-circularity check. This is because
in practice, strict non-circularity between attributes is overly
conservative; laziness means that cycles often are not present
in the actual evaluation even when a strict analysis could
not prove their absence. Furthermore circularity between
portions of trees is often useful, such as in building the envi-
ronment for mutually recursive bindings. For these reasons,
attribute grammar systems such as Silver, JastAdd [4] and
Kiama [21] dispense with a non-circularity analysis.

Circularities between di�erent portions of trees have proven
especially useful with tree sharing, as seen in Figure 10. We
have found that this pattern does frequently give rise to
actual cycles, between an inherited attribute on a shared
child and a dynamic portion of the forward tree that may
a�ect the child’s attribute. Since we don’t have an analysis
capable of detecting these problems, these issues are typi-
cally found through crashes when developing an extension;
however we have found them to be easy to diagnose and re-
solve by adding explicit inherited equations. These problems
also typically do not appear from composing independent
extensions, because the problematic dependencies involve
productions explicitly speci�ed in the forward tree. While a
more sophisticated analysis could be useful for �nding these
issues, it is unclear if such an analysis is feasible.
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6 Discussion

This section provides a discussion of tree sharing and the
computation of inherited attributes through forwarding, and
how this work relates to other aspects of Silver.

6.1 Specializing inherited attribute equations

A nice feature of forwarding is the freedom to specialize syn-
thesized attributes to the new language construct by writing
explicit equations for them. This allows one to report error
messages speci�c to the new feature or de�ne the type at-
tribute on a new expression, e.g. of a extension introducing
list literals may de�ne its type to be a list type. In Section 3.3
we saw an example of needing to write explicit inherited
equations to break circularities with the closure extension.
These equations always had the same value as what would
later be computable in the forward tree. Are cases when
we want to specialize an inherited attribute with a di�erent
value, as seen with errors? We expected the new ability to
specialize inherited attributes to be similarly helpful, but
their actual bene�t was something else. Contextual informa-
tion, e.g. an environment mapping names to types, is some
data structure containing terms for host language nontermi-
nals, such as a Type nonterminal de�ning structured types.
Thus new extension types, e.g. list types, naturally arise in
the name bindings. It turns out there is not much need to spe-
cialize an environment, or similar inherited attributes, on the
forwarding production. More frequently, we �nd one writes
these explicit equations to break cycles in extensions with
sophisticated patterns of forwarding. Since these equations
are not so often intended to specialize inherited attribute
values, it is also easier to ensure that the values given are
compatible with those provided on the forwarded-to tree.

6.2 Why autocopy is a misfeature

Past versions of Silver and earlier presentations of forward-
ing [25, 26] featured autocopy attributes, a form of inherited
attributes that were implicitly copied down the tree to chil-
dren. This is convenient for attributes such as an environ-
ment that generally �ow down the tree. However autocopy
attributes are incompatible with the new approach to tree
sharing, as we often want an environment to be supplied
through forwarding, and autocopy would supply an unde-
sired implicit copy equation for the child.

In fact, we had already recognized autocopy as a source of
bugs due to undesired equations: in developing attribute
grammar speci�cations, we sometimes use a “�ow-type-
driven development” approach, adding needed equations
as they are �agged by the well-de�nedness analysis. Auto-
copy attributes suppress these errors by introducing implicit
(and often incorrect) equations. For these reasons we have
removed support for autocopy, and replaced it with a mech-
anism to specify where copy equations should be generated
for an inherited attribute.

1 production forLoop s::Stmt ::=

2 iVar::String lower::Expr upper::Expr body::Stmt

3 { local localErrors::[Message] =

4 checkInt(lower.type, "lower bound") ++

5 checkInt(upper.type, "upper bound") ++

6 lower.errors ++ upper.errors ++ body.errors;

7 local upperVar::String = freshName(s.env);

8 forward fwrd = block(seq(

9 decl(iVar, intType(), @lower),

10 seq(decl(upperVar, intType(), @upper),

11 while(intLt(var(iVar), var(upperVar)),

12 seq(@body, assign(iVar,

13 intAdd(var(iVar), intConst(1))))))));

14 forwards to if null(localErrors) then @fwrd

15 else errorStmt(localErrors); }

Figure 14. An alternative version of Figure 8 using an error
production instead of overriding the equation for errors.
A forward production attribute is used to unconditionally
decorate the translation when forwarding conditionally.

6.3 Forward production attributes

Overriding attributes on forwarding productions with val-
ues di�ering from those on the forward tree can lead to
unexpected behavior when composing independent exten-
sions, a problem known as interference [13]. To avoid this,
error productions are included in host language speci�cations
such as ableC, which can optionally be forwarded to instead
of writing an override equation. However, this pattern is
incompatible with computing inherited attributes through
forwarding, as the forward tree may not always be decorated.

An alternative is to use a local forward production attribute,
as seen on line 8 of Figure 14. This allows one to specify
one forward tree for unconditionally supplying context, but
potentially forward synthesized attributes to a di�erent tree.
We identi�ed 49 places in the 10 ableC extensions evaluated
in Section 4 where this feature would be useful.

7 Related Work

7.1 Attribute grammars

We added tree and contextual-information sharing to the
Silver [25] attribute grammar system because the notion
of forwarding makes the problem of sharing an interesting
one. But there are other well-used AG systems that could
have been used. Kiama [21] is a Scala library that also has
a notion of forwarding. Similarly, JastAdd [3] has a notion
of tree-rewriting [23] that is integrated into its use of ref-
erence [19] and circular [6] attributes. This may also be an
interesting candidate for tree sharing to save re-computation
of attributes. Silver has strategy attributes [18] that allow

66



SLE ’23, October 23–24, 2023, Cascais, Portugal Kramer and Van Wyk

one to write Stratego-style strategies to control the ap-
plication or rewrite-rules [28]. The tree-sharing discussed
here may be applicable in single-pass, bottom-up traversals
since these are similar to what happens with translation at-
tributes (Section 3.4). But it is not clear how well sharing can
be incorporated into the more sophisticated strategies, and
their ensuring traversal patterns, since it is unclear how one
maintains the uniqueness requirements of the tree-sharing
operator. This is certainly an area worth further study.

7.2 Tree sharing

The sharing of trees is a common practice in programming
language tools. One in�uential example is the ATerm (An-
notated Terms) system [24] for automatically sharing the
representation of trees; it provides maximal sharing. Tree
construction speci�cations will reuse existing trees if they
already exist in the current collection of syntax trees. Kiama
also provides an interesting notion of tree sharing in which
the same tree can be decorated with two di�erent values for
the same set of attributes, an approach termed "respecting
your parents" [22]. Here, the attribute values are stored sep-
arately from the tree in (unshared) attributions; they consist
of a map from unique identi�ers of tree nodes to attribute
values. This is similar to Silver’s distinguishing terms and
decorated trees. In these works the aim of sharing is to rep-
resent trees more e�ciently, and not to reuse or simplify the
speci�cation of computations.
Intentional Programming [20] is the most closely related

work to our since forwarding was originally implemented
in that system. It showed how extensions could specialize
synthesized attributes, there called questions. But it automat-
ically shared sub-trees under the forwarding and forwarded-
to trees [27] and did not allow the specialization of inherited
attributes, thus denying the language engineer the freedom
to make these choices.

7.3 Attribute grammar �ow analysis

Silver focuses on independent extensions so that a program-
mer can pick the ones they desire for their task at hand. Thus
the modular well-de�nedness analysis [12] is used to ensure
that the composition of these extensions will, in fact, work
since the programmer is not in a position to debug or modify
extension speci�cations; thus the extensions to this work
in Section 5. Most related to our extensions is Boyland’s
analyses on remote attribute grammars [1]. That work anal-
yses remote attributes and uses a notion of �bers to track
dependencies not only on a remote node in the syntax tree
but also the attributes that decorate it. This is similar to our
extension of �ow-types for synthesized attributes to also
include the inherited attributes on a translation attribute on
which it depends. Boyland’s analysis was not a modular one
and thus not directly applicable in our setting.

8 Future Work and Conclusion

8.1 Utilizing context supplied before forwarding

There are still some shortcomings with the approach to op-
erator overloading in ableC proposed in Section 4. Every
overloaded operator has both a forwarding production, and
a non-forwarding default implementation production that is
typically only ever constructed by its overloaded counterpart.
Both productions must specify all the inherited equations
needed for type checking, however with sharing, the equa-
tions on the non-forwarding production are never used.
To avoid specifying these equations multiple times, a so-

lution is to identify productions like intNeg or boolNeg as
dispatch implementations that can only be constructed as
the forwarded-to tree of some speci�c dispatching produc-
tion(s) like neg. The �ow analysis from Section 5.2 can then
be extended to consider any equations in the forwarding
production as being supplied to the corresponding children
in the implementation.

8.2 Data nonterminals

Sometimes nonterminals are used to represent data struc-
tures, such as optional values of type Maybe or an environ-
ment, that are never decorated with inherited attributes.
Always automatically decorating children and locals of these
types is ine�cient and requires extra calls to new; instead we
would like to mark them as data nonterminals that are never
Decorated.

8.3 In conclusion

This paper introduces a new operator @, that permits tree-
sharing without limiting extensibility. This allows language
engineers to control when trees, and the speci�cation of
their contextual information, are to be shared or not. The ex-
amples given in Section 3 and the results of the evaluation in
ableC indicate that tree sharing is the more common choice.
But there are cases, especially when extensions are unlikely
to be nested, when duplicating the tree is the right choice.
This occurs in the ableC-Prolog extension discussed above,
where host-language expressions appear in relations (e.g.
in a numeric comparison goal), as well as in their transla-
tion. Since the generated code is complex, knowing e.g. what
contextual information for a live-variable analysis is to be
provided to expressions in a forwarding Prolog construct
would be very di�cult indeed. Here the right choice is to
not share the child trees. Thus, it is important that language
engineers have the freedom to make the appropriate choice,
to share or not, and the new tree-sharing operator @ provides
that �exibility.
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Table 1. Information about the ableC extensions evaluated for the potential use of tree sharing.

Extension name Description Static Dynamic
Translation

attributes

Non-

sharable

Forward prod

attributes

condition-

tables

Concise syntax for boolean expressions 7 1

closure Lambda functions that capture scoped vari-
ables

2 5

algebraic-

data-types

Algebraic data types implemented as
tagged unions, with pattern matching

3 6 3

templating C++-inspired templated function and type
declarations

2 3

string More e�cient string representation type,
overloadable operators for stringifying and
pretty-printing various types

13 9

vector Array-backed list data structure, with over-
loads for +, ==, and other operators

14

constructor Syntax for constructing and deconstructing
values, overloadable by other extensions
such as vector

1 1 5

unification Uni�cation variable reference type and
overloaded unify operator

5 3 3

prolog Prolog-inspired logic programming rela-
tions and queries

4 6 15 3

rewriting Stratego-inspired strategic term rewriting 7 4

Total 74 potential instances of sharing 39 5 15 15 49

A Evaluation of ableC extensions

Table 1 provides further details on the evaluation of opportu-
nities for tree sharing in 10 representative ableC extensions.
For each extension, from left to right is given

• The number of instances where tree sharing could
be used in a statically-determined forward tree, sup-
plying context and avoiding some explicit inherited
equations;

• The number of instances where tree sharing could be
used in a dynamic forward tree, where explicit inher-
ited equations are still needed;

• The number of instances where tree sharing could be
used in a translation attribute equation;

• The number of uses of decExpr-style wrapper produc-
tions that could not be replaced with the new tree
sharing mechanisms, due to appearing in a non-unique
context such as a higher-order inherited attribute equa-
tion;

• The number of productions in the grammar that would
require a forward production attribute to enable static
tree sharing.

The updated sources of these extensions can be found at
h�ps://github.com/melt-umn/ableC-<extension-name>; the
versions evaluated here are archived at h�ps://doi.org/10.
13020/badh-qf44.
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Abstract

Compilers for feature-rich languages are complex; they per-
form many analyses and optimizations, and often lower com-
plex language constructs into simpler ones. The nanopass
compiler architecture manages this complexity by specifying
the compiler as a sequence of many small transformations,
over slightly di�erent, but clearly de�ned, versions of the
language that each perform a single straightforward action.
This avoids errors that arise from attempting to solve multi-
ple problems at once and allows for testing at each step.
Attribute grammars are ill-suited for this architecture,

primarily because they cannot identify the many versions
of the language in a non-repetitive and type-safe way. We
present a formulation of attribute grammars that addresses
these concerns, called nanopass attribute grammars, that (8)
identi�es a collection of all language constructs and analyses
(attributes), (88) concisely constructs speci�c (sub) languages
from this set and transformations between them, and (888)
speci�es compositions of transformations to form nanopass
compilers. The collection of all features can be statically
typed and individual languages can be checked for well-
de�nedness and circularity. We evaluate the approach by
implementing a signi�cant subset of the Go programming
language in a prototype nanopass attribute grammar system.
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1 Introduction

Modern programming languages require sophisticated com-
pilers. Feature-rich languages have many constructs, and a
compiler typically performs several semantic analyses, opti-
mizations, and transformations on programs. It can also be
di�cult to observe the behavior of di�erent aspects of the
compiler and test the results.

One approach to dealing with these complexities is to de-
sign the compiler as a sequence of several (perhaps dozens)
small, clearly-de�ned tasks on programs in clearly-identi�ed
versions of the language. Compilers with this design are
called nanopass compilers [18]. These tasks may be quite
simple syntactic transformations such as reducing all if-then
constructs in an imperative language into if-then-else con-
structs in which the else-clause is a skip statement. Other
lowering transformations may replace list comprehensions
with higher-order function calls or replace loops with gotos.
These simple steps transform programs into simpler and
smaller versions of the language, each one known to not con-
tain the constructs that are transformed away. Other transfor-
mations may be more complex, such as type-checking in or-
der to annotate expressions with their types; yet others may
perform optimizations such as common sub-expression elim-
ination. Some passes condense the source language down
to language variations more suitable for translation. For ex-
ample, a compiler may replace expressions in which binary
operators are nested, as in x + (y * z), with a sequence of
operations that only allow atomic expressions such as vari-
ables and value literals as arguments to binary operators,
as in let temp1 = y * z in x + temp1. Eventually, the steps
transform the program to code that can be translated directly
to a low-level intermediate language or to assembly, since it
contains goto-statements and simple expressions.
This approach has been used successfully in both educa-

tional [19] and industrial [9] contexts. The proponents of
nanopass compilers claim several bene�ts. The primary one
is that each step is small and easy to understand. Because
various language versions are clearly speci�ed as the input
and output of di�erent passes, one can ensure that, e.g., cer-
tain constructs have in-fact been transformed away and need
not be considered again. Each step is also more amenable to
testing as the output of each step can be inspected.

This paper adapts attribute grammars (AGs) to the nanopass
approach. AGs were �rst speci�ed by Knuth [10] in 1968
and are a convenient formalism for specifying computa-
tions over syntax trees. They work by decorating tree nodes
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with semantic information called attributes. Synthesized at-
tributes propagate information up the tree, e.g. types on ex-
pressions. Inherited attributes propagate information down
the tree, e.g. typing contexts on statements and expressions.
Well-de�nedness analyses can ensure that all the equations
needed to specify attribute values are present and are non-
circular [10, 15, 16]. This provides a strong static exhaustive-
ness check that all language constructs have a speci�cation
for each semantic analysis. They have been extended over
the years in a variety of ways, most prominently to sup-
port higher-order attributes [25] so that syntax trees may be
passed as attributes, and reference [5] or remote [1] attributes
that allow referring to remote nodes in the syntax tree.
Despite supporting a modular approach to language im-

plementation, attribute grammars are not well-suited for
the nanopass approach. The primary problem is that the
context-free grammar in an attribute grammar de�nes a sin-
gle complete language and there is no convenient mechanism
in the formalism for de�ning a family of languages that dif-
fer in various ways such that trees in (di�erent) input and
output languages can both be safely constructed. One can,
of course, de�ne an AG for each of the dozens of di�erent
languages that arise in a nanopass compiler but this would
involve the signi�cant duplication of many grammar pro-
ductions that appear in many of the language versions. The
alternative is to abandon the well-de�nedness analyses and
de�ne equations for a particular task or transformation on
only the relevant subset of productions for which that task
occurs. But doing so is quite unsatisfactory.
The primary contribution of the paper is to close this

gap between nanopass compilers and attribute grammars by
providing a formulation of nanopass attribute grammars such
that the various languages and their attributes can be both
conveniently de�ned and checked for type-correctness, well-
de�nedness, and absence of circular attribute speci�cations.
A nanopass attribute grammar consists of 3 components:

1. E: the collection of language elements. This is in the
form of an attribute grammar from whose components
di�erent languages are to be constructed.

2. L: the family of languages that are transformed be-
tween. A language ! ∈ L is an AG that has a subset of
the nonterminals, productions, attributes, etc. found
in E.

3. C: the composition of transformations into a nanopass
compiler. This maps programs in the original language
into some target form.

The collection of language elements E is statically type
checked to ensure, for example, all productions are applied to
the correct number of correctly-typed arguments. However,
this speci�cation may not be well-de�ned (some productions
are intentionally missing equations for some attributes not
relevant to them), and it is not meant to be used on its own.

Languages in L are attribute grammars and identify steps
in the compilation process. They correspond to the di�erent
languages in a nanopass compiler. Terms in a language can
be annotated with attribute values during construction so
that they may be used, instead of recomputed, by the trans-
formation. For example, a type-checking transformation will
produce programs, if they are well-typed, that have annota-
tions on expressions indicating their type. The annotations
are just attributes that need not be computed but exist on
the tree directly. Transformations are de�ned by transform

attributes and correspond to passes in a nanopass compiler.
The framework can be instantiated with di�erent varieties of
attribute grammars as well as di�erent attribute evaluation
mechanisms.
A second contribution is two mechanisms for concisely

constructing the languages in L that maintains their type-
correctness established in E. The �rst speci�es a language
“from scratch” by identifying the productions and attribute
occurrences on nonterminals to include; all other aspects,
such as nonterminals in the grammar and equations for at-
tributes are determined from the desired productions and
occurrences. The second speci�es a new language by extend-
ing an existing language by adding or removing components.
Since each language in L will include di�erent productions
and attribute equations, the well-de�nedness and circularity
analyses need to be performed on a per-language basis.
We also evaluate this notion of nanopass attribute gram-

mars by implementing a prototype nanopass attribute gram-
mar system and use it to implement a compiler for a signi�-
cant subset of the Go programming language.1

Section 2 recalls the structure of attribute grammars before
Section 3 provides the speci�cation of nanopass approach to
AGs and the E, L, and C components described above. Sec-
tion 4 describes the prototype system realizing nanopass AGs
and the Go compiler developed with it. Section 5 discusses
related work; Section 6 discusses performance and attribute
analysis, describes some future work, and concludes.

2 Background: Attribute Grammars

Attribute grammars are a formalism for de�ning the seman-
tics of context free languages [10] by attributing semantic
values to nodes in a syntax tree. An attribute grammar can be
de�ned as a tuple �� = (�,�, Γ�,@, �&) consisting of the
context-free grammar� , attributes�, mappings of attributes
to types (Γ�) and to nonterminals on which they occur(@),
and the set of attribute-de�ning equations �& .
The grammar � is a tuple (#),) , %, Γ% , (). #) is a �nite

set of nonterminals and ) is a �nite set of terminals. ) in-
cludes traditional token types with lexemes and primitive
types, e.g. integers and strings. In some systems this includes

1Available at h�ps://melt.cs.umn.edu and archived at h�ps://doi.org/10.
13020/h1qa-s993.
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structured data such as lists or tuples. % is a �nite set of pro-
duction names and Γ% is a total map from production names
to their signatures. Signature elements are labeled so that
equations can refer to the left and right-side elements using
labels instead of positions. Thus, Γ% maps % to signatures of
the form G0 : -0 ::= G1 : g1 ... G= : g= where -0 ∈ #) and
each g8 ∈ #) ∪) for 8 ∈ {1..=}. ( ∈ #) is the start symbol
indicating the type of the root node of a program tree.

Attributes are speci�ed by the set � = �� ∪�( which can
be partitioned into disjoint sets of inherited (� ) and synthe-
sized (() attributes. Γ� is a total map from attribute names
to types in ) , Γ� ⊆ ((�� ∪ �( ) → ) ). The occurs-on rela-
tion @ ⊆ � × #) speci�es which nonterminals an attribute
decorates; (0,- ) ∈ @ (written 0@- as shorthand) indicates
that attribute 0 occurs on - . Note that ( has no inherited
attributes: ∀0 ∈ �, (0@() =⇒ 0 ∉ �� .
Equations, �& =

⋃
?∈% �&? , indicate how values of at-

tributes are determined; each is associated with a production
? in % . Each has the form G .0 = 4 where 0 ∈ �, G is label on
the production, and 4 is an expression de�ning the value of
G .0. We require that for any production ? , no two equations
in �&? have the same left hand side. Di�erent attribute gram-
mar systems put di�erent requirements on the constructs in
4 , but generally, 4 is an expression that can refer to the values
of attributes on the signature elements of ? and construct
and manipulate these values.
Since Knuth’s original speci�cation [10] attribute gram-

mars have been extended in many ways. One variety extends
the types that attributes may take (the range of Γ�) and con-
structs in equations accordingly. Higher-order attributes [25]
dramatically increase the usefulness of AGs by allowing trees
to be passed around as attributes and then supplied with in-
herited attributes so that synthesized attributes can then be
computed on them and accessed. These add #) to the range
of Γ�. Reference [5] and remote [1] attributes extend Γ� with
pointers (references) to decorated tree nodes somewhere else
in the syntax tree. A common use is to allow variable uses
in a program to have a reference attribute pointing to their
declarations so that information such as the variable’s type
can be accessed on the remote declaration node.

Another form of extension provides means for more easily
moving values up and down the tree. Kastens and Waite [8]
alleviate so-called copy-rules for propagating information
down the tree and described other mechanism for collect-
ing information, such as diagnostic messages, up the tree.
Variations on these are now common in AG systems.

An important aspect of attribute grammars, and many
of their extensions, are static analyses to identify and vali-
date the �ow of information through di�erent attributes.
A well-de�nedness analysis in many systems determines,
for each synthesized attribute, which inherited attributes
may be needed to compute its value (sometimes called �ow-

types [17]) in order to determine if all required equations
are present. This information can also be used to de�ne a

circularity analysis to check for cycles in attribute depen-
dencies. These analyses were provided in Knuth’s original
formulation and are typically extended to accommodate new
features, such as higher-order attributes [25].

There also a variety of mechanisms for computing the val-
ues for attributes on a tree. Ordered attribute grammars [7]
and an extension of them [22] determine an order, applicable
for all possible trees, for computing attributes. In contrast,
the commonly-used demand-driven approach treats AGs sim-
ilarly to lazy functional programs and computes attributes
only as they are needed. Other approaches embed AGs in
existing languages, often lazy functional ones, to write the
speci�cation directly as programs in those languages [12, 21].
Circular attribute grammars allow attribute dependencies
to be circular as long as they are well-founded, providing a
convenient means for specifying �x-point algorithms [3, 13].

This discussion of attribute grammars and their di�erent
variations is necessarily incomplete. In principle, these, and
others, �t into the nanopass attribute grammar formalism
presented below. That framework can be instantiated with
di�erent types of attributes and evaluation schemes.

3 Nanopass Attribute Grammars

In this section we describe the nanopass attribute grammar
formalism: the language elements E, the family of languages
L, and the compositions C. Sections 3.1 - 3.2 specify E by
extending the formalism speci�ed in Section 2, discuss what
is required for it to be well-formed, and provide its type-
checking rules. Sections 3.3 - 3.5 specify L and transform
attributes and discuss the language checking process per-
formed on each language to ensure that it is well-de�ned
and that its transformations produce terms using only the
productions in their target language. Section 3.6 describes
how transformations are composed to construct a nanopass
compiler.

3.1 Language elements: E

The �rst part of a nanopass AG speci�cation, denoted E, is
a collection of attribute grammar elements (�,�, Γ�,@, �&)
as above from which di�erent languages will be constructed.
This is extended in two ways.

First, we add a new kind of attribute, transform attributes,
denoted�) . The� component of E is now� = ��∪(�(∪�) ).
These are essentially higher-order synthesized attributes
for de�ning transformations between languages in L by
equations also in �& . Transform attributes always have the
same type as the nonterminal they’re computed on, so they
are not (and need not be) included in Γ�. These are discussed
further in Section 3.4.
The second addition is annotations. These annotate the

tree with semantic values supplied when the tree is con-
structed instead of being computed during attribute eval-
uation. To simplify the formalism, these are speci�ed as
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attributes whose equations are ignored when it is demanded;
instead, the value is the one provided when the tree was
built. Note that Γ� still contains the types of annotations.
To support annotations, expressions that appear on the

right-hand-side of equations can supply them to trees that
they construct. If we notate building a tree from production ?
with children C1 and C2 as ? (C1, C2), we might notate building
the same tree while supplying annotation 0 with the value
of the expression 4 as ? (C1, C2, 0 = 4).

Annotations might be used to store, for example, the types
of expressions. After the types have been computed (as an
attribute), we will still continue to transform the program
in the process of compiling it. To avoid needing to re-type-
check the tree at any time the types of expressions might be
needed later on, we can make the attribute an annotation.

As discussed in Section 3.3, each language in L will indi-
cate which attributes in �� ∪�( are to be treated as annota-
tions and thus be prede�ned on trees in the language.
Due to how close E is to a standard AG speci�cation, ex-

isting attribute evaluation strategies can work with only
minor tweaks to support annotations. An attribute evalua-
tion strategy that is aware of languages can take advantage of
this to remove dependencies between equations that might
otherwise exist.
If E satis�es the requirements mentioned above and for

�� in Section 2, it is said to be well-formed; this is the �rst
requirement the speci�cations must satisfy. Note that unlike
a traditional attribute grammar speci�cation, E is not ex-
pected to be well-de�ned. After some transformations have
been applied some language constructs will have been trans-
lated into other more fundamental forms and thus no longer
appear in the programs. Since later passes won’t need to
handle constructs that won’t be present, we don’t need equa-
tions on those productions for attributes that are only used
after the production is eliminated.

3.2 Type checking language elements E

Even though we cannot check well-de�nedness on a collec-
tion of elements E, we can still check that they arewell-typed,
given some language of expressions that may appear on the
right-hand side of an equation. Type checking can be done
once on the language elements E and type-correctness will
preserved for languages in L when they are constructed
using one of the two methods described in Section 3.3. Some
rules for a reasonably standard type system adapted for a
NAG system are shown in Figure 1.

The type-correctness of a well-formed E is satis�ed when
for all productions ? ∈ %, % ∈ �� , all equations G .0 = 4 in
�&? , �&? ∈ �� type check, as indicated by the judgment

? ⊢ (G .0 = 4) Tok

This judgment in turn refers to a traditional typing judgment
for expressions,

? ⊢ 4 : g

In both cases, ? ∈ % acts as a context, providing the
types of children. The components of �� are also ambiently
present as the global context and referred to by names used
above. Thus typing contexts such as Γ� and Γ% , the occurs-
on relation @, and other aspects of �� can be used in the
type checking rules. Synthesized and inherited equations
have typical typing rules, T-inh-eq and T-syn-eq, ensuring
that attributes occur properly and the type of the expression
matches that of the attribute. Following these are 3 sample
rules for typing expressions. Of more interest are transform
attributes; their equations are typed by T-transform-eq,
which ensures that the type of the equation’s right-hand
side matches the production’s left-hand side. Their access is
typed similarly by T-transform-access.
The T-prod rule for constructing trees is more general

than a typical one, since it needs to handle annotations. Note
that type-checking does not check that only the annotations
that should occur do occur. In E we do not know whether
an attribute will be treated as an annotation or as an at-
tribute to be computed. This check happens in the language-
correctness checks described in Section 3.5.

3.3 Languages: L

A nanopass AG also consists of a family of languages, and
transformations between them, L. Each language uses a sub-
set of the grammatical and semantical features found in E.
They will use some productions and some attributes to de�ne
a language with only the desired syntax and semantics. We
discuss two convenient and concise mechanisms to identify
what these languages consist of so that the type-correctness
established once on E is maintained on each language and
need not be checked again.

3.3.1 Languages. The productions, attributes, associated
equations, etc., are all speci�ed in E and may (or may not) be
used in di�erent languages and thus languages have (nearly)
the same structure as the collection of language elements
E. We will superscript language elements by the language
names and also superscript the overarching language com-
ponents elements by E. When the context is clear we will
drop these superscripts.
A language ! ∈ L is a 6-tuple containing:

• �!
= (#) !,) !, %!, Γ!

%
, (!) where #) ! ⊆ #) E ,

) !
= ) E , %! ⊆ % E , Γ!

%
⊆ Γ

E
%
, and (! = ( E .

• �!
= �!

�
∪ (�!

(
∪�!

)
), where �! ⊆ �E

• @! ⊆ @E

• Γ
!
�
⊆ Γ

E
�

• �&!
= ∪?∈%!�&!

? where �&%
? ⊆ �& E

?

• @!
�
⊆ @E where @! ∩@!

�
= ∅

The �rst �ve components correspond directly to their
equivalents in E. Note that terminals and primitive values
) ! and ) are not scoped to a particular language and are
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T-inh-eq

0 ∈ �� 0@-

Γ% (?) = (... ::= ... G : - ...) ? ⊢ 4 : Γ� (0)

? ⊢ (G .0 = 4) Tok

T-syn-eq

0 ∈ �( 0@-

Γ% (?) = (G : - ::= ...) ? ⊢ 4 : Γ� (0)

? ⊢ (G .0 = 4) Tok

T-lhs

? ∈ % Γ% (?) = (G : - ::= ...)

? ⊢ G : -

T-rhs

? ∈ % Γ% (?) = (... ::= ... G : g ...)

? ⊢ G : g

T-inhsyn-access

0 ∈ (�� ∪�( ) 0@- ? ⊢ 4 : - Γ� (0) = g

? ⊢ 4.0 : g

T-transform-eq

0 ∈ �) 0@-

Γ% (?) = (G : - ::= ...) ? ⊢ 4 : -

? ⊢ (G .0 = 4) Tok

T-transform-access

0 ∈ �) 0@- ? ⊢ 4 : -

? ⊢ 4.0 : -

T-prod

Γ% (?
′) = (G0 : -0 ::= G1 : g1 ... G< : g<)

∀
1≤8≤=

? ⊢ 48 : g8 ∀
<<8≤=

08@- ∀
<<8≤=

Γ� (08 ) = g8

? ⊢ ?′ (41, ..., 4<, 0<+1 = 4<+1, ..., 0= = 4=) : -0

Figure 1. Typing rules for E.

available in all languages. This is done to simplify the pre-
sentation, but could be accommodated without much e�ort.
Note that in all languages, the start symbol is the same ( E .

The sixth component, @!
�
, describes the annotations that

are present on each nonterminal. Values for these are pro-
vided when the ! tree is constructed. Recall the use-case of
saving the results of type-checking expressions. We assume
the computed type is C~, the nonterminal for expressions is
�, the language in which type-checking is performed is !0,
and the language in which the C~ attribute is an annotation
is !1. In this case, both C~ ∈ �

!0
(

and C~ ∈ �!1
(
, but while

C~@!0 �, instead C~@!1
�
�.

Identifying languages. A language is simply a subset of
E along with an indication of annotations @�. Identifying a

speci�c language ! ∈ L by enumerating all of the elements
would be quite tedious and also open to errors from leaving
out required components. For example, ! might not be well-
formed if the production signature map Γ

!
%
does not have a

signature for a production in %! . It might also not be type-
correct if in the expression for an equation in �&! references
an attribute that is not found in �! , @! , or Γ!

�
. To avoid

these problems we provide two mechanisms for specifying
languages that are both concise and also result in type correct
languages.
The �rst mechanism identi�es a language ! directly. It

requires only the enumeration of production names (%!)
that are to be used and the desired occurrences of attributes
(@!) and annotations (@!

�
) to be used. All other elements

of ! can be inferred from these. For each production name
? ∈ %! , we include its signature in Γ

!
%
. Any nonterminal

appearing in Γ
!
%
is added to #) ! , and (! = ( E . Thus �! is

well-formed. From the attribute and annotation occurrence
relation elements identi�ed we populate the sets of attribute
�!
�
, �!

(
, and �!

)
. Also, any nonterminal - in @! or in @!

�

is added to #) ! if not already there. Similarly, appropriate
equations are selected for attributes in @! . The equation
G .0 = 4 from �& E

%
is included in �&!

? when ? ∈ %! and

0 ∈ �! . Equations for annotations are not included in �&! .
Γ
!
�
is Γ� restricted to attributes in �!

(
and �!

�
.

Why design things in this way? Recall the two types
of expression productions discussed in Section 1: one al-
lowed (nested) expressions as children; the other allowed
only atomic children of variables and literals. The source
language for the transformation that rewrites nested expres-
sions into atomic ones needs to identify only the complex
expression productions. These are the expressions that may
be used to construct a tree that is input to this transformation.
We would not want to include the atomic expression produc-
tions in this collection because that would indicate that they
could also be used to form input terms. Doing so would not
allow us to ensure that input and output languages are of
the proper form. The language checking process described
in Section 3.5 will ensure that expressions only generate
trees in the appropriate language and that attributes access
are in fact in the language. This check, along with ensuring
that all the required equations are present, is done in the
language-checking process. Speci�cally, see the discussion
of the language-checking rule L-prod there.

The second mechanism for identifying a language ! does
so by extension. It uses an extends mechanism that creates a
new language by identifying elements to add to, or remove
from, an existing language. Formally, a language ! identi�ed
this way is speci�ed as:

• a language !′, perhaps also de�ned as an extension,
• a set of production names %!+ to add to %!′

• a set of production names %!− to remove from %!′

• a set of occurrences@!+ to add to@!′
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• a set of occurrences @!− to remove from @!′

• a set of occurrences @!+
�

to add to @!′

�

• a set of occurrences @!−
�

to remove from @!′

�

From these, we can compute:

• %!
= (%!′ ∪ %!+) − %!−

• @!
= (@!′ ∪@!+) −@!−

• @!
�
= (@!′

�
∪@!+

�
) −@!−

�

From here, the other elements of ! are inferred using the
same process as described above for creating language di-
rectly from a set of productions and occurrences. Similarly,
the resulting language is well-formed and well-typed in the
same manner.

3.4 Transform attributes

Transform attributes play a key role in nanopass attribute
grammars, as they de�ne the transformations from one lan-
guage into the next. A transform attribute 0) ∈ �) is de�ned
as having a source language Γ( (0) ) = !( and a target lan-
guage Γ) (0) ) = !) . Transform attributes have equations
similar to those used for higher-order attributes.

For many transformations, the computation for many pro-
ductions in the language is to simply apply the transforma-
tion to the child trees and re-build the tree with the same
production and the transformed child trees. It would be quite
inconvenient to write these directly and thus they are in-
ferred when an explicit equation is not provided for a pro-
duction. Consider a production B4;42C>A for selecting a �eld
from a record with signature 4:Expr ::= ; :Expr A :String with
no explicit equation for the transformation 0) . When the
target language has no annotations, the generated equation
would be 4.0) = selector (; .0) , A ). The same production is
used, and the 0) attribute is computed on each child of non-
terminal type. Children that are not of nonterminal type are
passed as-is.
If the production has annotations in the target language,

the generated equation copies them over from the attributes
and annotations in the source language. The 0) attribute is
recursively applied if the annotation has a nonterminal type
— this is the same process as performed on the children. For
example, if in the target language of 0) , Expr has two anno-
tations, 8B�=!0<130:Boolean and C~?4:Type, the generated
equation would be:

4.0) = selector (; .0) , A , isInLambda = 4.isInLambda,

C~?4 = 4.C~?4.0) )

Note that the 4.C~?4.0) call would require that there are no
non-annotation inherited attributes on the Type nonterminal
in 0) ’s source language, since additional attribute equations
are not supplied here.
In the general case, the generated equation for a pro-

duction ? with signature 4:-4 ::= G0:-0 G1:-1 ... would be
4.0) = ? (G0 [.0) ], ..., 00 = Cℎ8B .00 [.0) ], ...), where the [.0) ]

represents the attribute only being demanded on children,
attributes, and annotations of nonterminal type.
Note that this equation is generated only if:

• ? ∈ %!) ,
• @!( ∪@

!(
�

⊆ @
!)
�
, and

• 0@!(
�
- =⇒ �0� ∈ �� such that 0�@!( Γ� (0)

If these conditions are not met, the programmer is required to
explicitly provide an equation. Consider the transformation
replacing if c then s with if c then s else skip. Since the if-then
production is not in the target language an explicit equation
is required. Likewise, if the attributes and annotations in the
source are not enough to de�ne the annotations in the target
then equations are required. Finally, as noted, we require that
annotations on the source language do not need inherited
attributes on that type.
The process of generating an equation for a transform

attribute always results in a well-typed equation. If the rest
of E passed type-checking, we know the entire speci�cation
is well-typed, and that evaluation of attributes will not result
in runtime type errors.

3.5 Language checking

A language ! ∈ L is language-correct if every equation in
�&! evaluates to a term in the appropriate language. Recall
that synthesized and inherited attributes produce terms in
the same language as the language of the term the attributes
are computed on, while transform attributes produce terms
in the attribute’s target language.
If E is type correct, then the languages ! ∈ L will, if

constructed using the methods described above, also be type
correct and will not experience typical evaluation-time type
errors. Some concerns however must be checked on the
individual languages and their transform attributes. These
checks ensure that a language ! is language-correct and that
the evaluation-time errors listed below do not occur.

• ! is missing an equation for an attributes in �!
(
∪�!

�

for production in %! that may be demanded during
evaluation.

• ! computes a tree for a higher-order attribute in �!
(
or

�!
�
that is not in the language of !. That is, a production

not in %! is used in the tree.
• Similarly, ! computes a tree for a transform attribute
0 ∈ �) with target language !) (Γ) (0) = !) ) that is
not in the language of !) .

• ! has an equation for a synthesized attribute 0 ∈ �!
(

for production ? but also de�nes 0 as an annotation in
an application of the production ? , as in ? (..., 0 = ...).

• ! has an equation that demands the value of an inher-
ited attribute on a tree that does not have a parent tree
that can provide the de�ning equations. This could
happen when accessing a synthesized or transform
attribute (that depends on an inherited attribute) on
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a tree stored as a higher-order attribute since that tree
has no parent.

The language-correctness of a language ! is indicated by
the judgment ! ⊢ Lok. By de�nition, ! ⊢ Lok is established
if for all nonterminals - ∈ #) ! , for all productions ? ∈ %!

with - on the left hand side, and for all attributes 0 ∈ (�( ∪
�� ) where 0@!- the following conditions hold:

• (G .0 = 4) ∈ �&!
? : ensuring that the attribute grammar

is complete and no equations are missing, and
• ?, ! ⊢ (G .0 = 4) Lok, ensuring ! is language-correct.

Completeness is a conservative analysis and it is often more
convenient to require that only the equations that would
ever be needed in an attribute evaluation are present. In
Section 6 we discuss why this conservative analysis is less of
a concern in nanopass attribute grammars than in traditional
higher-order attribute grammars. This second requirement
could be replaced by a less-conservative analysis if desired.
This language-correctness analysis assumes that type-

checking has already been performed. It is speci�ed as a
collection of inference rules, as was done with type checking.
It is organized as a pair of judgments, one for equations and
one for expressions:

?, ! ⊢ (G .0 = 4) Lok and ?, !, !) ⊢ 4 Lok

These judgments are parameterized by languages. ! is the
language of the tree the attribute is being computed on. It
is constant throughout the analysis. !) is the language the
expression computing a tree should evaluate to: the source
language ! for inherited and synthesized attributes and the
target language !) for transform attributes. Some of the rules
establishing these judgments are given in Figure 2.

The rule L-inhsyn-eq for synthesized and inherited equa-
tions ensures that the expression of the equation will com-
pute a tree in the source language !. The rule L-transform-
eq for transform equations checks the expression 4 using
the target language !) to ensure that trees used in 0) are in
!) . A node and its children are always in the same language
as the attribute is being computed on. This allows accessing
attributes that are de�ned on the source language.
Accessing a synthesized or inherited attribute (or an an-

notation) preserves the language of the term it is computed
on, since we would expect the results of analyses on a term
to be in the term’s own language. It also requires that the
attribute be present in the language. To ensure all attribute
accesses are well-de�ned, the access may be on a name from
the signature (L-inhsyn-sig-access) where, due to the com-
pleteness check, all attributes in the language have equations
de�ned. The access could also be of an annotation on any
expression (L-anno-access), since the annotation must have
been supplied when the termwas constructed. A synthesized
attribute can also be accessed on an arbitrary expression (L-
syn-nodeps-access), for example on a higher-order attribute,

L-inhsyn-eq

0 ∈ (�!
� ∪�!

( ) ?, !, ! ⊢ 4 Lok

?, ! ⊢ (G .0 = 4) Lok

L-transform-eq

0 ∈ �!
) ?, !, !) ⊢ 4 Lok

Γ
!
( (0) = ! Γ

!
) (0) = !)

?, ! ⊢ (G .0 = 4) Lok

L-lhs

Γ
!
% (?) = (G :- ::= ...)

?, !, ! ⊢ G Lok

L-rhs

Γ
!
% (?) = (... ::= ... G :g ...)

?, !, ! ⊢ G Lok

L-inhsyn-sig-access

G :- ∈ Γ
!
% (?) 0 ∈ (�!

� ∪�!
( ) 0@!-

?, !, !) ⊢ G .0 Lok

L-anno-access

0 ∈ (�!
� ∪�!

( )

0@!
�- ? ⊢ 4:- ?, !, !) ⊢ 4 Lok

?, !, !) ⊢ 4.0 Lok

L-syn-nodeps-access

0 ∈ �!
(

0@!- ∀
0′@!-

0′ ∉ �!
� ? ⊢ 4:- ?, !, !) ⊢ 4 Lok

?, !, !) ⊢ 4.0 Lok

L-transform-sig-access

0 ∈ �)

0@!- G :- ∈ Γ
!
% (?) Γ( (0)

!
= ! Γ) (0)

!
= !)

?, !, !) ⊢ G .0 Lok

L-transform-nodeps-access

0 ∈ �) 0@!- ∀
0′@!-

0′ ∉ �!
� Γ( (0)

!
= !(

Γ) (0)
!
= !) ? ⊢ 4:- ?, !, !( ⊢ 4 Lok

?, !, !) ⊢ 4.0 Lok

L-prod

?′ ∈ %!) Γ% (?
′) = (- ::= ...)

∀
0≤8≤=

?, !, !) ⊢ 48 Lok {0<+1, ..., 0=} = {0 |0@!
�- }

?, !, !) ⊢ ?′ (40, ..., 4<, 0<+1 = 4<+1, ..., 0= = 4=) Lok

L-prim

? ⊢ 4:g ?, !, !4 ⊢ 4 Lok g ∉ #) !4 ∈ L

?, !, !) ⊢ 4 Lok

L-if

?, !, !) ⊢ 2 Lok ?, !, !) ⊢ C Lok ?, !, !) ⊢ 4 Lok

?, !, !) ⊢ (if 2 then C else 4) Lok

Figure 2. Some language correctness rules for ! ∈ L.
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when there are no inherited attributes in the language occur-
ring on the type, as the synthesized attribute cannot possibly
depend on any inherited attributes.
Accessing a transform attribute produces a term in the

transform attribute’s target language, from a term in the
transform attribute’s source language. The rules L-transform-
sig-access and L-transform-nodeps-access inspect the
languages ! and !) in the context of the rules. Similar rules
exist for transform attributes accessed as annotation (0@!

�
- )

but this is rarely done.
Constructing a termwith a production entails more checks.

The rule L-prod checks that the production is valid in the
language !) , that its subterms are valid in that language, and
that it has exactly the set of annotations it should have to be
in that language.

Most of the time, ! and !) are the same language in equa-
tions for inherited or synthesized attributes (L-inhsyn-eq),
since these attributes’ values are in the same language as the
tree they are computed on. In contrast, transform equations
(L-transform-eq) require that ! and !) are the source and
target languages of the transform attribute.

The last issue to address is in regards to primitive types in
) . They don’t belong to any language, so we want to leave
them unconstrained with respect to languages. Consider the
equation computing a term for a transform attribute 0) using
production ? ∈ !) that uses an Boolean annotation value
computed on a tree in the source language (G .0( ):

G .0) = ? (ann = G .0( )

Since the Boolean value is, by de�nition, in the language of
!) we do not care about the languages of the trees involved
in computing it. We can add the L-prim rule to handle this
case. Note that it leaves the target language for checking 4
to be unconstrained: !4 can be any language in L. 2

With L-prim in place, the rules for expressions of base
type can be trivial, since they can belong to any language.
The only feature of note is in the rule L-if since the then and
else branches of if expressions must have the same !) as
the expression unless they are base types (in which case the
L-prim rule applies). We elide similar rules for other base
type expressions such as addition or numeric literals.

3.6 Composition on nanopasses: C

A nanopass attribute grammar will also specify at least one
composition of a desired set of transformations, typically
to lower the source language down to a version that can be
easily translated to some target language. For example, we
may lower an imperative language with various control �ow
mechanisms and expressions over various types down to a
version that only uses labels and goto-statements for con-
trol �ow and expressions are transformed into assignment

2Although this rule is non-algorithmic, it can easily be conservatively ap-
proximated and is so implemented in our prototype system.

statement sequences that directly translate into low-level
intermediate code similar to assembly language instructions.
A composition, in its most primitive form, is a sequence

of transform attributes (C0, ..., C=), where each C8 ∈ �) . This
implicitly identi�es the source and target languages of the
overall composition; the overall source language is Γ( (C0),
while the overall target language is Γ) (C=). In practice, a
composition may check the results of on transformation
before performing the next one. For example, if type errors
are found on a program in a typing transformation then
those errors may be output and the compilation aborted.
If E is type correct and the languages are all language-

correct, then we can check that the compositions are also
type-correct. For a composition to be type-correct the fol-
lowing condition must hold:

∀8, 8 ∈ {1...=}. Γ( (C8 ) = Γ) (C8−1)

This ensures that the input tree for each transformation
matches the source language of the transformation. Recall
that the start symbol ( has no inherited attributes and thus
the computation of some transform attribute C8 does not need
them to be speci�ed. If additional information is needed
by in the computation of a transform attribute, then that
information can be supplied as an annotation.

The output of the simple composition form above is thus
a tree in Γ) (C=). We can then use this tree as input to the
next step in the compilation, either to compute a textual
representation of a program in a target language or use
higher-order attributes to construct a tree in some other
language.
Multiple compositions may be de�ned against a single

nanopass attribute grammar. For example, a production com-
piler may wish to de�ne multiple optimization levels that
run di�erent sets of passes.

4 Evaluation - a Nanopass Go Compiler

To evaluate the design of nanopass attribute grammars we
have developed a prototype nanopass attribute grammar
system and used it to implement several passes in a compiler
for Go version 1.17 that generates x86_64 assembly language
code. Go is a lexically-scoped, statically-typed, imperative
language and, in many respects, has control-�ow statements
and expressions that one might expect. We note speci�c
points of interest below as they become relevant.
In this section we describe several of the 32 languages

and transformations between them. Section 4.1 describes the
simple transformation that lowers for-loops into while-loops.
Section 4.2 describes the more complicated transformation
(and some of its predecessors) of lowering complex numbers
into records with a real and imaginary �eld. This demon-
strates how transformations lower not only the program
syntax but also that of annotations. Section 4.3 describes the
last language in the sequence; one that has been su�ciently
lowered to enable a direct translation to assembly language.
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1 // for <clause > <body >

2 prod forStmt(clause: LoopClause ,

3 body: Stmt): Stmt;

4

5 // for x != 0 { ... }

6 prod whileClause(expr: Expr): LoopClause;

7

8 // for i := 0; i < 10; i++ { ... }

9 prod forClause(init: Stmt , cond: Expr ,

10 post: Stmt): LoopClause;

11

12 // for k, v = range m { ... }

13 prod rangeClause(lhs: ExprList ,

14 rhs: Expr): LoopClause;

Figure 3. A subset of the productions describing loops.

Section A in the appendix lists and brie�y describes all 32
languages and 34 passes (transformations).

4.1 Lowering for-style loops to while-style loops

Go supports both for loops that have the C-like structure
of for init; cond; post { body } and while-style ones
that have only a condition. We lower the former to the lat-
ter. Figure 3 shows, in the language of our prototype, that
in the abstract syntax, both loops represented by a single
generic forStmt production (line 2) that encapsulates all
the looping constructs Go supports. Interestingly, they all
use the keyword for, so this structure is not unreasonable.
There are then various clauses that can be used with the for
keyword, which are productions of the LoopClause nonter-
minal: while-loop style on line 6, C for-loop style on line 9,
and a clause for ranging over key-value pairs on line 13.
There are many other productions in E that we do not show,
but they do have the expected form.
The meta-language syntax of the prototype essentially

adds concrete syntax to the constructs in the formalism in
Section 3. It does interleave elements of E and L but it
should be straightforward to read. Productions are written
in a functional style so that the left-hand-side nonterminal
appears last and the right-hand-side elements are in parens.
The lowering of C-style for-loops into while-style loops

takes place after 18 previous passes, on language L15, and is
shown in Figure 4. L0, the initial language in our nanopass
compiler, contains the abstract syntax of Go and the inter-
vening languages resolve names and perform type checking.
The transform attribute toL16 (line 6) produces programs
without these kinds of loops in language L16. Language
L16 is speci�ed by extending L15 as shown on lines 1–5. It
removes (-=) the forClause production from nonterminal
LoopClause’s set of productions (line 2) and includes only
(:=) occurrences of attributes liftedInit and liftedPost

on LoopClause (line 3). These are de�ned as higher-order

1 lang L16 extends L15 {

2 LoopClause.prods -= {forClause},

3 LoopClause.attrs := {liftedInit ,

4 liftedPost}

5 }

6 transform attribute toL16 from L15 to L16;

7

8 syn liftedInit: Stmt;

9 syn liftedPost: Stmt;

10

11 aspect forClause {

12 this.liftedInit := init;

13 this.toL16 := whileClause(cond);

14 this.liftedPost := post;

15 }

16

17 aspect default LoopClause {

18 this.liftedInit := emptyStmt ();

19 this.liftedPost := emptyStmt ();

20 }

21

22 aspect forStmt {

23 this.toL16 := block {appendStmt(

24 clause.liftedInit ,

25 forStmt(

26 clause.toL16 ,

27 appendStmt(

28 body.toL16 ,

29 clause.liftedPost )))); }

Figure 4. Lowering C-style for-loops to while-style loops.

synthesized attributes holding statements (lines 8–9). The
aspect constructs associate equations with productions and,
by convention, use this as the name of the constructed
tree node. Names of argument trees are found in the pro-
duction declarations in Figure 3. These attributes lift the
init and post components out of a C-style for-loop (line 12,
line 14) and are the empty statement, by default, on other
LoopClause productions (lines 17–20). The forClause can
then transform itself into an whileClause that uses the
cond child as the loop condition (line 13). Finally, we de-
�ne an equation on the forStmt production to actually put
the liftedInit and liftedPost statements into place in
the new while-style loop (lines 22–29). For all other Stmt
productions, e.g. if-then-else statements, a default equation
is generated, as discussed in Section 3.4, to apply the toL16
transformation to its components and build the same tree
with those transformed results. Thus, a statement of the form
for init; cond; post { body } is lowered to one of the form
{ init; for cond { body; post }}. Figure 4 contains the en-
tirety of the code for this pass.
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4.2 Lowering complex numbers

Go supports complex numbers with imaginary number liter-
als, overloaded arithmetic operators, and supporting library
functions for constructing and accessing complex numbers.
Here we discuss a transformation that lowers them to structs
containing two �oating-point numbers. (For simplicity we
assume complex numbers are 64 bits; the transformation
can easily be made to also handle 128-bit complex num-
bers.) Interestingly, complex number types and functions are
not built-in syntax, but instead are library functions whose
names may be shadowed by programmer-declared names,
thus complicating the lowering.

This process is done in a few steps, which we will illustrate
on an example function shown in its original L0 form at
the top of Figure 5. These versions are the concrete syntax
versions of the results of the various transformations, lightly
formatted. The ability to easily inspect the results at each
step is an advantage of the nanopass approach.
By language L8, (see second version in Figure 5) earlier

passes have performed name resolution and renamed lexical
variables, so the names of all types and functions are fully
quali�ed (shown in here with ad hoc syntax not in L0; the
"" package is the “universe block” in Go, and contains all
predeclared identi�ers). Lexically-bound names are made
unique, using the $ notation to attach unique numbers.
The �rst step in lowering complex numbers occurs in L9

where we lower imaginary number literals to calls to the
complex function (line 2 of L9 in Figure 5). In L11 we have
recognized calls to polymorphic standard library functions,
including the complex, real (access of the real component),
and imag (accessing the imaginary component) functions,
and given them their own productions, of the same names,
in the language’s abstract syntax. This is indicated here by
bolding the constructs’ names on lines 2–3. In Go 1.17,
users cannot de�ne polymorphic functions, and polymor-
phic functions behave unlike other variables, so it makes
type-checking simpler to recognize them as productions.

In L12 type-checking is done. The speci�cation of L11 adds
a synthesized attribute occurrence for types, ty: Type, to
Expr and the corresponding equations are then also included.
Equations for type-checking complex number constructs,
such as the recently added complex production, are also
included so that these expressions are appropriately typed.

Figure 6 de�nes L12 and converts the L11 attribute ty into
an annotation (line 4) so that typing information is retained
(in toL12) for use in the remaining passes. As of L14, the
Expr nonterminal contains the productions complex, real,
imag, as well as the arithmetic operators that are de�ned
on complex numbers. After L15, a type annotation with its
isComplex64 attribute set to true indicates an operation over
complex values.
We transform away language-level support for complex

numbers when transforming from L14 to L15 in toL15, also

Language L0:

1 func f(x complex64) float32 {

2 y := x + 1.2i

3 return real(y) - imag(y)

4 }

Language L8:

1 func f(x$0 "".complex64) "".float32 {

2 y$1 := x$0 + 1.2i

3 return "".real(y$1) - "".imag(y$1)

4 }

Language L9:

1 func f(x$0 "".complex64) "".float32 {

2 y$1 := x$0 + "".complex (0.0, 1.2)

3 return "".real(y$1) - "".imag(y$1)

4 }

Language L11:

1 func f(x$0 "".complex64) "".float32 {

2 y$1 := x$0 + complex (0.0, 1.2)

3 return real(y$1) - imag(y$1)

4 }

Language L15:

1 func f(x$0 struct{ r "".float32 ,

2 i "".float32 })

3 "".float32 {

4 var y$1 struct{ r "".float32 ,

5 i "".float32 }

6 y$1 = "$builtins".AddComplex64(

7 x$0 ,

8 struct{ r "".float32 ,

9 i "".float32 }{ 0.0, 1.2 })

10 return y$1.r - y$1.i

11 }

Figure 5. An example function, lowered from !0 to !15.

shown in Figure 6. To get started, L14 inherits the string at-
tribute complexOpName from L12 (line 1), to occur on binary
operators (line 6) to be the name of the built-in function cor-
responding to the operator (line 9) to which the operator will
translate. (This is the empty string for operators that don’t
apply to complex numbers.) Though not shown, it also inher-
its an attribute isComplex64 (line 2 on type nonterminals
(line 5) to indicate if a Type is a complex type.

The target language, L15 on line 12, eliminates the com-
plex number productions (line 13) and the attributes used in
L14 (lines 14–15) as part of toL15 (line 16).
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One part of toL15 translates binary operators (lines 18–20)
to a call to a runtime function (line 22) whose name is based
on the complex operator name (line 25) if the type of the
operator is complex (line 21). The operands are also lowered
(lines 27–28). The type annotation ty is set to be the lowered
version of the complex type (line 30). This transformation
of complex types to struct types is not shown; it produces a
struct with a real and imaginary �eld of type �oat.
If the type is not complex then the transformation is ap-

plied to the child expressions and annotations (lines 32–34).
Lastly, the complex productions complex (line 38), real

(line 48) , and imag (not shown), are also lowered to, re-
spectively, struct literals (lines 39–45, or the struct selector
operator (lines 49–50).

Thus, we see, that over a handful of passes, complex num-
bers are lowered into structure types and expressions.

4.3 L31: Nearly assembly language

After all passes, the �nal target language L31 is simple enough
to generate assembly straightforwardly in a single pass, al-
though register allocation has not been done. The declara-
tion nonterminal has productions for functions and methods
with stack frame layouts, opaque type de�nitions, and global
variables without initializers. The statement nonterminal
has productions for sequencing statements, for conditional
and unconditional gotos, assignments (to variables or struct
�elds), and expressions evaluated for e�ect. The expression
nonterminal has no productions for nested expressions, only
those with atomic operands: literals, references to variables
(including functions), and references to methods. The re-
maining productions are for those atomic operands, function
calls, closure creation, casting between types, calls to the
memory allocator, and references to struct �elds.

5 Related Work

Naturally there are many extensions to Knuth’s original at-
tribute grammars that are related to this work. Transform
attributes in Section 3 are essentially a version of higher-
order attributes [25] that are constrained to have the same
nonterminal type as the nonterminal on which they occur.
This restriction allows for the automatic generation of equa-
tions for productions that do not de�ne them explicitly. Ref-
erence [5] and remote [1] attributes allow trees already dec-
orated with attribute values (or references to them) to be
passed as attributes. A common use case is to link uses of
a variable back to the tree that declared it. In some sense,
trees with attributes converted to annotations by a transform
attribute are similar in that they come with values already
decorating them. Trees generated in transform attributes are
more restricted, however; we only use them to construct the
tree of the program output from the transformation.

1 syn complexOpName: string;

2 syn isComplex64: bool;

3 lang L12 extends L11 {

4 Expr.annots += { ty },

5 Type.attrs += { isComplex64 },

6 BinOp.attrs += { complexOpName }, ... }

7

8 aspect add { // prod add(): BinOp;

9 this.complexOpName := "ComplexAdd";

10 } // similarly for all BinOp productions

11

12 lang L15 extends L14 {

13 Expr.prods -= { complex , real , imag },

14 Type.attrs -= { isComplex64 },

15 BinOp.attrs -= { complexOpName } }

16 transform attribute toL15 from L14 to L15;

17

18 // prod binOpExpr(lhs: Expr , op: BinOp ,

19 // rhs: Expr): Expr;

20 aspect binOpExpr { this.toL15 =

21 if this.ty.isComplex64 then

22 callExpr(

23 varExpr(

24 qname("$runtime",

25 op.complexOpName),

26 ty=c64BinopType),

27 exprsCons(lhs.toL15 ,

28 exprsCons(rhs.toL15 ,

29 exprsNil ())),

30 ty=this.ty.toL15)

31 else

32 binOpExpr(lhs.toL15 , op.toL15 ,

33 rhs.toL15 ,

34 ty=this.ty.toL15);

35 }

36

37 // prod complex(r: Expr , i: Expr): Expr;

38 aspect complex { this.toL15 =

39 compositeExpr(c64Type ,

40 elementsCons(fieldKey("r"),

41 r.toL15 ,

42 elementsCons(fieldKey("i"),

43 i.toL15 ,

44 elementsNil ())),

45 ty=c64Type ); }

46

47 // prod real(c: Expr): Expr;

48 aspect real { this.toL15 =

49 selectorExpr(c.toL15 , "r",

50 ty=this.ty.toL15); }

Figure 6. Lowering complex numbers in struct types and
expressions.

80



SLE ’23, October 23–24, 2023, Cascais, Portugal Ringo, Kramer, and Van Wyk

Onemechanism for transforming trees is the tree-rewriting
mechanism [20] in JastAdd [2] that rewrites trees to elimi-
nate certain syntactic forms. Another is forwarding [24] in
Silver [23] used for similar purposes. These di�er from trans-
form attributes in that both of these processes are more local
in nature and not used for transforming an entire program.
Silver also has strategy attributes [11], in which strategies
control the application of rewrite rules to transform trees
in a more global manner, but the di�erentiation of di�erent
languages is not possible there. Perhaps most similar to trans-
form attributes are attribute coupled grammars [4]. These
were a precursor to higher order attributes and were used
to link attribute grammars in a sequence to translate a tree
through a series of di�erent languages. This is essentially
what transform attribute do, but again the di�erentiation
of many languages from a common collection of language
elements is not present in this formalism.

The LISA system previously explored [14] splitting an at-
tribute grammar speci�cation into separate languages, which
are de�ned using an object-oriented-inspired inheritance
mechanism similar to our framework’s extension mecha-
nism described in Section 3.3. In fact our prototype uses the
same extends keyword as LISA. An important di�erence is
that LISA could not identify and use two distinct languages in
the same phase of evaluation. This is needed in computations
carried out during our language transformations to isolate
the safe construction of some trees in the source language
and others in the target language of the transformation.

The other primary body of related work is that of nanopass
compilers. The original design and implementation of nano-
pass compilers was done for the Scheme language for both
educational [18] and industrial applications [9]. This work
articulated the software engineering bene�ts of the approach,
such as greater transparency into theworking of the compiler
and more direct means for testing. This is certainly useful in
educational settings and Jeremy Siek’s new textbook adopts
this approach [19]. In that work, programs are represented
as Scheme data structures that are essentially syntax trees.
These lack the ability to structure computations over the
tree as �exibly as attribute grammars allow. This concern
was noted in the GitHub repository for the Scheme-to-C
compiler.3

6 Discussion and Conclusion

A concern one might have about nanopass attribute gram-
mars used production-grade compilers is runtime perfor-
mance. Are the many small-scale passes much slower than
a few larger-scale ones? We have not performed a rigor-
ous evaluation of the overall performance; however, Keep
and Dybvig note [9] that after rewriting the Chez Scheme

3h�ps://github.com/akeep/scheme-to-c/blob/18f6cd26f/c.ss#L2576-L2578

compiler to use the nanopass framework, compile times re-
mained within a factor of two despite improvements to code
generation, including a slower register allocator.

Another possible concern is the traditional, and somewhat
conservative, well-de�nedness analysis used in our formu-
lation in Section 3. It requires equations for all synthesized
attributes and inherited attributes that occur on nontermi-
nals in a production’s signature. This is overly conservative,
as some equations may be written that are never actually
demanded. More sophisticated analyses have been devel-
oped, such as one by Kaminski and Van Wyk [6] that checks
for e�ective completeness; that is, all potentially demanded
attributes have an equation. Performing this analysis and
a traditional higher-order circularity analysis [25] for each
language in L would be straightforward.

There are a number of aspects of future work that we are
currently investigating. The �rst is the further development
of the prototype nanopass AG system to make it more robust
and extend it with more modern attribute grammar features
such as some of those described in Sections 2 and 5. This
will allow us to do a more complete evaluation of nanopass
attributes grammars by applying it to more language. The
current prototype is contains the features needed to exper-
iment with the nanopass formalism described in Section 3
but it lacks many of the modern AG features that improve
the usability and convenience of the paradigm.
Although, as described above, we have reason to believe

that performance is not a signi�cant problem there is one
optimization that is appealing — fusing several independent
passes into one to avoid an additional traversal over the tree.

Another potential extension is to specify a target language
for all attributes, rather than just transform attributes. This
would enable a notion of reference attributes using annota-
tions, by de�ning the language of, e.g., an environment at-
tribute mapping names to de�nitions to have some attributes
on de�nitions present as annotations. This may complicate
language checking, as the source language of an attribute
could no longer be determined from its target language.

To conclude, we have introduced nanopass attribute gram-
mars, a formalization of their speci�cation, and a prototype
system used to de�ne many aspects of a compiler for the
Go programming language. The distinguishing feature of
nanopass attribute grammars is the clear identi�cation of
many distinct, yet similar, languages drawn from the same set
of language elements. This provides the linchpin on which
the static language checking depends so that the attribute
grammars for individual languages can be shown to be well-
de�ned even when the entire collection of language elements
in E will most likely not be. Perhaps equally important is the
clarity of thought that this style of compiler design brings:
one can think in terms of clearly de�ned languages, know-
ing what has, and has not, been translated away or had its
structure change in some way. In a large complex software
artifact such as a compiler this is a considerable bene�t.
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A The passes in the Go nanopass compiler

The Go compiler we have designed consists of 32 di�erent
languages, L0 to L31 and 34 passes. Three passes, renameVar-
iables, makeDerefExplicit, and lowerSelectorMethod-
Calls, have the same source and target language.
The last language has an attribute that outputs x86_64

assembly. Since there is no register allocator, this assembly is
ine�cient, but it is runnable. We have also not implemented
the runtime support needed for concurrency.

1. giveImportsNames, L0 to L1 – Rewrites imports like
import "example.com/foo" to
import bar "example.com/foo". The latter form
already exists in the CST, and this removes a special
case in the next pass.

2. fullyQualifyNames, L1 to L2 – Rewrites variables
that refer to imported declarations to refer to the pack-
age directly. For example, Println might become
"fmt".Println, foo.Bar might become
"example.com/foo".Bar, and int32 might become
"".int32.

3. renameVariables, L2 to L2 – Renames lexical vari-
ables to have globally unique names, so that variable
shadowing doesn’t become an issue. For example, x
might become x$45.

4. liftTypesAndConstants, L2 to L3 – Lifts declarations
of types and constants in local scopes to the global
scope, and renames references to them to �t. (Due
to renameVariables, we know there will not be any
name con�icts.)

5. expandTypeAliases, L3 to L4 – Expands and removes
type aliases. Note that this only applies to declarations
like type a = b, not type a b.

6. expandLists, L4 to L5 – Rewrites function parame-
ters, struct �elds, etc. like func foo(a, b "".int)

to func foo(a "".int, b "".int).
7. lowerIncDec, L5 to L6 – Lowers increment and decre-

ment statements to the corresponding assignment state-
ments.

8. labelLoops, L6 to L7 – Adds labels to loops that lack
them, and makes break and continue statements ex-
plicitly refer to their loop.

9. normalizeInterfaces, L7 to L8 – Sorts the methods
of interface types to be in lexicographic order, and
resolves any interface inclusions. This is useful for
type-checking later.

10. lowerImaginaryLits, L8 to L9 – Lowers imaginary
literals to calls to the complex function with a zero
real part.

11. recognizeMakeAndNew, L9 to L10 – Recognizes the
make and new constructs, and provides errors for uses
of types as function call arguments other than those
constructs.

12. recognizePolyBuiltins, L10 to L11 – Recognizes
the other polymorphic built-in functions.

13. typeCheck, L11 to L12 – Adds a type annotation to
expressions.

14. makeDerefExplicit, L12 to L12 – Adds uses of the
dereference operator that were implicit in the source
language. For example, foo$7.Bar() might be rewrit-
ten to (*foo$7).Bar().

15. lowerSelectorMethodCalls, L12 to L12 – Lowers
method calls that can be statically dispatched to di-
rect calls, and references to those methods to lamb-
das. For example, x$3.Foo(n$2) might be rewritten
to ("foo".MyStruct).Foo(x$3, n$2), and y$4.Foo
might be rewritten to func(n$1321 "".int) {

("foo".MyStruct).Foo(y$4, n$1321) }.
16. hoistVariableDecls, L12 to L13 – Lifts variable dec-

larations to the start of their nearest enclosing func-
tion.

17. removeIfPreStmt, L13 to L14 – Removes the "pre
statement" from if statements. For example, rewrites
if n, err = "foo".bar(); n != nil {} to n, err

= "foo".bar(); if n != nil {}.
18. lowerComplex (toL15), L14 to L15 – Lowers calls to

the complex-number-related built-in functions, and
operators on complex numbers, to calls to runtime
functions.

19. lowerForLoops (toL16), L15 to L16 – Lowers for-style
loops to while-style loops.

20. lowerForRangeLoops, L16 to L17 – Lowers loops us-
ing the range construct to use indices on arrays, slices,
and strings, and runtime functions on channels and
maps.

21. lowerIfThen, L17 to L18 – Lowers if-thens without
an else to if-then-elses.

22. lowerSelect, L18 to L19 – Lowers select statements
to calls to a runtime function.

23. lowerTypeSwitch, L19 to L20 – Lowers switch state-
ments on the runtime type of a value to a series of
ifs.

24. lowerExprSwitch, L20 to L21 – Lowers other switch
statements to a series of ifs, including their fallthr-
ough statements.

25. lowerControlFlow, L21 to L22 – Lowers the remain-
ing control-�ow constructs (break, continue, for, if,
return) to gotos and labels.

26. lowerDefer, L22 to L23 – Lowers the defer statement
to a shadow stack and adds code to the exit blocks of
functions to support defer.

27. liftInitFunction, L23 to L24 – Recognizes the de�-
nition of init functions and lifts their bodies to the
Package nonterminal.

28. inlineConstants, L24 to L25 – Inlines references to
consts and removes the consts’ declarations.

29. liftInitializers, L25 to L26 – Lifts initializers for
global variables and constants to the init function.
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30. flattenExprs, L26 to L27 – Lowers complex expres-
sions to simple ones; e.g. "foo".f("foo".g()) might
get lowered to tmp$1322 = "foo".g();

"foo".f(tmp$1322).
31. lowerCompositeExprs, L27 to L28 – Lowers assign-

ments of composite expressions to a series of assign-
ments. For example, x$22 = "foo".MyStruct{1,2}

might get lowered to x$22.Foo = 1; x$22.Bar = 2,
and xs$23 = []"".int{1,2,3}might get lowered to
xs$23 = make([]"".int, 3); xs$23[0] = 1; ...,
and so on.

32. lowerPolyBuiltins, L28 to L29 – Transforms calls
to the polymorphic built-in functions recognized by
recognizePolyBuiltins to calls to runtime functions.

33. layoutStackFrames, L29 to L30 – Places the local
variables declared in each function and method into a
single struct, such that each function has exactly one
local variable. A static link is also present, containing a
pointer to the parent’s stack frame struct, for lambdas’
stack frames.

34. lambdaLift, L30 to L31 – Lifts lambda expressions
to global functions that take an additional argument
for their parent’s stack frame and a call to a built-
in function that accepts the global function pointer
and the parent’s stack frame pointer and constructs
the closure. Globally-de�ned functions and methods
also get a globally-de�ned “closure” (that ignores the
parent’s stack frame). References to globally de�ned
functions and methods are changed to refer to these
closure objects instead.
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Abstract

When a language evolves, meta-models and associated gram-
mars need to be co-evolved to stay mutually consistent. Pre-
vious work has supported the automated migration of a
grammar after changes of the meta-model to retain manual
optimizations of the grammar, related to syntax aspects such
as keywords, brackets, and component order. Yet, doing so
required the manual speci�cation of optimization rule con-
�gurations, which was laborious and error-prone.
In this work, to signi�cantly reduce the manual e�ort dur-
ing meta-model and grammar co-evolution, we present an
automated approach for extracting optimization rule con�g-
urations. The inferred con�gurations can be used to automat-
ically replay optimizations on later versions of the grammar,
thus leading to a fully automated migration process for the
supported types of changes. We evaluated our approach on
six real cases. Full automation was possible for three of them,
with agreement rates between ground truth and inferred
grammar between 88% and 67% for the remaining ones.
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1 Introduction

Model-driven engineering is an important software engineer-
ing paradigm, in which models are considered as primary
artifacts during software development [46]. Managing the
consistency of artifacts produced during model-driven engi-
neering is a hard problem. When a meta-model is updated,
associated artifacts that still refer to the old version of the
meta-model, such as model instances [23], model transfor-
mations [30], and code generators [37], become outdated and
need to be migrated. The overall class of problems addressed
here is referred to as co-evolution [23] or coupled evolution [3]
and, due to its practical signi�cance, has led to a large body
of work, focusing on automated migration support (see, e.g.,
[6, 9, 19, 23, 27, 28, 39, 44, 44, 45]).
We consider a scenario in which a meta-model is co-

evolved with an associated grammar. Such a scenario is com-
mon in cases where the meta-model de�nes the underlying
abstract syntax for a modeling language, and the grammar
de�nes a concrete textual syntax for that language [34]. In
the technical space of Eclipse, the meta-model and grammar
could be speci�ed using Ecore and Xtext, respectively. In this
scenario, there are two situations that lead to co-evolution:
First, the meta-model evolves over time, rendering previous
versions of the grammar obsolete. Second, in a rapid pro-
totyping context, the meta-model evolves quickly and then
requires the grammar to be updated quickly as well.
The main challenge with this scenario stems from two

core requirements that typically need to be addressed:

• The updated grammar should be consistent with the
new version of the meta-model.

• The updated grammar should incorporate any manual
improvements that were made to previous versions of
the grammar (e.g., adding and modifying keywords,
changing the order of rule components, modifying and
omitting brackets).
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Figure 1. Overview of meta-model/grammar co-evolution;
dashed lines indicate mutual consistency. Our contribution is
to automate the extraction of 21, previously done manually.

A tempting solution that addresses the �rst requirement is
to automatically re-generate the entire grammar from the
evolved meta-model, which is supported by platforms such
as Xtext (in Fig. 1, arrow between<1 and 61). Yet, the second
requirement renders this solution insu�cient, as it leads to
a laborious process, in which developers need to manually
re-apply their optimizations to the re-generated grammar
in every evolution step. For languages with extensive gram-
mars like EAST-ADL, which encompasses approximately
300 grammar rules [12], this process simply seems infeasible
when done manually.

We are aware of only one previous work that addresses
this problem, a tool called GrammarOptimizer [58]. The key
idea of GrammarOptimizer was to provide a catalog of gram-
mar optimization rules that can be used to specify and then
automatically perform the required changes for moving from
a generated grammar to an optimized one. For example, in
Fig. 1, the developers use these rules to specify a con�gu-
ration 21 that captures the improvements for moving from
61 to 61′. We will introduce this tool further in Sect. 2. Yet,
the tool in its current version has a major drawback: manu-
ally instantiating the grammar optimization rules to specify
migrations can be cumbersome and error-prone. Specifying
the right con�guration for the task at hand involves choos-
ing the right set of rules together with correct values for
parameters. This is a complicated con�guration process.
In this paper, to considerably reduce this manual speci-

�cation e�ort, we present an approach for automating the
con�guration of grammar optimization rules. Our approach
assumes that two versions of the grammar are available: an
automatically generated one and a manually optimized one;
we call the latter the target grammar. In a co-evolution sce-
nario, these grammars come from a previous state in history,
and the manual optimizations evident in the target grammar
should inform the migration of the grammar towards a new

version of the meta-model (in Fig. 1, consider the generated
grammar61, the target grammar61′ and the newmeta-model
version<2). Our approach can then automatically extract an
optimization rule con�guration that encodes the manual im-
provements. Technically, our approach works by establishing
a mapping between the grammar rules from both grammars
and then, per rule, performing a line-by-line comparison to
extract invocations of relevant grammar optimization rules
with their parametrizations. We automated this process by
developing a tool named Con�gGenerator.
The extracted con�guration can be applied to a newly-

generated version of the grammar based on the evolved
meta-model. For changes of the types supported by our ap-
proach, this entirely avoids any manual e�ort for specifying
and re-applying the manual optimizations. In Fig. 1, after
the evolution step that created <2, replaying the changes
between 61 and 61′ on the generated grammar 62 using the
automatically extracted con�guration 21 leads to the target
grammar 62′. Once the target grammar is available, new
and changed meta-model elements may lead to new man-
ual optimizations on top of it. In that case, our approach
can be applied after meta-model changes to capture these
changes in a new version of the con�guration. That way,
our approach provides support for meta-model/grammar co-
evolution throughout the history of an evolving language.

To evaluate our approach, we applied the Con�gGenerator
to six cases of languages whose meta-models and grammars
are available: EAST-ADL, Bibtex, Xenia, Xcore, DOT, and
SML. The results show that our approach is able to extract
complete con�gurations for three of the cases (EAST-ADL,
Bibtex, and Xenia). For these languages, the target grammars
yielded by replaying the optimizations are identical with
an existing ground truth grammar. For the other three lan-
guages, the optimization rates— de�ned as the agreement
between a ground truth grammar and the grammar obtained
by replaying— are between 87.5% and 68%. These �ndings
indicate the potential and e�ectiveness of Con�gGenerator
in extracting optimization rules based on the comparison
between generated grammar and target grammar.

2 Background

2.1 Xtext and DSL Generation

Eclipse Xtext is a framework for developing software lan-
guages, including modeling languages [15]. Xtext o�ers two
approaches for implementing the grammar design of a tex-
tual DSL [42]. One approach involves creating an Ecore meta-
model to represent domain concepts and their relationships,
and then generating an Xtext grammar from the meta-model
(in the remainder of the paper, we call it generated grammar).
The other approach is �rst to create a grammar and then
derive a meta-model from it. The scope addressed in this
paper involves the former approach.
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Listing 1. Example from Xenia: generated grammar rule
SiteWithModal.

1 S i teWithModa l r e t u r n s S i t eWi thModa l :

2 { S i t eWithModa l }

3 ' S i teWithModa l '

4 name= ES t r i n g

5 ' { '

6 ( ' s i t e s ' ' { ' s i t e s += Sup e r S i t e ( " , " s i t e s +=

Sup e r S i t e ) ∗ ' } ' ) ?

7 ' } ' ;

In Xtext, grammars are speci�ed in an EBNF (Extended
Backus-Naur Form) format, augmented with references and
annotations that specify the relationship to the Ecore meta-
model. The meta-model represents the abstract syntax for
language at hand (classeswith their features, including names,
attributes, and references), while the augmented EBNF ex-
pression describes the concrete syntax and its mapping to
speci�c parts of the meta-model. Listing 1 shows an ex-
ample of a grammar rule in Xtext, from the context of Xe-
nia [54, 55], one of our evaluation cases. The depicted rule,
SiteWithModel, contains both traditional EBNF elements
for specifying the syntax, as well as several annotations and
references. In particular, the returns keyword is followed
by a reference to the SiteWithModel class, and several gram-
mar elements are mapped to attributes (name) and references
(sites) from that class, using the ’=’ and ’+=’ operands. By
de�ning grammar rules and associating them with the corre-
sponding meta-model elements, Xtext enables the automatic
generation of a parser and other language tools. The parser
uses the grammar rules to parse the input code and create an
abstract syntax tree (AST) that conforms to the meta-model
elements. This AST can then be further processed or used
for various purposes in language development.

2.2 GrammarOptimizer and Optimization Rules

We now provide additional details for the GrammarOpti-
mizer tool [58] that, in particular, provides the grammar opti-
mization rules we automatically con�gurewith our approach.
Their approach includes 54 optimization rules extracted from
seven sample languages, which are used to optimize the gen-
erated grammar (explained above). These optimization rules
operate on various elements within the grammar, includ-
ing keywords, curly braces, symbols, and optionality. For
example, AddKeywordToAttr is used to add a new keyword
to a speci�c attribute, ChangeBracesToSquare is used to
transform speci�ed curly braces into square brackets, and
RemoveRule is used to remove unnecessary grammar rules.
Their tool is an Eclipse plugin developed in Java.

To use GrammarOptimizer, language engineers need to
manually select and con�gure the optimization rules for per-
forming the intended changes. Given a selected rule, con�g-
uring it involves invoking methods of a Java class represent-
ing the application of that rule, with parameters such as the

Listing 2. Example from Xenia: target grammar rule
SiteWithModal; all attributes and keywords are now on
the same line.

1 S i t eWi thModa l :

2 '@ ' name=ID ' with ' 'modal ' ' ( ' s i t e s +=

Sup e r S i t e ( ' , ' s i t e s += Sup e r S i t e ) ∗ ' ) '

3 ;

name of the relevant grammar rule and involved elements,
such as attribute names and keywords. These parameters
enable GrammarOptimizer to accurately locate the speci�c
targets in the generated grammar that need to be modi�ed.

As an example, consider Listings 1 and 2. Listing 1 shows
the grammar rule SiteWithModal from Xenia’s generated
grammar, while Listing 2 shows the version of that rule in
the target grammar. We focus on the name attribute, which
has di�erent types in the two grammars: EString and ID

in the generated and target grammar, respectively. While
editing the generated grammar manually to change the type
is simple, this change cannot be recovered if the grammar
is re-generated after a meta-model change, unless dedicated
support is provided.
Hence, the language engineer uses GrammarOptimizer.

Doing so involves identifying the relevant optimization rule,
in this case, changeTypeOfAttr. To con�gure the optimiza-
tion rule, the engineer instantiates the GrammarOptimizer
class which acts as a facade and de�nes a public method
for each of the optimization rules. The changeTypeOfAttr
method accepts four parameters: the names of the gram-
mar rule, of the attribute name, of the current type, and
of the new type. In this example, where the instantiated
GrammarOptimizer object is named go, the con�guration of
the optimization rule call to modify the type of name is as fol-
lows: go.changeTypeOfAttr("SiteWithModal", "name",

"EString", "ID").

3 Related Work

Recovery of grammars and meta-models. In legacy sys-
tems, a common situation is that the underlying grammar
or meta-model is absent and has to be recovered from avail-
able instances (programs or models, respectively). Available
solutions are based on using available compiler sources and
language reference manuals [35], evolutionary computing
[4, 25], or iteratively provided user input [38]. With a focus
on supporting grammar recovery scenarios, Lämmel [32]
provides a set of operators for grammar modi�cation, fo-
cusing on refactoring, construction, and destruction. Yet,
recovery approaches such as those discussed are not appli-
cable to the scenario considered in this paper, in which the
grammar instances, after an evolution step, still conform to
the old, known grammar.
Co-evolution in MDE contexts. In model-driven engineer-
ing, it is well-known that evolutionary changes to an artifact
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Figure 2. Schematic diagram of the whole process of the research methodology.

may a�ect other artifacts, which leads to several co-evolution
scenarios. The most prominent one is meta-model/model co-
evolution, in which a meta-model is evolved and correspond-
ing instances have to be updated to stay in sync with the
meta-model. This scenario has inspired a substantial body
of work. Hebig et al. [23] survey 31 relevant approaches,
classifying them according to their support for change col-
lection, change identi�cation, and model resolution. Beyond
meta-model/model co-evolution, co-evolution betweenmeta-
models and other MDE artifacts have received attention
as well, including associated OCL constraints [29], model
transformations [30, 31], code generators [37], and graphical
editor models [10]. Inconsistencies between evolved meta-
models and general MDE artifacts have also been addressed
in the context of technical debt management, with an ap-
proach that assists the modeler with the aid of interactive
visualization tools [8]. However, except for GrammarOp-

timizer [58] (described in Sect. 2), on which we build and
improve with our contribution, we are not aware of previous
work on meta-model/grammar co-evolution.

Model federation [11, 20, 22] deals with challenges of keep-
ing several models synchronized, which is related to our
addressed co-evolution scenario. However, to the best of our
knowledge, there is no previous work that applies model
federation techniques to grammars. Previous work is often
focused on establishing links between the di�erent involved
artifacts, which, in our scenario, is a non-issue. However,
the actual modi�cation for keeping several artifacts synchro-
nized is often simpler if only models are involved, than in our
case that deals with concrete textual syntaxes. For example,
the order of attributes in the grammar does not have to be
consistent with the corresponding meta-model attributes but
can be changed freely according to the developer’s design

intention. In fact, the approach enabled by our contribu-
tion could be used to augment available model federation
frameworks to make them applicable to grammars as well.
Automated rule extraction. A line of work focuses on
automating the extraction of transformation rules in speci�c
contexts. Model transformation by example [51, 53] is an
important paradigm in which entire transformations are
recovered from a set of user-provided examples. While the
seminal work in this area mostly relied on custom heuristics,
recent works have studied applications of AI, in particular,
reinforcement learning [17] and deep learning [2]. Apart
from these approaches for general transformation inference,
there are task-speci�c approaches, including the refactoring
of redundant rules [49, 50] and of mutation operators [47].
These approaches are orthogonal to ours, as we focus on the
automated extraction of con�gurations of rules.
From meta-models to graph grammars. Beyond EBNF-
style grammars as considered in this paper, grammarware in
the broader sense also encompasses graph grammars, which
are a rule-based approach for generating instances for a given
meta-model, e.g., for testing purposes. A seminal approach by
Ehrig et al. [16] supports the generation of a graph grammar
in the double-pushout approach to graph rewriting, using
advanced transformation features such as negative applica-
tion conditions. Fürst et al. present an approach that aims to
avoid the use of such advanced features that make analysis
more complicated, while being su�cient for meta-models
with arbitrary multiplicities and inheritance [18].
Text-based merging. Simple cases of our considered sce-
nario could be covered by standard text merging tools, such
as Git merge [7]. To this end, the user would performmanual
optimizations and re-generation of the grammar in separate
branches, and then merge the branches. However, text-based
merging operates on the abstraction level of text rather than
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grammar structures, which leads to several drawbacks: First,
it easily leads to merge con�icts. For example, when the
same line is manually optimized (e.g., changing a keyword)
and a�ected by a change in the underlying meta-model (e.g.,
removing an attribute), a merge con�ict arises, whereas our
approach supports this example. Second, it does not give an
easily inspectable, semantically meaningful overview of the
changes, as grammar optimization rules do. In that sense,
our approach can be seen as a form of semantic lifting [26]
of grammar di�erences, focused on grammar optimizations.
Grammar convergence. Our contribution bears a connec-
tion to grammar convergence [36]. Grammar convergence
aims to extract a series of transformations to make two con-
sidered grammars syntactically identical, which is similar
to our goal. Yet, the grammars in their approach stem from
heterogeneous sources (e.g., di�erent parsers for the C++
language), instead of being based on the same underlying
source meta-model in several versions, which gives both
approaches di�erent knowledge to rely on. A relevant sce-
nario is metalanguage evolution [56], in which the notation
used to de�ne the considered languages, instead of the lan-
guages themselves, evolves, which necessitates changes in
associated artifacts (e.g., parsers). Another one is style nor-
malization for X-to-O mappings, which aims to bridge het-
erogeneity in di�erent XML di�erent styles when supporting
their mapping to object models [33].

4 Methodology

The research methodology in this study consists of the steps
shown in Figure 2. The �rst two steps were performed to
prepare the inputs for Step 3, in which we developed the
Con�gGenerator, and for Step 4, in which we evaluated our
approach. All steps are described in the following.

4.1 Step 1: Select Sample Languages

In the �rst step, we selected appropriate case languages.
These chosen languages served as the foundation for our
solution and evaluation. Since our goal was to make our
approach applicable to real-world DSLs, we needed to se-
lect a set of real-world DSLs for which both a grammar and
a meta-model were available. In our previous work [58],
we identi�ed 9 such DSLs through an extensive search. We
decided to directly work with a subset of six of their con-
sidered languages–Bibtex, DOT, EAST-ADL (full version),
SML, Xcore, and Xenia–, which has the following bene�ts:
First, the considered languages covered a diverse range of
domains. Second, we knew from their evaluation that Gram-
marOptimizer could be used to optimize grammars for these
languages. Since GrammarOptimizer was a baseline tool for
our approach, working with these languages ensured that
any observed issues stem from our approach for automated
con�guration extraction, and not from our baseline tool. Our
reason for selecting a subset was that four of their considered

languages had complications that led to a lack of full support
(e.g., using OCL as part of the grammar de�nition). We still
included one of the not-fully-supported languages, SML, to
study the e�ect of applying our approach to one case from
that category.

4.2 Step 2: Obtain the Target Grammars and

Meta-models

After selecting the case languages, we obtained their meta-
models and target grammars. The information regarding
the meta-models (source and the number of classes) and
target grammars (source and the number of grammar rules)
is presented in Table 1. We noticed that the meta-models for
Bibtex and SML needed adjustments to be e�ectively used,
which we completed in previous work [58]. Therefore, we
directly adopted our prepared meta-models for Bibtex, SML,
and DOT, and obtained the meta-models for the other three
languages from their respective sources.

Con�gGenerator takes two Xtext grammars as input: the
target grammar and the generated grammar (i.e., the gram-
mar newly generated from the meta-model). We observed
that EAST-ADL and Bibtex did not have original grammars
in Xtext, so we directly adopted the optimized grammars
from [58] as the target grammars for these two languages.
As for the other four languages, their Xtext grammars were
already provided in their respective sources, and we simply
copied these Xtext grammars as the target grammars.

4.3 Step 3: Develop Tool

In the 3rd step we developed the Con�gGenerator. We devel-
oped the initial version of Con�gGenerator based on EAST-
ADL. The development of Con�gGenerator involved the
implementation of comparisons for di�erent grammar ele-
ments. Each time we implemented a comparison method for
a speci�c grammar element (e.g., comparing line orders), we
applied it to compare two EAST-ADL grammars and check
the selected optimization rules. If the selected optimization
rules di�ered from our expectations, we used the debug
mode to identify the reasons behind the di�erences and �xed
them. Once we had the initial version of Con�gGenerator,
we applied it to Xenia to re�ne its implementation. In this
context, we considered that target grammars might contain
manual modi�cations that could a�ect line-by-line match-
ing. For example, in Xenia’s target grammar, some di�erent
attributes are placed on the same line. This situation impacts
our line recognition and then matching. Consequently, when
applying Con�gGenerator to Xenia, we developed handling
methods for this situation.

4.4 Step 4: Evaluation

To validate our approach, we applied it to all six languages
identi�ed in Step 1. Our goal was to explore whether and
to what extent the Con�gGenerator built based on EAST-
ADL and Xenia, could also be applied to other DSLs. In our
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Table 1. DSLs used in this paper, the sources of the meta-model and the grammar used, as well as the size of the meta-model
and grammar.

Meta-model Target grammar Generated grammar Used in2

DSL Source Classes1 Source Rules lines rules calls Dev. Eva.

EAST-ADL EATOP Repository [12] 291 [58] 297 2839 297 3062 YES YES
BibTex [58] 48 [58] 43 293 43 188 NO YES
Xenia Github Repository [54] 15 Github Repository [55] 13 84 15 36 YES YES
DOT [58] 19 Dot [40] 21 125 23 51 NO YES
Xcore Eclipse [13] 22 Eclipse [14] 26 243 33 149 NO YES
SML3 [58] 48 SML repository [21] 45 658 96 377 NO YES

1 The metrics are assessed after adaptations and contain both classes and enumerations.
2 These two metrics indicate whether the language is used in the step “Development (Dev.)” or “Evaluation (Eva.)”.
3 The metrics of SML are based on excluding the embedded SML expressions.

previous work [58], we had already shown that an optimiza-
tion rule con�guration created to optimize one version of a
language could be reused, with a few changes, for another
language version. Thus, we aimed at evaluating whether
Con�gGenerator could create a correct optimization rule
con�guration for a language version given the generated
and target grammar. To do so, we performed the following
steps.

4.4.1 Step 4.1: GenerateGrammars FromMeta-models.

When the meta-model was ready, we created an empty EMF
project for the language in Eclipse and imported its meta-
model. Then, utilizing Xtext, we automatically generated
the Xtext grammar from the meta-model. We performed this
process for each language.

4.4.2 Step 4.2: Application of Con�gGenerator. Next,
we applied the Con�gGenerator to all of these languages by
comparing the target grammar with the generated grammar
and extracting the optimization rule con�gurations. These
extracted optimization rule con�gurations can be used by
GrammarOptimizer. We then used the created optimization
rule con�gurations with the GrammarOptimizer on the gen-
erated grammars of these languages to automatically create
an optimized grammar.

4.4.3 Step 4.3: Assessment. We conducted a comprehen-
sive comparison between the optimized grammar and the
target grammar of each language, based on a one-to-one
comparison of corresponding grammar rules.
To assess the similarity between the optimized grammar

and the target grammar, in our �nal step we decided to as-
sess the following metrics which will be listed in Table 2: To
provide an impression of the amount of manual adaptation
that needed to happen to change the generated grammar
to the target grammar, the 4th to 6th columns indicate the
number of grammar rules that were modi�ed, removed, and
added from the generated grammar to the target grammar.
Further, we show how big optimization rule con�gurations

for these languages are. The 2nd column shows the number
of lines of optimization rule con�gurations used in our previ-
ous work [58], which are capable of optimizing the generated
grammar to achieve an identical state as the target grammar.
We referred to the optimization rule con�gurations used
in our previous work [58] as “manual” con�guration, since
these con�gurations had to be written by hand. The 3rd col-
umn represents the number of lines of the optimization rule
con�gurations extracted by Con�gGenerator. We also listed
in columns 7 to 9 the number of grammar rules that were
modi�ed, removed, and added from the generated grammar
to the optimized grammar. Finally, we aimed to assess how
complete the generated optimization rule con�gurations are.
Thus, the last three columns provide statistics on the com-
parison of the optimized and target grammar, i.e., whether
all grammar rules for these languages are the same between
the optimized grammar and the target grammar. Speci�cally,
“Same” represents the number of grammar rules that are iden-
tical in both grammars, “Di�” represents grammar rules that
are not identical, and "Percent” indicates the percentage of
grammar rules that are identical between the two grammars.

5 Solution

In this section we present the Con�gGenerator, which cre-
ates an optimization rule con�guration based on a generated
grammar and a target grammar, to enable a re-application
of manually de�ned grammar changes after a meta-model
changed and a new grammar was generated. We �rst in-
troduce and reason about the assumptions we made when
building our solution. Afterward, we explain how grammars
are compared (rule-to-rule and line-to-line) and how the
comparison result is used for generating the con�guration.

5.1 Assumptions

Based on the technical reality and practice of Xtext, we made
the following assumptions about our solution:
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• A grammar rule name is unique across the grammar.
Otherwise, Eclipse will prompt “A rule’s name has to
be unique.” error.

• An attribute name is unique within a grammar rule,
because the attributes in the generated grammar are
unique.

• Attribute names are not modi�ed by users when they
manually create a target grammar out of a generated
grammar. Otherwise, this may cause the grammar and
the meta-model to become incompatible.

5.2 Grammar Comparison Work�ow and Grammar

Rule Matching

Con�gGenerator selects and parameterizes optimization rules
by comparing two input grammars. The selected optimiza-
tion rules form a con�guration that can then be utilized by
GrammarOptimizer.
Figure 3 illustrates the internal work�ow of Con�gGen-

erator for selecting the required optimization rules by com-
paring two grammars. It parses the generated grammar and
creates a list Rules64= containing instances of a data structure
for each grammar rule. Each instance contains all lines of
text that make up that grammar rule. Con�gGenerator does
the same for the target grammar to create a list RulesC6C .

Con�gGenerator traverses Rules64= , taking one grammar
rule at a time and searching for the grammar rule with the
same name in RulesC6C . If no match is found, it indicates that
the grammar rule has been deleted in the target grammar,
thereby requiring the selection and parameterization of an
optimization rule for deleting that grammar rule. If a match
is found, a line-by-line comparison is performed between the
grammar rules to identify the required optimization rules.
Once the entire traversal of Rules64= is completed, Con-

�gGenerator performs a reverse traversal. In this reverse
traversal, Con�gGenerator retrieves one grammar rule at a
time from RulesC6C and searches for the corresponding rule
in Rules64= . If a match is found, Con�gGenerator takes no
action (as the comparison has already been done in the pre-
vious traversal). If no match is found, it signi�es that the
grammar rule is newly added in the target grammar. In this
case, an optimization rule for adding the grammar rule is
selected and parameterized.

After both traversals are completed, Con�gGenerator yields
an optimization rule con�guration with the selected and pa-
rameterized optimization rules and writes it into a text �le.

5.3 Normalization of RulesC6C

Before performing line-by-line mapping, we need to per-
form normalization checks and operations on the rules of
the target grammar. Because the target grammar may have
traces of manual modi�cation that are not conducive to our
line-by-line matching. For example, in the generated gram-
mar of Xenia, each of the di�erent attributes and also the

{SiteWithModal} action, the opening brace, and the clos-
ing brace each has its exclusive line, as shown in Listing 1.
However, in the target grammar of Xenia, all attributes and
keywords of the grammar rule SiteWithModal are placed
on the same line as shown in Listing 2. This situation hinders
row-to-row matching and thus needs to be normalized.
In particular, we begin by examining whether the fol-

lowing situations exist within a grammar rule: 1) di�erent
attributes are placed on the same line, 2) an Action with
the same name as the grammar rule is combined with any
other non-empty string on the same line, and 3) symbols
are placed on separate and exclusive lines. If any of these
situations are present, normalization is performed. During
the normalization process, we gather all lines except the one
containing the grammar rule name into a single string, which
is then split. Using regular expressions, we separate di�erent
attributes into distinct lines, ensuring that each attribute has
its own line. Similarly, if there is an Action with the same
name as the grammar rule, an opening brace, and a closing
brace, we allocate separate lines exclusively for each of them.
Additionally, all symbols are placed in adjacent attribute
lines rather than being treated as separate lines themselves,
e.g., place the symbol ‘:’ after the attribute name.

5.4 Line Matching

As described in Section 5.2, Con�gGenerator matches gram-
mar rules by traversing two lists. After completing thematch-
ing of Rules64= and RulesC6C , we need to match the lines
between them, forming the foundation for line-to-line com-
parison. With the exception of attribute lines, all other lines
have only one occurrence within the same grammar rule.
Therefore, Con�gGenerator only needs to �nd the corre-
sponding unique line to complete the line matching. For ex-
ample, to compare the main keyword of the same grammar
rule, we search for the main keyword in both the Rules64=
and RulesC6C . We call the keyword with the same name as the
grammar rule in the generated grammar “main keyword”. If
both sides �nd a line containing the main keyword, then the
two lines from both sides match each other.

For the matching of attribute lines, we need to recall the as-
sumption set earlier, which states that each attribute within
the same grammar rule has a unique name, and language
engineers do not modify the names of attributes when modi-
fying the grammar. Therefore, we can use the attribute name
as a unique identi�er for lines to perform line matching.
Speci�cally, when matching a line, we �rst take an attribute
line from a grammar rule in the generated grammar, and
then search for the line with the same attribute name within
the corresponding grammar rule in the target grammar, thus
completing the line-matching process.
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Figure 3. The work�ow of extracting optimization rule con�gurations based on a comparison between the generated grammar
and the target grammar.

5.5 Di�erence Identi�cation, Rule Selection and

Parametrization

Once we completed the line-by-line matching as mentioned
in the previous section, the next step is to perform the line-
by-line comparison. As previously stated, except for attribute
lines, the other types of lines are unique within a grammar
rule. We only need to compare if they have been removed or
renamed. For example, if the Con�gGenerator �nds container
braces (the outermost braces within a grammar rule) in the
grammar rule Model in the generated grammar but not in the
same grammar rule in the target grammar, it will select and
parameterize an optimization rule for removing the braces.
Comparing attribute lines is more complex because they

typically consist of multiple elements. Firstly, an attribute
line always contains an attribute string which is usually in
the form of e.g., attributeName=typeName. Additionally, it
may include keywords, asterisks indicating multiplicity fol-
lowing parentheses, commas, and curly braces enclosed in
single quotation marks, among other elements. The use of
regular expressions enables us to identify and distinguish
di�erent elements, allowing for their comparison across dif-
ferent grammars. For example, when examining the attribute
ownedComment in the same grammar rule on both sides, we

may observe that in the generated grammar, this attribute is
preceded by the keyword ’ownedComment’, whereas in the
target grammar, there is no keyword preceding it. In such a
case, an optimization rule named removeKeyword would be
selected and parameterized.

6 Evaluation

6.1 Results

Table 2 summarizes the results of applying Con�gGenerator
to extract optimization rule con�gurations for di�erent lan-
guages (see Table 1 for information about the sources and
initially generated grammars of these languages).
The 2nd and 3rd columns show the size of the optimiza-

tion rules con�gurations. For comparison, we �rst show the
number of con�guration lines in the manually created opti-
mization rule con�gurations from our previous work [58].
Next to it are the number of con�guration lines in the op-
timization rule con�gurations that were extracted by Con-
�gGenerator. For several languages, e.g. BibTex, the auto-
matically extracted con�guration had much more lines than
the manually written counterpart (with the extreme case of
EAST-ADL, where the extracted con�guration is up to 100
times as long as the manually written one). This di�erence
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Table 2. Results of applying Con�gGenerator to extract optimization rule con�gurations for di�erent languages.

Language Con�guration lines Target grammar2 Optimized grammar Grammar Comparison

Manual Extracted Change Remove Add Changed Removed Added Same Di� Percent

EAST-ADL 31 3378 233 1 12 233 1 12 297 0 100%
BibTex 47 254 43 0 0 43 0 0 43 0 100%
Xenia 74 114 13 2 0 13 2 0 15 0 100%
DOT 79 134 24 3 1 16 3 1 21 3 87.5%
Xcore 307 351 20 14 7 17 14 7 28 12 70.0%
SML 421 369 40 56 8 38 56 8 51 24 68.0%

1 The numbers in column 2, 4, 5 and 6 were obtained from the supplemental materials of our previous work. [58].
2 Number of grammar rules that would need to be changed/be removed/be added to create the target grammar out of the
generated grammar.

can be explained by the fact that the manually written op-
timization rule con�gurations make use of generalizations.
I.e., instead of introducing for each grammar rule a new con-
�guration removing curly braces, manually created con�gu-
rations might just introduce one con�guration that applies
to all grammar rules. This generalization could in theory
be imitated automatically, too. However, it would require
additional analysis of the side e�ects of the generalized rule
to make sure that no unintended changes happen. Therefore
we, kept this to future work.

The columns for target grammar show the di�erence be-
tween the generated and the target grammar in the form of
the number of grammar rules that require a change, require
to be removed, and require to be added. These numbers are
reported by our previous work. [58]. It can be seen that in
all languages the majority of the grammar rules would need
to change. This illustrates how di�erent Xtext-generated
grammars really are from grammars used in real languages
and further illustrates the need to capture and preserve the
manual e�ort made to create grammars.
Table 2 displays the number of changed, removed, and

added grammar rules in the optimized grammar compared
to the generated grammar in columns 7 to 9. The rightmost
three columns compare the di�erences in grammar rules
between the optimized grammar and the target grammar.
For EAST-ADL, BibTex, and Xenia, we see the same amount
of changed, removed, and added grammar rules as we would
have expected judging from the target grammar. However,
for DOT, Xcore, and SML the number of changed grammar
rules is lower. This is already an indication that the generated
optimization rule con�guration did not perform the complete
adaptation targeted for these three languages.
Finally, the last columns in Table 2 summarize how the

optimized grammar compares to the target grammar. The
results con�rm that the grammar rules in the generated gram-
mars of EAST-ADL, Bibtex, and Xenia have been optimized
to be identical to the target grammar using the extracted
optimization rule con�gurations. In the case of DOT, 87.5%
of the grammar rules in the optimized grammar are identical

to the target grammar. For Xcore and SML, the correspond-
ing �gures are 70.0% and 68.0%, respectively. Below we will
discuss more in detail, when the Con�gGenerator performed
well and when not.

6.2 Capabilities of Con�gGenerator

Although Con�gGenerator cannot optimize all grammar
rules in the generated grammars of DOT, Xcore, and SML
to achieve an identical state as their target grammars, it still
provides the optimization rule con�gurations which perform
the majority of necessary changes. Speci�cally, con�gura-
tion rules for the following grammar changes were correctly
generated in all cases:

• Removing or renaming individual keywords, including
changing the value of literals in enumerations.

• Removing grammar rules or attributes.
• Modifying the multiplicities of attributes, including
changing optional attributes to mandatory ones.

• Removing braces, including removing braces in at-
tribute lines and container braces.

• Modifying the order of lines in a grammar rule, as long
as lines can be identi�ed by attribute names.

• Adding symbols to individual attribute lines.
• Adding rules, including adding terminal rules and pri-
mary type rules, as well as completing primary type
rules which are to be implemented.

• Removing calls to other rules in grammar rules.
• Changing a speci�c type in the cross-reference of an
attribute.

6.3 Missing Capabilities of Con�gGenerator

For the languages DOT, Xcore, and SML, there are a total of
42 grammar rules with di�erences between the optimized
grammar and the target grammar. These di�erences can be
found in the supplemental materials of this paper [41]. Here,
we provide a list of typical cases of these di�erences.

• Di�erence in line order in some speci�c cases. In cases
where one of the lines moved contains only a main key-
word that has been changed by another con�guration
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Listing 3. Two attributes in the grammar rule XOperation
in the generated grammar of Xcore

1 . . .

2 ( unordered ?= ' unordered ' ) ?

3 ( unique ?= ' unique ' ) ?

4 . . .

Listing 4. Two attributes in the grammar rule XOperation
in the original grammar of Xcore

1 . . .

2 unordered ?= ' unordered ' unique ?= ' unique ' ? |

3 unique ?= ' unique ' unordered ?= ' unordered ' ?

4 . . .

rule, the reordering of the lines might not work. For
example, in Xcore, the order of lines in the XPackage
grammar rule is di�erent between the optimized gram-
mar and the target grammar. In the optimized grammar,
the attribute annotations appears after the attribute
name, while in the target grammar, it appears before
the attribute name.

• Inconsistent attribute grouping. Listing 3 shows two
attributes of the XOperation grammar rule in Xcore.
In the generated grammar, they are listed one after
the other, indicating an order of their appearance. In
the target grammar, they are combined together and
are in "and" and "or" relationships (as shown in List-
ing 4), indicating that their order is not prede�ned.
The Con�gGenerator is not able yet, to create a con-
�guration that replicates the occurrence of attributes
in the grammar like that.

• Braces not changed to square brackets. In DOT, e.g.,
the container of the grammar rule AttrList in the
generated grammar uses square brackets (i.e., ‘[’ and
‘]’), while in the optimized grammar, it uses braces
(‘{’ and ‘}’).

• Di�erence in the position of optionality. In DOT, e.g.,
there is an attribute attributes in a grammar rule
where optionality (i.e., ()?) is handled di�erently. In
the target grammar, the added comma and semicolon
are surrounded by ()?, i.e., (‘,’ | ‘;’)?. However,
in the optimized grammar, the attribute string is sur-
rounded by ()?.

The cause of these limitations is that Con�gGenerator
uses a line-based text comparison to identify which lines
correspond to each other in the generated and in the target
grammar and derives optimization rule con�gurations from
this comparison. This limitation can be remedied by relying
on a comparison that is based on an abstract syntax tree
(AST) instead: the tool could parse both the generated and the
target grammar and compare the ASTs, potentially making
it more robust to changes in the order of lines and for groups
that span multiple lines as these syntactical issues would
not be present in the AST. Such an approach would also
reduce the reliance on regular expressions which can be a
limiting factor as well (see the fourth point in the list above).
However, such an implementation is left for future work.

Finally, GrammarOptimizer, adopted without feature-level
modi�cation from our previous work [58] has limitations,

e.g., rules to transform braces into brackets as needed for
the third point mentioned above. While it would be possible
to emulate this by �rst applying a rule that removes the
braces and then adds brackets back, we have decided not to
use this more complex strategy at this stage and leave the
combination of di�erent optimization rules as future work.

6.4 Usefulness of Con�gGenerator

The results in Section 6.1 indicate that the current version of
Con�gGenerator can produce an optimization rule con�gu-
ration that allows to modify a generated grammar fully into
the target grammar for some of the languages we tested. In
our initial work on GrammarOptimizer [58], we have shown
that it is possible to �nd an optimization rule con�guration
manually to transform all of the languages we included in
our evaluation to the target grammar.

We argue that Con�gGenerator is still a useful tool, even
if it cannot fully derive a complete optimization rule con-
�guration for all languages yet. SML, for instance, requires
a total of 421 parameterized optimization rule invocations
to be fully transformed. Creating all of them manually is a
signi�cant e�ort. Con�gGenerator automatically extracts
369 rules and therefore provides an excellent starting point
for a language engineer to complete the optimization rule
con�guration.
Con�gGenerator is intended for use in scenarios where

languages evolve and where they are rapidly prototyped.
In such situations, speed is critical and Con�gGenerator in-
creases the speed with which a language engineer can create
an optimization rule con�guration, even if it requires man-
ual adaptations. We follow the line of argument from our
previous work, that making manual changes to a reusable
artifact such as an optimization rule con�guration is less ef-
fort and faster than manually transforming a large grammar
repeatedly.

6.5 Threats to Validity

There are several threats to the internal validity of our evalu-
ation. The �rst stems from the fact that we worked with the
slightly adjusted meta-models as well as Xtext versions of
target grammars, which were partially not originally written
in Xtext, from our previous work [58]. It is possible that these
preparation steps introduce di�erences to the languages and,
thus, might have simpli�ed the task of changing the gram-
mar and with that also the con�gurations that needed to be
generated.
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A further threat to internal validity concerns correctness:
To which extent can we produce grammars that not only syn-
tactically, but also semantically agree withmanually changed
counterparts? In our evaluation, most generated grammar
rules were syntactically identical to their manually written
counterparts, which indicates semantic equivalence and thus,
correctness in these cases. This applies to three considered
languages completely, and to three partially (68-87%). All
observed di�erences were analyzed manually, as reported
with details in Sections 6.2 and 6.3. The main practical impli-
cation of these cases is that existing grammar instances can
no longer be parsed, which makes these inaccuracies easy
to spot for the user.

However, analysing semantics and providing correctness
guarantees during evolution are intrinsically hard problems.
That is because a formalized semantics might not be available
(as in our evaluation cases), and, where it is, the semantics
might change over time. For example, UML 2 introduced a
new Petri-net semantics for sequence diagrams. Supporting
such evolution steps in semantics-sensitive way requires
specialized approaches for the involved semantic represen-
tations (if available). Still, from our experience as language
developers [1, 24, 43, 48, 52, 57], changes to semantics of
existing language elements are exceedingly rare, and then re-
quire careful navigation on part of the developer. Specialized
approaches could help, but are outside our scope. The vast
majority of changes either add or remove language elements
or change the syntax, which is exactly our scope.

Another threat that might make us overestimate the ability
of the Con�gGenerator is that we could not build it without
consulting real language examples. In consequence, the tool
is very likely to work very well for the two used languages
EAST-ADL and Xenia. To mitigate these two threats, we
made sure to evaluate the tool on four additional languages,
to also reduce the impact that changes to meta-models and
target grammars of single languages might have had.

Finally, there is a threat to the external validity of general-
izability. Of course, using more languages would have given
us more insights into how well the Con�gGenerator already
works. However, the languages we worked with are fairly
di�erent in character, which allows us to cover at least some
level of language variety.

7 Conclusion

We presented an approach for supporting the co-evolution
of meta-models and associated grammars. Our technical con-
tribution is a technique for automatically extracting gram-

mar optimization rules, which capture manual improvements
from a previous evolution step, and allow these improve-
ments to be replayed on future versions of the grammar.
Our evaluation indicates a perfect coverage for three out of

six considered cases – including a large one, namely, EAST-
ADL – while showing good coverage with clearly identi�ed
limitations in the remaining ones.
We foresee several directions for future work. First, we

aim to further improve the coverage of our approach. One
idea is to move the grammar comparison to the level of
ASTs, rather than lines, which would help to improve sup-
port for multiple-line changes. Second, a complementary
co-evolution scenario to the one addressed in this paper,
which requires support as well, involves migrations of the
meta-model after changes to the grammar. Third, we intend
to provide support for all-quanti�ed rules (e.g., removing
curly braces from all grammar rules) via automated gen-
eralization. This would allow to extract considerably more
compact and easy-to-read rule con�gurations. Fourth, a com-
prehensive evaluation of our technique in concert with the
baseline technique from [58] on a full-�edged co-evolution
scenario would yield further insight into the practical appli-
cability of our approach. The next step of the work [58] can
be to apply GrammarOptimizer to build a language work-
bench that supports blended modeling [5]. If the automatic
extraction capability of this paper can be integrated, it will
certainly assist the textual grammar optimization ability of
this workbench.
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Abstract
Many recommenders for modelling tasks have recently ap-
peared. They use a variety of recommendation methods,
tailored to concrete modelling languages. Typically, recom-
menders are created as independent programs, and subse-
quently need to be integrated within a modelling tool, in-
curring in high development effort. Moreover, it is currently
not possible to reuse a recommender created for a modelling
language with a different notation, even if they are similar.
To attack these problems, we propose a methodology to

reuse and integrate recommenders into modelling tools. It
considers four orthogonal dimensions: the target modelling
language, the tool, the recommendation source, and the rec-
ommended items. To make homogeneous the access to arbi-
trary recommenders, we propose a reference recommenda-
tion service that enables indexing recommenders, investigat-
ing their properties, and obtaining recommendations likely
coming from several sources. Our methodology is supported
by IronMan, an Eclipse plugin that automates the integra-
tion of recommenders within Sirius and tree-based editors,
and can bridge recommenders created for a modelling lan-
guage for their reuse with a different one. We evaluate the
power of the tool by reusing 2 recommenders for 4 different
languages, and integrating them into 6 modelling tools.

CCS Concepts: • Software and its engineering→ Inte-
grated and visual development environments; • Infor-
mation systems→ Recommender systems.

Keywords: Model-driven engineering, recommender sys-
tems, language engineering, modelling tools
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1 Introduction
Recommender systems (RSs) are increasingly being used
to assist developers in all sorts of software engineering
tasks [51]. Modelling is no exception, as we are recently
witnessing the proposal of numerous recommenders for
modelling languages [3]. Most of them help in creating mod-
els or meta-models by recommending, e.g., new attributes
or references for classes, or new classes related to existing
ones [2, 11, 17, 21, 55, 61]. They use a variety of methods –
each with their own strengths and weaknesses – ranging
from classical recommendation algorithms like collaborative
filtering [2, 17] or content-based recommendations [2], to
knowledge graphs [55], natural language processing [11],
pre-trained language models [61] or graph kernels [21].

Given this growing plethora of modelling recommenders,
the natural question is “Can I reuse these RSs for my mod-
elling notation, and integrate them within my modelling tool?”.
However, the reuse and integration of RSs pose a number
of practical challenges. Firstly, existing RSs may have been
developed for a different (albeit perhaps similar) modelling
language, such as an existing RS for Ecore models that one
may like to reuse for UML class diagrams. Moreover, it can be
useful to combine several RSs because they suggest different
types of items (e.g., attributes, operations) for different tar-
get elements (e.g., classes, interfaces). Further, even if they
suggest the same type of items, combining RSs might be
useful to retain their best recommendations. Finally, from a
technical point of view, RSs may be deployed in numerous
ways (e.g., a stand-alone program, a service, within a mod-
elling tool), and need to be integrated within heterogeneous
modelling tools (e.g., graphical, textual, tree-based).
In this paper, we address the challenges of integrating

and reusing RSs for modelling languages. To accomplish
this goal, we propose deploying the RSs as services, on the
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basis of a standard API and a recommender server protocol.
This also facilitates the recommenders’ integration within
arbitrary modelling tools. In addition, we enable the reuse of
RSs tailored to a modelling language for other notations via
a structural mapping. The combination of recommenders of
the same type of item (e.g., attributes) relies on mechanisms
for the aggregation of their recommendation lists [46], and
our approach is flexible to accommodate several aggregation
methods. Technically, we provide support for the automated
integration of the assembled RSs within Eclipse modelling
editors based on Sirius [57], and EMF tree editors [59].

Our approach is realised as an Eclipse plugin called Iron-
Man (Integrating RecOmmeNders forModelling lANguages),
which guides in all steps of the integration task, including
RS discovery and selection, adaptation to the modelling lan-
guage (if needed), configuration of the aggregation method,
and integration of the recommender within the (Sirius- or
tree-based) modelling tool. To evaluate its usefulness, we
assess the reuse and integration of two existing RSs into six
third-party tools of the Eclipse ecosystem.
Paper organisation. Sec. 2 provides background on RSs for
modelling languages and analyses the relevant dimensions
for their reuse and integration. Sec. 3 presents the compo-
nents of our approach: the reference recommendation service
and its protocol, the adaptation of the RSs to the modelling
language, the recommendation aggregation mechanism, and
the integration of the RSs into modelling tools. Sec. 4 de-
scribes our tool and Sec. 5 reports on its evaluation. Sec. 6
compares with related work and Sec. 7 concludes.

2 Background and Integration Dimensions
Next, we overview RSs for modelling languages (Sec. 2.1)
and present the dimensions for their integration (Sec. 2.2).

2.1 Background on Recommender Systems
RSs have become ubiquitous software tools that assist in
decision-making tasks in situations of information overload.
They are key components of a wide range of applications,
including e-commerce sites (e.g., Amazon), social networks
(e.g., Facebook), and music (e.g., Spotify), video (e.g., Netflix)
and streaming platforms (e.g., Twitch) [50].

RSs suggest items that align with the preferences of a par-
ticular user. The term item refers to what is suggested to
the user. RSs usually focus on a particular type of item (e.g.,
videos), using filtering and ranking algorithms to provide
valuable recommendations for that item type. The recom-
mendations are computed based on data about three entities:
target users, items, and user-item interactions (often unary
or numeric ratings) that express personal preferences [50].
When applied to modelling tasks, these entities are some-
times reinterpreted. As an example, in a RS suggesting at-
tributes for classes, the recommended items are the attributes,
the target users are the classes, and the user-item interactions

Professor

name: String
surname:  String
birthDate: Date

Professor

isPhD: boolean
name: String

Active Model

University

name: String

professors*

…

surname : String
birthDate: Date …

Ranked
recommendation
list

Dataset of Models

UML class diagrams
Meta-Model

«conforms to» «conforms to»

Modelling
Engineer

RS…

Figure 1. Working scheme of a modelling recommender.

are given by the inclusion of the attributes in each class and
its superclasses. To avoid confusion, we use the term target
to refer to the target users (classes in this example).

RSs can be classified into three main categories based on
how they compute the recommendations: content-based sys-
tems recommend items similar to the ones that the user pre-
ferred in the past; collaborative filtering systems recommend
items preferred by like-minded users; and hybrid systems
combine the previous two techniques to overcome their lim-
itations. The three approaches return a list of recommended
items, which is often ranked. In addition, some recommenda-
tion methods provide a rating for each item, which quantifies
the likelihood of the item to be relevant for the user.
Fig. 1 shows the working scheme of a RS for UML class

diagrams. A RS for a modelling language is typically built on
the basis of a dataset of models conformant to the language
meta-model. Then, when a modelling engineer is working
on a model conformant to the same meta-model, the RS
can provide sensible recommendations. In the figure, the RS
suggests new attributes to incorporate to a given class.

2.2 Dimensions of Integration of Modelling RSs
The integration and reuse of RSs for modelling tasks requires
the consideration of several dimensions, summarised in Fig. 2
as a feature model [31].
Target modelling language. A RS can be integrated in

modelling environments developed for the same mod-
elling language as the RS supports (homogeneous), or al-
ternatively, it can be reused for a different – albeit similar –
modelling language (heterogeneous). For example, a RS for
meta-modelling languages like Ecore [59] may be reused
for UML class diagrams, and vice versa [4]. For this pur-
pose, a mapping between the target modelling language
and the RS is needed. Having the possibility to set this
bridge is useful in cases where there is not enough data
(i.e., models) to train a RS for a (domain-specific) mod-
elling language, but a RS for a similar notation exists. We
describe our approach to adapt recommenders in Sec. 3.3.

Recommendation sources. The recommendationsmay be
produced locally, if the RS is deployed on the computer
where the modelling tool is running [11, 17, 21, 61]. In
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Figure 2. Dimensions of reuse and integration of RSs for modelling languages.

addition, recommendations may come from services de-
ployed on a remote server [4, 55]. The latter option is more
flexible, as it permits reusing recommenders within differ-
ent tools, and aggregating recommendations from several
sources. We propose a reference recommendation service
in Sec. 3.2 for this purpose.

Recommended items. Integrating several RSswithin amod-
elling environment enables the recommendation of items
for multiple targets (e.g., for both classes and interfaces
in class diagrams) and for multiple domains (e.g., RSs for
medical, banking or transportation domains). When com-
bining several RSs for the same type of target and item,
their recommendation rankings need to be aggregated.
According to [46], the approaches to recommendation
rank aggregation are broadly classified into unsupervised
and supervised. The former can be further divided into
majoritarian and positional. When calculating a numerical
score for each item in the aggregated recommendation list,
positional methods use the absolute position of the item
in the individual rankings, while majoritarian methods
compare pairwise each item [46]. Unsupervised methods
are generally simple, efficient and flexible. However, if
ground truth data are available, supervised methods may
be more effective. These methods may use a variety of
techniques, like learning to rank [39] or genetic program-
ming [60]. We focus on unsupervised methods, leaving
supervised ones for future work. Sec. 3.4 exemplifies one
unsupervised method recasted for modelling tasks.

Modelling environment. RSs need to be integrated into
concrete modelling tools, typically offering graphical, tree
and/or textual editors. The interaction with the RS may
either be activated explicitly by the user (reactive) or be
proactive, offering suggestions to the user when deemed
appropriate (e.g., as in [40]). Sec. 3.5 explains our approach
to integrate RSs into graphical and tree modelling editors
with a reactive approach.

select
recommenders

Recommendation
service index

…

Recommendation
services

select
targets & items

Meta-
Model

tool 
integration

configuration

Sirius

Tree

deploy

Modelling
tool

Integrated
recommender

adapt to
modelling
language

select
aggregation

method

Figure 3. Overview of our methodology for RS integration.

3 Approach
This section presents our proposal to reuse and integrate
RSs for modelling. First, Sec. 3.1 provides an overview. Then,
Sec. 3.2 describes the recommendation service. Sec. 3.3 ex-
plains our approach to bridge RSs to modelling notations.
Sec. 3.4 recasts existing aggregation methods for ranked rec-
ommendations to modelling RSs. Finally, Sec. 3.5 introduces
our support for integrating RSs into modelling environments.

3.1 Overview
Fig. 3 shows the scheme of the methodology we have created
for RS integration and reuse. It covers all dimensions of
integration depicted in Fig. 2.

Our approach relies on deploying the RSs as services con-
formant to the reference REST API described in Sec. 3.2. This
way, the first step in the integration consists in discovering
the available RSs by means of a RS indexer. The indexer can
filter the available services by diverse criteria, like the mod-
elling language for which the RSs provide suggestions. In a
second step, the user selects the recommendation targets and
items (a subset of those provided by the RSs selected in the
previous step). If several RSs of the same kind of items are
chosen, the user will need to select an aggregation method
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for the recommendations. Moreover, if the modelling lan-
guage where the RSs are to be integrated differ from the
language supported by the RSs, then the user will have to
adapt the RSs via a mapping. As the last step, the user config-
ures the integration with the modelling tool. Currently, we
support the adaptation of EMF-based modelling languages,
and the integration with Sirius graphical editors [57] and
tree editors. However, our extensible architecture facilitates
future integration with other technologies, like Xtext [8, 62].

After performing these steps, our approach automatically
integrates the assembled RSs within the modelling tool. The
result is a plugin that communicates with the selected RS ser-
vices to obtain recommendations, aggregating and adapting
them to the modelling language.

3.2 Recommendation Service
We have developed a recommendation service consisting of
two components: the recommendation service indexer API,
and the recommendation service API. On the one hand, the
indexer provides a standardised method to register and update
recommendation services, and to explore the registered ser-
vices, enabling clients to discover and access the recommen-
dation services that best suit their needs. On the other hand,
the recommendation service offers a uniform mechanism for
requesting recommendations and accessing the features of the
RSs registered in the indexer. This approach simplifies the
integration of arbitrary RSs into modelling tools, avoiding
the need to build custom, heterogeneous integrations.

Table 1 shows the REST endpoints of the indexer, which en-
able clients to register, update, explore, and discover services.
The /register endpoint allows registering new recommen-
dation services in the indexer. To register a service, clients
need to provide its URL using the /register?urlName=⟨url⟩
endpoint, where ⟨url⟩ is the URL of the recommendation ser-
vice. Several RSs can be placed within the same URL, and the
registered URLs must define the endpoints defined in Table 2.
In particular, upon registering a recommendation service,
the indexer invokes its /features endpoint (explained below)
to cache the characteristics of the RS.
The /updateRegistration endpoint allows clients to up-

date a previously registered service. Similar to /register,
clients only need to provide the URL of the service to be
updated using the /updateRegistration?urlName=⟨url⟩ end-
point. As before, the indexer will then invoke the /features

endpoint of the recommendation service.
The /services endpoint returns the list of all registered

recommendation services and their metadata in JSON format,
and /discover allows searching for deployed services using
either the name or the nsURI of the RS. The nsURI is a unique
identifier for meta-models, which is standard in modelling
technologies like EMF [59]. This way, the API returns a JSON
list with all recommenders with the given name or defined
over a meta-model with the provided nsURI.

Table 1. Endpoints of the recommender indexer API.

Endpoint /register?urlName=⟨url⟩
Desc. Registers a new recommendation service.
Method POST
Output Ok/Error
Endpoint /updateRegistration?urlName=⟨url⟩
Desc. Updates a registered recommendation service.
Method POST
Output Ok/Error
Endpoint /services
Desc. Returns all registered recommendation services

and their metadata. The optional query parameter
nsURI=true groups services by nsURI.

Method GET
Output Available recommendation services (JSON).
Endpoint /discover?

(
name=⟨name⟩ | nsURI=⟨uri⟩

)
Desc. Searches for registered recommendation services

with the given RS name or meta-model nsURI.
Method GET
Output Registered recommendation services that match

the search criteria (JSON).

Table 2. Endpoints of the recommendation service API.

Endpoint /features
Desc. Returns the features of all RSs within the recom-

mendation service.
Method GET
Output Features of the recommendation service (JSON).
Endpoint /recommend/⟨name⟩?

(
newMaxRec=⟨maxRec⟩

)
?,(

threshold=⟨threshold⟩
)
?,
(
itemType=⟨type⟩

)
?

Desc. Returns a list of recommendations from RS name,
for a given target (within a context, if required).
All parameters are optional: newMaxRec (integer)
refers to the maximum number of recommenda-
tions to retrieve, threshold (double) to the thresh-
old for the ranking, and itemType ([string]) to the
type of recommended items.

Method POST
Body Target and its context, if required (JSON).
Output List of recommendations (JSON).

Table 2 shows the endpoints of the recommendation ser-
vice. They allow accessing the features of the registered
services and requesting recommendations.

The /features endpoint allows clients to retrieve themeta-
data of all RSs within the service. Fig. 4 shows a conceptual
model of the metadata. Class RecommenderSystem defines the
name of the RS, the meta-model nsURI, and a description
of the modelling context that the RS needs to compute the
recommendations. The context can be None (only the target
of the recommendation is needed), Full (requires the whole
model containing the target element), or Targets (requires
all objects with the same type as the target element).
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Figure 5. (a) Excerpt of the Ecore meta-model, annotated
with the role of the elements in the example RS. (b) Encoding
excerpt of the RS returned by the /features endpoint.

The metadata also defines the target class of the recom-
mendations, and its identifying features. For simplicity, our
approach assumes that a RS only serves recommendations
(e.g., attributes) for a target type (e.g., UML classes). If several
target types are supported, then one RS for each target needs
to be deployed. In addition, the metadata describe each item
type to be recommended. For recommended attributes, it
specifies their name and type, and for recommended objects,
it specifies the reference name (connecting the object to the
target class) and the features used to identify the object. We
distinguish between the reference that provides access to
an item (i.e., enabling to read the item, property in the fig-
ure), and the reference where to store an item (i.e., enabling
writing the item, writeProperty in the figure). In EMF, the
latter are containment references. Next, we use an example
to illustrate the difference between both.
Example. Let’s assume a RS for the Ecore meta-modelling
language, which recommends attributes for classes. Fig. 5(a)

shows the relevant parts of the Ecore meta-model for the RS1.
The figure identifies that EClass is the target element, that
the feature identifying EClasses is their name, that the recom-
mended items are of type EAttribute, and that the feature
provided when recommending an attribute is its name. In ad-
dition, EAttributes are read via the eAllAttributes derived
reference, but written on the eStructuralFeatures compo-
sition reference. The former contains all attributes owned
and inherited by the class, and the latter only the owned
ones (and is a common container for both references and
attributes). The rationale for distinguishing both is that mod-
elling tools need to provide the items that any target object
already has – owned and inherited attributes in our example,
available via eAllAttributes. However, when a recommen-
dation is accepted, the item needs to be created and assigned
to the target – in our example, eStructuralFeatures is used.

Fig. 5(b) shows the metadata (in JSON format) that would
be returned when invoking the /features endpoint on the
RS. In this case, the name of the RS is EcoreRecommender,
and the RS needs to receive all other possible targets in the
model (i.e., all EClasses) as context.

Some well-formedness criteria are required from the roles
that meta-model elements can play in a RS. In particular,
if the recommended items are of type 𝑐𝑖 , then 𝑐𝑖 should be
the destination class of a write property 𝑝𝑤 , or a subclass
of such destination class: 𝑐𝑖 ≤ 𝑑𝑒𝑠𝑡 (𝑝𝑤). For instance, in
Fig. 5(a), EAttribute≤EStructuralFeature, which is the des-
tination of the write property eStructuralFeatures. This
ensures compatibility of the items with the write property,
so that newly created items can be inserted in it. Conversely,
the destination of a read property 𝑝𝑟 should be the type 𝑐𝑖 of
the recommended item, or a subclass: 𝑑𝑒𝑠𝑡 (𝑝𝑟 ) ≤ 𝑐𝑖 . In the
example, EAttribute≤EAttribute, which is the destination
of the read property eAllAttributes. This ensures that the
content of the read property is compatible with the item.
The last endpoint in Table 2 is /recommend, which allows

clients to request recommendations by specifying the RS
name as a path parameter, and providing a JSON file with
the target of the recommendation, its current items, and its
context (if needed). Clients can customise the recommenda-
tion by means of optional query parameters such as the max-
imum number of recommendations to retrieve (newMaxRec),
the minimum ranking value threshold (threshold), and the
desired item type when several are possible (itemType).
Example. Fig. 6 shows a recommendation request exam-
ple for the RS in Fig 5. Part (a) shows an Ecore model be-
ing edited, where recommendation for class Professor is so-
licited. Part (b) shows the encoding of the request, where the
target EClass is named Professor, and has two EAttributes
called isPhD and name. They are encoded in the read feature
eAllAttributes. As specified in Fig. 5, the only feature that
identifies EAttributes is their name. Since the context of the
1The meta-model is slightly modified to ease understanding.
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(a) (b)

Professor

isPhD: boolean
name: String

University

name: String

professors*

{"recommendation": {
"target": { "name": "Professor",

"eAllAttributes": [{ "name": "isPhD"},
{ "name": "name"}] 

},
"context": [ {"name": "University",

"eAllAttributes": [{ "name": "name"}] 
}]

}
}

Figure 6. JSON representation for a /recommend request.

RS is set to Targets, the request needs to include the name
and attributes of all other EClasses in the model. In this case,
there is just one additional class named University.

3.3 Adaptation of RSs to the Modelling Notation
Our approach to reuse a RS for a modelling notation involves
establishing a structure-preserving mapping𝑚 : 𝑅𝑆 → 𝑀𝑀

between the classes and features used by the RS, and the
elements of interest in the language meta-model𝑀𝑀 .
Example. Fig. 7 exemplifies a mapping that adapts the RS
for Ecore – which recommends EAttributes for EClasses –
to UML. The adapted RS will then recommend properties for
UML classes. 𝑅𝑆 on the left shows an excerpt of the Ecore
meta-model containing the elements designated as targets,
features and items. The mapping maps the Ecore meta-model
elements playing a role in the RS to corresponding elements
in the UML meta-model𝑀𝑀 to the right.

EClass

name: String

EAttribute

name: String

eStructuralFeatures

*

/eAllAttributes

*

Class

Named
Element

name: String

o
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ed
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tt

ri
b

u
te

*

Property

… …

/a
llA

tt
ri

b
u

te
s

*

EClass                  → Class
name → name
eStructuralFeatures[w] → ownedAttribute
eAllAttributes[r] → allAttributes

EAttribute            → Property
name → name

mapping

RS meta-model Language meta-model (MM)

EStructural
Feature

«target»

«write»

«feature»

«read»

«feature»

«item»

Figure 7. Adapting the RS to the modelling language.

Not any mapping is valid, but well-formed mappings need
to preserve the structure of the source meta-model. For this
purpose, we build on the notion of binding, which has been
used to express generic model operations [15, 54]. Next, we
use predicates 𝑖𝑡𝑒𝑚(_), 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 (_), 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (_),𝑤𝑟𝑖𝑡𝑒𝑃𝑟𝑜-
𝑝𝑒𝑟𝑡𝑦 (_), and 𝑡𝑎𝑟𝑔𝑒𝑡 (_) to denote the role of the element
in 𝑅𝑆 ; predicate 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 (𝑒) = 𝑖𝑡𝑒𝑚(𝑒) ∨ 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 (𝑒) ∨
𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (𝑒) ∨𝑤𝑟𝑖𝑡𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (𝑒) ∨ 𝑡𝑎𝑟𝑔𝑒𝑡 (𝑒) to identify the
elements that need to be mapped; 𝑠𝑟𝑐 (𝑟 ) and 𝑑𝑒𝑠𝑡 (𝑟 ) for the
source and destination class of reference 𝑟 ; and 𝑐𝑖 ≤ 𝑐 𝑗 to
denote that 𝑐𝑖 is compatible with 𝑐 𝑗 (a subclass, or 𝑐 𝑗 itself).

This way, a mapping𝑚 : 𝑅𝑆 → 𝑀𝑀 is well-formed iff it
fulfils the following conditions:

Definition domain: 𝑚 is defined exactly for each element
𝑒 of 𝑅𝑆 s.t. 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 (𝑒).

Classes: If 𝑐 is a class in 𝑅𝑆 s.t. 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 (𝑐), then 𝑚(𝑐) is
also a class in𝑀𝑀 .

Class subtyping is preserved and reflected: Given classes
𝑐1 and 𝑐2 of 𝑅𝑆 s.t. 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 (𝑐1) ∧ 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 (𝑐2), then 𝑐1 ≤
𝑐2 ⇐⇒ 𝑚(𝑐1) ≤ 𝑚(𝑐2).

Attributes: If 𝑎 is a relevant attribute defined or inherited
by a relevant class 𝑐 in 𝑅𝑆 , then𝑚(𝑎) is also an attribute
inherited or defined in class𝑚(𝑐). The type of the attribute
must be preserved or generalised in themapping: 𝑎.type ≤
𝑚(𝑎).type. For instance, an attribute of type integer can
be mapped to a double.

References: If 𝑟 is a relevant reference from class 𝑐1 to 𝑐2
in 𝑅𝑆 , then 𝑚(𝑟 ) is also a reference from class 𝑐′1 to 𝑐′2
in 𝑀𝑀 , with𝑚(𝑐1) ≤ 𝑐′1. In addition, we need a further
constraint for 𝑑𝑒𝑠𝑡 (𝑟 ), which depends on whether 𝑟 is read
(𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (𝑟 )) or write (𝑤𝑟𝑖𝑡𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (𝑟 )):
𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (𝑟 ): Any relevant superclass of 𝑑𝑒𝑠𝑡 (𝑟 ) (includ-
ing 𝑑𝑒𝑠𝑡 (𝑟 ), if it is relevant) is mapped to a superclass
of 𝑐′2, or to 𝑐

′
2:

∀𝑐𝑖 ∈ 𝑅𝑆 · 𝑑𝑒𝑠𝑡 (𝑟 ) ≤ 𝑐𝑖 ∧ 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 (𝑐𝑖 ) =⇒ 𝑐′2 ≤ 𝑚(𝑐𝑖 )
𝑤𝑟𝑖𝑡𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (𝑟 ): Any relevant class compatible with
𝑑𝑒𝑠𝑡 (𝑟 ) is mapped to a class compatible with 𝑐′2:
∀𝑐𝑖 ∈ 𝑅𝑆 · 𝑐𝑖 ≤ 𝑑𝑒𝑠𝑡 (𝑟 ) ∧ 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 (𝑐𝑖 ) =⇒ 𝑚(𝑐𝑖 ) ≤ 𝑐′2

Composition is preserved: If 𝑟 is a relevant write composi-
tion in 𝑅𝑆 , then𝑚(𝑟 ) is also a composition.

The condition for references permits a reference 𝑟 to be
declared exactly on the mapped class, or in a superclass (so
that it is inherited). Similarly, the destination of the reference
𝑟 can be the relevant class, a subclass (when 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (𝑟 )), or
a superclass (when 𝑤𝑟𝑖𝑡𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (𝑟 )), which then should
be mapped preserving subtyping.
Typically, references that are write (allowing adding an

item to a target) are composition references in 𝑅𝑆 , which
needs to be preserved in the target by the last well-formedness
condition. The mapping does not care about cardinalities, as
they do not need to be preserved.

Example. The mapping of Fig. 7 is well-formed. This is
so as both EClass and EAttribute are mapped to classes
in the UML meta-model (Class and Property), and their at-
tributes (EClass.name and EAttribute.name) are mapped to
attributes of the target classes (actually inherited). Both refer-
ences eStructuralFeatures and eAllAttributes are mapped
according to the conditions, e.g.,:𝑚(eStructuralFeatures)
=ownedAttribute, the source of both references coincide (𝑚(E-
Class) =Class), and for the destination,𝑚(EAttribute) =Pr-
operty, which is exactly 𝑑𝑒𝑠𝑡 (𝑚(eStructuralFeature)), but
could be a subclass. Reference eStructuralFeatures is awrite
feature, and a composition, and so is ownedAttribute.
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Ourmapping enables consistent adaptations between struc-
turally similar (but not identical) meta-models. For more
complex mappings, our correspondences could be extended
with an expression language – like OCL [29] – able to calcu-
late derived elements in the target, or adapt attribute values.

3.4 Recommendation Aggregation
The RSs community has proposed different ranked item ag-
gregation methods to combine recommendations from dif-
ferent RSs. A rank aggregation method aims to find the best
permutation of recommendation lists based on an evaluation
metric, such as precision. These methods can be used to pro-
vide more accurate and diverse suggestions by taking into
account weaknesses or biases that specific recommenders
may have, and to reduce the impact of items incorrectly
ranked in high positions by an individual recommender [46].
When combining RSs for modelling languages, two sce-

narios can arise. In the first one, the RSs to combine tackle
different targets (e.g., one RS provides recommendations for
classes and another one for packages) or different kinds of
items (e.g., one recommends attributes, and another oper-
ations). In such cases, no aggregation is needed, since the
items are completely disjoint. This way, the composed RS
would just use a different recommender for each kind of item,
returning the lists of ranked items with no modification.

In the second scenario, multiple RSs recommend the same
kind of items for a given target (e.g., two RSs of class at-
tributes that use different algorithms, or different datasets).
This scenario requires rank aggregation methods to obtain a
consensus ranking containing a subset of their items.
Aggregation methods can be either supervised or unsu-

pervised [46]. The former search for the aggregated ranking
that optimises a given metric computed over ground-truth
data. The latter lack ground truth data and rely on metrics
computed using the available rankings of items. We focus on
unsupervised methods, and consider score-based positional
methods, as they are very popular due to their simplicity
and efficiency. These methods sort the items based on their
absolute position in the individual rankings. Positional meth-
ods receive as input a set of individual rankings, and use
an aggregation function 𝑓 : 𝑈 × 𝐼 → 𝑅 and a procedure to
combine the item position-based scores, with 𝑈 and 𝐼 the
sets of users and items in the system, respectively [46].
Unsupervised positional methods, such as Borda Count

(BC) [7] and Median Rank Aggregation (MRA) [26], are pop-
ular for their simplicity and efficiency. Borda Count assigns
points to items based on their rank, while MRA ranks items
by their median position across the individual rankings.

Example. Fig. 8 illustrates the BC method for aggregating
three hypothetical class attribute recommenders. 1 shows
the rankings of attributes that each RS suggests for a class
named Person. 2 depicts the scores assigned to the attributes

Ranking 1
name 5
age 4
identifier 3
address 2
surname 1/1=1

Ranking 3
name 5
age 4
address 6/3=2
identifier 6/3=2
surname 6/3=2

Ranking 2
name 5
address 4
age 3
surname 2
identifier 1/1=1

Ranking 1
name
age
identifier
address

Ranking 3
name
age

Ranking 2
name
address
age
surname

INPUT recommendation lists

Recommendation BC
name 15
age 11
address 8
identifier 6
surname 5

SCORES

RANK AGGREGATION

return top N

1

2

3

4

Figure 8. Rank aggregation example using Borda Count.

in each ranking. Since there are 5 unique (non-duplicate) at-
tributes, the score of the first attribute in each ranking is 5,
and this score is decreased for the subsequent positions of
the ranking. The items that each RS do not recommend (e.g.,
surname in Ranking 1) receive equal portions of the remain-
ing available points from the RS. 3 displays the aggregated
score of each item, calculated as the sum of individual scores
in the case of BC. Step 4 shows the returned top N list of
recommendations. Incidentally, MRA would output the same
aggregated rank, e.g., the rank of name is 1, which is the
median of its positions in the three rankings.

3.5 Integration within Modelling Environments
The last step of the integration is to embed the RS into a
modelling environment. This embedding will be different
depending on the concrete syntax of the language. We cur-
rently consider two types: graphical syntaxes and tree-based
ones. In both cases, we support a reactive approach by now,
where the user needs to invoke the RS explicitly.

For graphical syntaxes, the integration adds an additional
graphical layer in the modelling editor, which enables the
option to invoke the RS when a shape corresponding to
an instance object of the target class is selected. For tree-
based syntaxes, a menu option becomes available when an
instance object of the target class is right-clicked. In both
cases, recommendations are requested to the recommender
API of the selected RSs. Then, the recommended items can be
applied to the model, assigned to the selected target object.
Sec. 4.2 will provide more details of this integration for

the technologies we support (Sirius and EMF).

4 Architecture and Tool Support
We have realised the previous concepts on an extensible
Eclipse plugin called IronMan. Its source code is available
at: https://github.com/antoniogarmendia/integrate-reco
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Figure 9. Architecture of IronMan.

mmenders-ironman. Next, Sec. 4.1 describes its architecture,
and Sec. 4.2 reports on the tool itself.

4.1 Architecture
Fig. 9 shows the architecture of IronMan. The plugin uses
the /services and /discover endpoints of the recommenda-
tion indexer to obtain the available RSs and filter them by
meta-model name. IronMan supports the adaptation of the
RS to modelling languages by the definition of a structural
mapping between both meta-models, as Sec. 3.3 described.
IronMan provides two extension points. The first one

is to define rank aggregation methods. IronMan currently
supports Borda Count, MRA and Outranking [27], but the
extension point permits adding more. The second one is
to define code generators that can integrate the RSs with
modelling tools. Currently, two implementations can gener-
ate integrations of RSs with Sirius and tree editors. For this
purpose, the generated code makes use of the /recommend

endpoint of the chosen recommendation service, and the
selected aggregation method (if needed). In the case of Sirius
editors, IronMan generates a recommendation layer that
enables requesting the recommendations. In the case of tree
editors, IronMan generates a menu that is activated when
appropriate objects are selected in the tree.

4.2 Tool Support
Next, we describe the parts of our solution: the plugin, the
services and the generated RS clients.

4.2.1 IronMan Plugin. Our tool provides a wizard to
adapt RSs to a modelling language, configure the aggregation
of recommendations for the same target (if needed), and inte-
grate RSs into modelling workbenches. Fig. 10 shows 5 pages
of the wizard. The first one permits selecting the available
RSs from a set of recommendation service indexers. New
indexers can be added using the IronMan preference page
within the Eclipse IDE. Users can select any combination of
RSs, as long as all of them are for the same language. In the
figure, the indexers contain several RSs for UML and Ecore.

In page 2 of the wizard, the user can filter the recom-
mended items of each selected RS. For example, in the figure,
the page contains recommenders of attributes and operations
for classes. The user might be interested in obtaining only
attribute recommendations, which can be selected within
this page. It is possible to select several RSs for the same
target and items, or for the same target and different items.
In page 3, the user can adapt the RS to a modelling lan-

guage, in case the RS targets a different language. For this
purpose, the user first selects the meta-model of the mod-
elling language, and then, a tree-table enables mapping the
relevant elements of the RS and the modelling language. In
the figure, the user maps elements from UML to Ecore. For
instance, in UML, the reference to obtain all attributes is
ownedAttribute, but in Ecore is eAllAttributes. Similarly,
the composition reference to add Properties to Classes in
UML is ownedAttribute as well, but in Ecore is eStructural-
Features. The identifier of attributes in both UML and Ecore
is name. Since the API provides the RS metadata, there is no
need to store the RS meta-model locally.

Page 4 is enabled only when the user selects RSs providing
recommendations for the same target and item, which need
to be aggregated. The figure shows the three aggregation
methods implemented using the extension point.

In page 5, the user selects the environments – Sirius and/or
tree editor – where the RS will be integrated. In case of Sirius,
the user needs to select the viewpoint where the recommen-
dation layer is to be inserted. The figure shows the selection
dialog, where the user can select several views. The code gen-
erator produces plugin projects with the RS clients, which
extend the modelling environments externally, without the
need to have available their source code.

4.2.2 Recommendation Services. The IronMan service
indexer is implemented as a Java-based REST service using
Jersey [24], a framework for building RESTful web services
and APIs. It is deployed on Tomcat [6], an open-source web
server and Servlet container. Four core classes are respon-
sible for handling requests from clients. ServiceRegistration
handles registration-related requests, such as service regis-
tration, registration updates, deletion, or queries of regis-
tered services. ServiceFeatures handles requests for deployed
and registered services, as well as their metadata. ServiceRe-
commend is responsible for generating recommendations.
Finally, ServiceDiscovery enables service discovery. The re-
sponse time for any request is generally less than a second.

4.2.3 Integration with Client Modelling Tools. Iron-
Man synthesises code that extends externally existing (Sirius
and tree) modelling editors. The generated code considers
the defined mapping. It uses the EMF reflective API to query
the relevant features of the target of the recommendations,
and to create objects corresponding to recommended items
when the user applies a recommendation.
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Figure 10. IronMan wizard: (1) Selecting recommender services, (2) filtering the items to be recommended, (3) mapping the
RS to the modelling language (optional), (4) selecting the aggregation method, (5) configuring integration with modelling tool.

Figure 11. Integration of the RS within a Sirius editor.

Fig. 11 shows a screenshot of the result of the integration of
a RS within the Eclipse plugin of Obeo’s UML Designer [43].
Once the recommendation layer is active, the RS can be
invoked over objects of the target element type (UML classes
in this case). The recommender dialog shows a ranked list
of recommendations, and the RSs these come from. In this
case, two recommenders provide the recommendations, and
the list is aggregated using the selected rank aggregation
method. When the user selects an item, the corresponding
object is created and added to the target.

Figure 12. Integration of the RS within a tree editor.

Fig. 12 shows the integration of a RS within the standard
Ecore tree editor [59]. The RS can be triggered upon selecting
an EClass. When an EAttribute is selected in the recommen-
dation list, the corresponding object is created and assigned
to the selected EClass.

5 Evaluation
Next, we report on an evaluation to assess the usefulness
of our approach in terms of its capacity to reuse RSs and to
integrate them with existing modelling tools. Hence, we aim
to answer the following research questions (RQs):
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Table 3. Experiment set-up.

RS Modelling lang. Modelling tool
Ecore meta-models Ecore UML designer (Sirius)
UML class diagrams UML class diagrams UML tree editor

ER diagrams Ecore tools (Sirius)
IFML Ecore tools (tree)

ISD designer (Sirius)
IFML editor (Sirius)

RQ1. Can IronMan be used to adapt existing RSs to differ-
ent languages?

RQ2. Can IronMan be used to integrate existing RSs into
third-party modelling tools?

Next, Sec. 5.1 describes the experiment set-up, Sec. 5.2
reports the results, Sec. 5.3 answers the RQs, and Sec. 5.4
discusses threats to the validity of the experiment.

5.1 Experiment Set-Up
To answer the RQs, we used two RSs for Ecore and UML
reported in [2] and [4]. Both recommend attributes and op-
erations for classes. Since both were already deployed as
services, their adaptation to make them conformant to the
API described in Sec. 3.2 was very light.

The aim of our evaluation is twofold. On the one hand, we
aim to assess if the RSs can be adapted to other modelling
languages. In particular, we check if the RSs can be adapted
to UML, Ecore, Entity relationship (ER) diagrams, and the
Interaction Flow Modelling Language (IFML) [30]. The three
first languages are widely-used structural notations to define
software systems, modelling languages, and databases. IFML
is an OMG standard to define the content, user interaction
and behaviour of the front-end of software applications. On
the other hand, we want to assess the integration of the RSs
into existing tree and Sirius editors built by third parties.
Table 3 summarises the experiment set-up. In the experi-

ment, each RS (e.g., for Ecore) was adapted to the other three
languages (e.g., UML, ER and IFML) and integrated in all
the six tools. This resulted in twelve integrations, covering
environments based both on Sirius and the tree editor.

5.2 Experiment Results
Table 4 summarises the results of the integrations, including
the number of mappings needed to adapt the RS to the mod-
elling language, and the synthesised lines of code (LoC) by
the code generator. We did not need any mapping when us-
ing a RS for the same language (e.g., Ecore for Ecore), while
for the other cases, we required from 5 to 9 mappings. Since
the original RSs recommend both attributes and operations,
the number of mappings depended on whether the language
had a notion akin to operations (absent both in ER and IFML).

The generated plugins use the EMF reflective API [59], and
in average, 464 LoC were generated per plugin. This number
does not include the implementation code to communicate
with the recommender services. Additionally, in the case of

Table 4. Summary of the experiment results.

Integr. RS Language Editor Maps LoC
1 Ecore Ecore Ecore-tree 0 455
2 Ecore Ecore Ecore-Sirius 0 528
3 Ecore UML UML-tree 9 457
4 Ecore UML UML-Sirius 9 530
5 Ecore ER ISD-Sirius 5 414
6 Ecore IFML IFML-Sirius 5 414
7 UML Ecore Ecore-tree 9 451
8 UML Ecore Ecore-Sirius 9 525
9 UML UML UML-tree 0 452
10 UML UML UML-Sirius 0 525
11 UML ER ISD-Sirius 5 411
12 UML IFML IFML-Sirius 5 411

Sirius, IronMan generates an odesign model automatically,
which is the file that contains the description of themodelling
environment, including the recommendation layer.
Fig. 13 contains some screenshots of the resulting inte-

grations. Labels 1–3 show the integration of the Ecore RS
with the Sirius editor provided by Ecore tools. Label 1 shows
the menu to activate the recommendation layer, label 2 the
menu contribution of the recommender, and label 3 the di-
alog from which to choose the recommendations. Label 4
displays the integration of the UML RS with the UML tree
editor. Finally, label 5 displays the integration of the UML
RS within the Information System Designer (ISD) [42]. The
resulting plugins are available at: https://github.com/anton
iogarmendia/integrate-recommenders-ironman.

5.3 Answering the RQs
Overall, we can answer both RQs positively.

For RQ1, we could reuse RSs defined for Ecore or UML, and
adapt them to other three languages (Ecore, UML, ER, IFML).
The only requirement for this reuse was to map (subsets of)
the meta-model of the RS and the meta-model of the target
language, by defining between 0 and 9 declarative mappings.
For RQ2, we could automatically integrate each RS into

six existing modelling tools based on Sirius and EMF tree
editors. Remarkably, all the tools were built by third parties,
and we did not need their source code.

5.4 Discussion and Threats to Validity
Our experiment shows evidence that IronMan is able to
reuse existing RSs for other modelling languages, and inte-
grate them automatically into existing tools.
However, regarding external validity threats, the number

of RSs reused was limited, as the experiment only consid-
ered RSs for Ecore and UML. Similarly, we reused these RSs
just for four other modelling languages. A stronger evalua-
tion would be obtained by considering more RSs and more
languages. In particular, the languages in the experiment
were somewhat similar, and we are aware that considering
more structurally different notations would require from a
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Figure 13. Screenshots of the integration results. (1–3) Ecore tools (Sirius), (4) UML tree editor, (5) ISD-Designer.

more powerful mapping mechanism (e.g., based on OCL or
Java), able to bridge the structural dissimilarities between
the meta-models. This is future work. However, to mitigate
this threat, we reused the RSs for well-known modelling lan-
guages developed by third parties, which are representative
of structural modelling. Moreover, we also considered IFML,
which is related to interaction modelling.

Regarding the integration with tools, we chose existing
tools built by third parties to avoid any bias. Still, integration
with further tools would result in a stronger evaluation.

6 Related Work
Next, we review three lines of works related to our pro-
posal: RSs for modelling tasks (Sec. 6.1), servitisation of RSs
(Sec. 6.2), and aggregation of recommendations (Sec. 6.3).

6.1 RSs for Modelling
As reported in [3], the modelling community is showing
a growing interest in RSs for modelling tasks. According
to [3], the most common purposes of RSs in model-driven
engineering (MDE) are the completion, finding, repair, reuse
and, to a lesser extent, creation of modelling artefacts.
RSs for modelling have been normally developed ad-hoc

for a specific modelling language, most frequently UML
(e.g., class diagrams [10, 25, 28, 37, 40, 55] and sequence dia-
grams [13]), process modelling notations [16, 32, 33, 36, 38],
or meta-models [1, 17]. Only a few language-independent
approaches [1, 2, 23, 34, 47, 58] enable the definition of RSs

for any language defined by a meta-model. Among them,
Almonte et al. [2] propose the DSL Droid to facilitate the con-
struction and subsequent evaluation of RSs for anymodelling
language. This DSL supports the selection and configuration
of the recommendation algorithm. In this paper, we have
evaluated our proposal using some RSs created with Droid.
Given that RSs are typically fixed for a particular language,
a tool like IronMan, which can adapt a RS for different
notations, becomes useful in practice.
Outside the MDE community, tools have been proposed

that, like Droid, simplify the creation and evaluation of RSs.
For instance, LEV4REC [20] relies on MDE to configure the
parts of a RS and generate the RS code; and the framework
Elliot [5] executes a complete experimental pipeline for RSs
by processing a simple configuration file. However, the RSs
produced by these tools are neither specific for modelling
nor automatically integrated into existing editors/tools.
Regarding the techniques to generate recommendations

in MDE, the most popular ones stem from classical recom-
mendation methods, most prominently knowledge-based
techniques (i.e., systems that exploit the domain knowledge
to produce recommendations, such as AMOR [10], Baya [14],
IPSE [28], RapMOD [37], Refacola [58], ReVision [44] and
Savary-Leblanc’s recommender [55]), followed by content-
based (e.g., DoMoRe [1] and Refactory [49]), hybrid (e.g.,
SBPR [32] and the approaches by Kögel et al. [34] and Kosch-
mider et al. [36]), and based on collaborative filtering (e.g.,
MemoRec [17] and ModBud [53]). Some recent approaches
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apply machine learning to build the RSs. For example, Bur-
gueño et al. [11] propose a RS for class diagrams based on
natural language processing; Weyssow et al. [61] apply a
deep learning model to recommend meta-model concepts;
Di Rocco et al. [19] use an encoder-decoder network to
aid modellers in executing model editing operations, and
graph neural networks (GNNs) to assist in the specification
of (meta-)models [18]; and Shilov et al. [56] use GNNs to
assist in enterprise modelling processes.

Altogether, there is a wide variety of RSs for diverse mod-
elling notations and methods. Our contribution in this line of
works is a proposal to homogenise the access to all existing
approaches behind a common API. This enables the combi-
nation of approaches by aggregating their results, and facili-
tates the access from arbitrary clients. Finally, our mappings
permit adapting existing RSs to other modelling notations.

6.2 Deployment of RSs via Web Services
The idea of deploying RSs as web services is not new, but it
has been adopted by both researchers and companies due to
its benefits. A recommendation API is a (REST) service with
recommendation functionalities akin to those of recommen-
dation software libraries, but hosting the data in the cloud.
The RSs community has coined the term Recommendations-
As-a-Service (RaaS) [52] to refer to cloud platforms that en-
able the creation of RSs using a few clicks or LoC, by au-
tomating the steps of the recommendation generation pro-
cess, from data indexing to recommendation generation and
display. As an example, the engine Recombee [48] allows
building recommendation services for any domain that has a
catalogue of items and is interacted by users. The engine only
supports content-based recommendation, but its recommen-
dation model is customisable and permits defining business
rules to filter or boost items based on their properties. The
engine provides API endpoints to manage the (JSON-based)
items, users and their interactions, and to get recommen-
dations. While Recombee is generic, some RaaS are domain-
specific, like bX [12], BibTip [9] and Mr. DLib [41] for digital
libraries. All these approaches expose recommendation APIs
as web services; however, the APIs are notmodelling-specific,
so their fine-tuning for modelling tasks is cumbersome.

Regarding RSs for modelling, most proposals are deployed
locally and integrated ad-hoc in a specific modelling tool
or IDE. One of the few exceptions are Droid [2] and Savary-
Leblanc’s recommender for UML [55]. The latter is a rec-
ommender for UML class diagrams, deployed as a service,
and integrated within Papyrus. Droid permits the creation of
RSs for modelling languages and their deployment as REST
services. In [4], the authors illustrate the integration of this
service in both EMF tree editors and a modelling chatbot. In-
stead, our approach aims to be more general by unifying any
modelling recommendation service under a common API.
This will facilitate the reuse and aggregation of existing RSs

by the community, hence contributing to better modelling
tools augmented with recommendation capabilities.

6.3 Aggregation of RSs
Rank aggregation has been used in a wide number of fields,
such as meta-search engines [22], biology [35], criticality
analysis [45], or spam detection [63], to name a few. A few
proposals exist in the RSs literature as well. For example,
based on the observation that many top-N recommenders
disagree in their returned rankings, Oliveira et al. [46] stud-
ied 19 rank aggregation methods and identified the recom-
mendation scenarios where they performed best or worst.
They concluded that rank aggregation achieves the biggest
improvements in scenarios with high-quality input rankings
and high diversity; unsupervised methods should be avoided
in case of poor-quality input rankings; and the results of
both supervised and unsupervised methods is similar in case
of input rankings with high-quality but low diversity.
To our knowledge, our proposal is the first one enabling

the aggregation of recommendations for modelling. We cur-
rently support unsupervised methods, and leave supervised
ones as future work.

7 Conclusions and Future Work
The increasing number of RSs for modelling calls for mecha-
nisms to facilitate their reuse, combination and integration
into modelling tools. We have proposed an approach towards
this goal, based on a common recommendation API, map-
pings bridging the RSs and the modelling notations, and rank
aggregation algorithms. The approach has been realised in
IronMan, which is able to adapt and integrate RSs within
Eclipse modelling tools based on Sirius and tree editors.
In the future, we would like to integrate other existing

RSs, investigate the scenarios where aggregating RSs are
beneficial, and extend our proposal with supervised rank
aggregation methods [46]. We would also like to include
more flexible means for adapting the RSs to the modelling
language (e.g., using OCL or Java snippets).

Implementation-wise, the wizard requires that all selected
RSs are defined for the same modelling language, and then
adapted if needed. In the short term, we will support the se-
lection of RSs for different languages, and provide assistants
to adapt them to the modelling language (once the first map-
ping is defined). We also plan to support integration with
textual notations, e.g., defined using Xtext [8, 62]. Finally,
we are interested in exploring other types of integration of
the RSs within modelling tools, e.g., a proactive approach
where the RS monitors the modelling session and triggers
recommendations when an opportunity is found.
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Abstract

Type systems are responsible for assigning types to terms
in programs. That way, they enforce the actions that can be
taken and can, consequently, detect type errors during com-
pilation. However, while they are able to �ag the existence
of an error, they often fail to pinpoint its cause or provide a
helpful error message. Thus, without adequate support, de-
bugging this kind of errors can take a considerable amount
of e�ort. Recently, neural network models have been devel-
oped that are able to understand programming languages
and perform several downstream tasks. We argue that type
error debugging can be enhanced by taking advantage of
this deeper understanding of the language’s structure. In this
paper, we present a technique that leverages GPT-3’s capa-
bilities to automatically �x type errors in OCaml programs.
We perform multiple source code analysis tasks to produce
useful prompts that are then provided to GPT-3 to gener-
ate potential patches. Our publicly available tool,Mentat,
supports multiple modes and was validated on an existing
public dataset with thousands of OCaml programs. We au-
tomatically validate successful repairs by using Quickcheck
to verify which generated patches produce the same output
as the user-intended �xed version, achieving a 39% repair
rate. In a comparative study, Mentat outperformed two
other techniques in automatically �xing ill-typed OCaml

programs.
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1 Introduction

Programming languages usually have an associated type sys-
tem responsible for determining whether some operation
can be applied to some program term. This system ensures
a program’s correctness in terms of type safety. That is, if
a program does not typecheck, it signals a logical error re-
lated to the inherent type constraints. However, even after
knowing there is some type inconsistency, we still need to
understand where and why that error occurred. In other
words, a type system may be unable to provide the location
of the error and the explanation as to why the error arose.
Undeniably, programmers are not completely left in the

dark in this regard. Several programming languages provide
type inference systems, which compute the expected type of
expressions in the code. Despite considerable e�ort [9, 21,
24, 43, 47, 49] to provide helpful information for type error
detection, compilers often fail to pinpoint the true cause of
an error. Consider the following ill-typed OCaml program:

let rec add_list lst = match lst with

| [] -> []

| fst :: rest -> fst + (add_list rest)

Program 1. Ill-typed function: patterns di�er on returned
types
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Program 1 consists of a recursive function add_list that
takes a list of integers and should calculate the sum of all
numbers. ocamlc would yield the following message1:

3 | | fst :: rest -> fst + (add_list rest)

^^^^^^^^^^^^^^^

Error: This expression has type 'a list

but an expression was expected of type int

The type system successfully detects a type error in the pro-
gram and the compiler provides a message reporting the
problem. If we replace the use of the plus operator (+) in line
3 by the cons operator (::), the whole program is well-typed.
However, the expression highlighted as being problematic
by the compiler is not the true origin of the error. As a conse-
quence, the information about the mismatch of the expected
type (int) and the inferred type (’a list) does not pro-
vide meaningful advice into how to approach the problem.
Another way to �x this program, which corresponds to the
programmer’s intended �x, is to have it return zero (0) in-
stead of the empty list ([]) in line 2. Hence, it often happens
that the user’s intended modi�cation di�ers from what the
compiler points out. That is because reporting type inconsis-
tencies is in�uenced by the order in which expressions in a
program show up. As long as no inconsistencies are detected,
the inferred type for an expression is considered to be cor-
rect. As a result, the type system will have a left-to-right bias
and errors tend to show up towards the end of a program
[20]. Now consider that we swap the two patterns:

let rec add_list lst = match lst with

| fst :: rest -> fst + (add_list rest)

| [] -> []

This time, we get a di�erent error message:

3 | | [] -> []

^^

Error: This expression has type 'a list

but an expression was expected of type int

This means that the type error we are dealing with can have
multiple causes. Depending on the order of the patterns, the
cause that is reported changes.

However, even after recognizing the inherent limitations
of type systems in accurately locating and explaining type
inconsistencies, we are still left with �xing them. Automated
program repair (APR) aims to generate patches for incorrect
programs (either syntactically or semantically) with minimal
human intervention [18]. Many approaches have emerged
based on the competent programmer hypothesis or, put in
other words, programmers "create programs that are close
to being correct!" [13]. We argue that automatically �nding
repairs that eliminate type inconsistencies is one e�ective
way of locating and understanding the root of a type error.

In this paper, we present an approach that leverages the
code understanding and generation capabilities of models
based onGPT-3 to automatically �x type errors inOCaml pro-
grams. Our focus is on analyzing the source code of ill-typed

1In OCaml, polymorphic type names are pre�xed with a backquote.

programs and generating prompts that are then provided to
the model. By doing this, we aim to produce programs that
are free from type errors and, thus, can be used to �nd and
understand what was causing them. Our contributions are:
1. a source code analysis and manipulation technique that

produces di�erent kinds of prompts intended for GPT-3-
based models (Section 3);

2. a publicly available tool, namedMentat, implementing
this technique (Section 4);

3. an initial validation on a small set of programs, followed
by a large-scale evaluation on an independent repository,
with an analysis of the results obtained (Section 5);

4. a comparative study between our tool, Mentat, and two
other techniques, namely Rite [41] and Seminal [25] on
a common dataset, alongside the obtained insights.

Even though this work is concerned with type error debug-
ging, it di�ers from previous approaches, which aim to im-
prove the quality of type error messages [12, 24, 51], provide
interactive type debugging [6, 7, 9, 48], and narrow down
the area for type error debugging [19, 37, 42–44]. Instead,
our work focuses on the automatic repair of type errors. We
achieve this by analyzing and transforming source code and
outputting it in a form that can be understood and processed
by GPT-3, a large language model trained by OpenAI.
For the initial validation, we �nd that our tool presents

at least one valid solution for each test program, with the
Fill operation mode obtaining success rates varying from
53% to 60% for simple programs and from 83% to 100% for
Dijkstra algorithm implementations. Regarding the large
scale evaluation, we analyzed 1,318 buggy programs and
were able to �x 516 of them, reaching a 39% repair rate. To
automate this process we used two key features of property-
based testing [10]: �rstly, we automatically generate a very
large number of random inputs, and secondly we de�ne
a property that tests whether the user-�xed program out-
puts the same result as the automatically repaired one. The
program-speci�c property is also automatically generated,
thus having a fully automated large scale validation process
without relying on human intervention to inspect the gener-
ated patches. Also, we showed the potential for partial �xes
by considering the results for programs that do not pass
100% of test cases. While the other operation modes perform
worse overall when compared to Fill, they are still capable
of generating successful results and, in some cases, succeed
where Fill fails. Moreover, we performed a comparative study
of our technique with two type repairing approaches, namely
Rite [41] and Seminal [25]. Our �rst results show thatMen-

tat gives the best program repair results with a 37.5% repair
rate versus 33.4% from Rite and 7.8% from Seminal.

2 Background

A type system is a set of rules governing how data is repre-
sented and used in a program [34]. It is lightweight and does
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not require special knowledge from the user. Type inference
is a static algorithm to �nd the type of each part of a pro-
gram without the programmer’s annotation. The advantages
of type systems include not only type-safety of programs
but also e�cient computation by enabling the generation of
optimized code. For this reason, Ruby, a dynamically typed
language, has recently introduced type inference, and Python
has also introduced type-related features.

Originally, research in natural language processing (NLP)
focused on ways of processing, analyzing, and manipulating
natural language through statistical and rule-based mod-
eling. More recently, the use of arti�cial intelligence has
allowed the development of techniques that make NLP one
of the most prominent �elds in computer science. Simply
put, NLP is responsible for encoding text into more appro-
priate machine level representations and also for processing
and transforming these lower level descriptions into other
forms of text. More speci�cally, neural networks have been
very impactful in the development of NLP models. Some
of the most important ones are BERT [14] and GPT [36]
which have seen their utility displayed in an overwhelming
amount of more speci�c downstream tasks. Encouraged by
the achievements conducted in this area, the software engi-
neering community has successfully applied some of NLP’s
fundamentals to build tools that improve software develop-
ment work�ow. Code completion is one of the most popular
features and many code editors implement it one way or
another. With the intent of going beyond basic level comple-
tions like more pertinent suggestions for API calls for a given
context, the research community has also directed its e�orts
into developing versions of the BERT and GPT models that
are speci�cally tailored towards programming languages.
New models, such as CodeBERT [17] and CodeGPT [27],
were created based on the original architectures. GPT-based
code models are able to generate long and relatively complex
code sequences by analyzing and inferring the context of
the source code provided as input. One of the most recent
iterations of such models is GPT-3 [4], which presents a high
degree of success when employed in di�erent scenarios such
as cloze and completion tasks.

3 Technique

With our contribution, we intend to, for a given faultyOCaml

program, extract as much information from it as possible,
and then format it in a way that GPT-3 can understand and
process it. For this, we �rst check for type inconsistencies.
If they are present, we employ three di�erent tasks: type
error location, inlining, and type uni�cation, with each be-
ing described in detail in the following sections. Figure 1
illustrates how the tasks generally interconnect and high-
lights them with the corresponding label. Nodes with dashed
borders represent steps in which we make use of existing
components and are not directly part of our contribution.

Grey nodes and white nodes represent elements and actions,
respectively. Depending on the way we wish to interact with
GPT-3, the tasks may be combined in slightly di�erent ways.

Program Parser AST Typechecker Ill-typed Program typecast
Typecasted

Programs

Type Error Location (3.1.1)

Inline
Inlined

Programs

Inlining (3.1.2)

Insert Hole

Programs

With Holes

Generate

Completions
Completions Unify

Uni�ed

Completions

Find Typecasted

Expressions

Typecasted

Expressions
Unify

Minimal

Substitution

Type Uni�cation (3.1.3)

Figure 1. Interconnection of source code manipulation tasks

3.1 Source Code Analysis

3.1.1 Type Error Location. The compilers of strongly
typed programming languages tend to check for source code
errors in two separate steps when building an executable
�le: parsing and type checking. The parser checks whether
the input is syntactically correct and if so it produces an AST

(Abstract Syntax Tree). The type checker traverses such a tree
to check whether the underlying program obeys the type
rules. If it does parse but it does not typecheck, then there is
a type error, which is the focus of this work. If it does both
parse and typecheck then, for our purposes, the program is
considered correct.
Some programming languages o�er us type conversion

and manipulation tools; we focus on type conversion tools
from strongly typed languages. Let us consider a function
from now on referred to as typecast, which forcefully con-
verts a value of any type into a value of any type. Of course,
such function will not be able to actually do these conver-
sions during a program’s runtime, but it will be able to trick
the compiler into interpreting an expression of one type as
if it had a di�erent type. As such, the typecast function will
only be used when typechecking a program. In OCaml, this
operation can be performed by using Obj.magic2, which we
will use in our tool. Any program referred to as typecasted
from here onwards is a program in which part of it was
transformed with the typecast function.
Recall the introductory example in Program 1. Because

any type can be converted into any type with this function,
we can, for example, apply typecast to the empty list ( [] ) to
transform it into a di�erent type ’b, which the typechecker
will deduce to be int. We could also apply typecast to the plus
operator ( + ) thus transforming it into a function of type ’b
which the typechecker will deduce to be ’a→ ’a list→ ’a list.
Finally, we can also typecast the expression on the right-hand
side and have the typechecker infer the type ’a list. After
parsing the OCaml program, we create multiple program

2Obj.magic has the type ’a→ ’b
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variants, each with the typecast function applied to a single
expression, and then type check each application. Every
variation of the original program that typechecks correctly
is stored; if changing the type of one value / expression with
typecast �xes the program type-wise, then we consider that
the replaced value can be the error that needs to be �xed.
Finally, we replace the usage of this function with a mask,
signaling a hole in the program that needs to be �lled. The
following tasks will focus on analysing and transforming the
program variations (which we call the typecasted programs)
produced in this task.
In this work, the focus is on type errors with a single

location. Nonetheless, our approach is still �exible to some
instances of errors with multiple locations if all of them are
contained within a single function call expression.

3.1.2 Inlining. We make use of inlining not for the usual
purposes of compiler optimisations, but to be able to make
information available from some parts of the program in
other places. That is, the inlining step we describe here is
done on the actual source code to improve its analysis further
ahead, and not to produce more e�cient machine code. This
step is particularly useful as it allows us to extract better
results from later type uni�cation and type inference tasks.
Consider the following typecasted program:

let f x = (Obj.magic (&&)) x (x + x)

Program 2. Obj.magic hides the error from the type system

If we ask for the type of the Obj.magic (&&) expression,
the type system will infer it to be int→ int→ ’a. However,
let us now extend the program with a test case:

let f x = (Obj.magic (&&)) x (x + x)

let t = (f 1) = 3

The second line speci�es the usage of function f. By inlining
function f, we associate it to a context in which the type
system can take advantage of the extra information provided
by the int parameter. As a result, the inferred type of the
typecasted expression would be int → int→ int.

To accomplish this inlining step, an environment is main-
tained throughout the underlyingAST traversal.When a new
de�nition is found, its identi�er is stored and associated to
the corresponding expression. As such, when the usage of an
element stored in the environment is detected, the usage of
the identi�er is replaced by the expression’s body, e�ectively
inlining that piece of code. Special care needs to be taken
for two scenarios: recursion and function arguments. For
the �rst one, we need to avoid repeatedly inlining the same
element as that could potentially lead to a non-terminating
procedure. Nonetheless, there is still interest in performing
this step once for recursive de�nitions. Thus, we allow in-

lining to happen exactly once in such cases. For the second
scenario, most programming languages allow re-de�nition
of variables in di�erent scope levels and OCaml is no ex-
ception. It is possible to have a variable x already de�ned,

and still de�ne a new x in an inner scope. When inlining,
in this case, we take care to inline the correct de�nition for
the correct x variable. The inlined source code is only stored
in memory and the original program is not modi�ed, with
GPT-3 never seeing the inlined version.

3.1.3 Type Uni�cation. We make use of type uni�cation
to �lter elements from a list of completion suggestions. Al-
most every code editor provides the ability to have comple-
tion suggestions on request from the user by specifying a
place in the source code. Prior to requesting a list of com-
pletion suggestions, we replace typecasted expressions (ob-
tained as described in Section 3.1.1) with typed holes. Then,
we make use of an OCaml language server (LSP)3 to automat-
ically locate the introduced typed hole and to obtain a list
of suggestions containing code elements that may �t. Let us
consider Program 2 and its equivalent version with a typed
hole represented by the underscore:

let f = fun x -> _ x (x + x)

Having introduced the typed hole, we can request a list of
suggestions for the typed hole’s location from theOCaml LSP

and obtain 318 candidates. This list is not curated according
to the type context and, as such, the suggested completions
may present a type mismatch. In order to �lter the list accord-
ingly, type uni�cation is performed between each element
and the expression that was �agged as problematic accord-
ing to the application of typecast. If uni�cation succeeds, the
suggestion will take part in the resulting list which, in this
situation, will consist of 23 candidates.

3.2 Strategies

We make use of the available GPT-3 operation modes to
implement three of the four repair strategies supported by
our tool. Depending on which strategy we intend to use, we
have to prepare and format the data accordingly.

3.2.1 Fill. GPT-3 provides an operation mode named In-

sert, in which, given some input text from the user which
contains a hole denoted by the [insert] tag, a generation
is produced by the model and placed where the tag was lo-
cated. Thus, this operation mode is perfect for our use case,
by �lling programs in which a part is missing. There are sev-
eral models available for this operation mode, notably text-
davinci-003 and code-davinci-002, the former being a
general model and the latter being optimized for handling
code. Next, we show an example of an input prompt for this
operation mode:

let rec add_list lst = match lst with

| [] -> [insert]

| fst :: rest -> fst + (add_list rest)

For this prompt, using the web interface and with the de-
fault model parameters, both text-davinci-003 and code-
davinci-002 models will output the following:

3https://github.com/ocaml/ocaml-lsp
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let rec add_list lst = match lst with

| [] -> 0

| fst :: rest -> fst + (add_list rest)

For this program, we obtain the correct patch. Of course, to
do so we need to �rst locate the error and replace it with the
[insert] tag. We do this through the technique described in
Subsection 3.1.1, by replacing the code that did not typecheck
without the usage of the typecast function with said tag. This
is the strategy in which we provide the least information to
the GPT-3 model.

3.2.2 Choose. GPT-3 provides an operation mode named
Complete, in which, after being fed input text from the user,
it will attempt to generate more text based on it, that is,
complete it. It can be used for non-code tasks such as writ-
ing stories or classifying tweets, as well as code tasks like
translating plain text to an SQL query. We experimented
with several approaches for usage of the Complete mode,
because, unlike with the other operation modes, there is no
intuitive way to use this mode to correct programs. Failed
approaches include asking the model to rewrite the entire
program replacing the missing hole (similar to the [insert]
tag mentioned in Subsection 3.2.1) with the correct solution,
or asking the model to just give us the code expected in that
hole. Variations of this approach, by providing more clues,
such as the expected type of the result, or by providing possi-
ble solutions to consider, were also unsuccessful. Ultimately,
we were able to obtain favourable results by formatting the
input as an exercise, similar to what would be found in a
student exam. To do this, we present the source code with
a missing hole denoted by the <mask> identi�er, and a list
of possible solutions. This list is produced as described in
Subsection 3.1.3 and presented as numbered options, and the
model is asked to select the most appropriate. We guide the
model into selecting one option through prompt engineer-

ing. Speci�cally, every produced prompt is preceded with
two example exercises that share this template but have the
correct option selected (omitted in listings for brevity). The
following program is an example of a prompt formatted for
the Complete operation mode, as described.

Consider the following OCaml program:

let rec add_list lst = match lst with

| [] -> <mask>

| fst :: rest -> fst + (add_list rest)

Which of the following options should replace <mask >?

1) ( __LINE__ )

2) ( max_int )

3) ( min_int )

Correct option:

Notice that all presented options are incorrect - this is a limi-
tation from using this kind of prompt. Because we are using
the OCaml LSP to generate suggestions to be then presented
here, we are limited in which suggestions can be included.
In fact, the OCaml LSP will not generate common constant

values such as 0, which is the correct response here. All the
listed suggestions are integer constants suggested by the
OCaml LSP, where __LINE__ is a compiler macro represent-
ing the code line number where it is written, and max_int

and min_int are constants representing the maximum and
minimum values possible to represent as integers in OCaml.
The following is another prompt (re-formatted for brevity)
we produce for the same program, but assuming an error in
a di�erent place.

Consider the following OCaml program:

let rec add_list lst = match lst with

| [] -> []

| fst::rest -> <mask> fst (add_list rest)

Which of the following options should replace <mask >?

1) ( fst ) 8) ( raise_notrace )

2) ( ! ) 9) ( snd )

3) ( exit ) 10) ( @@ )

4) ( failwith ) 11) ( max )

5) ( input_value ) 12) ( min )

6) ( invalid_arg ) 13) ( List.cons )

7) ( raise ) 14) ( @ )

Correct option:

Notice that the list of suggestions grew — some of them,
such as exit and raise, will match a lot of types, due to the
polymorphic nature of these suggestions. However, some
interesting suggestions are now listed, and in this case, the
model suggests option 14 - the @ operator. This operator
concatenates two lists, and placing it into the hole in the
source code will transform this function into a correct imple-
mentation of the List.concat function for joining a list of
lists of values into a single list of values. It is, however, not
what we tend to expect out of a function named add_list.

Communication with GPT-3 for this operation mode is
fairly similar to other modes, but we have to limit the number
of generated tokens, as the model tends to try to generate
an explanation for its answer. It is also possible to specify
a stop sequence, which is a sequence of tokens that, when
generated by GPT-3, stops the whole generation process.

3.2.3 Instruct. Another way of interacting with GPT-3 is
through its Edit mode which expects two inputs: a prompt
and instructions describing how to edit the prompt. Similarly
to the other modes, there is a more general textual model
and a code speci�c variant. However, for this mode, there
are specialized versions to handle text editing, namely text-
davinci-edit-001 and code-davinci-edit-001. Our ap-
proach uses a simpli�ed form of the Instruct mode, which
is applied when the step in Section 3.1.1 fails to produce a
program that typechecks. In that case, the prompt consists
of the original program, and the instruction will hold the
message "Fix the bug". Alternatively, in case the previous
step is able to produce a well-typed program4, our approach

4Recall that whenever bypassing the type system by using the typecast

function eliminates the type error, we explore that program variant.
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performs inlining and type uni�cation on the typecasted pro-

gram in order to compute the minimal substitution holding
the expected type with as much information as possible from
the whole program. If we consider Program 1, the inputs
sent to GPT-3 would be:

Prompt:

let rec add_list lst = match lst with

| [] -> _

| fst::rest -> fst + (add_list rest)

Instruction:

Replace the underscore with something of type int

The hole represented by the underscore is the place we
wish to see �lled in. Although the underscore character can
appear in an OCaml program, we did not notice any interfer-
ence in the ability of GPT-3 to apply the transformation in
the intended place. The template we use for the edit instruc-
tions is "Replace the underscore with something of type <in-

ferred>". For this program, GPT-3 responds with 0, which
is the desired �x. Indeed, it may look like GPT-3 simply
understands the program in question is missing the most
adequate stop criteria and just answers with a corrected ver-
sion, perhaps disregarding our instructions. However, the
uni�cation and inference step we perform in order to com-
plete the message template with the expected type plays
a crucial role. For the same example, fabricating messages
referring illogical types such as string or (’a→ ’b)→ ’a list

→ ’b list would see GPT-3 answer with the empty string and
List.map respectively.

Because our approach explores every application of type-
cast that typechecks a program, we also produce another
alternative:

Prompt:

let rec add_list lst = match lst with

| [] -> []

| fst::rest -> _ fst (add_list rest)

Instruction:

Replace the underscore with something of type 'a -> 'b

list -> 'b list

Even though this alternative prompt will not generate
the intended �xed program, it shows that the creation of
adequate prompts is essential for GPT-3 to perform well. In
this case, GPT-3 will respond with (fun x y → x::y).
Surely, integrating that piece of code into the original pro-
gram produces a correct one from a typechecking perspec-
tive, although it does not ful�ll the programmer’s intention.

3.2.4 Without GPT-3. One interesting outcome from the
implementation of the Choose strategy described in Section
3.2.2 is that we can make use of the work done to construct
the prompt and skip the interaction with GPT-3. Thus, we
provide a way to work completely o�ine. After coming up
with an alternative program that typechecks and a list of sug-
gestions (according to sections 3.1.1 and 3.1.3, respectively),
we integrate each one into the original program. If no test
cases have been provided, the tool simply displays which

options �t the expected type. If there are test cases, the tool
tests each suggestion and displays the resulting programs
according to whether they satisfy the tests or not. Consider
the following ill-typed program and the associated test case:

let f = fun x -> x && (x + x)

Test case: f 3 = 9

According to the test case, the intended �x consists of re-
placing the logical-and (&&) with the plus operator (+). For
this case, our tool is able to �lter 15 suggestions out of the
318 provided by the OCaml LSP, with one of them being the
desired one. Each of the 15 suggestions is checked against the
test case and the tool outputs the only program that satis�es
the criteria:

let f = fun x -> (+) x (x + x)

Note that the type uni�cation step requires the use of func-
tions. In that sense, we convert the usage of operators such
as ’&&’ to their equivalent pre�x notation functions ’(&&)’,
resulting in the generated patches also being written in this
form, demonstrated by the use of the function ’(+)’.
Indeed, the focus of our work is to evaluate GPT-3’s per-

formance regarding the automatic repair of type errors, and
presenting a method in which the usage of the model is non-
existing may seem counter-intuitive. However, we �nd this
to be a validation of our approach, showing that the e�ort to
assemble the prompt can guide the whole process towards
the intended result as the correct patch may be found by
further checking each plausible option.

3.3 Model Bias

We now experiment with providingmore information, trying
to guide the models into more relevant results. We do this by
using the bias parameter which lets us guide the model’s out-
put by specifying the importance of certain tokens5 through
weights. A token represents a unit of text, like a character
or a word. We use a tokenizer tool for this purpose.
We create a database of the most common tokens in the

top 10 OCaml repositories on GitHub programmatically. To
achieve this, we utilize GPT-3’s tokenizer, which converts
text into numerical sequences that the model processes. We
analyze the tokens in source code �les from these reposito-
ries and collect frequency data to construct a database of
commonly used tokens in real-world programs.

We create a list of suggestions as per Section 3.1.3, convert
them into token sequences, and assign positive weightings
to these tokens. Then, we use the bias parameter in GPT-3 to
guide the model toward these suggestions. The weightings
are determined based on a database of token frequencies
from real-world programs. We heuristically set minimum
and maximum bias values at 1 and 3, respectively, to en-
sure e�ective guidance without extreme behavior. Figure 2
provides an overview of this process with sample values.

5Tokenizer available at h�ps://beta.openai.com/tokenizer
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Figure 2. Bias computation for one OCaml LSP suggestion.

We experiment with bias values by comparing the Choose
strategy with and without bias. In the Choose strategy with
bias, we exclude suggestions from the textual prompt since
their in�uence is already provided through bias values, as
we show in the following example:

Consider the following OCaml program:

let rec add_list lst = match lst with

| [] -> <mask>

| fst :: rest -> fst + (add_list rest)

What should replace <mask >?

Answer:

3.4 Test Cases

Mentat allows including test cases when repairing a pro-
gram. This additional information enhances the system’s
performance by narrowing the error search space and tight-
ening the type constraints for the function under exami-
nation. To illustrate, recall Program 1, which contains two
potential errors. Now, let’s add a test case into this program.

let rec add_list lst = match lst with

| [] -> []

| fst :: rest -> fst + (add_list rest)

Test case: add_list [1;2;3] = 6

The newly added test case locks function add_list to
speci�cally receive a list of integers and output a single inte-
ger. Because of this, the function now only has one possible
source of error, which is the empty list ( [] ) in line 2. Pre-
viously, it was also considered that the plus operator ( + )
could be a source of error, but with the additional restrictions
imposed by the test case, this is no longer possible.

Adding at least one test case to the framework also helps
classify GPT-3’s generations. After repairing a program, we
can use the test case to check for type consistency and verify
if it now passes the tests. For instance, in the case of this
program, the correct �x would be to replace the empty list
(‘[]‘) with the number 0, but substituting it with any other
integer would still pass the type-check, although it might
produce incorrect results during testing.

4 Tool

To validate our approach, we implemented it as a publicly
available tool called Mentat

6. This tool, written in OCaml,
can analyze OCaml programs and is accessible via the com-
mand line. Users can specify:
• the �le containing the OCaml program to analyze;
• the repair strategy by issuing the corresponding �ag;
• optionally, one or more test cases that should be satis�ed.
Depending on the repair strategy selected by the user,

Mentat interacts with GPT-3 by calling the relevant func-
tion and setting appropriate parameters. Interaction with
OpenAI’s GPT-3 like models requires an internet connection
to use the API.Mentat handles these requests and processes
the responses to generate potential �xes for type errors. The
resulting programs are saved for further o�ine analysis,
including whether they compile successfully and pass pro-
vided test cases if available. Detailed installation and usage
instructions are provided in the tool’s repository.

5 Experiments

We benchmark the e�ectiveness of our tool by running it
against several OCaml programs containing type errors. For
this, we run each strategy 3 times for each program, and
record the results. All the examples and necessary resources
to replicate the experiments are publicly available6.

5.1 Simple Programs

This set includes 15 ill-typed programs sourced from an
introductory OCaml class at a Japanese University and the
type-error slicer Skalpel [37], and previously used in a type-
error debugger [50]. These programs are simple, with issues
like returning empty lists instead of sums, confusion between
Float and Int, and using values when singleton lists were
expected. They range from 29 to 117 tokens and consist of 2
to 8 lines of code. One could argue that simple programs are
easier to �x because they are simple, or harder to �x due to
the limited contextual information available.

For the text and code models used in the experiments, we
use the default parameters (temperature of 0.7 for text and 0

for code, and top_p value of 1 for both). These settings were
found to be the most suitable through extensive testing.
We present the experiment results in Table 1. Each test

program was processed 3 times to measure successful patch
generation, ensuring it passed at least one test case. We em-
ployed di�erent repair strategies with models optimized for
text (T columns) and code (C columns). The C + Bias col-
umn includes additional experiments detailed in Section 3.3.
The rightmost column represents results without language
models, measuring how many suggestions enabled program
compilation and passed a test case. For example, program (2

was exclusively repaired by the code variant of the Fill strat-
egy, with 10 successful repair suggestions that passed the test

6h�ps://gitlab.com/FranciscoRibeiro/mentat
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Table 1.Automatic repair results for 15 simple test programs.

Fill Choose Instruct
Test
Prog. T C T C

C +
Bias

T C
No

GPT-3

S1 3 3 3 3 3 3 3 3
S2 0 3 0 0 0 0 0 10
S3 3 3 0 0 3 3 3 3
S4 3 3 0 0 0 2 3 0
S5 3 3 0 0 3 3 3 2
S6 3 3 3 3 0 3 3 3
S7 3 3 0 3 3 0 0 0
S8 3 0 3 3 3 3 3 1
S9 3 3 3 3 0 0 0 1
S10 3 0 3 3 0 0 0 1
S11 3 3 0 0 3 3 3 0
S12 0 3 3 0 3 2 3 0
S13 3 3 3 3 3 0 0 1
S14 3 3 3 3 3 0 0 2
S15 3 3 3 3 3 3 3 1

%Repair 87% 87% 60% 60% 66% 56% 60% –
%Test 53% 60% 47% 47% 40% 49% 53% –

case. Further re�nement may be possible by using di�erent
or additional test cases. In each column, we calculate two
success rates: %Repair, indicating partial success (yellow or
green), and %Test, indicating total success (treating yellow
results as failures).

Each cell of the table is coloured red, yellow, or green. Red
cells denote a total failure of patch generation, green cells
denote the generation of the correct patch, and yellow cells
denote partial success. Examples of patches that are cate-
gorized yellow include generating the incorrect arithmetic
operator (such as generating a minus sign when a plus sign
is expected, or not generating the correct constant value
when one is expected) - in some cases, for example when a
constant value is expected, it might be completely impossi-
ble to reasonably deduce which value the developer expects.
Such results can be adjusted by using di�erent test cases
which favourably guide the GPT-3 model - for example, if,
for a given test case, using a plus sign yields the same result
as using a minus sign, perhaps changing the test case will
make the usage of a di�erent operator yield a di�erent result.
Nevertheless, we decided to not �ne-tune the test cases to
maximize result quality, as that is not always realistic.
The results showcased in Table 1 point towards the Fill

strategy being the most e�cient for automatic generation of
patches. Most notably, all modes have a %Repair success rate
above 50% and a %Test success rate above 40%, and all test
programs were successfully repaired by at least one of the
repair strategies. This fact points towards the combination of
strategies being a robust approach to leverage the strengths
of each other. We also denote that most cells contain the val-
ues 3 or 0, with rare occurrences of 2, which implies that the
model tends towards the same results in di�erent iterations.
For this, we have experimented with di�erent values of the
parameters we supply to the model, focusing mainly on the
temperature as it should change its randomness. Neverthe-
less, the results were not noticeably better, generally leading
to lower overall success rate.

Table 2. Automatic repair results for 10 Dijkstra programs.

Fill Choose Instruct
Test
Prog. T C T C

C +
Bias

T C
No

GPT-3

D1 3 3 0 3 3 0 0 0
D2 1 3 0 0 0 0 0 0
D3 1 3 0 0 2 2 3 0
D4 3 3 3 3 0 1 3 1
D5 2 3 0 3 3 2 3 1
D6 3 3 0 0 0 0 0 0
D7 3 3 3 1 3 3 3 1
D8 3 3 0 0 3 3 3 0
D9 3 3 3 3 0 3 3 0
D10 3 3 0 0 3 0 0 0

%Repair 83% 100% 30% 43% 57% 47% 60% –
%Test 83% 100% 20% 23% 20% 47% 60% –

We observe that the usage of bias with the Choose opera-
tion mode yields relatively similar results in terms of success
rates for these problems. The main di�erence when using
bias lies in the fact that some programs that were not repaired
with the previous approach are now able to be repaired and
vice-versa. For this set of programs, we conclude that the
usage of bias does not improve the results signi�cantly, but
it is capable of generating solutions complementary to the
ones generated by the original Choose repair strategy.

5.2 Dijkstra Algorithm

In this set, we have longer and more complex programs for
the Dijkstra algorithm, each with around 2,300 tokens and
170 lines of code. Deliberate errors were added to make the
repairs more challenging. We followed the same methodol-
ogy as in Section 5.1 for the results.

Table 2 summarizes the results for this program set. Like in
the previous set (5.1), Fill remains the most e�ective strategy
with an 83% repair rate for the text model and 100% for the
code model. Despite the increased program complexity, Fill
performed better, with a higher rate of programs passing the
provided test cases. Conversely, the other strategies, Choose,
Instruct, and No GPT-3, were less e�ective with this program
set. Indeed, depending on the considered repair strategy, the
discrepancies across the di�erent sets of programs move
in opposite ways. Increased program complexity may have
improved Fill’s performance by providing more context for
the model, while negatively a�ecting the other strategies,
which seem more suited for shorter and simpler repairs.

Compared to the simpler programs in the previous section,
the type errors in this set usually needmore elaborate repairs.
As an example, consider the ill-typed excerpt from a program
contained in these experiments and its intended repair:

let rec search tree k = match tree with

Empty -> raise Not_found

| Node (left , key , value , right) ->

if k = key then value

else if k < key then left (* intended: search left k *)

else search right k
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Instead of left, the intended expression is search left k.
These repairs need an aggregation of several terms, which
is impossible to obtain with suggestions from the language
server. Essentially, this severely hinders the Choose and No

GPT-3modes, as they heavily rely on that list of code comple-
tions. The Instruct mode correctly infers the corresponding
hole’s type to be (string * �oat) list7 but is unable to gen-
erate the call search left k and produces the empty list
instead, which, nonetheless, produces a correctly typed pro-
gram. From these experiments, we take that Fill works best
for longer programs, as the pure context of the code seems to
be enough and better allows GPT-3 to understand and reason
about the program at hand. Extra analysis of the source code
prior to providing the programs to GPT-3 is more helpful
for smaller programs, in which naturally occurring context
lacks. This is evidenced by programs (4, (5, (8, (9, (10 and
(13, for which Fill presented incorrect or only partially cor-
rect results, while Choose, Instruct or No GPT-3 were able
to generate intended outcomes. This did not occur for the
Dijkstra programs, as Fill showed that it could match the
e�ectiveness of the other strategies for each case.

5.3 Large Scale Evaluation

We also conducted a large-scale evaluation of our approach.
We analyzed a repository of 4,500 OCaml programs, which
had already been created as part of Rite [41]. We provide
detailed analysis of the results obtained from this evaluation,
such as the total repair rate, the number of partially �xed
programs and the distribution of e�ectiveness of the three
repair strategies. Through this evaluation, we aim to demon-
strate our tool’s applicability in real-world scenarios and
potential to improve the quality and reliability of large-scale
software systems.

5.3.1 Pre-Processing the Data. To ensure a comprehen-
sive and accurate evaluation of our tool, we applied a �lter-
ing process to the original dataset obtained from the Rite
project. Speci�cally, we �ltered out bugs that required mod-
i�cations in multiple and disjointed places in the code, as
the current version of our tool considers single expression
bugs, only. Furthermore, we only considered bugs for which
the original �xed version could properly execute for all test
cases generated by the OCaml property-based testing tool
Quickcheck [10]. Proper execution was de�ned as the ab-
sence of errors or timeouts for any given input. This was
necessary to ensure that the bugs were genuine and that any
improvements observed in our evaluation were a result of
our tool’s impact, rather than external factors such as faulty
test cases or unreliable program behavior. After applying
these �lters, we evaluated a set of 1,318 bugs.

7Actually, the function is polymorphic, but the test case requires a more

specialized type, which is what we get thanks to inlining.

5.3.2 Validating the Generated Patches. To validate
the e�ectiveness of our tool in repairing bugs, we used
Quickcheck to generate a random, large number of test cases.
Moreover, we de�ne properties to assert that the human-
�xed program is "equivalent" to the repaired one. Thus, for
each bug, we generated a set of patches and automatically
instantiated a corresponding Quickcheck property. This is
expressed according to the following template:

1 let%test_unit "testName" =

2 Quickcheck.test

3 [% quickcheck.generator: <input_signature>]

4 ~f:(fun args ->

5 [% test_eq: <output_signature>]

6 (Fix.functionToTest args) (Gen.functionToTest args))

To generate a property for the faulty program being repaired,
we consider the faulty function’s signature. The input part
of the signature (line 3) is used to implement a generator
for the input values that will be tested. The output part (line
5) is used to tell Quickcheck the type of the output values
to compare. Line 6 represents the property that should be
veri�ed and means that the result of the original �xed pro-
gram should be equal to the result of the patch being tested.
The number of arguments needs to be adjusted according to
the function being tested and, as such, args is modi�ed to
re�ect that. By default, the generator produces 10,000 inputs.
If the property holds, the patch is considered equivalent to
the �xed version.
A bug is considered to be repaired if at least one of the

generated patches produced the same output as the origi-
nal �xed version for all input combinations generated by
Quickcheck. By automating the instantiation of this prop-
erty for every considered bug, we were able to accurately
validate the e�ectiveness of our tool in repairing bugs. This
approach also allowed us to provide quantitative metrics on
the performance of our tool, such as the percentage of bugs
repaired and the degree to which some bugs are partially
�xed — Figures 3 and 4. This automated validation process is
crucial given the amount of data at this stage. Furthermore, it
also provides some insight into how it could be incorporated
in real-world use cases. To the best of our knowledge, it is
uncommon to provide a fully automatic validation process to
verify whether generated patches successfully �x buggy pro-
grams. Our approach has the �exibility of allowing patches
equivalent to the intended �x, without relying on human
intervention to manually inspect the generated patches.

5.3.3 Results and Discussion. Our approach successfully
repaired a substantial portion of the dataset. Among the 1,318
bugs evaluated, our tool repaired 516 of them, achieving a
repair rate of 39.2%. We found that 441 of the programs were
partially �xed, indicating that the generated patches were
able to address some but not all of the identi�ed issues in
the program, representing a 33.5% partial repair rate. The
consideration of partial �xes provides a more nuanced un-
derstanding of the capabilities of our technique. Rather than
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Figure 3. #Programs that pass at least a given percentage of
tests. For example, 629 programs pass at least 50% of tests.

Figure 4. Distribution of test passing rate of programs. For
example, 208 programs pass between 25% and 50% of tests.

Figure 5. How many programs each mode successfully re-
pairs. Intersections mean that a program is repaired correctly
by both modes. There are 34 programs that can be repaired
by both the Choose mode or the Fill mode.

simply categorizing a program as either �xed or not �xed,
partial �xes enable us to explore the ground that separates
a completely �xed program from a program that remains
broken. Thus, we can form an idea of how the partial �xes
are distributed along that spectrum. Out of the 361 programs
that remained un�xed, we found that 247 of them produced
some error during testing and the testing process did not
�nish. Additionally, 73 of the un�xed programs were due
to our technique being unable to generate any patch for
the identi�ed bugs. Interestingly, we also found that 41 of
the un�xed programs actually failed every test produced by
Quickcheck, indicating that the bugs in these programs were
particularly challenging to address.
Di�erent tool modes exhibit varying degrees of repair

e�ectiveness, as shown in Figure 5. The Fill strategy is the
most e�ective, being responsible for �xing 394 out of the
total 516 programs (76.4%). The Instruct strategy was also
found to be e�ective, repairing 224 programs (43.4%). On the
other hand, the Choose strategy is the least e�ective, with

108 �xed programs (20.9%). It is worth noting that some
programs were repaired by multiple strategies, and in some
cases, the same program was repaired by all three strategies.
Speci�cally, there were 108 (20.9%) programs that were �xed
by both Fill and Instruct, while 34 (6.6%) programs were �xed
by both Fill and Choose, and 20 (3.9%) programs were �xed by
both Choose and Instruct. Additionally, there were 24 (4.7%)
programs that were repaired by all three strategies.

5.3.4 Limitations. Our automated validation strategy ex-
cludes functions relying on user-de�ned data types, as it
needs manually de�ned speci�c generators. This limitation
reduces the number of programs we analyze, as discussed in
Section 5.3.1. Moreover, we assume total functions, meaning
that we consider every possible input for a given type, result-
ing in a more pessimistic repair validation. For instance, if a
function has an integer as argument and is designed to work
only with positive numbers, our fully automated approach
will still test it with negative numbers (as produced by the
prede�ned generator of integer numbers) reporting it as a
non repaired function.8

Let us consider the OCaml implementation for factorial:

(* int -> int *)

let rec factorial n =

if n = 0 then 1

else n * factorial (n - 1)

The provided implementation is the usual recursive de�ni-
tion for factorial. Note this is a partial function as it is only
de�ned for positive values of the input n. If n is a negative
number, factorial will inde�nitely call itself causing a stack
over�ow error. Now, let us consider that this implementation
of factorial results from a repair process, either generated by
Mentat or another tool. When we validate such repair with
our automated validation approach, we use Quickcheck to
automatically generate inputs for this function. In this case,
the prede�ned generator for int will produce both positive
and negative values. Although the repaired factorial function
is correct, our validation will fail due to timeout as soon as
it is called with a negative number.

5.4 Comparative Study

We performed a comparative study of our technique for au-
tomated program repair of ill-typed OCaml programs. We
utilized the results provided in Rite’s [41] repository for
both their tool and Seminal to validate the e�cacy of our
fully automated validation strategy. In section 5.3.4, we ac-
knowledge the demanding and pessimistic nature of our
testing strategy by highlighting its consideration of total
functions, encompassing every possible input for any given
type. This ignores any restriction on the set of valid inputs.
A manual validation process, similar to that employed by
Rite, has the potential to increase the success rate for both

8Generators for positive integers and user-de�ned types can be imple-

mented. However, this would break our goal of a fully automated process.
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Figure 6. #Programs used in each repair technique and in-
tersections.

our approach and the others. This kind of manual valida-
tion allows for a more sensitive consideration of program
characteristics that may be overlooked by a more automated
validation method. That is, some expected usage patterns
may be better captured by a human evaluator with a more
subjective evaluation criteria. An example is judging a func-
tion’s implementation and considering it has been designed
to only work with positive numbers, even though the type
system may only re�ect the function operates on type int.
However, such manual validation would imply extensive
manual e�ort and is infeasible for the size of this dataset.
We compare our approach with two other tools, namely

Rite and Seminal, in terms of their repair capabilities on a
common dataset. Although the three tools used a common
dataset as an underlying basis, each work applied its own pre-
processing criteria to prepare the dataset. As a consequence,
in this comparative study, our original dataset of 1,318 bugs
was �ltered down to 591 bugs, which were common to all
three approaches. Figure 6 shows the distribution of the bugs
and how they intersect amongMentat, Rite and Seminal.

Our technique achieved a repair rate of 37.6% (222 out of
591 programs). It employs a fully automated analysis that
considers a program �xed only if it becomes well-typed
and passes all test cases. Our repair process leverages GPT-
3, a powerful large language model, to generate patches
for identi�ed type errors. This eliminates the need for a
comprehensive system and language-speci�c components
due to GPT-3’s extensive training on multiple languages.

Originally, Rite conducted a manual validation through a
user study with 29 programmers in which a set of 21 buggy
programs was selected and each participant was shown 10

randomly selected buggy programs alongside two candidate
repairs, one generated by Rite and one by Seminal. A full
validation of the entire dataset was not reported. To achieve
this, we used our automated validation framework to verify
which Rite and Seminal generated patches were able to
pass all test cases produced by Quickcheck.
This way, we were able to evaluate the performance of

Rite and Seminal on the same dataset. Rite repaired 198 pro-
grams out of 591 (33.5% repair rate), while Seminal repaired
only 46 programs (7.8% repair rate). These results highlight
the superior e�ectiveness of our technique over the existing

Figure 7. Number of programs that pass at least a given
percentage of tests - comparative study.

state-of-the-art tools for automated program repair in the
context of type errors in OCaml programs. Figure 7 shows
the repair e�ectiveness of the three tools.

One noteworthy advantage of our approach is its language-
agnostic nature. Our technique can be easily adapted to re-
pair programs in other languages, as long as it is possible to
statically determine the types of terms either through infer-
ence or annotations, and the ability to bypass the type system
exists (e.g., Obj.magic for OCaml or undefined for Haskell).
Furthermore, the reliance on LLM’s, such as GPT-3, for gen-
erating patches liberates us from building language-speci�c
generation systems for each case. By leveraging these prereq-
uisites, our approach can be successfully applied to a wide
range of programming languages.
We conclude that Mentat outperforms both Rite and

Seminal in repairing type errors on a common dataset of
OCaml programs. Our fully automated approach eliminates
the need for user studies to validate patch relevance and
ensures that the resulting programs are not only well-typed
but also pass all the provided test cases.

Our results provide the following four insights: First,Men-

tat surpasses both Rite and Seminal in terms of e�ective
program repair, i.e. patches are well-typed and are equivalent
to the intended �xed version; Second, we thoroughly vali-
dated Rite’s repairs, whereas their paper only validates 21
repairs with user involvement; Third, although Rite reports
over 80% success in type repair, we show that the percentage
of repairs passing the tests is 33.5%, which is signi�cantly
lower and highlights the potential for misleading results9;
Fourth, our fully automated validation approach enabled
us to validate other works that previously relied on manual
analysis of a very limited subset of programs.

6 Related Work

Type error debugging research has a rich history spanning
over 30 years, evolving from enhancing error messages [12,
24, 51] to interactive debugging tools [6, 7, 9, 48], and auto-
mated approaches that narrow down error causes [19, 37, 42–
44]. These methods aim to pinpoint errors and require user
intervention for correction. On the other hand, automatic
correction of type errors is a nascent �eld; Seminal [25] is,

9This also contradicts the (informal) usual saying in functional program-

ming: if it type checks, then it is correct.
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to our knowledge, the �rst system for automatic correction
of type errors in functional programming languages. It re-
moves parts of the ill-typed program and attempts to make
syntactic changes. This corresponds to Fill in our study: they
used a syntactic modi�cation to �ll, and we used GPT-3. Rite
[41] aims for program repair of ill-typed programs too. From
a corpus of 4,500 ill-typed OCaml programs, it uses approx-
imately half of the dataset to build a neural network that
learns what modi�cations have been made to, ultimately,
synthesize solutions for given ill-typed programs. Our tool,
Mentat performs source code analysis to produce useful
prompts that leverage GPT-3’s language understanding and
generation capabilities to generate potential patches. While
Mentat, Rite and Seminal share a common objective of
�xing ill-typed OCaml programs, they diverge in their vali-
dation methodologies. Rite relies on a manual analysis of 21
randomly selected programs from the repository by a limited
number of programmers, whereas our technique employs
a fully automated process to validate the generated repairs.
This distinction allows our technique to perform validation
on a larger scale, e�ectively addressing the challenges asso-
ciated with manual validation processes. The de�nition of a
�xed program in Rite is based on the ability of the generated
program to typecheck correctly. In contrast, our work vali-
dates both typechecking and semantical equivalence of the
generated repairs. To achieve this, our technique employs a
methodology that generates and executes test cases for both
the correct program and the generated repairs. It considers
a program to be fully repaired only if the correct program
and the repaired version produce identical outputs for all
test cases. This crucial di�erence allowed us to verify that
a pure type repair can fall short of being an e�ective repair.
We demonstrated that Rite’s reported +80% type repair rate
is comparatively lower in terms of actual program repair, i.e.
the generated repair satis�es the test cases 33.5% of times. As
we mentioned in Section 5.3.4, this is based on a pessimistic
view that a patch must pass all test cases. Indeed, a manual
analysis may reveal that more of the generated patches are
semantically equivalent to the intended program, potentially
improving our results as well as those of Rite and Seminal.
DeepTyper [22] enhances type information for compi-

lation using deep learning in Python and JavaScript. How-
ever, it lacks program repair capabilities. Our work utilizes
OCaml’s type inference for source code analysis and prompt
preparation. DeepTyper could be bene�cial when extending
our approach to other programming languages.
Fault localization [2, 32] is an initial debugging step [31].

Various methods, including execution trace analysis [5], mu-
tation testing [29], qualitative reasoning [33], and seman-
tic fault identi�cation [38], help narrow down suspicious
code elements. Models like code2vec [1] have been trained
to speci�cally detect security vulnerabilities [11]. Our work
concentrates on type errors and uses OCaml’s type inference

to identify potentially responsible expressions by transform-
ing them into di�erent types.
APR is a prominent research �eld. Early approaches use

genetic programming [3, 23], while others employ constraint-
basedmethods [16, 30, 52]. Recent advancements incorporate
machine learning and neural machine translation techniques
[8, 26, 28]. However, translating buggy code to �xed code has
limitations [15] and general-purposemodels supporting code
understanding and generation tasks [1, 17, 27, 45] started
being considered. GPT-2’s code completion e�ectively �xes
Java bugs [39], and Codex has repaired Python and Java

programs [35]. Our work stands out for targeting type errors
in OCaml, which prevent program compilation, unlike other
research focused on functional bugs.

7 Conclusion

This paper introduced a method to automatically �x type
errors in OCaml programs using GPT-3. We achieve this by
analyzing and modifying the faulty source code to create
prompts for GPT-3-based models.

We developed theMentat tool, initially validating it with
simple programs and variations of the Dijkstra algorithm. In
large-scale experiments involving 1,318 buggy programs, we
achieved a 39% repair rate using a novel automated patch
validation approach. In comparison with two other OCaml

program repair tools,Mentat outperformed them, achieving
a 37.6% repair rate on a shared dataset of 591 programs, while
the other tools achieved rates of 33.5% and 7.8%, respectively.

This work used GPT-3, but future versions or other LLMs
[46, 53] could be integrated. Moreover, �ne-tuning a model
for OCaml may enhance program correction.
Starting with single-location faulty programs enables us

to assess the approach’s e�ectiveness before addressing mul-
tiple locations. In future work, we plan to explore this possi-
bility by strategically placing typecast operators to address
program sections and incorporating multiple typecasts in
suitable locations. This would facilitate the identi�cation
and repair of multiple bugs within a single program.

Replication Package

All the necessary resources to replicate this study are public:

• Tool: h�ps://gitlab.com/FranciscoRibeiro/mentat

• Artifact [40]: 10.6084/m9.figshare.23646903.v2
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Abstract
Multiverse debugging extends classical and omniscient de-
bugging to allow the exhaustive exploration of non-
deterministic and concurrent systems during debug sessions.
The introduction of user-defined reductions significantly im-
proves the scalability of the approach. However, the literature
fails to recognize the importance of using more expressive
logics, besides local-state predicates, to express breakpoints.
In this article, we address this problem by introducing tem-
poral breakpoints for multiverse debugging. Temporal break-
points greatly enhance the expressivity of conditional break-
points, allowing users to reason about the past and future of
computations in the multiverse. Moreover, we show that it
is relatively straightforward to extend a language-agnostic
multiverse debugger semantics with temporal breakpoints,
while preserving its generality. To show the elegance and
practicability of our approach, we have implemented a mul-
tiverse debugger for the AnimUML modeling environment
that supports 3 different temporal breakpoint formalisms:
regular-expressions, statecharts, and statechart-based Büchi
automata.

CCS Concepts: • Software and its engineering→ Soft-
ware testing and debugging.

Keywords: multiverse debugging, breakpoint, concurrency,
temporal logic
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1 Introduction
Interactive debugging is an essential part of the develop-
ment lifecycle. The increasing complexity of languages and
projects leads to the need for associated tools to evolve. Om-
niscient debugging [13] allows to return back in time within
one execution trace. Multiverse debugging [14] generalizes
the breakpoint lookup function to a generic reachability
query over the state-space of the program. Multiverse de-
bugging has been introduced to enable the exploration of
concurrent actor-based formalisms. This technique is espe-
cially useful for debugging concurrent systems (e.g., multi-
threaded, actor-based), where different execution schedules
can hide bugs. For high-level specification languages, such
as TLA+ [11] or UML [15], this feature is basically necessary
due to the intrinsic non-determinism [16], which besides con-
currency allows a) to capture entire families of implementa-
tions; and b) to model uncertainty (e.g., as under-specified
decision points). Recently, the introduction of user-defined
reductions [16] rendered multiverse debugging practical for
large or even infinite state-spaces. The generalization of
breakpoint lookup, and the introduction of state-space re-
ductions open up promising research directions that bridge
the gap between classical program debugging and explicit-
state model-checking. This offers a strong formal basis to
build powerful interactive debuggers. However, the expres-
sive power of breakpoints is limited to local state-predicates,
which require the instrumentation of the subject-program
to capture causal stop conditions explicitly. More expressive
breakpoints can be found in the literature [4, 6, 8], which
emphasize the importance of using expressive logics for
defining the target of breakpoint lookup. Nevertheless, these
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approaches only allow reasoning about the past of a com-
putation. Furthermore, they rely either on language-specific
features, such as reflexivity, or require ad hoc runtime sup-
port, which incurs a relatively high development cost.

The main research questions that we address in this study
are:

1) How to improve the expressivity of the conditional
breakpoints to allow reasoning on highly non-deterministic
specifications?

2) How to isolate and modularly compose the conditional
breakpoint semantics with the subject language semantics,
so that the two can evolve independently?
From a methodological point of view we want to enforce
an integrity constraint on the system-under-debug, which
precludes us from applying system instrumentation.

In this paper, we address the breakpoint expressivity issue
by introducing temporal breakpoints, which enable reasoning
both about the past and the future of a computation, without
the need for subject-program instrumentation. This allows
us to describe a new taxonomy of breakpoints, as the possi-
bilities offered by this approach allows us to describe three
types of breakpoints:

• Step Breakpoints corresponds to stopping conditions
expressed on a single execution step. The conditions can
depend on any value present in the configurations, their
evolution triggered by the execution step, as well as the
executed action.

• Safety Breakpoints corresponds to expressions based
on complex sequences of events, to create breakpoints de-
scribing a necessary path to follow before stopping.

• Liveness breakpoints allows us to create breakpoints
from liveness properties, to express conditions on the future
of execution of the system.

Moreover, we introduce the notion of a dependent Semantic-
Language Interface (SLI) to fully isolate the breakpoint seman-
tics from the subject-language, and thus achieve a highly-
modular language-agnostic formalization of a temporal mul-
tiverse debugger. The contributions presented in this paper
have been fully formalized using the L∃∀N theorem prover.

Besides the formalization, we have implemented a proto-
type debugger in JavaScript, which uses, without modifica-
tion, the state-of-the-art AnimUML [10] execution engine as
UML subject-language. To evaluate and emphasize the mod-
ularity of our approach, we have implemented 3 temporal
breakpoint languages with different expressivity/concision
profiles:

• Regular expression breakpoints (reB), similar to
stateful breakpoints [4], restricted to reasoning about the
past (able to express safety properties);

• Statechart-based breakpoints (scB), also restricted
to past reasoning, however syntactically more concise due
to use of variables besides the control-states; and

• Statechart-based Büchi automata breakpoints
(scB𝑏𝑎), allowing both past and future reasoning (able to
express both safety and liveness properties).

Both statechart-based breakpoint languages (scB & scB𝑏𝑎)
were implemented by simply exposing the existing Ani-
mUML SLI as a dependent SLI, which illustrates that our
proposal fosters reuse.

The article is structured as follows. Section 2 overviews the
related works. Section 3 discusses the core of our contribu-
tion. Section 4 illustrates the process of creating a temporal
breakpoint language, using reB as an example. Section 5
discusses the integration with AnimUML and gives some
examples of temporal breakpoints. We discuss the limits of
this approach as well as some future research directions in
Section 6 before concluding in Section 7.

2 Related Work
Multiverse debugging [14] extends omniscient debugging [13]
by embracing the non-deterministic nature of programs. Ini-
tially proposed for actor-based subject languages [14], the
approach has also been adopted for debugging specifica-
tion languages [10, 16]. The AnimUML execution environ-
ment [10] proposes a unified approach for UML execution
and verification, which recently integrated user-reduction
strategies to improve scalability [16]. The generic multiverse
debugger formalization proposed in [16] only supports local-
state breakpoint definitions (i.e., predicates on current exe-
cution states), which leads to complex code instrumentation
for expressing complex stop conditions. In this paper, we
treat the breakpoint definition problem as a language prob-
lem, with its semantics dependent on the subject-language.
Moreover, we show how to leverage the powerful languages
used for temporal verification [19] to improve breakpoint
expressivity.
Control-flow breakpoints debugging [6] allows the user

to specify dynamic breakpoints which are conditional on
the control-flow through which they were reached. Stateful
breakpoints [4] expand on this idea by proposing a regu-
lar expression-like syntax for defining breakpoints. These
tools allow both step and safety breakpoints, however our
approach increases the breakpoint condition expressivity
through liveness breakpoints, a new class of breakpoint
conditions. Furthermore, this paper goes one step further by
allowing arbitrary breakpoint languages, which can be more
expressive, or concise when compared to existing approaches
(based on regular expressions for instance).

Scripted debugging [8] automates repetitive debugging
steps. Expositor [18] proposes an integration of scripted
debugging with time-travel. Our contributions, in this pa-
per, complement these efforts by offering a formal basis for
defining similar APIs externally and independently from the
subject language.
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Analysis of program independent from the subject lan-
guage have already been proposed in [12], which proposes
a way to do runtime monitoring and logging in a language
agnostic way. This paper shows the need for such indepen-
dence, and is thus complementary to ours, as it does not
allow multiverse debugging.

Paper [3] shows that any liveness verification (reasoning
about the future) problem can be transformed to a safety
verification problem (reasoning about the past) through in-
strumentation. By instrumentation [21] the subject-program
is modified (transformed) to integrate auxiliary logging vari-
ables.
However, none of the existing solutions can be directly

adapted to multiverse debugging. To understand the reason
why, let’s take the situation where we want a breakpoint
to stop after a certain number of a repeating event, like
on a precise iteration of a loop as a motivating example.
In a traditional debugging context, there is two ways to
achieve this: instrumentation, similar to [12], or breakpoint-
hit counters as in [6].

In the first case instrumentation introduces a modifica-
tion of the system-under-debug. In this case, we can add a
logging variable to count our occurrences, and set a break-
point to stop when this variable reach a certain value. The
first problem with this method is that we are changing the
system-under-debug and we are at risk of modifying the
original behavior. There is also a risk of forgetting this log-
ging elements in the model even when they are no longer
necessary, leading to security risks, for instance logging con-
fidential information.
To alleviate these problems, some approaches [6] use

breakpoint hit counters, which stores the auxiliary state
in the debugging context. This feature, present in many lan-
guages, is typically implemented as a counter allowing the
user to specify the number of times the breakpoint condition
is hit before triggering the breakpoint. Implementing this
approach in the context of multiverse debugging is more
challenging due to the non-determinism. The key obser-
vation is that the breakpoint state cannot be global to the
execution, but it has to be local to each configuration of the
system-under-debug. Rendering the breakpoint state local
allows it to follow all linear execution paths through the
multiverse. The approach presented here achieves this by
encapsulating the breakpoint state in the configuration of
the breakpoint language, which is manipulated by a special-
ized semantics operating synchronously with the semantics
of the system-under-debug.

3 Temporal Multiverse Debugging
This section presents an extension to the formal semantics of
multiverse debugging to allow temporal breakpoints. Tem-
poral breakpoints greatly increase expressivity, allowing to
capture complex causal conditions that require temporal

logic operators. Section 3.1 provides a high-level overview
of the debugger architecture. Section 3.2 introduces the ex-
tension to the Semantic Language Interface (SLI) that allows
us to capture the inherently-dependent semantics of tem-
poral breakpoint expressions. Section 3.3 discusses the core
of our contribution: the internal architecture of the tempo-
ral finder, which bridges the gap between the subject lan-
guage and breakpoint expressions during the execution of
the run_to_breakpoint debug action. In the interest of brevity,
this article only provides an overview of the formalization1.

3.1 Overview
Figure 1 overviews our proposal showing the user-facing
interfaces at the top, and emphasizing the internal debugger
architecture, which treats breakpoint expressions as a lan-
guage component (right-side of the figure) that is used by
the Temporal Finder during breakpoint lookup. To obtain a
temporal multiverse debugger instance, the tool-builder needs
to provide both the semantics of the subject language (cap-
tured through an SLI) and the semantics of the breakpoint
expressions (captured through an iSLI).

To start the debugging process, the user supplies its spec-
ification to the debugger, which will instantiate the appro-
priate subject language semantics, by the way of the STR
interface which is described in Section 3.2.1.
The debugger exposes multiple debug actions, whose

effect are described in Figure 2: 1) step to move to the next
configuration, 2) jump to return to a previously explored one,
3) select to solve cases of multiple parallel configurations,
and 4) run_to_breakpoint to lookup a particular point in the
system’s execution. During a debug session, the user can in-
spect the current debug configuration, which contains the
set of execution traces along with the memory configuration
at each execution point. When using the run_to_breakpoint
action two more interfaces are available. The first one offers
the ability to define a conditional breakpoint expression,
the main subject of this article. The second interface, not pre-
sented here, is the reduction expressions as defined in [16]2.
The Multiverse Debugger Core Semantics can be seen as a
bridge between the user and the debugged model. This se-
mantics is dependent on the subject language runtime, and on
a finder function. In our case, the subject language runtime
is encapsulated in an SLI that provides language-agnostic
observation and control. Following the approach in [16], the
finder function is defined externally from the core debugger
semantics. As we will see in Section 3.3, the finder function
plays a central role in the context of our contribution, since
it allows us to bridge the gap between the subject-language

1The full machine-parsable formalization is available at https://github.com/
teodorov/reduced-multiverse-debugging
2Reduction expressions define state-space pruning strategies for improved
scalability. However, since they are not necessary to understand temporal
breakpoints, they are not presented here. The interested reader can check
the full formalization (see previous footnote).
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Figure 1. Overview of multiverse debugging with temporal breakpoints

Figure 2. The Debug actions overlayed over a transition
system

semantics and the breakpoint semantics during breakpoint
lookup.

3.2 A Dependent Semantic Language Interface for
Breakpoints

Like in [16], interactions with the subject language are me-
diated by a Semantic Language Interface (SLI), partially de-
fined in Listing 1. This interface ensures an independence
relation between the language and the debugger, while of-
fering flexible observation and control. However, the SLI
interface of [16] lacks some important features needed for
high-fidelity observation, which we address by extending the
scope of the evaluate function. Moreover, the SLI interface
is not generic enough to capture the semantics of temporal
breakpoints, which depends on the subject-language. This
section overviews the basic SLI features (Section 3.2.1), before
(1) discussing the need for an extended evaluate function
(Section 3.2.2), and (2) generalizing the SLI to allow the def-
inition of the inherently dependent breakpoint semantics
(Section 3.2.3).

structure STR(C A):=

(initial: set C)

(actions: C → set A)

(execute: A → C → set C)

def Step (C A):=

(C × MaybeStutter A × C)

class Evaluate(C A E V):=

(E → Step C A → V)

Listing 1. The Semantic Language Interface (SLI) definition

structure iSTR (C A E I V)

(eval: E → I → V) :=

(initial: set C)

(actions: I → C → set A)

(execute: A → I → C → set C)

def Step (C A I):=

(C × I × MaybeStutter A × C)

class Evaluate(C A E' I V) :=

(E' → Step C A I → V)

Listing 2. The Input Semantic Language Interface (iSLI)
definition

3.2.1 Semantics Language Interface. The main compo-
nents of the SLI (Listing 1) are the Semantic Transition Re-
lation (STR) and the evaluate function. The STR offers 3
functions to control the execution. The initial function
returns the set of all initial configurations set C. For a given
configuration C, the actions function returns the actions
set A that can be executed next. Finally, the execute func-
tion executes an action A from a given configuration C, and
returns the possible resulting configurations set C. These
functions return sets to capture the non-determinism in the
language. In [16], the evaluate: E → C → V function al-
lowed the evaluation of an expression 𝐸 over an arbitrary
configuration 𝐶 to obtain a value 𝑉 , which resembles the
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eval function exposed reflexively in some languages. Here
we propose to generalize the evaluate function, as discussed
in the next paragraphs.

3.2.2 Evaluate on Execution Steps. A set of behaviors
fully characterizes the execution of a specification. Each be-
havior (trace) is the linear ordering of a set of memory con-
figurations connected by the actions that allowed to move
from one configuration to the next. An Execution Step of
a behavior is a triple (source configuration, action, target
configuration). The SLI uses the evaluate function for ob-
serving (and reasoning) over the behaviors of the subject-
language specification, but hides the actions and the links
between different configurations. This problem has been
identified in the literature and leads to the Temporal Logic
of Actions [11], where the actions are defined as predicates
over execution steps, and to state-event model-checking [5],
where it gave rise to an extension of linear temporal logic
that allows reasoning over the execution steps directly. In
this paper, the domain of the evaluate function is extended
to evaluate an expression in 𝐸 over an execution step, while
still returning a value in𝑉 . To allow for stuttering execution
steps [1] (steps during which no action is fired) the action
is wrapped in a MaybeStutter monad. This change allows
setting breakpoints on the action that has been fired during
an execution step, and on the one-step changes between two
consecutive configurations.

3.2.3 Input Semantic Language Interface. To handle
breakpoints as an independent language problem we need
to be able to isolate their semantics from the semantics of
the subject language. To understand the main issue, con-
sider a simple conditional breakpoint as • [condition] ◦. The
semantics of this breakpoint depends on the valuation of
the condition by the subject-language, if and only if the
condition is true as the control point (• – controlled by the
breakpoint semantics) passes over the expression, marking
it as (◦ [condition] •). This simple illustration emphasizes
the nature of conditional breakpoint semantics, which can
be seen as a layered semantics with one predicative layer
solved by the subject-language (the condition evaluation),
and another one proper to the breakpoint (the evolution of
control points). The main problem here is that, during evalu-
ation, the breakpoint control-layer needs to dispatch some
expressions to the subject-language semantics.

In this paper, we address this problem by generalizing the
SLI to obtain an Input Semantic Language Interface (iSLI),
presented in Listing 2, which is parameterized by three arbi-
trary types 𝐸, 𝐼,𝑉 and an eval function (eval: E → I → V).
Given an arbitrary expression in 𝐸 and an input scope in
𝐼 , eval will produce a value in 𝑉 . The input scope (in 𝐼 ) is
dynamically passed to the actions and execute functions
of iSTR, enlarging their evaluation context. During the evo-
lution of the execution, if an iSTR semantics encounters an
expression 𝐸 (either while computing the enabled actions

or while executing an action), that comes from the subject
language and thus cannot be interpreted, it can dispatch its
evaluation to the eval function, passing in the current input
scope (an inhabitant of 𝐼 ). Note that each execution Step of
a dependent semantics, captured through an iSLI, also in-
cludes the input, which enables the iSLI evaluate function
to distinguish between steps with different inputs that might
otherwise be considered identical. Furthermore, note that
the expression type exposed by the iSLI (𝐸′) evaluate is
different from the 𝐸 type parameter. 𝐸′ captures the type of
expressions exposed by the iSLI for its observation.

For encoding the semantics of a breakpoint language the
iSLI parameters are instantiated as follows: a) the E type
is mapped to the expression type exposed by the evaluate
function of the subject language SLI; b) the I type is mapped
to the execution Step of the subject-language SLI ( C ×
MaybeStutter A × C); c) the V type of the iSTR is mapped
to the return type of the subject-language evaluate3; d)
the eval parameter is mapped to the step-aware evaluate
function of the subject-language.

To encode temporal breakpoints, in this paper, we rely on
a model-checking approach, which solves a language inter-
section problem to decide if the subject-language execution
includes behaviors from the temporal property language [7],
which is the temporal breakpoint language in our case. To
achieve this, we choose to rely on an approach using state-
based acceptance conditions, which allows us to encode all
regular and 𝜔-regular properties. To this end, we comple-
ment the iSLI interface with (1) an accept: C → bool pred-
icate defining the set of accepting states of the breakpoint
language; and (2) an emptiness_checker algorithm that
completes the semantic interpretation of the breakpoint lan-
guage. For a regular language, limited to past reasoning, the
emptiness_checker can use any reachability algorithm. For
𝜔-regular properties the emptiness_checker should check
for the specific acceptance conditions, which here are limited
to Büchi acceptance – detecting cycles in the behavior that
contain accepting configurations.

3.3 The Temporal Breakpoint Finder
Up to here we have been focused on capturing the semantics
of the subject language (shown left in Figure 1) and of the
breakpoint language (shown right in Figure 1) in a general
and modular fashion, only hinting at links with multiverse
debugging. In this section, we discuss the Temporal Finder
component that binds everything. The Temporal Finder
does the actual breakpoint lookup upon the invocation of
the run_to_breakpoint debug action. The core semantics [16]
imposes the following high-level signature for the Finder

3Please note that, for simplicity, our formalization only requires that the
subject-language and the breakpoint-language agree on the representation
of booleans, since the subject-language evaluate is only used for predicates.
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Figure 3. The architecture of the temporal finder function.

component: def Finder(C A B R) := STR C A → set C →
B → R → list C, where the STR is the subject-language
STR, set 𝐶 is the set of configuration from which the lookup
should start, and an inhabitant of 𝐵 encodes the breakpoint
syntax, a reduction in 𝑅 encodes the state-reduction syntax
used for state-space pruning. The Finder returns a list of
subject-language configurations encoding a witness trace,
i.e. an accepting behavior (according to the breakpoint se-
mantics) starting from one of the start configurations.

Figure 3 overviews the architecture of a Temporal Finder
that exploits a breakpoint semantics isolated behind an iSLI
interface4. The architecture is split in 3 components, the parts
needed from subject-language SLI (left in Figure 3), the parts
needed from the breakpoint-language iSLI (top in Figure 3)
and the FinderCore (bottom-right in Figure 3). The subject-
language evaluate function is provided to the breakpoint-
language iSLI, to obtain the iSTR instance. The FinderCore
prepares and composes the two semantics, through a syn-
chronous composition approach. The ReplaceInitial oper-
ator wraps the subject-language STR replacing the initial
configurations, since the composition should start from the
initial configurations provided as parameter. The resulting
STR and the breakpoint iSTR are synchronized using the
StepSynchronousComposition operator, which itself exposes
an STR with composite configurations (C1 × C2) and ac-
tions (MaybeStutter A1 × A2) – note that deadlocks in the
subject-language STR induce stuttering execution steps. The
composed STR is lowered to a Transition Relation (TR) inter-
face (STR2TR operator), as in [16], which reifies the relations
between the composite configurations and the accepting
predicate. Note that all states of the subject-language are
considered as accepting ((c) => true), thus the STR2TR oper-
ator exhibits only the accepting conditions provided by the
breakpoint language iSLI. This is typical in model-checking,
since usually we do not want the subject language to prohibit
the property (the breakpoint in our case) from marking a
4The interested reader should refer to the formalization repository for the
full definition of the Temporal Finder component

composite configuration as accepting. The resulting TR is
fed to the emptiness checker, which searches for accepting
behaviors. If a witness trace is found, it should be filtered by
mapping each entry to the subject-language configuration.
This last step removes the breakpoint configuration compo-
nent from the trace allowing the core debugger semantics to
patch the execution history with the witness.

3.4 The Step Synchronous Composition Operator
The StepSynchronousComposition, as described in Listing

3 is the operator used to combine the subject STR with the
breakpoint iSTR for the breakpoint search phase. It takes as
inputs the subject STR as lhs (for left hand side), instantiated
with configuration type𝐶1 and action type𝐴1, the breakpoint
iSTR as rhs (for right hand side), instantiated with types 𝐶2
and𝐴2. It returns a new STR instantiated with two new types,
the configurations composed from the left and right sides
(𝐶1 ×𝐶2) and the action (𝑀𝑎𝑦𝑏𝑒𝑆𝑡𝑢𝑡𝑡𝑒𝑟 𝐴1 ×𝐴2), where the
MaybeStutter offers the possibility for the lhs side of the
action to stutter, meaning not taking a step while the rhs
takes one. This is necessary for the correct implementation of
liveness breakpoint semantics in the context of finite system
behaviors, which arrives for terminating behaviors - wanted
(normal termination) or unwanted (deadlocks).

This newly instantiated STR has the three expected func-
tions: The initial function returns the set of configurations
composed of all the combinations of initial configurations
from the lhs and rhs. The actions function will first create
the set of all possible steps from the lhs, with the source con-
figuration taken from the left side of the function parameter.
For all actions possible from this configuration, it takes the
resulting configurations and creates all those steps. Then, the
second part of the function begins depending on if this set
of possible steps is empty or not. If at least a step is possible,
for all those present in the set we check which actions are
possible from the rhs. Then we return the action composed
from the action taken from the step (𝑠1.2.1 is written this
way because of the way the parenthesis are placed in the
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1 def StepSynchronousComposition

2 {C1 C2 A1 A2 Ec Es : Type}

3 [∀ actions : set (C1 × MaybeStutter A1 × C1), decidable (actions = ∅)]
4 [eval : Evaluate C1 A1 bool Ec Es]

5 (lhs : STR C1 A1)

6 (rhs : iSTR C2 A2 Es (Step C1 A1) bool eval.step)

7 : STR (C1 × C2) (MaybeStutter A1 × A2) :=

8 {

9 initial := { c | ∀ (c1 ∈ lhs.initial) (c2 ∈ rhs.initial), c = (c1, c2) },

10 actions := _ c,

11 match c with

12 | (c1, c2) := let S1 := { s1 |

13 ∀ (a1 ∈ lhs.actions c1)

14 (t1 ∈ lhs.execute a1 c1), s1 = (c1, enabled a1, t1)}

15 in if S1 ≠ ∅
16 then { a | ∀ (s1 ∈ S1) (a2 ∈ rhs.actions s1 c2), a = (s1.2.1, a2) }

17 -- add stutter if lhs deadlock

18 else { a | ∀ a2 ∈ rhs.actions (c1, stutter, c1) c2, a = (stutter, a2)}

19 end,

20 execute := _ a c, { t |

21 match a, c with

22 | (stutter, a2), (c1, c2) :=

23 ∀ t2 ∈ rhs.execute a2 (c1, stutter, c1) c2, t = (c1, t2)

24 | (enabled a1, a2), (c1, c2) :=

25 ∀ (t1 ∈ lhs.execute a1 c1)

26 (t2 ∈ rhs.execute a2 (c1, enabled a1, t1) c2), t = (t1, t2)

27 end

28 }

29 }

Listing 3. The L∃∀N formalization of the Synchronous Composition Operator

cartesian product of the step: (𝐶 × (𝑀𝑎𝑦𝑏𝑒𝑆𝑡𝑢𝑡𝑡𝑒𝑟 𝐴 ×𝐶)),
so the first field 2 access to the inner parenthesis, then the
field 1 to the action) and the one allowed in the rhs. If no
action is possible in the lhs, the system is in deadlock but
we allow it to stutter so the rhs is not blocked. This way the
breakpoint may trigger if the configuration is an accepting
one, even if the system is blocked. To do this, we create a
step where the action is stutter and the target configuration
is identical to the source one. We check if an action is possi-
ble with this step as input, and if it is the case, we return it
in an action composed with stutter. The execute function
takes a composed action and composed configuration as an
input. If the left side of the action is a stutter, we execute
the rhs with a stuttering step as input like in the actions
function, then return the configuration composed from the
source lhs configuration and the target rhs configuration. If
the action is enabled, we execute the lhs, then the rhs with
resulting step and return the combination of both resulting
target configurations.

4 Creating a Breakpoint Language
In the previous section, we showed how we built an ar-
chitecture for our debugger that is independant from the
breakpoint language, allowing to swap them depending on
the need of the user. Before we give examples of how dif-
ferent languages can be useful, this section will cover the
creation of one such language, to show which efforts are
needed to define them and adapt them to our approach. We
will create a temporal breakpoint language with a regular
language expressivity. The language semantics is based on
non-deterministic finite automata (NFA) with a binary vo-
cabulary induced by subject-language predicates (valuated
through the subjects evaluate function). The language out-
line is given using JavaScript in Listing 4. We will start by
defining, through an example, a concrete JavaScript syn-
tax (breakpointAST ). Then we define a minimal semantics
through an iSLI (Semantics). Finally, we briefly discuss how
this language can be used as a compilation target for a more
light-weight regular-expression based syntax.
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Figure 4. The breakpoint as expressed in Listing 4 in the
form of a regular expression and a NFA

A JavaScript NFA Syntax. The example breakpoint that
we use is based on a two-process mutual-exclusion specifica-
tion. It looks-up a trace towards a configuration where one
of the processes reaches the critical section. This condition
can be captured using the (NFA) described in Listing 4. The
graphical version of this NFA is also presented in the bottom
of Figure 4. The const breakpointAST is associated to an object
that encodes the NFA. The states are encoded using integers,
the fanout of each state is represented as a list of objects
with two fields: a guard – named g, and a target – named t.
The automaton has three instance variables, encoding the
start state (the integer 1 in our example), the fanout from
each state given as a dictionary, and an accepting field which
encodes the set of accepting states as a list of state ids. Note
that, due to the space restrictions, some of the guards re-
fer to the definition in the (RegExp) box, the substitution is
considered implicit in the following.

A JavaScript iSLI for NFAs. The dependent semantics
of the NFA language is defined by the class NFASemantics,
which is instantiated with a model and a subject-language
evaluate function (the two constructor parameters). The STR
interface is satisfied by the 3 functions: initial, which sim-
ply returns a singleton array with the initial model state
this.model.start; actions, which retrieves the fanout of its
configuration argument and filters out the transitions for
which the guard evaluation is false; and execute, which sim-
ply returns a singleton array with the target of the transition
(line 23). Lastly, the isAccepting predicate allows checking
the acceptance status of a given configuration by checking its
inclusion in the accepting list of the syntax model. Note the
semantic layering obtained through the call to the subject-
language evaluate function performed with the alien guard

1 const breakpointAST = {

2 start: 1,

3 fanout: {

4 1: [{g: "true", t: 2},

5 {g: AtoCS , t: 3},

6 {g: BtoCS , t: 4}],

7 2: [{g: "true", t: 2},

8 {g: AtoCS , t: 3},

9 {g: BtoCS , t: 4}]},

10 accepting: [3, 4]

11 };

12
13 class NFASemantics{

14 constructor(model , evaluate){

15 this.model = model;

16 this.subjectEvaluate = evaluate; }

17 initial (){

18 return [this.model.start]; }

19 actions(input , configuration){

20 return this.model.fanout[configuration]

21 .filter(a => this.subjectEvaluate

(a.g, input)); }

22 execute(action , input , configuration){

23 return [action.t]; }

24 isAccepting(configuration){

25 return this.model.accepting.includes(

configuration); }

26 }

Listing 4. JavaScript semantics for our breakpoint language
iSTR

syntax (a String) and the input in the actions function. To
evaluate the guard, the subject-language evaluate function
needs to compile the expression and to get its valuation on
the input, which encodes a subject-language execution-step
(computed by the StepSynchronousComposition operator).

Finally, we need to provide an emptiness checker, not shown
in Listing 4, which performs the reachability query. Any
search algorithm will work, however, we recommend us-
ing the reduced reachability procedure from [16], which
can improve search scalability. Note that, syntactically, NFA
are identical to Büchi automata, though the interpretation
of the accepting configuration changes. Thus by replacing
the emptiness checker component with a Büchi emptiness
checking algorithm [9] we can obtain the more expressive𝜔-
regular semantics, which subsumes linear temporal logic, for
instance. The statechart-based Büchi automata breakpoints
(scB𝑏𝑎), presented in the following section, are based on this
observation.

Regular-Expression Breakpoint Syntax. Given the NFA
breakpoint semantics presented in the previous paragraphs,
it is relatively simple to expose a regular-expression break-
point syntax to the user, like the one illustrated in the (Reg-
Exp) box on the top-right of the Listing 4. In our implemen-
tation, discussed in the following section, we have relied
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on the Thompson construction [20] to convert the regular
expressions to the equivalent NFA, followed by the removal
of the 𝜖 transitions to reduce non-determinism.

5 A Temporal Multiverse Debugger for
AnimUML

To illustrate the practicability of our approach, we have im-
plemented a temporal multiverse debugger in JavaScript for
theAnimUMLmodeling environment [10] 5. A self-contained
prototype is available at github.com/MatthiasPasquier97/
temporal-breakpoints-for-multiverse-debugging. The follow-
ing paragraphs discuss the implementation efforts before
illustrating the three new classes of temporal breakpoints
on a simple mutual exclusion example.
Figure 5 gives an overview of the implementation effort

to create the prototype. As opposed to the previous work
in [16], our implementation faithfully follows the formal-
ization presented in the preceding section. The Debugger
Core component semantics is implemented as a SLI, which
encapsulates the debugger state in a specific configuration
instance, and exposes the debug actions. The existing seman-
tics of the AnimUML subject-language was used “as is” by
wrapping it in an STR adapter. However we had to imple-
ment the step-evaluation function (evaluateStep), which
was not available. We note however that the dynamic nature
of the JavaScript implementation language eased the imple-
mentation effort. The Finder component was implemented
from scratch, however we have isolated the synchronization
and algorithmic components in an external standalone li-
brary, named Z2MC, which is available under a MIT License
at https://github.com/teodorov/z2mc-javascript.

To demonstrate the independence between the debugger
and the breakpoint language we have implemented three
breakpoint languages natively, shown at the bottom of Fig-
ure 5: 1) Regular Expression (reB), similar to stateful break-
points [4], restricted to reasoning about the past (safety prop-
erties); 2) AnimUML statechart-based (scB), also restricted to
past reasoning, however syntactically more concise due to
use of variables besides the control-states; 3) Buchi AnimUML
statechart-based (scB𝑏𝑎), allowing both past and future rea-
soning (both safety and liveness properties).

The Regular Expression breakpoints implement the break-
point language discussed in the previous section (Section 4).
For the AnimUML statechart-based breakpoints, we have
implemented the iSLI interface as an adapter over the exist-
ing AnimUML semantics. Here again the dynamic nature
of the implementation language eased the task. The two ad-
vantages of the scB and scB𝑏𝑎 are that (1) statechart greatly
improve the conciseness of the specifications compared to
simple NFAs (2) in the context where the specifications them-
selves are AnimUML statecharts, we found it advantageous

5The AnimUML modeling environment is available under an Eclipse Public
License V2.0 at https://github.com/ESEO-Tech/AnimUML

to provide a syntactically similar breakpoint language. Also
note that a similar approach was previously proposed in [2],
in the context of model-checking. However, in this paper,
both the formalization and the implementation better iso-
late the subject-language from the dependent language (the
breakpoint language). The emptiness checking algorithms
paired with each of the breakpoint language is available in
the Z2MC library.
The remainder of this section illustrates the three new

classes of breakpoints, besides the configuration-based break-
points, in the context of on a mutual exclusion specification
given in Figure 6 (left-side). For simplicity here, the exam-
ple breakpoints are all given textually in Listing 5 with one
exception: the LTL breakpoint (line 14 - in Listing 5) that is
was manually converted to the AnimUML büchi statechart
shown in Figure 6 (right-side). This transformation, out of
the scope of this contribution, can be easily automated [2].
To help the comprehension of this section, we will give

a brief overview of the concept behind the algorithm we
used as an example. Peterson’s algorithm [17] is a mutual
exclusion algorithm that allows two processes to share a
single-use resource without interfering with each other. In
this algorithm, the two process alice and bob have a flag
that indicates whether it wants to enter the critical section.
There is also a shared turn variable that indicates whose
turn it is to enter the critical section. When a process wants
to enter the critical section, it sets its flag to true and sets
the turn variable to the other process attributed value. The
process then waits until the other process sets its flag to
false. Once the other process has released the resource and
set its flag to false, the process can enter the critical section
and perform its task. When the process is done, it sets its
own flag to false, allowing the other process to enter the
critical section. The algorithm ensures that only one process
can enter the critical section at a time, and that each process
takes turns entering the critical section.

Step Breakpoints: Looking at Execution Steps. Express-
ing conditions on execution steps expands the possibilities
for debugging. First of all, the step breakpoints allow to
reason on the action between the configurations. In their
simplest form they can allow stopping the execution when a
named action is reached, as illustrated with the first 3 step
conditions (lines 7-9) in Listing 5. The model in Figure 6 con-
tains two named transitions in the alice statechart (wantsIn
from Initial to Waiting and goesIn from Waiting to Criti-
cal). The AnimUML iSLI a step-expression IS_TRANSITION
(<name>) that evaluates to true when the transition named
is fired on an execution step. The AWantsIn breakpoint will
stop the execution when the model will execute a step with
the alice.wantIn action. Furthermore, the step breakpoints
allow reasoning on the delta changes between two consecu-
tive configurations of a behavior (before and after an action).
The TurnChanged breakpoint (line 10 in Listing 5 shows a
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Figure 5. Overview of the implementation effort for obtaining temporal multiverse debugger for AnimUML

Figure 6. A mutual exclusion specification in UML statecharts along with an statechart-based büchi temporal breakpoint
encoding a fairness condition.

breakpoint that will be triggered when the shared variable
turn changes (note the @var-ref@ syntax for refering to the
target configuration of a step. This feature can be used to
implement the more classical halt-on-write breakpoint. Also
it allows breaking on more specific differences between the
variables.

Safety Breakpoints: Looking into the Past. The safety
breakpoints, encoded here either using regular-expressions
or using AnimUML statecharts, allow to capture complex
sequences of events, in the spirit of stateful breakpoints [4]
and scripted debugging [8], but adapted to the multiverse
debugging context. The main point here is that the state
of the breakpoint should be matched with the state of the
subject, due to the need to navigate freely on all branches
of the state-space. The iteration and complexSeq breakpoints
(lines 13 and 14 in Listing 5) illustrate two scenarios. The
iteration breakpoint stops the execution when bob reaches

1 //Configuration conditions

2 BWaiting = | IS_IN_STATE(bob, bob.Waiting)|

3 BInCrit = | IS_IN_STATE(bob, bob.Critical)|

4 NotBInCrit = |!IS_IN_STATE(bob, bob.Critical)|

5 //Step conditions

6 AWantsIn = | IS_TRANSITION(alice.wantsIn)|

7 AGoesIn = | IS_TRANSITION(alice.goesIn)|

8 NotAGoesIn = |!IS_TRANSITION(alice.goesIn)|

9 TurnChanged = |data.turn !== @data.turn@|

10 //Regular expression breakpoints

11 iteration = |true |*.( NotBInCrit *. BInCrit){10}

12 complexSeq = (! AgoesIn *. BInCrit +){2}.( AgoesIn

.(! AgoesIn && !BInCrit)*. BInCrit .(! AgoesIn &&

!BInCrit)*).|true |*. TurnChanged

13 //LTL breakpoints

14 Fairness = ! ( [] ( (AWantsIn -> <> AGoesIn)

15 && (BWaiting -> <> BInCrit)))

Listing 5. Some breakpoints based on the regular expression
langage
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Figure 7. Some possible traces matching the breakpoint
"|true|*.BInCrit.|true|*.turnChanged".

the critical section the tenth time. The complexSeq scenario
looks up for a behavior where the turn variable changed
after a sequence where bob passes twice through the critical
section followed by the passage in the critical section of alice
then of bob. While expressive this last example underlines
one limitation of regular-expressions – they become large
and difficult to understand fast. AnimUML statechart break-
point can somewhat alleviate these difficulties, relying on
the powerful syntactic sugar offered by the statechart for-
malism (variables and effects, hierarchical-states, orthogonal
regions). Please also note that complexSeq scenario freely
mixes configuration and step conditions. Figure 7 shows an
example of the possible traces that can be obtained when
running a breakpoint describing such sequences of events,
overlayed with the execution steps matching BInCrit and
turnChanged conditions. Note that the turnChanged con-
dition observes the execution steps that change the turn
variable.

Liveness Breakpoints: Talking about the Future. The
expressivity of the regex and AnimUML statechart break-
point is limited to regular languages, which encode only
conditions on the past of the execution – something bad
never happens. However, a complete system specification
should also enable the desired behaviors to appear. In the
literature, these conditions are known as liveness proper-
ties – something good is allowed to happen. Our prototype
enables expressing breakpoint conditions like Fairness (line
14 in Listing 5) which will be triggered if there exists an
infinite path (a loop in the state-space) where alice or bob
want to get to the critical section, but they are not allowed
in. It is expressed using LTL, which is a formal specifica-
tion language used to reason about the temporal behavior
of systems. LTL syntax consists of a set of logical operators,
including temporal operators like “X” (next), “[]” (globally),
“<>” (eventually), and “U” (until), combined with standard
propositional logic operators such as “!”, “&&” or “||”.
As the Petteron algorithm respects the fairness property,

we made a small demonstration on a faulty model in Figure 8.
In the model, the turn variable mechanism is replaced by
the possibility for alice to go from the Waiting state back to
the Initial state to avoid a deadlock in the case where both
actors want to enter the critical section at the same time.
The Fairness Breakpoint then breaks when a loop is found
where alice wants to get to the critical section (It enters the
Waiting state), but never does.

We strongly believe that having different breakpoint lan-
guages will allow the community to find the balance between
expressivity and ease of use. This section illustrates that our
modular architecture can be implemented in practice and
allows multiple formalisms for capturing temporal break-
points during multiverse debugging. The next paragraphs
discuss the current limitations of our proposal.
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Figure 8.A trace obtainedwhen running BreakpointFairness
over a faulty mutual exclusion example

6 Discussion
We see some limits to this work. To keep the formalization
simple, it only allows for one breakpoint lookup at a time. Al-
lowing multiple breakpoints is possible, however care should

be taken if the breakpoints interfere with each other in their
composition with the system (for example, if one breakpoint
blocks a behavior of the system which is not needed in the
description of the path, but another breakpoint needs to
observe it). Currently, our formalization does not allow step-
in debug actions, thus not limiting the possible complexity
of what is executed in a single step. To solve this problem,
the action language could also implement the SLI interface,
which would allow creating a step-in action that instantiates
a new debugger on this language to explore the execution
of this step, conceptually leading to a stack-like debugger
hierarchy.
Among the improvements needed by the AnimUML pro-

totype we can cite: the lack of a graphical interface, and
experimenting with other languages (sequence diagrams for
instance) for temporal breakpoints.

For now, the independence between the subject language
and the debugger has only been tested on a guard action lan-
guage as well as AnimUML, but we believe that our approach
is applicable to other specification languages. Currently, we
are working on instantiating it for the TLA+ specification
language. In the future, we plan to investigate the cost of im-
plementing the semantic language interface (SLI) proposed
here for a highly-concurrent implementation language such
as Erlang, which will bring new implementation challenges
for multiverse debugging. In a more general way, the com-
patibility of our approach with existing debugging interfaces
(like Java Debug Interface or Chrome DevTools Protocol De-
bugger) is dependent on the compatibility with our SLI inter-
face. This need can be summarized by two main points. First,
the possibility to capture the configurations encountered in
the execution and compare them. Second, the presence of an
evaluation function over the execution steps.

Finally, we need to investigate how temporal breakpoints
work with reductions that are essential to explore bigger
models. While they can make the exploration more efficient,
they can also cut branches, preventing some breakpoints to
be triggered. The goal the user is trying to reach must be
taken into account when choosing a reduction, and not only
try to counter the causes of state-space explosion.

7 Conclusion
The ever-increasing complexity of modern concurrent sys-
tems requires the use of highly non-deterministic specifi-
cation languages, which challenge the limits of human un-
derstanding at all abstraction levels. This article introduces
temporal breakpoints for multiverse debugging, which im-
prove the expressivity of the stop conditions used during the
diagnosis process. Our contribution is accompanied with a
modular and compositional formal semantics, which eased
the implementation of a prototype for the non-trivial Ani-
mUML modeling environment.
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Abstract
Static analyses provide the foundation for several tools that
help developers find problems before executing the program
under analysis. Common applications include warning about
unused code, deprecated API calls, or about potential security
vulnerabilities within an IDE. A static analysis distinguishes
itself from a dynamic analysis in that it is supposed to termi-
nate even if the program under analysis does not. In many
cases it is also desired for the analysis to be sound, meaning
that its answers account for all possible program behavior.
Unfortunately, analysis developers may make mistakes that
violate these properties resulting in hard-to-find bugs in the
analysis code itself. Finding these bugs can be a difficult task,
especially since analysis developers have to reason about
two separate code-bases: the analyzed code and the analysis
implementation. The former is usually where the bug man-
ifests itself, while the latter contains the faulty implemen-
tation. A recent survey has found that analysis developers
prefer to reason about the analyzed program, indicating that
debugging would be easier if debugging features such as
(conditional) breakpoints and stepping were also available
in the analyzed program. In this paper, we therefore propose
cross-level debugging for static analysis. This novel technique
moves debugging features such as stepping and breakpoints
to the base-layer (i.e., analyzed program), while still making
interactions with the meta-layer (i.e., analysis implementa-
tion) possible. To this end, we introduce novel conditional
breakpoints that express conditions, which we call meta-
predicates, about the current analysis’ state. We integrated
this debugging technique in a framework for implement-
ing modular abstract interpretation-based static analyses
called MAF. Through a detailed case study on 4 real-world
bugs taken from the repository ofMAF, we demonstrate how
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cross-level debugging helps analysis developers in locating
and solving bugs.

CCS Concepts: • Software and its engineering→ Auto-
mated static analysis; Software testing and debugging.
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1 Introduction
Static analyses derive run-time properties of programs with-
out actually running them. They provide the foundation for
tools such as Integrated Development Environments, opti-
mizing compilers, and quality assurance tooling. Termination
is an important property for any static analysis, stating that
the analysis always terminates evenwhen the program under
analysis does not. In application contexts such as compilers,
analyses also ought to be sound, meaning that their results
account for any possible execution of the program under
analysis. For example, an analysis that determines whether
integers can be stored in a unsigned variable, should only
state that an expression will evaluate to a positive integer if
this is the case for every possible program execution.
Unfortunately, analysis developers may make mistakes

while trying to realise these properties. Such mistakes are of-
ten hard to locate and therefore fix. Debuggers have proven
themselves as tools for locating the source of problems in
an application. However, as Nguyen et al. [7] found in a sur-
vey conducted amongst 115 analysis developers, traditional
debuggers are ill-suited for debugging a static analysis:

• Debugging target mismatch: a traditional source-level
debugger targets the code of the analysis implemen-
tation. However, a bug usually manifests itself in an
analyzed program. Therefore, for analysis developers,
it can be easier to reason about the behavior of the
analysis by looking at a specific analyzed program,
rather than debugging the static analysis as a whole.
Stepping features of the debugger should therefore
also be able to target the analyzed program, rather
than the analysis implementation itself.
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• Generic visualisation: debuggers show generic infor-
mation (e.g., the value of variables in the current call
frame) about the implementation of a static analy-
sis. As static analyses typically follow the same struc-
ture, domain-specific visualisations can be developed.
Nguyen et al. find that these domain-specific visualisa-
tion help to understand the behaviour of the analysis,
and help to locate bugs.

In this paper, we argue furthermore that the breakpoints
from traditional debuggers are inadequate:

• Shifting breakpoints to the base layer: traditional de-
buggers that target the analysis implementation do not
support placing breakpoints in the analyzed program.
This makes debugging more difficult, since the analy-
sis developer cannot easily suspend the analysis when
a particular point in the analyzed code is reached.

• Domain-specific conditional breakpoints: conditional
breakpoints enable developers to limit the number of
times a debugged program is suspended at a break-
point. Similar to regular breakpoints, we argue that
the conditional ones ought to be placed in the analyzed
code. However, they must be cross-level, meaning that
they do not only express properties of the analyzed
program (base level), such as the contents of an in-
scope variable, but also properties about the global
analysis state (meta level) at the point of its evalua-
tion. Predicates for conditional breakpoints therefore
become domain-specific, which renders expressing
properties about the analysis state easier compared to
expressing them in terms of implementation-specific
data structures.

1.1 Contributions
In this paper, we propose cross-level debugging for static anal-
ysis. More specifically, we propose a debugger that moves
stepping and breakpoints features to the analyzed program
(base level), while still allowing for expressing properties
about the analysis implementation (meta level) as conditional
breakpoints. To this end, we propose domain-specific meta-
predicates that can be used to formulate analysis-specific
conditional breakpoints. Our debugger therefore crosses the
boundary between the base level andmeta level, and becomes
cross-level. In summary our contributions are as follows:

• A novel debugging technique for static analysis called
cross-level debugging, which includes domain-specific
visualisations and stepping features that can step through
each individual step of the analysis.

• Three categories of domain-specific meta-predicates
that can be used as the conditions for our cross-level
conditional breakpoints.

• An implementation for this debugger using MAF, a
framework for implementing modular analyses for
Scheme.

1.2 Motivating Example
Wemotivate the need for cross-level debugging of static anal-
ysis implementations through a hypothetical sign analysis
that does not properly allocate the parameters of a function.
The bug manifests itself during the analysis of the following
Scheme program:

1 ; define a function named "add"
2 (define (add x y)
3 (+ x y))
4 ; call the "add" function
5 (add 5 2)

When executed by a concrete interpreter, the program
evaluates to 7. The corresponding analysis result for this
program should be the + element of the sign lattice of ab-
stract values (or its ⊤ element in case sound imprecisions
are allowed). Imagine that the hypothetical sign analysis
produces the ⊥ lattice element instead, denoting the absence
of sign information.

Without prior knowledge about this bug, it may be unclear
what part of the analysis is to blame. Several analysis compo-
nents may be at fault: the implementation of the abstraction
of literals 5 and 2 to sign lattice elements, the implementa-
tion of the abstract + operation on these lattice elements,
or the implementation of the abstract semantics of function
calls and returns.
Inspecting the state of the analysis at the corresponding

points in the analysed program would help to locate the
bug in the analysis implementation. Unfortunately, regular
debuggers are not well-equipped for this task. First, the anal-
ysis implementation does not exactly mirror the structure of
the analysed program. Steps through the analysis implemen-
tation therefore do not necessarily correspond to steps in
the analysed program. This motivates the need for moving
stepping and breakpoint features to the analyzed program
(base level) rather than the analysis implementation (meta
level).

Second, regular debuggers do not understand the structure
of the analysis state. For example, at line 3, it is expected
that the analysis knows about variable 𝑦 in the program
under analysis. Although a regular debugger can visualize
the state of the analysis implementation in terms of local
and global variables, it does not provide an effective way
to visualize the contents of, for example, the environments
and stores that the analysis is manipulating. This motivates
the need for domain-specific visualisations that show the
analysis state on a more abstract level, rather than in terms
of implementation-specific data structures.

Third, regular debuggers do not support analysis develop-
ers in formulating and testing hypotheses about the source
of a bug in terms of program points from the program un-
der analysis. For example, if the analysis developer suspects
that the abstract semantics of function calls is to blame, it
would be natural to place a breakpoint at the beginning of
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the add function. For the hypothesis that no addresses have
been allocated in the store for the function’s parameters, the
following domain-specific conditional breakpoint can help
reduce the number of steps required to test it:

(define (add x y)
(break (not (store:contains "y")))
(+ x y))

Note that this breakpoint has not been formulated in terms
of the program under analysis, but in terms of the state of the
analysis when it reaches the corresponding program point
in the program under analysis. This motivates the need for
cross-level conditional breakpoints that can be placed in the
analyzed code itself.

2 Effect-Driven Modular Static Analysis
In this paper, we focus on static analyses defined as abstract
definitional interpreters, which use global store widening
and are effect-driven in their worklist algorithm. In the next
few sections we introduce each of these parts of our target
static analysis, and illustrate how bugs can arise in their
implementation.

2.1 Abstract Definitional Interpreters
Abstract interpretation [3] is an approach to static analysis
where an analyser is derived by starting from the concrete
semantics of the language under analysis, and then abstract-
ing parts of this concrete semantics. As an example, consider
a language that consists of numeric literals, addition (+) and
subtraction (−) or any combination thereof. In its concrete se-
mantics, numeric literals evaluate to themselves and addition
and negation are defined as usual.

An abstraction of this language could abstract each num-
ber to its sign. In this semantics, the abstraction for 5 would
be +. We also write that 𝛼 (5) = +, where 𝛼 is called the
abstraction function. The abstract versions of the addition (+̂)
and subtraction (−̂) operations have to be defined differently.
For example, summing two positive numbers results in a
positive number. However, summing a positive and negative
number could result in either a positive or a negative number.
To remain sound, an analysis has to account for both possibil-
ities. Hence, a third value is introduced called top (denoted by
the symbol ⊤) expressing that the sign of the number could
be either negative or positive. A final value called bottom
(denoted by ⊥) is included to express the absence of sign
information. The set of these values forms a mathematical
lattice, meaning that a partial order (⊑) and a join operation
(⊔) can be defined. As illustrated above, abstract operations
are often non-trivial to implement and could result in subtle
issues with the result of the analysis.
Van Horn et al. [8] propose a recipe for deriving static

analyses by systematically abstracting the small-step opera-
tional semantics of a programming language. More recently,
this recipe has been transposed to the context of definitional

interpreters [5, 10]. Definitional interpreters are a way of for-
mally specifying programming language semantics through
an interpreter implementation. These interpreters are usually
formulated in a recursive way and proceed by case analysis
on the type of expression that is being analyzed. For exam-
ple, for evaluating a number literal, the following abstracted
semantics can be used:
eval expr :=

match expr with N n → 𝛼 (𝑛) ; . . . end

To satisfy our soundness requirement, this semantics needs
to be exhaustive, meaning that it has to explore any possible
program path that might occur at run time. For example, the
analysis might be unable to compute the truth value of an if
condition precisely (e.g., the value of (> x 0) is imprecise
if 𝑥 is ⊤). In those cases, the analysis has to explore both the
consequent and the alternative branch, as either might be
executed in a concrete execution. Such a semantics can be
formulated as follows:
eval expr :=

match expr with
(if cnd csq alt) →

let 𝑣𝑐𝑛𝑑 = eval(cnd)
𝑣𝑐𝑠𝑞 = if isTrue (𝑣𝑐𝑛𝑑) then eval(csq) else ⊥
𝑣𝑎𝑙𝑡 = if isFalse(𝑣𝑐𝑛𝑑) then eval(alt) else ⊥

in 𝑣𝑐𝑠𝑞 ⊔ 𝑣𝑎𝑙𝑡
...

end

Note that isTrue and isFalse may succeed simultaneously
if the truth value of the condition is imprecise. The excerpt
depicted above demonstrates that the implementation of an
abstract definitional interpreter is non-trivial. Throughout
the implementation, there is a need to account for all possi-
ble concrete executions —which leads to subtle bugs when
implemented incorrectly.

2.2 Memory Abstraction
To analyze programs that include variables, some kind of
memory abstraction is required. In the recipe by Van Horn et
al. [8] the interpreter’s memory is modelled as a combination
of an environment, which represents the lexical scope in
which a particular program state is executed, and a store
which represents the program’s memory. An environment
is modelled as a mapping from variables to addresses, and
a store is modelled as a mapping from these addresses to
actual (abstract) values.
The original recipe includes the store in every abstract

program state. In theworst case, this results in an exponential
number of program states [9]. One solution to this problem
is to widen these (per-state) local stores into a single global
store. This global store is then used across all global states,
reducing the state space from an exponential to a cubic one.
The same approach is taken in the static analysis for which
we propose a debugger in this paper. However, our ideas also
translate to analyses that do not incorporate store widening.
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2.3 Effect-Driven Modular Analyses
The analysis presented in this paper is modular [4]. In a
modular analysis, the program under analysis is split into
components that are analyzed separately from each other.
Examples of such components are function calls [16], classes
or spawned processes [18]. In practice, however, components
might depend on each other through shared variables or
return values. The result of analyzing some component 𝐵
might therefore influence the analysis result for a component
𝐴, if the analysis of 𝐴 depends on the analysis results of 𝐵.

Nicolay et al. [16] describe an algorithm for the modular
analysis of higher-order dynamic programming languages.
In higher-order dynamic programming languages, such as
Scheme, the exact components of a program and their depen-
dencies are not known before the program is executed. Each
time a component is discovered, it is added to a worklist that
keeps track of the components to analyze next.Whenever the
results for a component change, its dependent components
(e.g., through a shared variable) are added to this worklist
and eventually reanalyzed to take the new results into ac-
count. The algorithm repeats itself until the workist is empty.
This process results in a dependency graph that consists of
components and the store addresses (representing shared
variables and return values) through which they depend on
each other.

3 Approach
In this section, we introduce the design of our analysis-
tailored debugger. First we discuss its visualisation, then
its stepping and breakpoint functionality, and finally we in-
troduce our novel meta-predicates for cross-level conditional
breakpoints.

3.1 Visualising the analysis state
The first feature of our debugger is its visualisation of the
analysis state. This visualisation for the factorial program
is depicted in fig. 1. The visualisation consists of four parts:
the code that is being analyzed, a graph of the components
and their dependencies, an overview of the global store, and
a visualisation of the worklist algorithm.

The component graph (C) visualizes the components dis-
covered so far and their dependencies. Colored in green are
the components themselves, and colored in blue are the store
locations (addresses) on which the components depend. The
component currently under analysis is highlighted using a
purple border. Each of the edges depicts dependencies on
these store locations and their direction indicates the flow
of values. For example, the call to the factorial function (de-
picted by the node labeled Call...) both reads (from its
recursive call) and writes to its return value.
The global store visualisation (D) depicts the addresses

and their corresponding values that are currently in the

global store. Highlighted in yellow are addresses that are up-
dated during the interval between the previous and current
breakpoint, while highlighted in green are addresses that are
added during that time frame.
Finally, the worklist visualisation (E) depicts the current

contents of the worklist. Its order corresponds to the order
in which components will be removed from the worklist and
therefore shows their analysis order.

3.2 Stepping and regular breakpoints
Recall that analysis developers prefer to reason about a spe-
cific manifestation of a bug in an analyzed program, rather
than debugging the analysis implementation as a whole. We
achieve this in two ways. First the code is presented promi-
nently in the interface of the debugger (area A). Second, the
analysis developers step through and break in the analyzed
program instead of through the analysis implementation
itself. This is important since unsound results often occur
in specific parts of the analyzed the program. Setting break-
points and stepping through the analyzed program makes it
easier to pin-point the problem, and reason about how the
analysis proceeds for the analyzed program.
Similar to some debuggers for JavaScript, we choose to

represent breakpoints as expressions in the analyzed pro-
gram. This allows for more expressive freedom, since these
expressions can be placed in arbitrary locations inside the
program (i.e., in a specific subexpression, rather than on a
specific line) and can reuse the same parsing facilities as the
one available for the analyzed program.

Our debugger provides two types of stepping (as depicted
in area B). The first type continues analysis until the next
breakpoint is reached. The second type of stepping allows
the developer to step over each expression in the analyzed
program. Note that, because of our effect-driven worklist
algorithm, this stepping feature never steps into function
calls, since those are only analyzed once the component of
the caller has been fully analyzed. However, once the analysis
of a component is complete, this stepper continues stepping
as before in the component that is analyzed next.
Recall that the branches of an if-expression need to be

evaluated non-deterministically, in case the truth-value of the
condition cannot be determined precisely. In that case, the
stepper steps over these branches sequentially (evaluating
the consequent branch first and then the alternative branch),
and displays the state of the analysis accordingly.

3.3 Cross-Level Conditional Breakpoints
Conditional breakpoints are used in traditional debuggers to
suspend the program once a particular condition is reached.
These conditions are usually expressed in terms of program
variables and predicates that act upon them. This type of
breakpoint is especially important for static analyses where
each program part can be analyzed more frequently than in
their concrete execution. Hence, analysis developers need
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Figure 1. Debugger visualisation, which features the following components: the code (A), debugger controls (B), component
graph (C), store visualisation (D) and worklist visualisation (E).

.

conditional breakpoints that can express conditions on the
current state of the analysis. We call these kind of predicates
meta-predicates since they do not express constraints on
the program containing the breakpoints (i.e., the analyzed
program) but rather on the meta layer above it (i.e., the
analysis implementation).

Based on the parts of the analysis’ state, we split our meta-
predicates in three categories: store-based, worklist-based
and lattice-based meta-predicates. A full list of predicates,
split according to these categories is depicted in table 1.

3.3.1 Categories of Meta-Predicates.

Store predicates. Our store-based meta-predicates ex-
press conditions on the state of the global store. We propose
two meta-predicates: store:lookup and store:changed?.
The first predicate enables looking up a value on a specific
address in the current global store. The argument of this
meta-predicate must correspond to the string representation

Table 1. Overview of the meta-predicates in our debugger.

Store predicates Lattice predicates
store:lookup lattice:integer? lattice:vector?
store:changed? lattice:pair? lattice:car
Worklist predicates lattice:real? lattice:cdr
wl:length lattice:real?
wl:prev-length lattice:char?
wl:component lattice:bool?
wl:prev-component lattice:string?

of the store address as displayed in the visualisation. If the
address is absent, the meta-predicate returns false. This
allows expressing conditional breakpoints that break on the
absence of a particular store address. Note that the values
returned by this predicate are abstract rather than concrete.
Therefore, operations on these values can only be applied
using the lattice meta-predicates.
The second predicate, called store:changed?, returns

true whenever a particular address in the store has changed
since the last break. It returns false whenever the value on
that address has not changed or whenever the address could
not be found.

The latter predicate is especially useful when components
are (re-)analyzed frequently without actually changing any
address of interest. Those re-analyses can simply be executed
without breaking, therefore saving the analysis developer’s
time.

Lattice predicates. To interact with the values returned
from store:lookup, we provide an interface to the abstract
lattice operations as lattice meta-predicates. We divide
these predicates into two sub-categories: type-checking pred-
icates, and reified abstract operations.

For the former category, we provide type-checking predi-
cates for Scheme’s primitive values: integers, reals, charac-
ters, strings, booleans, pairs and vectors. The latter category
provides operations on these datatypes, such as lattice:car
and lattice:cdr to retrieve the first and second element of
a pair respectively.
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While the type-checking predicates return a boolean value
that can be used for deciding whether to break, the abstract
domain operations always return an abstract value. There-
fore, a type-checking predicate is always needed to use an
abstract operation in the condition of a conditional break-
point.

Worklist predicates. Finally, we introduce predicates
concerning the current state of the worklist: wl:length and
wl:component. The former predicate returns the current
length (as a concrete number) of the worklist. This length
corresponds to the number of components that are scheduled
for analysis. The latter returns the name of the component
that is currently being analysed. This predicate is rather re-
dundant for context-insensitive analyses, since the location
of the breakpoint already implies which component is being
analyzed. However, when the analysis is configured with a
form of context sensitivity [17] (e.g., the last-k callers on the
stack), multiple components might be created for the same
function.

In addition to the aforementioned predicates, we also pro-
pose history-aware variants of them. These variants corre-
spond to the wl:prev-length which returns the length of
theworklist at the previous breakpoint, and wl:prev-component
which returns the previously analyzed component. These
predicates can be used to detect unusual behavior of the
worklist algorithm. For example, a worklist that does not
shrink in size could be indicative of a bug in the worklist
algorithm itself. Furthermore, frequent re-analyses of the
same component could hint that the analysis is not termi-
nating. Using these meta-predicates, analysis developers can
express invariants and expectations about the behavior of
the worklist algorithm.

3.3.2 Examples. In this section, we briefly show some
examples of conditional breakpoints to illustrate the synergy
between the different categories of meta-predicates.
(1) (break #t)
(2) (break (> (abs (- (wl-length) (wl:prev-length))) 100))
(3) (break (and (sto:changed? "adr")

(lattice:string? (sto:lookup "adr"))))
(4) (break (lattice:char?

(lattice:car (sto:lookup "adr"))))

Some brief examples are depicted in the listing above. (1)
depicts a conditional breakpoint that always breaks, thus
behaving like a regular breakpoint. In (2), the difference
in length of the worklist is computed and some threshold
(i.e., 100) is used to break. This breakpoint can be used to
detect rapidly growing or shrinking worklists. (3) combines
multiple predicates together using a conjunction (i.e., and).
In this case the breakpoint will be triggered when the address
adr has changed and the abstract value at that address in the
store can be a string. Finally, (4) depicts a combination of
type-checking lattice predicates, and lattice operations. In
this case, the operation car is used to obtain the first value

Debugger Static analysis Predicate Evaluator

(break e)(1)
e

true/false

(2)

(3)

(4)(5)
true/false

Figure 2. Interactions between the debugger and the meta-
predicate evaluator.

Table 2. Summary of bugs from the Github repository.

Commit Description

a2f43f6 Implemented car as cdr
1a3c6be vector-set! ignores its own index
08bbe43 Variable arguments are ignored
8b98b9b Unnecessary triggering of effects

of a pair, and lattice:char? is used to check whether the
value is a character.

3.3.3 Predicate evaluator. Conditional breakpoints are
evaluated in a separate evaluator which we call the meta-
predicate evaluator. This evaluator has access to the current
state of the analysis but cannot change it. Although the meta-
predicate evaluator evaluates arbitrary Scheme expressions,
these Scheme expressions cannot influence the results of the
program under analysis. We argue that this is necessary for
a clear separation between the debugging facilities and the
analysis implementation to be maintained. The interactions
between the debugger, static analyser, and meta-predicate
evaluator are depicted in fig. 2.
The evaluation of a meta-predicate proceeds as follows.

First, the break expression is analyzed by the static analysis
(1). Then, since the static analyzer does not include semantics
for evaluating predicates of those break expressions, the
predicate expression 𝑒 is passed to the predicate evaluator
(2). Third, the predicate evaluator computes the truth value
of the predicate 𝑒 by querying the state of the static analysis
(3). Finally, the computation results in a boolean value (true
or false) which is returned to the static analysis (4). Based on
this value the debugger decides whether to pause the analysis
and show intermediate analysis results in its interface (5).

4 Evaluation
In this section we evaluate our approach through a case
study. We first discuss the details of this evaluation method,
and then demonstrate how our debugger supports locating
4 real-world bugs in the implementation of MAF.
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4.1 Evaluation Method
We evaluated our approach by querying the MAF repository
on Github1 to find soundness related bugs. To this end, we
queried for keywords such as: “bug” and “fix”, From the
results of this query we selected 4 real-world soundness bugs
which are summarized in table 2. Additionally, to illustrate
how termination issues can be debugged, we introduced a
synthetic bug that affects the worklist algorithm.

Then, based on the fixes introduced in the aforementioned
commits, we reintroduced the bugs back into the analysis
itself, adapting the bug to the current state of the framework
if necessary. Each case corresponds to one re-introduced bug
in isolation, in order to avoid the effects of multiple bugs in-
fluencing each other and to replicate the precise environment
in which the bug was originally found and fixed.

4.2 Studied Cases
The following cases correspond to re-introduced bugs found
in the MAF repository, and to one synthetic bug introduced
specifically to study the effectiveness of our worklist meta-
predicates. For each case, we first detail the corresponding
real-world or synthetic bug, then we show how it was re-
solved, before describing a scenario of successive interactions
with our debugger that will lead to the bug being located.
In the remainder of this section, we use to indicate the
location of a breakpoint.

4.2.1 Implemented car as cdr. In Scheme, pairs are con-
structed using the primitive cons. For example, the expres-
sion (cons 1 2) denotes a pair that consist of 1 as its first
element (also called the car) and 2 as its second element (also
called the cdr). In the bug studied in this first case, the car
value was used for both the car and cdr of the pair allocated
in the store.

We illustrate this bug in the program depicted below. This
program provides an implementation for a bank account.
The account is represented by a pair consisting of the ac-
count name and the current balance of that account (line 1-2).
The functions add-to-balance (line 3-4) and balance (line
5-6) change and retrieve the balance of the bank account
respectively.

1 (define bankAccount
2 (cons "Lisa" 1983))
3 (define (add-to-balance account amount)
4 (set-cdr! account (+ amount(cdr account))))
5 (define (balance account)
6 (cdr account))
7 (add-to-balance bankAccount 10)
8 (balance bankAccount)

The analysis result for this program, produced by the
buggy analysis implementation, is the pointer to Lisa in-
stead of the expected value integer, rendering the analysis
unsound.

Instrumenting the abstract definitional interpreter to out-
put the analysis state at each evaluation step results in a
1https://github.com/softwarelanguageslab/maf

large amount of unstructured information. Instead, we are
interested in the analysis state for specific locations in the
analyzed program. Recall that the store shows that the value
of balance is string. To find the origin of the bug we start
by checking whether bankAccount is still a pair consisting
of a string and an integer after changing its balance. To
this end, we place the following breakpoint before ‘(balance
bankAccount)’ (line 8), which breaks whenever the contents
of the store has the expected structure.
(break (and

(lattice:pair? (store:lookup "bankAccount@1:9"))
(lattice:string? (lattice:car (store:lookup "bankAccount@1:9")))
(lattice:integer? (lattice:cdr (store:lookup "bankAccount@1:9")))))

The inserted breakpoint does not suspend the analysis, mean-
ing that the address does not point to a cons cell of the ex-
pected structure. Therefore, the bug has already occurred in
the previous part of the program. A possible culprit could be
the set-cdr! primitive, which mutates the cdr component
of a pair. To test this hypothesis, we place the same break-
point before add-to-balance (line 7). Again our analysis
does not suspend, meaning that the structure of the pair is
not affected by set-cdr!. Therefore the primitive cons itself
could be the source of the bug. We test this by using the same
breakpoint, but placing it right after the allocation (line 2).
Again, this breakpoint does not result in a suspension of the
analysis. We have now located that the implementation of
cons itself is most likely to blame. To test this hypothesis,
we reduce our conditional breakpoint to break whenever
the cdr contains a value of an unexpected type (i.e., a value
other than an integer).

(break (not (lattice:integer?
(lattice:cdr (store:lookup "bankAccount@1:9"))))

Finally, the analysis suspends, which means that the bug
resides in the implementation of the abstract allocation of
the pair.

4.2.2 vector-set! ignores its own index. In Scheme,
vectors represent collections of a fixed size whose elements
can be accessed in constant time. A vector can be allocated
using the make-vector primitive which needs the length
of the vector and an initial value for each position in the
vector. Lookup and mutation are provided using primitives
vector-ref and vector-set! respectively. In this example,
we investigate a bug in the latter primitive.

The bug is located in the implementation of vector-set!.
Recall that in order for an analysis to be sound, it must ac-
count for all possible program behavior. To this end, the
implementation of vector-set! must join the previous val-
ues of the changed cell with the new value. Unfortunately,
in this bug, only the old value was taken into account and
the new value was simply ignored.
We demonstrate this bug with the program depicted be-

low:
1 (define (change-age user age)
2 (vector-set! user 0 age))
3
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4 (define (paid user)
5 (vector-set! user #f))
6
7 (define (set-name user name)
8 (vector-set! user 1 name))
9
10 (define (get-name user)
11 (vector-ref user 1))
12
13 (define new-user (make-vector 3 #f))
14
15 (change-age new-user 21)
16 (paid new-user)
17 (set-name new-user "Steve")
18 (define name (get-name new-user))
19 name

We expect that the result of the analysis will be the value
of the final expression (i.e., the value of the variable name).
Since the name of the user is supposed to be a string, the
abstract value associated with the address corresponding to
name in the store should at least contain a string. However,
the analysis results in false only. To debug this problem,
we start by placing a breakpoint after name (line 19) .

(break (store:lookup "name"))

This breakpoint suspends the analysis whenever the variable
name is added to the store. We observe that the analysis sus-
pends at this breakpoint, meaning that the analysis reaches
the final expression and the variable has been correctly allo-
cated.
We shift our attention to functions paid (line 16) and

set-name (line 17), which both change the contents of the
vector. We test whether calling these functions has an un-
expected effect on the allocation of the vector. To this end
we add the following breakpoint after the execution of these
functions (line 17).

(break (store:lookup "PtrAddr((make-vector 3 #f))"))

Since the breakpoint suspends the analysis, the vector is
still properly allocated after the calls to these functions have
been analysed. We also note that ‘Steve’ ‘21’ have been
added to the store.

Our set-name and paid functions are both implemented
using a vector-set!. The expected semantics for this prim-
itive is that it reads the current contents of the vector and
updates the value at the specified index. Therefore, the value
at the store address of this vector is supposed to change after
the primitive has been executed. To verify whether this is
the case, we place a breakpoint on line 5 and on line 8 to
suspend the analysis whenever the store has not changed.

(break (not (store:changed? "PtrAddr((make-vector 3 #f)))"))

This results in the analysis suspending at both line 5 and 8,
meaning that the vector operations did not have the desired
effect. We can conclude that the bug is therefore situated in
the implementation of vector-set!.

4.2.3 Variable arguments are ignored. . Functions in
Scheme can be defined to accept a variable number of argu-
ments. This is expressed using a ‘.’ in the function definition,

followed by the variable which will collect any excess argu-
ments.
The program depicted below illustrates this feature. The

program defines two functions: sum and compute, and calls
the compute function as its last expression.

1 (define (sum . vs)
2 (define (aux l)
3 (if (null? l)
4 0
5 (+ (car l) (aux (cdr l)))))
6
7 (aux vs))
8
9 (define (compute initial)
10 (+ initial (sum 1 2 3 4)))
11
12 (compute 0)

The expected result of the analysis is + (in case of a sign
analysis). However, for this bug, the analysis result is ⊥. An
analysis result of ⊥ may indicate that the program under
analysis does not terminate or that the analysis is incomplete.
As the program depicted above clearly terminates with value
10 when executed by a concrete interpreter, this analysis
result is unsound.
We add a normal breakpoint to each component (i.e., on

lines 3, 7, and 12) of the program to determine which compo-
nents can be analyzed. The analysis suspends for the main
and compute components but does not for the sum compo-
nent. We conclude that the call to the sum function must have
failed, which could be related to its use of a variable number
of arguments. However, our debugger cannot determine a
more precise cause for the bug, and further debugging in the
analysis implementation is required.

4.2.4 Ever-growing worklist. Although the bug studied
in this case is synthetic, it could easily manifest itself while
implementing a worklist algorithm. The bug we introduce
precludes the worklist from reducing in size as the com-
ponent under analysis is taken but not removed from the
worklist. As a consequence, the analysis never terminates.
We illustrate this problem with the factorial depicted be-
low:

1 (define (factorial n)
2 (if (= n 0)
3 1
4 (* n (factorial (- n 1)))))
5 (factorial 5)

Since the analysis does not terminate, our debugger never
displays a visualisation of its final state. To suspend the
analysis we use regular breakpoints (i.e., (break #t)), and
place them after line 5. We can now step through the analysis
state. We notice that each time ‘Step Until Next Breakpoint’
is pressed, the contents of the worklist remains the same
and the analysis’ state does not change. To test whether the
analysis makes progress, we replace our regular breakpoint
by a conditional one. This breakpoint suspends the analysis
whenever the current component is the same as the previous
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component, and when the length of the worklist does not
change.

(break (and (eq? (wl:component) (wl:prev-component))
(= (wl:length) (wl:prev-length))))

Again, the breakpoint suspends on every analysis step, mean-
ing that the same component is re-analyzed in each iteration
of the worklist algorithm. This makes it clear that the current
component is never removed from the worklist.

4.2.5 Unnecessary triggering of dependencies. As ex-
plained in section 2.3, the analysis is backed by an effect-
drivenworklist algorithm. Components are re-analyzedwhen
one of their dependencies changes. We say that a depen-
dency triggers the reanalysis of a component, meaning that
the component is added to the worklist for reanalysis. For
example, the analysis result of a function 𝐴 depends on its
arguments, which are represented by store addresses in our
global store. Whenever the abstract values for one of these
store addresses changes, it triggers the reanalysis of function
𝐴. In this bug, dependencies are triggered even though the
(abstract) value of their referenced store address no longer
changes. This results in a non-terminating analysis, since
components continue to be added to the worklist even if no
new information can be derived.
We illustrate this bug by reusing the example program

from section 4.2.3. The analysis of this program is infinite in
the buggy analysis implementation. We add breakpoints to
the body of each component of this program to make sure
that no component in particular is analyzed continuously.
Stepping through this program a number of times reveals
that a single component is being reanalyzed continuously:
the aux component.

To reduce the number of times the analysis is suspended,
we remove all other breakpoints except the breakpoint in the
aux function. Since a component is only reanalyzed when
one of its dependencies changes, we are interested in the
argument of aux. Therefore, we adapt this breakpoint to
suspend the analysis only when the l no longer changes:

(break (not (store:changed? "l@2:17")))

As a result, the analysis suspends less frequently and we
can step directly to the problematic infinite behavior of the
analysis. Additionally, this debugger interaction gives us an
indication of which store address is to blame, and which
type of value is associated with it. This makes it easier to
find the root cause of the bug in the analysis implementation
by focussing on that specific address or looking into the
implementation of lists. However, additional logging in the
analysis implementation is required to learn more about the
dependency triggering mechanism.

4.3 Discussion
Table 3 depicts on overview of the features of our debugger
(columns) and the re-introduced bugs considered in the case
studies (rows). The table indicates which debugging features

Table 3. Overview of all the meta-predicate categories used
for solving the bug

Regular Break Store Worklist Lattice

Bug 1 ✓ ✓
Bug 2 ✓
Bug 3 ✓
Bug 4 ✓ ✓
Bug 5 ✓ ✓

were used to understand and locate each bug in the analysis
implementation. In the case studies, predicates concerning
the worklist are primarily used for solving bugs related to
the termination of the analysis (bug 4). The store predicates
are used in most of the case studies. The reason for their fre-
quent usage is two-fold. First, the lattice predicates operate
on abstract values from the store. Thus, each time a lattice
predicate is used, at least one store predicate is required.
Second, many bugs involve the store in some capacity. For
example, bug 1 occurs because of a mistake in the allocation
of pairs. Bug 2 is similar, in that the resulting value in the
store is incorrectly updated, or not updated at all. The usage
of the store meta-predicates in bug 5 is more subtle, here it
is used to detect the absence of changes to the store in order
to break when dependencies are triggered for addresses that
no longer change.

Bug 3 is interesting since it precludes components from be-
ing analyzed. Even worse, by preventing a component from
being analyzed, its return value is always ⊥ which causes
the analysis to halt early. In the program used for illustrating
bug 3, this problem was rather obvious (i.e., the analysis
results were empty). However, for larger programs, finding
which component was prevented from being analyzed might
be more difficult. Breakpoints related to the set of analyzed
components (i.e., the seen set) might help to locate these
components. However, such breakpoints are not included in
our debugger and require further investigation. Therefore,
only non-conditional breakpoints were used for debugging
bug 3 in the case study.

5 Limitations & Future Work
As illustrated in the debugging scenario for bug 3, our current
approach lacksmeta-predicates to deal with components that
fail to be analyzed. We argue that additional breakpoints that
express properties on the dependency graph and the set of
seen components can partially solve this problem, but leave
this as future work.
Furthermore, our conditional breakpoints are stateless,

meaning that they cannot keep any state between evalua-
tions of the conditional breakpoints. We solve this problem
in our current approach by introducing history-aware break-
points such as wl:prev-length. However, as future work,
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stateful predicates can be considered to allow developers to
keep track of an arbitrary state between the evaluation of
breakpoints. To this end, language extensions and extensions
to the predicate evaluator are needed.

Finally, whereas we establish a link between the analyzed
code and the analysis implementation through fine-grained
meta-predicates and visualisations of the analysis’ state,
Nguyen et al. [7] establish a clear correspondence between
the analyzed code and the code of the analysis implemen-
tation by pairing them together visually in the debugger
interface itself. Our debugger already keeps track of this
information internally, but does not visualize it. However,
we acknowledge that this pairing could be beneficial for
understanding the analysis implementation as well as for
finding the bug in the analysis implementation itself. We
consider the integration of our debugger with an Integrated
Development Environment as future work.

6 Related Work
Charguéraud et al. [2] propose a double-debugger for de-
bugging Javascript interpreters using domain-specific break-
points. These domain-specific breakpoints are about the in-
ternal interpreter state, and can be anchored within the inter-
preted program through predicates about line numbers and
the contents of local variables. Similarly, Kruck et al. [11, 12]
recognize that interpreter developers want to reason about
the structure of the interpreted program and propose multi-
level debugging. Their approach mainly focusses on the rep-
resentation of call stack frames in a debugging environment,
and represents them both from the perspective of the inter-
preted program as well as from the perspective of the inter-
preter itself. Similar approaches have been proposed for tai-
loring debuggers to specific applications or frameworks [14].
This allows developers to reason about the behavior of the
interpreter more easily.

Both approaches are, however, not cross-level. They either
provide domain-specific breakpoints on the meta level (e.g.,
breakpoints about the current line number of the interpreter),
or do not provide them at all. Our breakpoints are placed
in the analyzed code (base level) allowing the developer to
specify the location where they are evaluated. Furthermore,
the conditions in these breakpoints express properties of the
analysis state (meta level) rather than the analyzed program
(base level). These breakpoints therefore interact with each
other and cross the boundaries between the base and the
meta level.
Nguyen et al. [7] propose a tool called VisuFlow which

is tailored to the visualisation of data flow analyses imple-
mented in the Soot framework [13]. However, they do not
propose cross-level domain-specific breakpoints and their
approach is only applicable to data flow analyses. Static anal-
yses based on the abstract definitional interpreter approach,

however, have been shown to be applicable in many use-
cases, including control flow analysis [1, 16, 20], data flow
analysis [6] and soft contract verification [15, 19].

7 Conclusion
We proposed cross-level debugging for static analysis imple-
mentations, which moves stepping and breakpoints from the
base level to the meta level. More specifically, we proposed
domain-specific visualisations for visually depicting the cur-
rent state of the analysis. We argue that this visualisation
makes it easier to understand the behavior of the analysis
and thus to locate the root cause of bugs.

Furthermore, we proposed domain-specific conditional break-
points which enable breaking when a specific analysis state
is reached. We divided these meta-predicates into three cate-
gories: store-related, worklist-related, and lattice-based pred-
icates.

We implemented our debugger in a framework calledMAF,
and showed the applicability of our debugger on one syn-
thetic and four real-world bugs lifted from the repository of
the framework. In this case study, the debugger is highly ef-
fective for most bugs that relate to changes of store addresses
and their contents, but less so for bugs that prevent analysis
progress, or dependency-triggering related bugs. However,
we argued that our approach is sufficienlty flexible to sup-
port these classes of bugs in future work through additional
meta-predicates.
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Abstract

Live programming brings code to life with immediate and
continuous feedback. To enjoy its bene�ts, programmers
need powerful languages and live programming environ-
ments for understanding the e�ects of code modi�cations on
running programs. Unfortunately, the enabling technology
that powers these languages, is missing. Change, a crucial
enabler for explorative coding, omniscient debugging and
version control, is a potential solution.

We aim to deliver generic solutions for creating these lan-
guages, in particular Domain-Speci�c Languages (DSLs). We
present Cascade, a meta-language for expressing DSLs with
interface- and feedback-mechanisms that drive live program-
ming. We demonstrate run-time migrations, ripple e�ects
and live desugaring of three existing DSLs. Our results show
that an explicit representation of change is instrumental
for how these languages are built, and that cause-and-e�ect
relationships are vital for delivering precise feedback.

CCS Concepts: • Software and its engineering→ Visual

languages; Domain speci�c languages; Integrated and visual
development environments; Interpreters.

Keywords: live programming, metamodels, domain-speci�c
languages, bidirectional transformations, model migration

ACM Reference Format:

Riemer van Rozen. 2023. Cascade: A Meta-language for Change,
Cause and E�ect. In Proceedings of the 16th ACM SIGPLAN Inter-

national Conference on Software Language Engineering (SLE ’23),

October 23–24, 2023, Cascais, Portugal. ACM, New York, NY, USA,
14 pages. h�ps://doi.org/10.1145/3623476.3623515

1 Introduction

Live programming caters to the needs of programmers by
providing immediate feedback about the e�ect of changes
to the code. Figure 1 illustrates a typical coding cycle [13].
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Figure 1. Live Programming speeds up coding cycles

Each iteration, programmers make improvements by per-
forming coding actions, events that result in the construc-
tion, modi�cation and deletion of objects over time. To help
programmers realize their intentions, live programming en-
vironments o�er suitable user interface mechanisms that
enable performing the e�ects of coding actions. In addition,
these environments o�er feedback mechanisms that display
changes for perceiving those e�ects, and evaluating if the
action has been successful. Good feedback supports forming
mental models and learning cause-and-e�ect relationships
that help programmers predict e�ects of coding actions and
make targeted improvements.
Despite the compelling advantages of live programming,

its adoption remains sporadic due to a lack of enabling
technology for creating the necessary programming lan-
guages. Unfortunately, creating languages whose users enjoy
the advantages of live programming is incredibly complex,
time-consuming and error-prone. Language engineers lack
reusable abstractions and techniques to account for run-time
scenarios with eventualities such as run-time state migra-
tions, e.g., removing the current state of a state machine.

Several Domain-Speci�c Languages (DSLs) support a form
of live programming that modi�es running programs, e.g.,
the State Machine Language (SML) [24], Questionnaire Lan-
guage (QL) [20] and Machinations [23]. However, these are
one-o� solutions with hand-crafted interpreters that are dif-
�cult to extend and maintain.

We study how to create such DSLs in a principled manner,
how to express their liveness, and how to add this liveness to
existing ones. We hypothesize that an explicit representation
of change, a crucial enabler for exploratory coding, omni-
scient debugging and version control, is the missing factor
in the currently available language technology. Our main
objective is to deliver language-parametric solutions for cre-
ating change-driven DSLs that foreground cause-and-e�ect
relationships, and let programmers perceive e�ects.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Figure 2. Relating actions to events, feedback and insights

1 machine doors

2 state closed

3 open => opened

4 state opened

5 close => closed

(a) Textual doors program

sm: doors

closed opened

close

open

(b) Visual program

Figure 3. State Machine Language: doors example

We propose a novel meta-modeling approach that lever-
ages an explicit representation of change. We present Cas-
cade, a meta-language for expressing DSLs with input and
feedback mechanisms that drive live programming. Cascade
expresses “cascading changes” that introduce liveness using
bi-directional model transformations with side-e�ects.
Using its compiler, language engineers generate inter-

preters that integrate with Delta, Cascade’s runtime. Delta
o�ers a built-in Read-Eval-Print-Loop (REPL) for simulating
live programming scenarios that bring the code to life. By
executing sequential commands on the REPL, engineers can
simulate coding actions, user interaction and feedback.
When Delta executes events, it generates transactions as

cause-and-e�ect chains. These transactions update a live
program’s syntax and run-time state. We investigate how
Cascade can help express the interpreters of SML, QL and
Machinations. Our results show Cascade is instrumental for
rapidly creating executable DSL prototypes with concise
and maintainable designs. Our contributions are: 1) Cascade:
a meta-language for change, cause and e�ect; 2) Delta: a
runtime for creating live programming environments; and
3) three case studies that reproduce liveness1.

2 Problem Overview

We study a form of live programming that works on running
programs. We relate the needs of programmers, illustrated
by Figure 2, to changes and feedback in Section 2.2. We
formulate hypotheses and objectives in Sections 2.3 and 2.4.
First, we introduce a scenario that motivates this work.

2.1 Scenario: Modifying a running machine

The Live State Machine Language (LiveSML) is a DSL for
simultaneously creating and running state machines.

1An earlier version of this paper has been presented as: R. van Rozen. 2022.
Cascade: A Meta-Language for Change, Cause and E�ect: Enabling Technol-
ogy for Live Programming. In Workshop on Live Programming, LIVE 2022.

# Origin E�ect Run-time state

1. Coding actions. Adding state locked.

opened closed lockedclose

open

lock

unlock

closed: 1 *

opened: 0

locked: 0

2. User interaction. Locking the door.
opened closed lockedclose

open

lock

unlock

closed: 1

opened: 0

locked: 1 *

3. Coding action. Deleting the locked state.
opened closed lockedclose

open

lock

unlock

closed: 1

opened: 0

locked: 1 *

4. State migration. Updating the current state.
opened closed lockedclose

open

closed: 2 *

opened: 0

Figure 4. Live programming scenario of a running doors
program that demonstrates run-time state migration

We use this DSL as a illustrative example because it is
easy to comprehend, and also appears in related work [19,
24]. Figure 3 shows an SML program called doors. When
executed, it can be either in the opened or closed state.
As a concise example, Figure 4 describes a live program-

ming scenario of a running doors program. After starting the
program of Figure 3, each step shows the origin of a change
and the e�ects on the program and its run-time state.
First, the programmer adds a locked state, and two tran-

sitions for locking and unlocking the door. These additions
are marked in green. In response, the interpreter introduces
a locked count of zero (shown in a box). Initially, the current
state (marked *), is closed, and the lock and open transi-
tions (underlined) can be activated. In step two, the pro-
grammer triggers the lock transition in the user interface.
The interpreter performs the transition (feedback shown in
orange), updates the current state to locked, and raises its
count (shown in a box). Updates are shown in blue.
Finally, in step three, the programmer deletes the locked

state. In response, the interpreter also deletes the lock and
unlock transitions (shown in red). Because the current state
is removed (indicated with strikethrough), this state has
become invalid. In step four, which follows immediately, the
interpreter migrates the program to the initial state closed.

2.2 The need for Live Programming

Though limited in its complexity, the scenario illustrates key
requirements that programming environments must ful�l
to cater to the programmers’ needs. Every coding cycle, the
challenge is relating feedback about the e�ects of changes
to insights about improvements, as illustrated by Figure 2.
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Figure 5. Change-based Live Programming Environment

R1. Gradual change. As software evolves, programmers
constantly need to make changes to the code. Each iteration,
they realize intentions, improve behaviors and �x bugs.
R2. Immediate feedback. Feedback is essential for testing

hypotheses and verifying behaviors. For making timely im-
provements, programmers need feedback with every change.

R3. Evolving behavior. Programmers run programs to eval-
uate behaviors. For assessing the impact of changes, they
need to observe the di�erence in behavior.

R4. Learnable behavior. Formaking targeted improvements,
programmers need to learn from successes and mistakes. Pro-
grammers have to learn to predict the outcomes of changes.
R5. Exploratory design. To support gradually improving

insights, programmers need to freely explore design spaces
through do, undo, redo, record, and playback functionality.

2.3 Change-based DSL environments

Using programming environments, programmers can per-
form coding actions, events that result in the construction,
modi�cation and deletion of program elements. Invalid or
syntactically incorrect edits are not coding actions. We study
the e�ects of coding actions, speci�cally, changes to visual
programs that work directly on the abstract syntax and a�ect
running programs. Two main hypotheses drive this study:

1. Live programming can make code come alive in the imagi-
nation of the programmer by keeping “test cases” running.

2. DSLs are especially suitable to support live programming
and to deliver feedback that appeals to the imagination.

We aim to empower programmers with programming envi-
ronments for exploring the run-time e�ects of coding actions.

2.4 Language-parametric enabling technology

We study how to create such DSLs in a principled manner,
how to express their liveness, and how to add this liveness
to existing ones. We envision change-based live program-
ming environments, as illustrated by Figure 5, based on a
set of reusable principles, formalisms and components. For
providing live feedback, language designs must account for
run-time eventualities, valid changes to programs and run-
time states. These cannot easily all be linearly represented
due to the multitude of valid executions and dependencies.

Live Programming Environment

Cascade Compiler

Compile
DSL

Specification

REPL
Give

Command
Display
Feedback

Custom UI
Edit

Program
Run

Program

DSL Interpreter

Event
Pre-

Migrate Generate
Post-

Migrate
Notify

Delta

Schedule Dispatch
Edit

Operation Commit
History
+ Heap

Figure 6. Cascade Framework: Generating DSL Interpreters

We address the need for enabling technology that powers
these environments. We aim to simplify language design by
abstracting from individual scenarios and the ordering of
events. Next, we propose a generic approach that expresses
change as modular and reusable model transformations. This
solution can steer global run-time executions through local
and conditional side-e�ects de�ned on the meta-level.

3 Cascade Framework

We present the Cascade framework, a language-parametric
solution for developing change-based live programming en-
vironments. Cascade, illustrated by Figure 6, o�ers a meta-
language and a set of generic reusable components (gray)
that integrate domain-speci�c additions (white) for address-
ing the following technical challenges.

3.1 Cascade Meta-Language

Cascade is a meta-language for change, cause and e�ect. We
introduce its features in Section 5. To create DSLs realizing
the requirements of Section 2.2 language engineers can:

T1 Express the syntax and run-time states usingmeta-models
(R1, R3). Section 5.1 introduces these concepts.

T2 Design actions, events and e�ects as bi-directional model-
transformations that support exploratory coding (R5).
Section 5.2 explains how to design interactions that grad-
ually change the syntax and program behaviors (R1–3).

T3 Design side-e�ects as relationships between events with
predicable outcomes to steer behaviors (R4). Section 5.3
explains how to express mutations of program elements.

T4 Design cascading changes that are central to live pro-
gramming, e.g, for expressing run-time state migrations
(R3, R4) that must account for many run-time eventuali-
ties (R5). Section 5.4 discusses design considerations.

In three case studies, we explore how Cascade helps to
express the language designs and program execution of DSLs
in a principled manner. In Sections 7, 8 and 9 we investigate:
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o_new(|uuid://1|, "State");

o_set([|uuid://1|], "name", "opened", null);

o_new(|uuid://2|, "List<Trans>");

o_set([|uuid://1|], "out", [|uuid://2|], null);

o_new(|uuid://3|, "Trans");

o_set([|uuid://3|], "src", "opened", null);

o_set(|[uuid://3|], "evt", "close", null);

l_insert([|uuid://2|], 0, [|uuid://3|]);

(a) Example edit operations

s = new State();

s.name = "opened";

s.out = new List<Trans>();

t = new Trans();

t.src = s;

t.evt = "close";

s.out.push(t);

(b)Generic edit script

Figure 7. Contrasting edit operations from edit scripts

a) consistency and run-time state migrations of LiveSML;
b) trickle-e�ects and �xpoint computations of LiveQL; and
c) live desugaring and visual feedback of Machinations.

3.2 Live Programming Environments

Cascade provides reusable components for developing live
programming environments, easing the authorial burden.

3.2.1 User Interface. Programmers need appropriate in-
put and feedback mechanisms for changing code, obtaining
feedback, and observing changes. Cascade o�ers a choice:
1) develop a user-friendly custom UI, based on its event APIs;
or 2) use a generic Read-Eval-Print-Loop (REPL), e.g., before
creating a custom UI. In this paper, we explore both. We use
the REPL to simulate live programming scenarios textually.
By executing sequential commands, we can simulate coding
actions, user interaction and feedback on a line by line basis.

3.2.2 Interpreter. A powerful interpreter is the driving
force behind live programming. We formulate technical chal-
lenges for creating interpreters that can support the require-
ments of Section 2.2.

T5 Integrate DSLs in a common run-time environment.
T6 Schedule and execute events that perform bi-directional

model transformations and run-time state migrations.
T7 Maintain a version history and a heap, for updating syn-

tax trees and run-time states with gradual changes.
T8 Generate the e�ects of transformations as historical trans-

actions that: a) capture changes as edit operations; and
b) preserve causal relationships in cause-and-e�ect chains.

To tackle these challenges, Cascade generates a DSL inter-
preter from its speci�cation. Section 6 discusses the design of
the compiler, the generated interpreters and Delta, Cascade’s
runtime. We begin by introducing edit operations.

4 Edit Operations

Cascade introduces an explicit representation of change for
expressing behavioral e�ects of coding actions, user interac-
tions and program executions. Cascade expresses change as
model transformations that work on models (or programs)
and run-time states, which each consist of objects. We base
its representation on a language variant of the edit opera-
tions [2]. Originally introduced for di�erencing and merging,
these operations have since also been used as a low-level
storage format for expressing run-time e�ects [20, 24].

Mach

– name: String

State

– name: String

Trans

– evt: String

MachInst

StateInst

– count: int

def

def

instances
*

i

*

o

* src tgt

cur

elements
*

sis

*

(a) Static meta-model (b) Run-time meta-model

Figure 8. Static and run-time meta-models of LiveSML

Cascade leverages edit operations to express transactional
e�ects, maintain a version history, and support exploratory
live programming. Figure 7a shows example operations that
create new objects and replace attribute values. Appendix A
describes a complete set of edit operations that work on
commonly used data structures: objects, lists, sets and maps.
However, edit operations alone are not su�cient. An ex-

pressive meta-language for change requires variables, not
just values. Cascade introduces a script notation, illustrated
by Figures 7b, that resolves this issue. Next, we explain how
Cascade’s transformations encapsulate these edit scripts.

5 The Cascade Meta-Language

Cascade is a meta-programming language for expressing
change, cause and e�ect. Using Cascade, language engineers
can create interpreters (language back-ends) described as
meta-models with bi-directional model transformations.

At run time, the interpreter executes these transformations
in sequence and produces transactions consisting of edit
operations. Upon completion, it commits the transactions
to the version history as cause-and-e�ect chains. Next, we
introduce the main language concepts and features.

5.1 Models and meta-models

Cascade expresses languages and changes usingmeta-models.
Programs are models that conform to the meta-model of the
language. In particular, these models are Abstract Syntax
Graphs (ASGs) composed of objects. The language seman-
tics steer the behavior of running programs. A program’s
run-time state, also a model, stores the results of program
execution and user interactions.
For instance, Figure 8 shows the UML class diagram of

LiveSML’s meta-model. The static metamodel (on the left),
de�nes the abstract syntax. A machine consists of a number
of states with transitions between them. The run-time meta-
model (on the right) expresses running state machines. A
running machine has a current state, and registers how often
it has resided in each state (the count).
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class Mach {

String name;

Set<State> states;

Set<MachInst> instances;

...

(a)Machine

class State {

String name;

Set<Trans> i;

Set<Trans> o;

...

(b) State

class Trans {

ref State src;

String evt;

ref State tgt;

...

(c) Transition

class MachInst {

ref Mach def;

ref StateInst cur;

Map<State, StateInst> sis;

...

(d)Machine Instance

class StateInst {

ref State def;

int count;

...

(e) Machine Instance

Figure 9. Cascade de�nitions of LiveSML’s meta-model

begin endcreation modi�cations deletion

Figure 10. Object lifeline, events and modi�cations

The notation for meta-models resembles object-oriented
programming, as shown in Figure 9. Aside from classes, it
supports the base types String, int, bool, and enum, and the
composite types List, Set and Map. Attribute ownership is
explicit, and by default, a class owns its attributes. The ref

keyword denotes an alias. We omit visibility because the aim
is encapsulating change.

5.2 Actions, events and transformations

Cascade is designed to express run-time transformations
with explicit e�ects. As a back-end language, it does not
distinguish between coding actions and user interactions.
Mechanisms for both can be expressed using three kinds
of parameterized event declarations, called effect, trigger
and signal. An e�ect describes how a speci�c object can
be created, modi�ed or deleted. A trigger is an input event
that has no direct e�ect, but can schedule other events, side-
e�ects that happen afterwards. A signal is an output event
that �ags an occurrence such as an exception or an error.

5.2.1 Objects. Objects have a limited life span. Instead of
operating on objects directly, events work on object life-
lines, as shown in Figure 10. The life span of an object begins
before its creation and ends after its deletion. Any number of
changes may happen in between. These life stages are called
issued, bound and retired.

5.2.2 E�ects. The basic unit of change, called effect, of-
fers a parameterized abstraction for scripting and reuse. Ef-
fects are bi-directional model transformations whose body
is an edit script. Each e�ect has parameters, type-value pairs
separated by commas that determine its scope. Figure 11
shows an example.

5.2.3 Creation. Creation e�ects are used to create new
objects of a certain class. For instance, Figure 11 shows a
partial speci�cation of the Machine class. We use the REPL
to create a new state machine called “doors” as shown in

1 class Mach {

2 String name;

3 Set<State> states;

4 Set<MachInst> instances;

5

6 effect Create(future Mach m,

7 String name) {

8 m = new Mach();

9 m.name = name;

10 m.states = new Set<State>();

11 m.instances =

12 new Set<MachInst>();

13 }

14 inverse effect Delete(past Mach m,

15 String name = m.name) {

16 delete m.instances;

17 delete m.states;

18 m.name = null;

19 delete m;

20 } pre {

21 foreach(State s in m.states) {

22 State.Delete(s, s.name, m); }

23 foreach(MachInst mi in m.instances) {

24 MachInst.Delete(mi, m); }

25 }

26 ...

Figure 11. Partial Cascade speci�cation of the Mach class

var m; ←↪

Mach.Create(m, "doors"); ←↪

(a) Creating a machine

print m; ←↪

machine doors

(b) Obtaining feedback

Mach.Create([|uuid://5|], "doors") {

[|uuid://5|] = new Mach();

[|uuid://5|].name = null → "doors";

[|uuid://6|] = new Set<State>();

[|uuid://5|].states = null → [|uuid://6|];

[|uuid://7|] = new Set<MachInst>();

[|uuid://5|].instances = null → [|uuid://7|];

}

(c) Generated transaction

Figure 12. Creating state machine from the REPL

Figure 12a. For conciseness, we will omit declaring variables
from now on. This command calls the Create e�ect (lines 6–
13). Note the←↪ symbol indicates REPL input (pressing the
return key), and its absence indicates output the interpreter
gives in response. We verify the results by reading the output
from the REPL in Figure 12b. The interpeter also generates
the changes that have occurred. The transaction shown in
Figure 12c is a short-hand for encapsulated edit operations.

5.2.4 Subject. The �rst parameter of an e�ect, called sub-

ject, is always a reference to the object that is subject to
change. The subject can optionally be preceded by an addi-
tional keyword that provides guarantees about its life before
and after execution. The future keyword, used only in cre-
ations, denotes the subject must be issued and will be bound
afterwards. The past keyword, used only in deletions de-
notes a bound subject will be retired afterwards. The lack of
a keyword signi�es it will continue to exist.

5.2.5 Parameters. There are two kinds of additional pa-
rameters that may follow the subject in the signature. Con-
stant parameters are inputs that enable passing values such
as an int, bool, String, enum or object reference. Change pa-
rameters enable updating the value of an object �eld from
an old to a new value. In Figure 11, both parameters of the
Create e�ect (lines 6–7) are constant parameters. The Delete
e�ect (line 15) also has a change parameter. It indicates trans-
actions will store the old and the new value of name �eld.

5.3 Side-e�ects and causal tranformations

5.3.1 Side-e�ects. The pre and post clauses enable sched-
uling e�ects before and after an event. Side e�ects can be
used to create modular constructors and destructors that
keep the syntax and the run-time states consistent. The post
clause enables creating additional objects, booting up sys-
tems and de�ning e�ects of user interaction. These clauses
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can contain if-statements and while loops that read values
and schedule events, but cannot modify values directly. Trig-
gers only have a post-clause. Signals have no side-e�ects.

5.3.2 Begin statement. For weaving side-e�ects together,
the begin and end statements issue objects references and re-
voke their validity. For instance, “begin State s;” is a state-
ment that issues a new reference to a State object. Afterwards,
we can schedule its creation.

5.3.3 Deletion. By design, every object that can be cre-
ated can also be deleted. Unlike creations, which work on
“blanks slates”, deletionsmust account for ownership and con-
sistency. The pre clause enables performing clean up tasks
such as deleting owned data, removing aliases, and shutting
down entire systems. For instance, calling Mach.Delete(m)

from the REPL does not only delete a machine, but also
cleans up the every state and any running instance it owns,
as de�ned by the pre-clause on lines 20–25 of Figure 11. We
demonstrate how LiveSML handles deletion in Section 7.

5.3.4 Inverse. Inverse e�ects, indicated by the inverse

keyword, perform conceptually opposite operations to their
preceding e�ects. E�ects and their inverses must have com-
patible signatures. Create and Delete in Figure 11 are in-
verse e�ects. Create’s future subject and constant param-
eters match Delete’s past subject and change parameters.
At run time, an inversion entails creating an opposite ef-
fect that can roll back a transaction, undoing its e�ects. An
invertible e�ect, typically a setter, is its own inverse. For
such an e�ect, an inversion matches the constant subject,
and swaps the old and new values of the change parameter.

5.4 Design considerations

5.4.1 Root cause analysis. The design decision, that all
change must be explicit, adds some verbosity but ensures
events can always be related to their Cascade speci�cation.
We observe that default code for e�ects and inverses may be
generated, and explicit ownership enables static analysis.

5.4.2 Consistency. To ensure bi-directionality, deletions
and removals must also be explicit. Therefore objects cannot
be garbage-collected. Creating a new object is, as one would
expect, a sequence of operations that create new objects and
afterwards assign initial values. However, deleting an object
is more involved. Deletion requires a clean-up of every child
object owned, and typically also erasure of references to
the object (or aliases) before the object can be deleted itself.
Fields must all have default values before deletion.

5.4.3 Liveness. Cascading changes can introduce liveness
into DSLs. By adding relationships between coding actions
and run-time e�ects, language engineers can improve in-
put and feedback mechanisms that help programmers make
gradual changes and observe di�erences in behavior. This

History Juncture

– previous: Juncture
– next: List<Juncture>

Event
– language: ILanguage
– loc: Location
– cause: Event
– preE�ect: List<Event>
– postE�ect: List<Event>

E�ect
– operations:

List<Operation> Trigger Signal

headstart

event

Figure 13.Delta’s history consists of cause-and-e�ect chains

1 void schedule(Patcher p, Dispatcher d, Event e) {

2 d.resolve(e);

3 foreach(Event pre in d.preMigrate(e)){ schedule(p,d,pre); }

4 d.generate(e);

5 p.commit(e);

6 foreach(Event post in d.postMigrate(e)){ schedule(p,d,post); }

7 }

Figure 14. C# pseudo-code of Delta’s event scheduler

has far reaching implications for the language designs of
DSLs, as we will demonstrate in Sections 7, 8 and 9.

6 Cascade Compiler and Runtime

The Cascade framework consists of a compiler written in
Rascal [8], and Delta, a runtime written in C#. The compiler
translates Cascade speci�cations into language modules that
integrate with Delta’s extensible engine. Figure 6 gives an
overview that illustrates how the main components process
and transform events.
Each generated DSL interpreter (or language) consists

of three sub-packages: 1) Model contains the classes of the
meta-model; 2) Operation contains the classes representing
events; and 3) Runtime contains components that process
events and transform models. Key runtime components are
the generator, and pre- and post-migrators, which generate
edit operations and handle side-e�ects. Delta’s engine has
three main components. The dispatcher manages a set of
languages, and determines which one handles an event. The
patcher executes edit operations, maintains the heap and
updates the version history. The scheduler determines the
order in which events are scheduled, generated and migrated.
Next, we explain how non-linear event scheduling works.

6.1 Scheduling events

The engine generates transactions in the form of cause-and-
e�ect chains, as illustrated by Figure 13. Histories consists
of junctures, branching points in time signifying events.
When called, the scheduler binds an event to a speci�c

subject. We sketch the recursive algorithm that schedules
each event in Figure 14. First, the dispatcher resolves the lan-
guage that processes the event (line 2). Before processing the
event itself, the pre-migrator of the language determines if
any events need to happen before, and if so, those are sched-
uled �rst (line 3). Only when the recursive pre-side-e�ects
have completed, the generator of the language generates the
edit operations that perform the event’s own e�ect (line 4).
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(b) Dependencies between deletion events
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StateInst
SetCount

10

12

13

14

(c) Dependency of run-time triggers

Figure 15. LiveSML: Static dependency graphs of events, and an example run-time state migration

The patcher immediately commits the transaction to the
history, before the operations go stale (line 5). Afterwards,
post-migration schedules any events that need to happen
afterwards (line 6). When each of those events completes,
the event itself completes.

6.2 Implementation

The compiler consists of 3285 LOC of Rascal. Delta consists
of 11.5 KLOC of C#. Delta’s main parts are the edit opera-
tions interpreter (1745 LOC), the runtime (7288 LOC), and the
REPL language (2603 LOC). Cascade is available under the
2-clause BSD license: h�ps://github.com/vrozen/Cascade.

7 Live State Machine Language

We investigate how to express the design of LiveSML [24].
LiveSML exempli�es run-time state migrations with one-to-
many relationships. Its semantics introduce dependencies be-
tween de�nitions of machines and states and their instances.
Changes to de�nitions potentially have many side-e�ects on
the run-time state. Because this state is not known a priori,
run-time state migrations have to account for many even-
tualities. Using Cascade, we create an interactive prototype
that reproduces the behavior of the original Java implemen-
tation. We demonstrate its interpreter accounts for run-time
eventualities by reproducing the scenario of Section 2.1.

7.1 Event-based language design

We create an event-based language design. In addition to
its meta-model, shown in Figure 8, we design its run-time
transformations. Figure 15 schematically depicts the static de-
pendencies between creation events, deletion events and run-
time triggers. Events, shown as rounded rectangles, work on
the syntax (white) and the run-time state (gray). Interactive
events (double line) are coding actions (white) and user inter-
actions (gray) with side-e�ects (single line). Arrows indicate
if side-e�ects happen before (pre) or after (post) an event.
Converging arrows indicate reuse in distinct scenarios.

Creation. The programmer begins with an empty state ma-
chine by creating one. At any moment, they can add states
to a program and transitions between states by creating new
states and transitions. They can also run a machine at any
point in time. Each running machine separately keeps track
of its visit counts. Therefore, creating a new machine also
instantiates each state. Running machines update their book-
keeping when adding a new state to their machine de�nition.
Afterwards, each running machine reinitializes (↓), since it
may not have a current state yet.
Deletion. Of course, programmers can also delete a ma-

chine. Each machine cleans up its states and running in-
stances. Deleting a state has side-e�ects that also remove
and delete every transition from its inputs and outputs. In
addition, removing a state also removes and deletes state
instances from every running machine. Finally, removing
the current state of a running machine migrates its to the
�rst state in its de�nition.
Run-time triggers. Triggering (↓) a running machine can

cause a transition that sets a new current state. However, it
can also result in the signals (↑) missing state or quiescence.
These signals do not cause any change, but do provide feed-
back to the user. When setting a new current state, its count
is also increased by one.

Prototype. The Cascade implementation of LiveSML counts
213 LOC. Compiling the sources results in 2204 LOC of gen-
erated C#. Next, we will apply the fully generated prototype.

7.2 Live programming scenario

We reproduce the run-time state migration of Section 2.1.
Instead of parsing an SML program, we simulate sequential
coding actions, user interactions, and feedback directly from
the REPL. Figure 16 shows the REPL commands and feedback
that simulate the scenario.

We �rst create a new machine doors that contains a closed
state (Figure 16a). Using the print command, we call the
pretty printer. We obtain feedback and verify the syntax of
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Mach.Create(m, "doors"); ←↪

State.Create(s1, "closed", m); ←↪

print m; ←↪

machine doors

state closed

(a) Creating the program

MachInst.Create(mi, m); ←↪

print mi; ←↪

machine doors

closed : 1 *

(b) Runing the program

State.Create(s2, "opened", m); ←↪

State.Create(s3, "locked", m); ←↪

Trans.Create(t1, s1, "open", s2); ←↪

Trans.Create(t2, s2, "close", s1); ←↪

Trans.Create(t3, s1, "lock", s3); ←↪

Trans.Create(t4, s3, "unlock", s1); ←↪

(c) Completing the program

print mi; ←↪

machine doors

[open] [lock]

closed : 1 *

opened : 0

locked : 0

(d) Updated run-time state

MachInst.Trigger(mi, "lock"); ←↪

print mi; ←↪

machine doors

[unlock]

closed : 1

opened : 0

locked : 1 *

(e) Locking the door

State.Delete(s3, "locked", m); ←↪

print mi; ←↪

machine doors

[open]

closed : 2 *

opened : 0

(f) Deleting the locked state

Figure 16. LiveSML scenario simulated from the REPL

the DSL program is as expected. Although the program is not
yet complete, we already run it. We create an instance, and
use the print command to observe that, initially, its current
state (*) is closed (Figure 16b).
We now complete the program (Figure 16c) by adding

opened and locked states, and the transitions between them.
Behind the scenes, several side-e�ect have occurred. We
inspect the running program has also been updated (Fig-
ure 16d). The text between brackets denote “buttons” for the
available actions. Users can now open or lock the closed door.
We simulate an action that locks the door (Figure 16e).

Finally, we delete the locked state (Figure 16f). As expected,
this causes a run-time state migration, setting the current
state to closed, and increasing its count by one.

The resulting transaction, described in more detail in Ap-
pendix B, is super-imposed on the design on Figure 15. Its
generated control �ow traverses events that a�ect both the
syntax and the run-time state. Note that, the edit operations
of the deletion itself, actually happen last.

7.3 Analysis

Compared to the original LiveSML, which counts 1217 LOC
of hand-written Java, our prototype is signi�cantly smaller
(213 LOC)2. Cascade addresses the main shortcoming of the
Run-timeModel Patching (RMPatch) approach that expresses
run-time state migrations as hard-coding visitors on edit op-
erations, which is time consuming and error-prone [24]. In-
stead, Cascade expresses them on the meta-level. As a result,
LiveSML’s modular design is more concise and maintainable.

8 Live Questionnaire Language

The Questionnaire Language (QL) is a DSL for expressing
interactive digital questionnaires. Originally designed for the

2h�ps://github.com/vrozen/Cascade/tree/main/LiveSML

form Celebration {

"Your discount is" :

int discount = age/2-10

"What is your age?" :

int age

}

(a) Celebration form

Celebration

Your discount is 24

What is your age? 68

(b) Example �lled-out form

Figure 17. Forms that calculates an age dependent discount

Dutch tax o�ce, this DSL has since served as a benchmark for
generic language technology, e.g., the Language Workbench
Challenge [7]. We study LiveQL, a language variant that
enables simultaneously designing and answering forms [20].
We focus on the liveness properties and trickle e�ects at the
heart of its semantics. In particular, we aim to reproduce
the behavior that propagates the e�ects of giving answers.
Using Cascade, we express LiveQL and create a language
prototype. We use its REPL to simulate a run-time scenario
of an example that demonstrates a �xpoint computation.

8.1 Questionnaire Language

Forms consists of sequences (or blocks) of two kinds of state-
ments: questions and if statements. Figures 17 shows a from
that expresses an age-based discount, and an answered form.

8.1.1 Questions. Each question consists of a textual mes-
sage the user sees, a question type (int, str or bool), and a
variable name that can be used to reference the question’s
answer. By default, questions are answerable. The question
“what is your age?” is answerable. Users answer questions
by supplying a value of the speci�ed question type. In this
case, age requires an int value, for instance 68.

However, when assigned with an expression, questions be-
come computed. Instead of prompting the user to answer the
question, the form computes the answer by evaluating the
expression. In the example, discount is a computed answer.
Its computed value is 24.

8.1.2 If statements. Conditional questionnaire sections
can be designed using if statements. Each if consists of a
condition (a boolean expression), an if-block and an optional
else-block. The user sees the statements nested in the if-block
if the condition is true, and those in the else-block otherwise.
Statements that have an expression referencing a variable
have data dependency on that variable. Statements nested
inside an if-block have a control dependency on each variable
referenced in the condition. Here, we omit an example.

8.1.3 LiveQL. Originally, QL required that users answer
questions in a top-down manner [7]. Each statement could
only refer back to variables whose value have been previ-
ously given or computed.

LiveQL relaxes this requirement by enabling forward ref-
erences, and allowing changes to running forms [20]. These
changes introduce two forms of liveness. First, when the pro-
grammer adds, removes or changes statements, this a�ects
the running form. Second, when a user answers a question,
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Form
– name:

Identifier

Block

Stat

�estion

– msg: String
– type: QType
– id: Identifier
– exp: Exp

IfStat

– cond: Exp

State
– change: bool
– work:

List<Identifier>

Answer

– visible: bool
– v: Val

block

stats
*

state

form

answer

*
answer

question

if else

(a) Static metamodel (b) Run-time metamodel

Figure 18. Static and run-time meta-models of LiveQL

package LiveQL {

class State {

ref Form f;

List<Answer> ans;

bool change;

List<Identifier> work;

trigger TriggerID(State s, Identifier i) {

SetChanged(s, false); //First, reset the changed flag.

PushWork(s, i); //Next, add the identifier to the work queue.

DoWork(s); //Schedule the work, which may cause re-evaluations.

WhileChange(s, i); } //Finally, check if there is more change.

trigger WhileChange(State s, Identifier i) {

if(s.change) { //If a change has happened as a result of re-evaluation

TriggerID(s, i); //continue the computation

} else { //otherwise

Done(s, i); //signal done.

} }

signal Done(State s, Identifier i);

Figure 19. LiveQL contains a �xpoint computation

the form re-evaluates dependent computed questions and if
statements. As a result, answers may update and sections of
the form can become visible or invisible.

8.2 Language design

We investigate how Cascade helps to express the behavior
of LiveQL, in particular the trickle e�ects that result from
answering questions. The meta-model of LiveQL, shown in
Figure 18, is based on the original Java implementation [20].
The run-time meta-model extends the static meta-model
with information about the current state of the form, such
as answers to questions and visibility.

The key to expressing trickle e�ects is de�ning a �xpoint
computation that schedules future events in sequence from
the body of a trigger. When answering a question, depen-
dent computed answers and if-statements recompute until no
more changes can be observed. Figure 19 illustrates the main
events. When the value of an identi�er updates, TriggerID
is called. After performing work, which potentially causes
changes, the check of WhileChange determines if the compu-
tation completes or continues to propagate changes.

1 Form.Create(f, "Celebration"); ←↪

2 Question.Create(q1, f, "Your discount is", QType.Int, "discount");←↪

3 Question.SetExpression(q1, f, "age/2-10"); ←↪

4 Question.Create(q2, f, "What is your age?", QType.Int, "age"); ←↪

(a) Creating the Celebration form

Question.GiveAnswer(q2 , f, "68"); ←↪

(b) Answering the age question

print f; ←↪

form Celebration {

"Your discount is" :

int discount = age/2-10

==> undefined

"What is your age?" :

int age ==> undefined

}

(c) Unanswered form

print f; ←↪

form Celebration {

"Your discount is" :

int discount = age/2-10

==> 24

"What is your age?" :

int age ==> 68

}

(d) Answered form

Figure 20. LiveQL scenario simulated from the REPL

8.3 Prototype live programming environment

We create a textual DSL prototype, an interpreter with a
built-in REPL. Its Cascade speci�cation counts 1044 LOC3.
Compiling the sources results in 8189 LOC of generated C#.
Most components of the prototype are fully generated. We
add the following components, which amounts to a total of
916 LOC hand-written C#.

The pretty-printer enables inspecting the syntax and run-
time state from the REPL. We add an expression evaluator
and two small helper classes for: 1) performing lookups for
use-def relationships of variables; 2) collecting conditions
of questions; and 3) evaluating the expressions of questions
and if-statements. We use ANTLR 4 to create a QL parser
that generates ASTs of programs and expressions. To bring
these ASTs under management of Delta, we create a Builder
that generates Cascade events for recreating the ASTs.

8.4 Live programming scenario

We demonstrate a trickle e�ect in a live programming sce-
nario that reproduces the Celebration example of Figure 17.
After creating the form, answering the question age with 68

should result in the discount becoming 24.
Using our prototype, we simulate coding actions and user

interaction from the REPL, as shown in Figure 20. We begin
with the coding actions shown in Figure 20a. First, we create a
new form f called Celebration (line 1).We add a new question
q1 to form f with message “Your discount is”, introducing the
variable discount of type int (line 2). To make q1 a computed
question, we set its expression to age/2-10 (line 3). Finally
we add the second question q2 introducing int age (line 4).

LiveQL programs automatically run one instance. We ver-
ify the program runs, and observe discount and age are ini-
tially unde�ned, as shown in Figure 20c. Next, we answer
question q2 and give answer 68, as shown in Figure 20b. Fi-
nally, we verify the value of discount has indeed become 24.
Figure 20d indicates the change has been correctly propa-
gated. For conciseness, we omit the generated transaction.

3h�ps://github.com/vrozen/Cascade/tree/main/LiveQL
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(a) Mechanism for exchanging gold for health (what designers see)
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(b) Desugared version of the diagram (what the engine runs)

Figure 21.Diagram showing an excerpt of the internal econ-
omy of Johnny Jetstream (adapted from van Rozen [21])

8.5 Analysis

Our results demonstrate Cascade helps express the trickle
e�ects of LiveQL as a concise �xpoint computation. Cre-
ating the prototype, including its helper classes, cost ap-
proximately one working day, with only the experience of
LiveSML. The original Java implementation, which measures
6179 LOC, also includes a visual front-end. The new proto-
type is signi�cantly smaller, measuring 816 LOC.

9 Live Machinations

Machinations is a visual notation for game design that fore-
grounds elemental feedback loops associated with emergent
gameplay [1, 1]. Micro-Machinations (MM) is a textual and vi-
sual programming language that addresses several technical
shortcomings of its evolutionary predecessor. In particular,
MM introduces a live programming approach for rapidly
prototyping and �ne-tuning a game’s mechanics [23], and
accelerating the game development process.

We study the design of the MM library (MM-Lib), includ-
ing its run-time bahavior and state migrations. In particular,
we explore how Cascade helps to express live desugaring.
We create a visual prototype using Cascade and the Godot
game engine. Vie is a tiny live game engine for simultane-
ously prototyping and playtesting a game’s mechanisms. In
live programming scenario of a simple game economy, we
demonstrate Vie correctly desugars converters.

9.1 Micro-Machinations

Micro-Machinations programs, or diagrams, are directed
graphs that can control the internal economy of running dig-
ital games. When set in motion through runtime and player
interactions, the nodes act by pushing or pulling economic
resources along its edges.
Figure 21a shows a mechanism in the internal economy

of Johnny Jetstream, a 2D �y-by shooter [21]. Two pool

nodes, shown as circles, abstract from the in-game resources,
gold and health (hp). The integers inside represent current
amounts. The edges are resource connections that de�ne the
rate at which resources can �ow between source and target
nodes. BuyMedkit is an interactive converter node, appearing

ProgramElement
– name: String
– visible: bool

Edge Node

– type: NodeType

FlowEdge

– amount: int

Trigger

Behavior
– when: When
– act: Act
– how: How

Pool

– at: int
– max: int

Converter
– s: Node
– d: Node
– t: Trigger

Source

Drain

Engine

– change: bool

NodeInst
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– amount: int

elements*

src

tgt

state

*

work

*

behavior

engines *

node

(a) Static meta-model

(b) Run-time
meta-model

Figure 22. Partial meta-model of Micro-Machinations

as a triangle pointing right with a vertical line through the
middle. This converter consumes 10gold and produces 20hp.

Converters are so-called syntactic sugar, a convenience no-
tation, which translates into a simpler elements for e�cient
processing. Figure 21b shows that converters can be rewrit-
ten as a combination of a drain, a trigger and a source. When
the drain node consumes the costs of the conversion, the
trigger activates the source node, which then produces the
bene�ts. During the translation, the inputs of the converter
connect to the drain, and the outputs to the source.

Designers can simultaneously prototype and playtest run-
ning economies, e.g., by activating mechanisms or modifying
node types. Therefore, desugarings must also happen live.

9.2 Language design

We investigate how Cascade helps to express the liveness of
MM’s core language features, focusing on live desugaring
of converters in particular. As a starting point, we analyze
the C++ implementation of MM-Lib, an embeddable script
engine for MM [23]. Figure 22 shows a partial meta-model
based onMM-Lib. As before, we express the dependencies be-
tween the abstract syntax and the run-time state. An engine,
which instantiates a program, tracks the current amounts
of pool nodes and which nodes are triggered for activation.
Through a combination of e�ects and helper methods, it
evaluates how the resources �ow when nodes activate.
The solution for desugaring converter nodes introduces

invisible elements that implement its behavior. When a node
becomes a converter, a series of transformations immedi-
ately generate 1) a source, a trigger and a drain; 2) incoming
edges to the drain; and 3) outgoing edges to the source. In
addition, running engines obtain new node instances used
for evaluating �ow rates. Changes to a converter node are
delegated its source and drain nodes. Changing the node’s
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Figure 23. Prototyping and playtesting a mechanism in Vie

behavior to another type, cleans up these invisible elements,
and also removes node instances from running engines.

9.3 Vie: a tiny live game engine

We use Cascade and the Godot game engine to create a pro-
totype that implements the design of MM. Vie is a tiny live
game engine for simultaneously prototyping, playtesting
and �ne-tuning a game’s design. MM’s implementation in
Cascade counts 1542 LOC4. Compiling its sources generates
an interpreter, 11.7 KLOC of generated C#. We augment En-
gine with two helper classes, EvalContext (153 LOC) and
Flow (29 LOC), for storing temporary run-time data.

Instead of using its built-in REPL, we create a visual front-
end using Godot (v3.5.1). We leverage the GraphNode and
GraphEdit framework, and program C# classes for connect-
ing Cascade events to UI events. In another paper we further
detail how we manually create this front-end [22].

9.4 Live programming scenario

We reproduce the behavior of the mechanism shown in Fig-
ure 11. Using Vie, we perform a sequence of prototyping and
playtesting actions that demonstrate the behavior of MM,
including live desugaring and run-time state migrations.
We �rst recreate the diagram using Vie’s visual editor,

shown in Figure 23. Next, we trigger the converter buyMedit
by clicking on its center. The UI shows visual feedback.
We observe the engine succeeds (yellow) in activating its
drain, trigger and source. The nodes consume and produce
resources at the expected rates (green). The textual view
on the program, shows the invisible elements. Finally, we
change the node type of the converter to pool. The resulting
transaction is a long cause-e�ect-chain that cleans up the
desugared converter and migrates the run-time state.

9.5 Analysis

MM-Lib measures 21.2 KLOC of C++. In comparison, Vie
does not yet support every feature, e.g. modules. However,
at a mere 1542 LOC, its Cascade speci�cation is considerably

4h�ps://github.com/vrozen/Cascade/tree/main/LiveMM

more concise. Due to its representation of e�ects, Vie solves
two limitations of MM-Lib. First, it adds traceability of cause-
and-e�ect for all actions. Second, it expresses the e�ects of
resource propagation and triggers as a �xpoint computation.
Vie is more extensible and maintainable. Combining Godot
with Cascade is straightforward. Since both have event APIs,
and Godot support C#, they integrate well. Our e�ort went
mainly into creating the UI. A bene�t of Godot is that Vie is
a portable app (Windows, Linux, MacOS, iOS, Android).

10 Discussion

Cascade has compelling bene�ts for creating live program-
ming environments. Using its notations and abstractions,
language engineers can concisely express DSL run-time be-
haviors, and account for many migration scenarios, on the
meta-level. They can ensure transformations and side-e�ects
are correct by design. However, no automated contextual
analysis is provided yet. At no additional cost, Delta gen-
erates a history that traces how and why every event hap-
pens, while ensuring the run-time state is correctly updated.
Cause-and-e�ect chains are instrumental for exploratory live
programming, omniscient debugging and version control.
Because the generated interpreters are event-driven, they
combine well with visual UIs, e.g., bowsers or game engines.

Of course there are also costs. For language engineers, bidi-
rectional thinking is not straightforward. Language designs
do not normally include run-time state migrations. Learning
how bi-directional designs work takes time and practice.
We have validated Cascade against a limited number of

existing DSLs. Further validation will require introducing
new liveness to DSLs. Additionally, the compiler is a com-
plex meta-program that bridges a wide conceptual gap. As
a result, it undoubtedly still contains bugs we have not yet
identi�ed. To address this, we plan to create a test harness
that automates testing features and prototypes.
Of course, the proposed combination of transformations,

migrators and feedback mechanisms generalizes beyond Cas-
cade. These abstractions can also be programmed using Gen-
eral Purpose Languages (GPLs). Our compiler targets C#.
Unlike Cascade, GPLs do not support bi-directional transfor-
mations or generate cause-and-e�ect chains out of the box.
Adding support requires a considerable engineering e�ort.

We have not studied using Cascade to add liveness to GPLs.
The underlying executionmodels, e.g., program counters and
stack frames, do not directly support liveness. GPLs require
additional mechanisms such as probes to introduce liveness.
Cascade’s generic REPL has limitations. Its mechanisms

are low-level, and not suitable for DSL users. Furthermore,
Cascade still lacks a debugger for exploring histories, in-
specting cause-and-e�ect chains and tracing source locations.
Debugging a DSL involves stepping through the generated
C# code. Debugging transactions involves inspecting the
notation on the REPL (e.g., Figure 24 in Appendix B).
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Cascade’s integration in C# is helpful for extending it func-
tionality with helper methods. The lack of a formal seman-
tics complicates analyses. We see opportunities for checking
cyclic dependencies and the correctness of inverse e�ects.

Live programming with run-time state migrations is inher-
ently inconsistent. An open challenge is identifying formal
properties of liveness. Cascade introduces a local dependen-
cies between events that have a global consistency of e�ects.

11 Related Work

Live Programming is a research area that intersects Pro-
gramming Languages (PL) and Human-Computer Interac-
tion (HCI). The term refers to a wide array of user interface
mechanisms, language features and debugging techniques
that revolve around iterative changes and immediate and
continuous feedback [16]. Tanimoto describes levels of live-
ness that help distinguish between forms of feedback in live
programming environments [18]. Each level adds a property:
1) informative or descriptive; 2) executable; 3) responsive or
edit triggered; and 4) live or stream driven. Many forms of
live programming exist, each designed with di�erent goals
in mind. For instance, McDirmid describes how probes, a
mechanism interwoven in the editor, helps diagnosing prob-
lems [11]. Ko describes whyline, a debugging mechanism for
asking why-questions about Java program behavior [9].

Another approach is creating interpreters with a so-called
Read-Eval-Print-Loop (REPL), a textual interface for execut-
ing commands sequentially [3] A REPL, by de�nition, lends
itself naturally to exploration, incremental change and im-
mediate feedback, each key ingredients to live programming.
Interpreters created with Cascade have a built-in REPL and
REPL-like APIs for designing DSLs with event-based input
and feedback mechanisms, including visual ones.
Omniscient debugging, also called back-in-time debug-

ging, is a form of debugging that allows exploring what-if
scenarios by stepping forward and backward through the
code [14, 15]. Such debuggers have been created for general
purpose languages Java [15]. Retro�tting an omniscient de-
bugger to an existing language can come at a considerable
cost, redesign and implementation e�ort. Bousse et al. pro-
pose a meta-modeling approach for a generic debugger of
executable DSLs that supports common debugging services
for tracing the execution [4]. Cascade is also designed with
omniscient debugging in mind. Cause-and-e�ect chains are
a key data structure for creating omniscient debuggers.
The area of modelware is a technological space that re-

volves around the design, maintenance and reuse of models
(or programs). Model transformations are a key technology
for expressing change. In their seminal paper on “The Dif-
ference and Union of Models”, Alanen and Porres describe a
notation, originally intended for model versioning, known
as edit operations, which expresses model deltas [2]. Van der
Storm proposes creating live programming environments
driven by “semantic deltas”, based on this notation [20]. Van

Rozen and van der Storm combine origin tracking and text
di�erencing for textual model di�erencing [21].
Bi-directional Model Transformation (BX) is a well re-

searched topic that intersects with several areas [6]. BX has
impacted relational databases, model-driven software devel-
opment [17], UIs, visualizations with direct manipulation,
structure editors, and data serialization, to name a few. Ci-
cchetti et al describe the Janus Transformation Language
(JTL), a language for bi-directional change propagation [5].

The study of live modeling with run-time state migra-
tions has initially focused on �ne-grained patching with edit
operations [24]. Constraint-based solutions instead focus
on correct states with respect to a set of constraints [19], a
course-grained approach that omits �ne-tuning. Sanitization
solutions regard run-time state migrations as a way to �x
what is broken [25]. We instead take the position that they
are an integral part of the language semantics.
Until now, no solution could explain why a particular

migration happened. Cascade is a BX solution that addresses
both how and why, for precise feedback about root causes
and �nger sensitive �ne-tuning.
Cascade is the �rst language-parametric and generic ap-

proach for creating DSLs that leverages a bi-directional trans-
formations for live programming. Compared to existing ap-
proaches, it adds a scheduling mechanism for de�ning com-
plex deterministic side-e�ects. To the best of our knowledge,
no other system exists that can generate run-time state mi-
grations from meta-descriptions as cause-and-e�ect chains.

12 Conclusions and future work

We have addressed the lack of enabling technology for cre-
ating live programming environments. We have proposed
Cascade, a meta-language for expressing DSLs with interface-
and feedback-mechanisms that drive live programming. In
three case studies, we have explored expressing the liveness
features of LiveSML, LiveQL and Machinations. We have
demonstrated how to express gradual change, run-time state
migrations, ripple e�ects and live desugarings. Our results
show that an explicit representation of change is instrumen-
tal for how these languages are built, and that cause-and-
e�ect relationships are vital for delivering feedback.

In future work, wewill investigate how to create a reusable
omniscient debugger for change-based DSL environments.
Schema or program modi�cations require both instance

migrations and view adaptations. We will further investigate
how to express coupled transformations [10], e.g., for Vie.
Live programming requires interactive visual interfaces,

and generic language technology to create them [12]. We
will investigate how to automate the development of UIs
that leverage game engine technology [22].
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Table 1. Edit operations supported by Delta

Operation Inverse operation

o_new (ID id, StringVal class) o_delete (ID id, StringVal class)

o_set (Path p, Field f, Val nv,Val ov) o_set (Path p, Field f, Val ov,Val nv)

l_insert (Path p, IntVal i, Val v) l_remove (Path p, IntVal i, Val v)

l_push (Path p, Val v) l_pop (Path p, Val v)

l_set (Path p, IntVal i, Val nv,Val ov) l_set( Path p, IntVal i, Val ov,Val nv)

s_add (Path p, Val v) s_remove (Path p, Val v)

m_add (Path p, Val k) m_remove (Path p, Val k)

m_set (Path p, Val k, Val nv, Val ov) m_set (Path p, Val k, Val ov, Val nv)

A Edit Operations

This appendix describes on a complete set of edit operations
for manipulating commonly used data structures: objects,
lists, sets and maps. Cascade’s runtime Delta uses these op-
erations to execute bi-directional model transformations.

A.1 Objects, heap and quali�ed names

Edit operations work on objects. A global store, or heap,
stores the current program state as a collection of objects
with �elds and references. Values can have a base type such
as int, String, bool.
Enums and classes introduce custom objects and values.

The built-in datatypes Set, List and Map help to create ob-
ject hierarchies, such as trees and graphs. Edit operations
can perform lookups using quali�ed names or paths. The
notation uses dots and brackets for lookups in the global
store, maps and lists. For instance, [|uuid://1|] performs a
lookup of an object with Unique Universal Identi�er (UUID)
1, and [|uuid://1|].cur retrieves its �eld cur.

A.2 Supported edit operations

Delta supports the edit operations shown in Table 1. We
brie�y describe these operations, which work on objects,
lists sets and maps. Figure 7a shows an example sequence of
operations that partially recreate the example SML program
shown in Figure 3.

A.2.1 Objects. The o_new operation creates a new object
with identi�er id of a particular class. The new object will
have all of its �elds set to default values. Its inverse operation
o_delete has the exact opposite e�ect, and deletes an object
with identi�er id. Deletions include the class parameter and
they require that each �elds of the object has default values.
Without this, the operation cannot be reversed. Finally, to set
the values of �elds, the o_set operation, replaces the value
ov of �eld f of the object denoted by path p by a new value
nv. This operation is its own inverse, swapping the old and
the new values. Figure 7a shows examples.

A.2.2 List. Specialized operations that only work on list
objects of type List<X> are the following. The operations

root 1 State.Delete([|uuid://26|], "locked", [|uuid://13|]) {

pre 2 Trans.Delete([|uuid://33|], [|uuid://26|], "unlock", [|uuid://16|]) {

pre 3 State.RemoveOut([|uuid://26|], [|uuid://33]) {

[|uuid://28|].remove([|uuid://33|]);

}

pre 4 State.RemoveIn([|uuid://16|], [|uuid://33|]) {

[|uuid://17|].remove([|uuid://33|])

}

[|uuid://33|].src = [|uuid://uuid26|] → null;

[|uuid://33|].evt = "unlock" → null;

[|uuid://33|].tgt = [|uuid://uuid16|] → null;

delete Trans [|uuid://33|];

}

pre 5 Trans.Delete([|uuid://32|], [|uuid://16|], "lock", [|uuid://26|]) {

pre 6 State.RemoveOut([|uuid://16], [uuid://32]) {

[|uuid://18|].remove([|uuid://32|]);

}

pre 7 State.RemoveIn([|uuid://26|], [uuid://32]) {

[|uuid://27|].remove([|uuid://32|])

}

[|uuid://32|].src = [|uuid://uuid16|] → null;

[|uuid://32|].evt = "lock" → null;

[|uuid://32|].tgt = [|uuid://uuid26|] → null;

delete Trans [|uuid://32|];

}

pre 8 Mach.RemoveState([|uuid://13|], [|uuid://26|]) {

pre 9 MachInst.RemoveStateInst([|uuid://19|], [|uuid://29|], [|uuid://26|]){

pre 10 MachInst.SetCurState([|uuid://19|], null, [|uuid://29|]) {

[|uuid://19|].cur = [|uuid://uuid29|] → null;

}

[|uuid://20|][[|uuid://26|]] = [|uuid://29|] → null;

[|uuid://20|].remove([|uuid://26|]);

}

pre 11 StateInst.Delete([|uuid://29|], [|uuid://26|]) {

[|uuid://29|].def = [|uuid://26|] → null;

[|uuid://29|].count = 1 → 0;

delete StateInst [|uuid://29|];

}

pre 12 MachInst.Initialize([|uuid://19|]) {

post 13 MachInst.SetCurState([|uuid://19|], [|uuid://21|]) {

[|uuid://19|].cur = [|uuid://21|];

post 14 StateInst.SetCount([|uuid://21|], 2, 1) {

[|uuid://21|].count = 1 → 2;

}

}

}

[|uuid://14|].remove([|uuid://26|]);

}

[|uuid://26|].name = "locked" → null;

delete Set<Trans> [|uuid://27|];

delete Set<Trans> [|uuid://28|];

delete State [|uuid://26|];

}

Figure 24. Cause-e�ect chain that deletes the locked state

l_insert and l_remove are each other’s inverse. These op-
erations respectively insert or remove a value v at an index i
in the list denoted by path p.

To modify a value in a list, the invertible operation l_set,
replaces an old value ov by a new value nv at index i in the
list denoted by path p. For convenience, l_push inserts a
value v at the tail of an existing list, and l_pop removes it,
without specifying the index.

A.2.3 Set. Two operations work on set objects of type
Set<X>. The inverse operations s_add and s_remove re-
spectively add or remove a value v of type X in an existing
set denoted by path p.

A.2.4 Map. Operations that work on map objects of type
Map<K,V> are the following. The operations m_add and
m_remove respectively add or remove a map record de-
noted by key k of type K in an existing map denoted by
path p. To ensure correctness, the initial and �nal value in a
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record must be defaults. To update a map record, the opera-
tionm_set replaces an old value ov by new value nv in the
record denoted by key k in the map denoted by path p.

B LiveSML: Cause-and-e�ect chain

We detail the results of Section 7, which reproduces the
example LiveSML live programming scenario of Section 2.1.
Figure 24 shows the cause-and-e�ect chain that results from
deleting the locked state. The numbers appearing in the
circles coincide with those in the generated control �ow that
is superimposed on the static dependency graph of Figure 15.
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Abstract
In Software Language Engineering, the composition of het-
erogeneous languages has become an increasingly relevant
research area in recent years. Despite considerable advances
in different composition techniques, they mainly focus on
composing concrete and abstract syntax, while a thorough
yet general concept for synchronizing code generators and
their produced artifacts is still missing. Current solutions
are either highly generic, typically increasing the complex-
ity beyond their actual value, or strictly limited to specific
applications. In this paper, we present a concept for light-
weight generator composition, using the symbol tables of
heterogeneous modeling languages to exchange generator-
specific accessor and mutator information. The information
is attached to the symbols of model elements via templates
allowing code generators to communicate access routines at
the code level without a further contract. Providing suitable
synchronization techniques for code generation is essential
to enable language composition in all aspects.

CCS Concepts: • Software and its engineering → Do-
main specific languages.

Keywords: Software Language Composition, Code Genera-
tion, Generator Composition, CRUD
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1 Introduction
Model-driven engineering (MDE) [26] is a prominent re-
search and application area in which models of various do-
mains, such as automotive [2], robotics [30], and software de-
velopment [29], represent the central development artifacts
[12] in developing modern (often software-intensive) sys-
tems. Thesemodels conform tomodeling languages, prescrib-
ing concrete and abstract syntax, additional well-formedness
rules, and semantics [8] providing meaning [15]. The dis-
cipline of software language engineering (SLE) [19] inves-
tigates the efficient design, maintenance, and evolution of
such languages (for both modeling and programming).
As software languages evolve and mature [11], and their

constant support and development are time-consuming, reuse
becomes increasingly critical in SLE [4]. This means not only
reusability on a conceptual level but the actual reuse of the
implementation, i.e., the language definition and its gener-
ated and hand-coded tooling. In this regard, the composition
of software languages has been extensively investigated in
the last decade [17], establishing libraries of reusable lan-
guage components [5] and patterns for compositional lan-
guage design [9].

While composition in a language’s front end, i.e., its syntax
and tooling, is already pretty sophisticated, composing the
back end, usually code generators, is often neglected. Code
generation is essential to modeling languages as it trans-
lates abstract models into executable program artifacts, thus
bridging the gap between the problem and solution domain
[22]. Access information must be distributed through the
generation process so that generated artifacts can address
each other correctly. Figure 1 sketches this challenge and
serves as a running example. The left-hand side presents
two models of different languages, a class diagram (top) with
a class Person featuring a name and an age attribute and
an automaton snippet (bottom), granting access once the
age is at least 18. Thus, the expression at the automaton’s
transition refers to an attribute definition inside the class di-
agram. For simplicity reasons, we neglect the type-instance
relation at the model level in this example. As the models
refer to each other, it is apparent that their generated target
artifacts do as well. Therefore, the code generator for the
automaton language must adhere to the access information
the class diagram generator provides. In scenario (a) (middle),
the class is transformed in an intuitive fashion to a Java class
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CD

Person

String name

int age

public class Person {

String name;

int age;

public int getAge() {

return age;

}

// ...

}

Aut
// ...

if (p.getAge() >= 18) {

setState(granted);

}

// ..

Java
«gen»

Java
«gen»

public class Register {

static Map<Person,Integer> reg;

public static int search(Person p){

return reg.get(p);

}

// ...

}

Java
«gen»

// ...

if (Register.search(p) >= 18) {

setState(granted);

}

// ..

[ p.age >= 18 ] /

denied

granted

(b)(a)

Java
«gen»

Figure 1. Model excerpts of a class diagram and an automaton (left) with an inter-model cross reference and two alternative
generated code snippets (middle and right). In each scenario, these generated artifacts must match the respective access.

with attributes accessible via corresponding getters. Thus,
the generated code for the automaton can utilize this getter.
However, scenario (b) (right) depicts a rather different trans-
lation of the class diagram, resulting in a Register with a
static access map requiring the corresponding person as key
to retrieve the age. Therefore, assuming a provided getAge
method, as in the first case, is not applicable anymore, the tar-
get code of the automaton must adapt. While scenario (b) is
a contrived situation highlighting the underlying challenge,
it is well within the realm of possibility. In reality, multiple
cases of divergent access situations exist, such as employ-
ing builders or factories for object instantiation instead of
native constructors or translating an automaton concerning
different design patterns (e.g., the state pattern) [13].

Currently, there are no well-established solutions for com-
posing generators or their generated target artifacts. This
results in a gap when integrating models of distinct modeling
languages, as their outputs must be synchronized, demand-
ing additional manual effort. Some approaches exist but are
either tied to integrating explicit generators of particular
application domains [24], require strict compliance with gen-
eration rules, or are overly generic [23], raising the complex-
ity beyond their practical usability. A general, lightweight
solution is still missing.
In this paper, we envision a novel approach to synchro-

nizing generated outputs via accessor template-enriched
symbol tables. This approach harnesses the capabilities of
already established composition techniques for languages’
front ends and extends these to synchronize their generators
as well. Our proposed solution is based on the symbol man-
agement infrastructure of a language enabling inter-model
cross-referencing. Augmenting symbol tables with target

access templates enables the adaptive generation of accessor
code. An application programming interface (API) for syn-
chronizing generated artifacts should be as lightweight as
possible and ideally require down to no additional knowl-
edge of another generator’s intricacies. Therefore, we pro-
pose CRUD-like accessors for this API, as these operations
are commonly known, language agnostic, and the notation is
easily understandable. Our work focuses on template-based
code generators that produce artifacts of a common yet ar-
bitrary object-oriented, general-purpose programming lan-
guage. Furthermore, we concentrate on harmonizing the
target code for models of aggregated languages, as this com-
position technique preserves models as separated artifacts
and, thus, only establishes a loose coupling [6]. Our main
contributions are:

• An approach for enriching the symbol table with ac-
cessor templates enabling target code synchronization

• A conceptual API based on CRUD-like operations as a
lightweight generator synchronization contract

The remainder of the paper is structured as follows: sec-
tion 2 discusses the current state of the art comprising related
approaches and preliminarywork. section 3 presents our con-
cept of integrating templates in symbol tables to synchronize
generated artifacts. Finally, section 4 discusses our solution,
states open challenges, and section 5 concludes.

2 State of the Art and Related Work
While language composition, in general, is a broad field of
research in many language workbenches [10], there are cur-
rently only a few approaches to the integration of their gen-
erators. These attempts are often either tailored solutions
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for specific applications, too shallow to deliver a general
concept, or too generic to be effortlessly applied in practice.
Most preliminary work in this field is often domain- or

even application-specific. For example, there are approaches
in robotics [24, 25] coupling generators specifically for com-
ponent and connector systems via a separate generator con-
figuration and an orchestrator. Other investigations follow a
round-trip engineering approach defining framework-specific
modeling languages [1]. However, these approaches are tightly
coupled to the underlying application frameworks and do
not aim for generalizable generator composition.
An interesting approach is based on reverse engineering

existing target artifacts to extract corresponding accessor
information [3, 14]. While this attempt can generally enable
to generate syntactically well-formed and consistent code, it
lacks the link to the original model elements. Therefore, it
does not solve the issue of deriving target accessor informa-
tion based on inter-model relationships.

A few framework solutions aim for the complete integra-
tion of languages and thus also incorporate their generators.
CompoSE [20] provides for the integration of languages and
generates glue code for the individual language components’
target artifacts. Similarly, the SCOLAR framework also pro-
vides the ability to compose language components in the
large [7, 23]. However, these works mainly concentrate on
language embedding, i.e., a stronger coupling of the models.
While such integrated framework solutions still address the
problem of generator composition, they generally have the
disadvantage that languages must be integrated into their
respective ecosystem. Additionally, the defined communi-
cation interfaces are usually very generic and, therefore,
uncomfortable to employ for arbitrary modeling languages.
Similarly, the Genesys project [18] provides for genera-

tor development conforming to predefined frameworks. It
supports services for communication accessor information.
However, the results are bound to the jABC ecosystem [27],
and a more seamless composition of generators is considered
future work.

Finally, a few lightweight approaches exist that provide for
an exchange of information via the symbol tables of the mod-
els [21, 22]. The advantage of these attempts is that mainly
already existing composition techniques are employed with-
out creating over-complicated new infrastructures. So far,
however, these approaches have only been weakly studied
for predefined modeling and programming language combi-
nations. A general solution that seamlessly composes gen-
erated artifacts of heterogeneous modeling languages still
needs to be established.

3 Distributing Access Information
Exchange via Symbol Tables

Our approach builds upon the concepts of [22], who pro-
pose enriching the symbol table with accessor and mutator

code snippets of the model elements’ corresponding tar-
get artifacts. While the basic idea is promising, their pro-
posal only considers a fixed source (i.e., modeling) and target
(i.e., general-purpose programming) language. Thus, the de-
scribed symbol table extension and mapping are bound to
these technological spaces. While further adaptions are pos-
sible, they require one mapping for each language combina-
tion, ultimately convoluting the symbol table infrastructure
when incorporating more and more languages. Thus, our ap-
proach envisions a more generalized extension of the symbol
table, which is as language-agnostic as possible and allows
for arbitrary accessor and mutator mappings concerning
different symbol kinds.

3.1 An Extended Symbol Table Infrastructure for
Managing Target Access

For efficient cross-referencing,modern languageworkbenches
support the concept of symbol tables, either directly (such
as MontiCore [16]) or implicitly (such as MPS [28]). In a
symbol table, symbols of language-specific kinds are ordered
hierarchically inside scopes managing their visibility and
accessibility. This principle is used, for instance, in language
aggregation to compose models of different artifacts by re-
solving their respective inter-model references.
Utilizing the cross-referencing of symbols, our approach

extends the symbol table infrastructure by enriching it with
further generator information. Therefore, we augment the
symbols further with access information templates of the
target code. Figure 2 depicts our concept of the extended
symbol table infrastructure. Similar to existing approaches,
we foresee the extension of symbols with a GeneratorInfo,
defining the overall API of the generator synchronization
mechanism. As we strive for a general solution not bound
to a definitive technological space, the signature is specified
in a language-agnostic way.

In a first attempt, we propose CRUD operations for a gener-
alized API to create, read, update, and delete constructs
in an object-oriented sense. Thus, the GeneratorInfo at-
tached to each symbol offers the corresponding methods
independent of its kind. For proper access derivation, each
operation expects a respective context in which the access
occurs. For instance, in our running example, the context is
the variable p of type Person, which is used quite differently
in both scenarios. Next, as updating an object constitutes
mutating access, it requires an additional value parameter
to write, i.e., the new value to update with. This value, of
course, is only provided at the model level. However, it is
crucial to consider it here, as the generator needs to insert it
in the mutator template. Finally, we conceive a collection of
additional optional parameters that can be used to parame-
trize the access further. For instance, when updating only a
single value inside a list, these parameters can provide the
respective position.
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String create (context, params)

String read (context, params)

String update (context, value, params)

String delete (context, params)

«interface»

Scope
«interface»

Symbol

*

*

GeneratorInfo

0 1

«rte»

«ml»

CD

Automaton

Symbol

State

Symbol
 

 

.ftl.ftl.ftl.ftl

accessor

templates

id

language-

specific symbols

Figure 2. Extended symbol table infrastructure for storing
generator-specific CRUD accessor templates for each symbol.

The proposed symbol table extension with generator in-
formation based on CRUD operations is independent of a
particular modeling language. However, this only constitutes
a general API via which generators can communicate the
access data. The methods delegate to corresponding accessor
templates which are, in contrast, attached to the symbols
(resp. to their generator information) on the language level.
Thus, each symbol kind comes with a particular set of tem-
plates carrying the accessor information for the respective
generator’s target code. In fact, it is even possible to provide
different symbols of the same kind with distinct templates
based on their use.

The extended symbol table infrastructure enables modular
generators to look up the respective accessor code adaptively.
Figure 3 shows a simplified view of a symbol table instance,
providing accessor templates for the variable age of our
running example. That is, the generator information of the
variable symbol carries templates for read and update oper-
ations adhering to scenario (a). In this example, create and
delete commands are not allocated. While the approach
convinces the solution for arbitrary template engines, the
presented templates are written in FreeMarker syntax (.ftl)
for demonstration purposes.

Considering the template for the read operation, the first
line defines the signature of the template, containing the
variable symbol itself, the context, and optional parameters.
The second line describes the derivation of the respective
accessor (here, a getter method) by first referencing the cor-
responding context, followed by the static part .get and the
dynamic name of the symbol itself, concluded by (). Please
note that the presented template is a slight simplification as

:TypeSymbol

name =“Person”

:VariableSymbol

name =“age”

:VariableSymbol

name =“name”

scopes omitted

.ftl

${tc.signature(“sym”,“context”, “params”)}

${context.getName()}.get${sym.getName()}()

:GeneratorInfo

c r u d

.ftl

${tc.signature(“sym”,“context”, “val”, “params”)}

${context.getName()}.set${sym.getName()}(${val})

Person

String name

int age

«model»

«symbol table»

CD

OD

Figure 3. Object diagram representation of the symbol table
for a corresponding class diagram model with attached read
and update templates for accessing the generated artifacts.

for a proper getter signature, the first letter of the attribute’s
name is capitalized, which is not reflected here. During gen-
eration, this template gets evaluated by the corresponding
engine providing the required accessor code.

3.2 A Light-Weight Infrastructure for Composing
Template-based Generators

Employing the extended symbol table infrastructure, we can
further design compositional generator tools. For this pur-
pose, we propose a generator architecture encapsulating
language-specific printers that use the cross-language API
of the generator information now delivered with the partic-
ular symbols. Figure 4 gives an overview of this architecture.
Generally, such a tool comprises the standard components,
such as a parser transforming the input models into an AST
and a template engine for code generation. Additionally, we
attach a composition printer for dealing with the incorpo-
rated symbol tables. Whenever an accessor code is required,
this printer is incorporated, resolving the respective symbol
and retrieving the corresponding accessor template.
It is important to note that such a printer only needs

to know the constructs of its own language (usually but
not limited to expressions) and not those of the referenced
symbols. For instance, a printer for the automaton generator
(cf. Figure 1) would know how to translate expressions, such
as x >= y, in general, but fetches the concrete target code
accessors from the templates of the loaded symbol table.
This mechanism enables the seamless composition of target
artifacts while simultaneously preserving the loose coupling
of language aggregation.

166



Seamless Code Generator Synchronization in the Composition of Heterogeneous Modeling Languages SLE ’23, October 23–24, 2023, Cascais, Portugal

.ftl

Parser

Template

Engine

.ftl.ftl

Model
.ftl.ftl

Generator Tool

Composition

Printer

.ftl.ftl.ftl

symbol table with

attached accessor

templates

AST with attached

generator templates

Generated

Artifacts

Figure 4. Conceptual generator tool with a built-in printer
utilizing symbol-attached templates to supply the generator
engine with accessor information on external artifacts.

4 Discussion and Open Challenges
The presented approach to seamlessly compose generated
artifacts of heterogeneous modeling languages is based on
template-enriched symbol tables and a lightweight interface
using CRUD-like operations. Considering previous work, we
envision extending existing concepts for accessor provision-
ing via symbols and establishing a more general solution for
object-oriented target languages.
Previous approaches of related attempts require knowl-

edge of the access signatures for each symbol type [22]. This
hampers the loose coupling of some composition techniques,
such as language aggregation, since generally, we cannot
assume global knowledge of all loaded symbol kinds. Our
proposal delegates access to CRUD-like operations, thus re-
laxing the tight coupling of generators. Moreover, previous
approaches were limited to a fixed relation of the modeling
and target programming languages, while our proposal aims
for more generality.
Different approaches to composing generators or their

generated artifacts on a more general level rely on highly
generic, often bulky composition interfaces or require their
explicit definition [7, 20]. Our technique avoids these draw-
backs since we mainly build on existing composition mecha-
nisms and rely only on a simple, standardized API. To provide
for composability, a generator developer simply creates ac-
cess templates and attaches these to symbols according to
predefined CRUD operations. No further knowledge about
employing generators is required. In turn, the developer of
a generator, which requires access information, does not
need any knowledge of the providing language despite its
anyways provided symbols. A modeler using the languages
does not need any knowledge of the generation process, the
communication mechanism, or the attached templates.
However, our proposal for lightweight generator syn-

chronization is a mere starting point with open challenges
that need further investigation. For instance, the mentioned
context in a generator template (cf. Figure 3) is often more

complicated than in the highlighted example. In general, all
symbols traversed during resolution must be considered, re-
sulting in a collection of contextual symbols of which some
might be relevant while others are omitted. While this is a
task for the engineer providing the access templates (i.e., no
issue that hampers the composability), it could turn out to be
challenging to create the required templates for complicated
situations in the first place. Thus, future investigations are
required to evaluate whether the composition mechanism is
as lightweight and applicable as envisioned.

Moreover, while our approach is generalized, it fits partic-
ularly well on infrastructures that provide an explicit symbol
management system accessible to the language (or generator)
developer. For frameworks that do not allow for customiza-
tion or augmentation of symbols, concrete implementation,
while generally possible, may turn out more difficult.

Furthermore, our approach does not yet consider that a
model element can be mapped to several conflicting target
elements. For instance, we can translate a single class of a
class diagram into multiple classes on the code level. This
makes the target access ambiguous. Generally, generators
can always be modularized to minimize this issue. Other
attempts propose an identifier, making the mapping unique
[22]. However, both approaches have the disadvantage that
knowledge about the generation process of the source gen-
erator is required.

Finally, the proposedAPI needs further investigation.While
we envision a lightweight and straightforward generator syn-
chronization interface, CRUD-like operations might not be
sufficient. The requirements on the API strongly depend on
which information of the target artifacts is relevant for syn-
chronization. However, as a state is per se no type on the
model level, this information does not directly emerge from
the CRUD operations but requires additional consideration.
Thus, while the CRUD-like API already covers a large set
of necessary access patterns, it cannot be considered final.
We need a detailed analysis of common symbol kinds and
their potential target code information to extend further and
refine the access interface.

5 Conclusion
As language engineering becomes increasingly sophisticated
with composition techniques at concrete and abstract syntax
level, so must it become for integrating generated artifacts.
For this purpose, we presented an approach that envisions
augmenting the symbol table, used in language aggregation,
with additional templates to exchange access information
of the target artifacts. We highlighted the need for a light-
weight interface between generators and discussed a sim-
ple API based on CRUD-like operations. Furthermore, we
have depicted challenges for further investigation regard-
ing the portion of the information that must be exchanged.
Seamlessly synchronizing generators is a crucial step for
completely integrating languages.
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Abstract

EAST-ADL is a domain-speci�c modelling language for the
design and analysis of vehicular embedded systems. Seamless
modelling through multiple concrete syntaxes for the same
language, known as blendedmodelling, o�ers enhancedmod-
elling �exibility to boost collaboration, lower modelling time,
and maximise the productivity of multiple diverse stakehold-
ers involved in the development of complex systems, such
as those in the automotive domain. Together with our indus-
trial partner, which is one of the leading contributors to the
de�nition of EAST-ADL and one of its main end-users, we
provided prototypical blended modelling features for EAST-
ADL.

In this article, we report on our language engineering
work towards the provision of blended modelling for EAST-
ADL to support seamless graphical and textual notations.
Notably, for selected portions of the EAST-ADL language
(i.e., timing and variability packages), we introduce ad-hoc
textual concrete syntaxes to represent the language’s abstract
syntax in alternative textual notations, preserving the lan-
guage’s semantics. Furthermore, we propose a full-�edged
runtime synchronisation mechanism, based on the standard
EAXML schema format, to achieve seamless change propaga-
tion across the two notations. As EAXML serves as a central
synchronisation point, the proposed blended modelling ap-
proach is workable with most existing EAST-ADL tools. The
feasibility of the proposed approach is demonstrated through
a car wiper use case from our industrial partner – Volvo. Re-
sults indicate that the proposed blended modelling approach
is e�ective and can be applied to other EAST-ADL packages
and supporting tools.

CCS Concepts: • Software and its engineering→ System
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1 Introduction

The complexity of vehicular embedded systems is escalat-
ing exponentially due to modern technological innovations.
Consequently, rapid design prototyping and early analy-
sis are two critical aspects to attaining productivity and
time-to-market. For this purpose, the Electronics Architec-
ture and Software Technology – Architecture Description
Language (EAST-ADL) was �rst introduced by the ITEA
EAST-EEA project [1]. It is a domain-speci�c modelling lan-
guage (DSML) that allows the speci�cation of a complete
vehicular system through four levels of abstraction [2] i.e.,
Vehicle, Analysis, Design, and Implementation. Furthermore,
it comprises several other packages for di�erent aspects like
variability and timing. Consequently, EAST-ADL provides
comprehensive modelling capabilities for vehicular embed-
ded systems and it facilitates the early analysis of both hard-
ware and software design. Furthermore, it speeds up overall
system development by automatically generating required
implementations from system models. Therefore, EAST-ADL
has become a de-facto standard for developing vehicular
embedded systems [3].
Domain-speci�c modelling demands a high level of cus-

tomisation of modelling tools, typically involving combina-
tions and extensions of DSMLs and tailoring of the modelling
tools for their respective development domains and contexts.
Furthermore, tools are expected to provide multiple mod-
elling means, e.g., textual and graphical, to satisfy the re-
quirements set by di�erent development phases, stakeholder
roles, and application domains.
EAST-ADL tools traditionally focus on diagrammatic no-

tation rather than textual ones. This limits communication,
especially across di�erent stakeholders. A notation that is
well understood by a software engineer may not be as easily
understood by a tester. Moreover, di�erent engineers may

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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have di�erent notation preferences; not supporting multiple
notations negatively a�ects the throughput of engineers. Be-
sides the limits to communication, choosing one particular
notation also limits the pool of available tools to develop
and manipulate models that may be needed. For instance,
choosing a graphical notation limits the usability of text
manipulation tools such as text-based di�/merge, which is
essential for team collaboration. This mutual exclusion suf-
�ces the need to develop small-scale applications with only
a few stakeholder roles.
For larger systems, with heterogeneous components and

entailing di�erent domain-speci�c aspects and di�erent types
of stakeholders, such as vehicular embedded systems, the
provision of one notation only is restrictive and may void
many of the bene�ts that model-driven engineering (MDE)
can bring about. When applying MDE in large-scale indus-
trial projects, e�cient team support is crucial. Therefore,
modelling tools need to allow di�erent stakeholders to work
on overlapping parts of models using di�erent concrete syn-
taxes or simply notations; EAST-ADL is not an exception.

Blended modelling is de�ned as the activity of interacting
seamlessly with a single model (i.e., abstract syntax) through
multiple notations (i.e., concrete syntaxes) [4]. Blended mod-
elling is expected to aid in keeping the cognitive �ow of mod-
elling e�ective and e�cient, o�ering stakeholders a proper
set of intertwined formalisms, notations, and supporting
computer-aided mechanisms. This is important in the design
of modern vehicular systems, as their complexity has been
increasing exponentially over the past years [5].

Together with our industrial partner - Volvo, we provided
prototypical blended modelling features for EAST-ADL and,
in this paper, we report on the language engineering work
towards the provision of these features.

The architecture of our proposed blendedmodelling frame-
work is shown in Fig. 1.

Figure 1. Architecture of our blended modelling framework
for EAST-ADL

On top of the EAST-ADL meta-model, several tools and
frameworks, like EATOP [6] and Rubus ICE [7], are devel-
oped to support system modelling via graphical notations.
Textual notations for speci�c packages can be de�ned via
any language workbench. We leveraged EATOP for graphi-
cal modelling and the Xtext platform [8] to specify textual
notations in terms of EBNF grammars for the timing and
variability packages. We propose the EAXML standard [9]
as the central synchronisation point between graphical and
textual notations. The transition from graphical to textual
notations is achieved by de-serialising EAXML; serialisation
and in-place modi�cations are instead used to transition
from textual to graphical. Changes across notations are prop-
agated through model transformations.

The viability of the proposed approach is assessed through
a car wiper use case from Volvo. Notably, the design of a car
wiper is modelled using EATOP’s graphical editor, while tim-
ing constraints and variability are modelled using our textual
notation, from where all design elements in the graphical
notations are accessible. Subsequently, changes across the
two notations are seamlessly propagated. The results indi-
cate the feasibility of the approach and give indications of
its applicability to other EAST-ADL packages at other levels
of abstraction.

This article is organised as follows. Section 2 provides the
summary of relevant state-of-the-art approaches regarding
EAST-ADL architectural extensions and blended modelling
in Section 2.1 and Section 2.2, respectively. Subsequently,
the research motivation and goal are given in Section 2.3.
The proposed blended modelling approach is presented in
Section 3. Proof-of-concept is provided in Section 4, where
implementation details about Xtext grammars and synchro-
nisation mechanism are described in Section 4.1 and Section
4.2, respectively. Furthermore, the demonstration of blended
modelling for the car wiper use case is presented in Section
4.3. The signi�cant aspects in the given research context
are discussed in Section 5. Finally, Section 6 concludes the
article.

2 Related work

This section summarises the state-of-the-art approaches in
our research scope. The studies dealing with EAST-ADL and
blended modelling are given in Section 2.1 and Section 2.2,
respectively. Furthermore, the identi�ed research gaps as
well as the motivation for our approach are highlighted in
Section 2.3.

2.1 EAST-ADL

EAST-ADL is a domain-speci�c modelling language, partic-
ularly an adaptation of SysML, for automotive embedded
systems [5]. It is based on four levels of abstraction, starting
from the topmost vehicle level down to the implementation
level. In addition to this, it provides other packages for the
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modelling of timing, variability and more. Consequently, it
allows comprehensive system modelling with early analysis
features for automotive embedded systems. It is managed
by the EAST-ADL association which releases new EAST-
ADL versions over time. Eclipse EATOP [6] is a well-known
EAST-ADL tool grounded on EMF-based implementation
of the EAST-ADL meta-model. It facilitates the tree-based
system modelling supporting all four levels of abstraction.
Furthermore, di�erent plugins like a graphical viewer and
Hip-HOPS bridge [10] are available to enhance the function-
ality of EATOP for particular purposes. Rubus ICE - Inte-
grated Component model development Environment [7] is
another EAST-ADL tool supporting advanced modelling and
analysis features. Similarly, there exist several EAST-ADL
tools from di�erent vendors. The interoperability among
various EAST-ADL tools is achieved through EAXML – an
XML-based exchange format [5]. EAXML represents the se-
rialised form of EAST-ADL meta model instances; therefore,
its contents adhere to the XML schema of the complemen-
tary EAST-ADL version. Consequently, EAXML schema in
XSD format is also released along with every EAST-ADL
version [9].

With comprehensive speci�cations and rich tool support,
EAST-ADL is frequently applied and researched from dif-
ferent perspectives for the development of automotive em-
bedded systems. Etzel et al. [11] proposed an extension in
EAST-ADL architecture to support the modelling and analy-
sis of data dependency-based partitions. The proposed ap-
proach facilitates stakeholders to decide on correct design
choices, from the analysis level down to the design and hard-
ware level, based on the distribution of di�erent system
components. Architectural modelling of security aspects
is not covered in EAST-ADL, and therefore, Zoppelt et al.
[12] extended the EAST-ADL meta-model to include sev-
eral security-related concepts like attack, adversary and so
forth. Optimisation of Product Line Architectures (PLAs) be-
comes important in complex automotive embedded systems.
Wägemann et al. [13] carried out a study to identify the
characteristics, importance and challenges of automated de-
sign space exploration of product lines in industrial settings.
In this context, Walker et al. [14] proposed an automated
approach to optimize PLAs in EAST-ADL architecture. The
proposed approach is mainly grounded on EAST-ADL vari-
ability semantics, and it automatically evaluates di�erent
objectives (e.g. cost and dependability) and performs PLAs
optimisation automatically through genetic algorithms.

Energy-aware real-time automotive systems are designed
to operate within strict timing constraints and consider the
system’s energy consumption. In this context, EAST-ADL
architectural extensions are frequently explored. Kang et al.
[15] proposed a probabilistic extension of EAST-ADL to sup-
port the modelling and analysis of energy constraints. The
semantics of the expanded constraints were transformed into
UPPAAL and SIMULINK to perform the formal analysis and

simulation, respectively. Enoiu and Seceleanu [16] proposed
EAST-ADL architectural mutations for the testing of design
models. Marinescu et al. [17] proposed a veri�cation frame-
work to automatically generate test cases from EAST-ADL
models.

Automotive embedded systems are usually developed on
two platforms i.e., single and multicore. EAST-ADL architec-
ture is also explored in the context of development platforms.
Bucaioni et al. [18] proposed a cost-e�ective development
methodology for vehicular embedded systems equally e�ec-
tive for single and multi-core platforms. In another study,
Remko van Wagensveld et al. [19] proposed a supercore pat-
tern comprising multiple processing cores for improving the
performance of automotive embedded systems.

2.2 Blended modelling

Blended modelling is expected to aid in keeping the cogni-
tive �ow of modelling e�ective and e�cient, o�ering stake-
holders a proper set of intertwined formalisms, notations,
and supporting computer-aided mechanisms. This is impor-
tant in the design of vehicular systems, as their complexity
has been increasing exponentially over the past years. At
�rst sight, the notion of blended modelling may seem simi-
lar to or overlapping with multi-view modelling [20] (and
even multi-paradigm modelling) that is based on the para-
digm of viewpoint/view/model as formalised in the ISO/IEC
42010 standard. Multi-view modelling is commonly based
on viewpoints (i.e. “conventions for the construction, inter-
pretation, and use of architecture views to frame speci�c
system concerns”[21]) that are materialised through views,
which are composed of one or more models. The blended
modelling paradigm focuses on the provision of multiple
concrete syntaxes, or simply notations, for a non-empty set
of abstract syntactic concepts.
Blended modelling aims at boosting the development of

complex systems, such as vehicular embedded systems, by en-
abling seamless multi-notationmodelling. This improvement
is expected to improve both the throughput of engineers and
the communication between di�erent stakeholders.

Themajority of existing tools supporting UML-basedDSMLs
only provide graphical notations. To achieve blended mod-
elling in these cases, the development of textual notations
and runtime synchronisation between graphical and textual
notations are the two major concerns. In this context, several
attempts have been made to facilitate blended modelling for
UML-based DSMLs. Addazi et al. [22] proposed a blended
modelling methodology for UML pro�les. For demonstration
purposes, an example based on a portion of the MARTE pro-
�le was considered. The authors developed and incorporated
a textual notation de�ned in Xtext in Papyrus1. Both textual
and graphical notations operate on a single UML resource,
and therefore runtime synchronisation between notations

1https://eclipse.dev/papyrus/
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was achieved through simpli�ed transformations. Latifaj et
al. [23] proposed a blended modelling approach for UML-RT
state machines in the HCL RTist toolchain [24]. A textual
editor was developed in Xtext and integrated in RTist to sup-
port textual modelling. Furthermore, model transformations
were implemented �rst in QVTo2 to achieve runtime syn-
chronisation between graphical and textual notations; the
generation of QVTo transformations via higher-order trans-
formations was then proposed by the same authors too [25].
Maro et al. [26] presented a blendedmodelling approach for a
proprietary UML-based DSML named Ericsson Hive. Firstly,
an Ecore DSML was generated automatically from the Hive
pro�le. Secondly, features of Xtext were exploited to provide
textual notation. Finally, the transformations (from UML to
Xtext and vice versa) were implemented in ATL to achieve
runtime synchronisation between textual and graphical no-
tations.
In addition to UML pro�les, the application of blended

modelling is also common in DSMLs based on meta-models
described in other languages. Anwar et al. [27] proposed a
blended modelling framework where, starting from an Ecore-
based meta-model, the graphical and textual notations were
generated automatically. An editor was presented to perform
mappings between graphical and textual notations. Based
on the mappings, transformations were implemented in the
JAVACC platform for runtime synchronisation. Finally, both
graphical and textual editors were developed in Sirius to
achieve blended modelling. In another study [28], the same
authors emphasized that the concept of blended modelling is
not restricted to existing DSMLs. They proposed a blended
meta-modelling framework for the development of DSMLs
by integrating the techniques of Natural Language Process-
ing (NLP) and MDE. The proposed framework implemented
iterative transformations to automatically generate Ecore-
based meta-models from restricted natural language and vice
versa. Consequently, it allows the development of DSMLs
through graphical (ECORE) and textual (natural language)
notations seamlessly.

2.3 Research motivation and goal

EAST-ADL architectural extensions are frequently researched
from di�erent perspectives like security [12], energy con-
sumption [17], and product lines [14] to improve automotive
system development. Nevertheless, blended modelling sup-
port, regarded as a core needed feature by end-EAST-ADL
users such as our industrial partner has not been targeted
yet, to the best of our knowledge. As blended modelling of-
fers enhanced modelling �exibility to boost collaboration,
lower modelling time, and maximise the productivity of mul-
tiple diverse stakeholders involved in the development of
such complex systems as those in the automotive domain,
our goal together with our industrial partner was to provide

2https://projects.eclipse.org/projects/modeling.mmt.qvt-oml

prototypical blended modelling features for EAST-ADL for
automotive embedded systems development leveraging the
existing EATOP graphical modelling workbench. Also in
accordance with our partner’s internal investigations, we
focused on a solution for the timing and variability packages
in EAST-ADL. The reason behind this choice was that those
packages were deemed to bene�t the most from a textual
speci�cation according for multiple reasons. The e�ective
management of variability enables our partner to meet the
growing demand for customised products and produce ve-
hicle variations at high volumes. Meanwhile, compliance
with timing requirements is pivotal for safety certi�cations
and the overall functional suitability of vehicular systems.
More e�cient modelling of these aspects is thereby a core
aim for engineering teams at Volvo. We focus on providing a
blended modelling approach that is compliant with the stan-
dard EAST-ADL architecture as de�ned in its meta-model
[9]. This simpli�es the applicability of our approach to a
wide range of existing EAST-ADL tools.

3 Proposed approach

Our aim is to provide an approach that can be applied to
existing tools supporting graphical EAST-ADL modelling
to make them blended. Consequently, our �rst concern was
selecting a platform for developing a textual notation that
could be functional with the graphical notations of existing
EAST-ADL tools. In this context, we investigated Eclipse-
based solutions, i.e. Xtext, and JetBrainsMPS.We chose Xtext
since it integrates �nely with the EAST-ADL’s open-source
modelling framework, EATOP since both are compatible
with the Eclipse Modeling Framework (EMF).

Another important concern is the realization of runtime
synchronisation between graphical and textual notation. One
way to achieve this was to implement speci�c transforma-
tions for di�erent EAST-ADL tools separately, which was
clearly not viable. Therefore, we chose to use the EAXML
format as a pivot language for synchronisation between no-
tations. EAXML is the XML-based standard exchange format
to attain interoperability among EAST-ADL tools. Conse-
quently, a single EAXML-based synchronisation mechanism
is workable theoretically with any EAST-ADL tool adhering
to EAXML.
The architecture of the proposed blended modelling ap-

proach is shown in Fig. 2. Several tools supporting EAST-
ADL like EATOP, Papyrus, and Rubus ICE provide sophisti-
cated graphical editors. Therefore, in the proposed approach,
we advocate the use of existing graphical notations/editors
from any EAST-ADL tool adhering to the EAXML format,
as shown in Fig. 2. For the introduction of a textual nota-
tion and for runtime synchronisation between notations, we
propose the following �ve steps:

1. De�nition of Xtext grammar and textual editor:

We advocate the de�nition of an Xtext grammar for the
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Figure 2. Architecture of proposed blended modelling ap-
proach

EAST-ADL packages of interest by adding the needed
syntactic sugar for the textual notation to be compre-
hensive and e�ective while preserving the semantics
of the entailed EAST-ADL meta-concepts. This is es-
sential to achieve seamless runtime synchronisation
through EAXML at later steps. Once the grammar is
successfully speci�ed, a basic textual editor is automat-
ically generated in Xtext. Advanced editing features
like content assistance and custom syntax highlight-
ing can be included by exploiting built-in extension
features in Xtext.

2. Deserialisation and information extraction: This
step entails the deserialisation of an EAST-ADL model
in EAXML from a graphical notation. Subsequently,
the required information about various level entities in
the model can be extracted via model transformations.

3. Information/change propagation: Information ex-
tracted in Step 2 cannot be propagated to the textual
notation directly. This is due to likely syntactic dif-
ferences between the extracted information and their
representation in the textual notation, because of the
syntactic sugar mentioned in Step 1. Therefore, we
leverage speci�c model transformations to manipulate
extracted information for conformance to the textual
notation.

4. EAXML transformations: Steps 2 and 3 allow prop-
agating changes from graphical to textual notation.
To propagate changes from textual to graphical, we
leverage speci�c model transformations to manipulate
textual models and convert the information that they
carry into EAXML.

5. Serialisation: Transformations in step 4 convert tex-
tual models into the basic EAXML structure without
validating its conformance with standard XSD schema.
This step entails the systematic merging of model con-
cepts from textual and graphical notations in serialised

EAXML format, compliant with standard XSD, for
change propagation from textual to graphical nota-
tion.

It is important to mention that Step 1 is meant to be a one-
time e�ort, only to be carried out once to establish a speci�c
textual notation. The same goes for the implementation of
the model transformations in the subsequent steps. On the
other hand, Steps 2 to 5 are executed iteratively every timewe
need to perform synchronisation between graphical and tex-
tual notations (which may be either on-the-�y or on-demand,
depending on the con�guration of the modelling environ-
ment and the end-user needs). Although the approach was
described as if we were starting from the graphical notation,
the other way around, that is to say starting from the textual
notation, is equally possible and the order of the steps will
change accordingly.

4 Proof-of-concept implementation

The feasibility of the proposed blended modelling approach
for EAST-ADL is demonstrated by implementing a proof-
of-concept prototype and leveraging a car wiper use case
from Volvo. We leverage the EATOP modelling tool where
the car wiper can be graphically modelled at di�erent lev-
els of abstraction, as shown in Fig. 3. In line with Step 1

Figure 3. Overview of proof-of-concept implementation

of our approach, we developed a textual concrete syntax
in terms of Xtext grammars and corresponding editors for
EAST-ADL’s timing and variability packages. Steps 2 to 5
are implemented in terms of model transformations in ei-
ther plain Java or Xtend, to achieve runtime synchronisation
between the two notations, as shown in Fig. 3. Eventually,
we assessed the usability of our EATOP blended modelling
environment through the car wiper use case. More speci�-
cally, the design model was created using the EATOP graph-
ical notation while timing constraints were speci�ed using
the Xtext textual notation leveraging the information from
design function prototypes expressed in the graphical one.
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Subsequently, the timing constraints can be visualised and
edited in the graphical editor as well, and changes propa-
gated back and forth across notations thanks to the runtime
synchronisation based on EAXML.
In the remainder of this section, we �rst explain how we

de�ned and implemented Xtext grammars and thereby tex-
tual editors for EAST-ADL timing and variability packages.
Then we describe how we engineered runtime synchroni-
sation steps (i.e., 2 to 5) and, eventually, we reason on the
e�ectiveness of the proposed approach in terms of the car
wiper use case.

4.1 De�nition and implementation of textual

concrete syntaxes and editors with Xtext

When specifying the Xtext grammars, our aimwas to provide
syntactic sugar on top of EAST-ADL’s abstract syntax for
maximising the e�ectiveness of textual notations while pre-
serving the language’s semantics. We are interested in timing
and variability meta-concepts as available in the EAST-ADL
meta-model and depicted in Fig. 4 (a) and 4 (b).
EAST-ADL timing is based on TimingDescriptions and

TimingConstraints elements. TimingDescriptions include
several other related concepts like Events, FunctionEvents,
EventChain and so forth. TimingConstraints overall o�er
seventeen di�erent types of constraints, including Time Aug-
mented Description Language (TADL 2) constraints [29].
EAST-ADL variability is mostly based on the concept of
Con�gurationDecisionModel, which incorporates other core
concepts like SelectionCriterion, VehicleLevelBinding, and
so forth. A detailed description of timing and variability
concepts is available in the EAST-ADL speci�cation [9]. For
demonstration purposes, we consider only a subset of EAST-
ADL timing and variability concepts.

One of the most important tasks in the de�nition of a
grammar is to decide upon the syntax of the resulting textual
notation to be used by the end-user to edit textual models.
In this regard, we discussed both natural and programming
language-like syntax options with our industrial partner
and, upon their recommendation, we eventually opted for a
programming language-like syntax. Snapshots of the Xtext
grammars for timing and variability packages are shown in
Fig. 5 (a) and Fig. 5 (b), respectively. For the timing grammar,
we de�ned 26 rules to provide the textual notation for EAST-
ADL timing concepts, as shown in the outline in Fig. 5 (a).
The timing rule (Fig. 5 a) de�nes the syntax and semantics
of the timing elements in grammar. Particularly, it starts
with the ’Timing ’ keyword, contains �ve variables, and is
organised into events and constraints. Similarly, the syntax
and semantics of each rule are de�ned in timing grammar.
For the variability grammar, overall, 29 rules were de�ned,
as shown in the outline in Fig. 5 (b).
After the de�nition of Xtext grammars for the two pack-

ages, the corresponding textual editors with basic function-
alities, like syntax highlighting, are generated with Xtext.

We enhanced the editors with advanced editing features by
leveraging the built-in Xtext extension features. Particularly,
in Xtext, a content assistant (also known as code completion
or auto-complete) makes suggestions on the language’s syn-
tax and the current context in the textual editor. We overrode
the content proposal provider (AbstractJavaBasedContent-
ProposalProvider method) to incorporate such a content
assistant based on the information that is gathered in real-
time from the graphical editor. This makes modelling in the
textual editor more e�ective. The resulting textual editors for
EAST-ADL timing and variability packages are shown in Fig.
6 (a) and Fig. 6 (b), respectively. Note that we developed two
separate textual concrete syntaxes and editors for EAST-ADL
timing and variability packages for demonstration purposes
as well as for separation of concerns. Nevertheless, it is fully
possible to merge them into a single grammar and textual ed-
itor, as well as to include additional packages for EAST-ADL.

4.2 Implementation of runtime synchronisation

We propose four steps (i.e., Step 2 to 5) to achieve runtime
synchronisation between textual and graphical notations,
as depicted in Fig. 3. The implementation details for each
synchronisation step are as follows.

4.2.1 Deserialisation and information extraction. We
implemented an EAXML parser in Java using XML DOM
(Document ObjectModel) for deserialisation and information
extraction from a given EAXML. Particularly, our solution
parses the EAXML nodes in the given model �le following
the EAXML schema, and it stores the required information
about modelling entities through the transformer object. The
de�nitions and structure of EAXML nodes compliant with
EAST-ADL packages are available in the XSD that comes
along with the EAST-ADL speci�cation. Although we im-
plemented an EAXML parser for structure, timing, and vari-
ability packages for demonstration purposes, our approach
can be extended to support other EAST-ADL packages and
concepts. For the interested reader, the source code of the
EAXML parser is publicly available at [30].

4.2.2 Transformations for change propagation. We
extract information like vehicle features, analysis functions,
design function prototypes, timing constraints, and so forth
after the deserialisation. However, this information cannot
be directly propagated to the textual notation due to the
syntactic di�erences between the two concrete syntaxes.
Therefore, we implemented a set of transformations in Java
to establish conformance between the extracted information
and the textual notation. For instance, the names of analysis
and design function prototype elements are transformed into
a hierarchical string pattern for correct change propagation
to the textual notation.
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(a) Timing

(b) Variability

Figure 4. Organization of entities in EAST-ADL meta-model [9]

4.2.3 EAXML transformations. We de�ned and imple-
mented transformations in Xtend to generate the desired
EAXML target model from a source textual model. These
transformations are executed on the �y, i.e. target EAXML
model is generated side by side during the speci�cation of the
textual instance model. We de�ned an Xtend template, with
the placeholders for the runtime values to be gathered from
the textual model to generate the EAXML �le. Snapshots of
Xtend templates for timing and variability textual editors
are shown in Fig. 7 (a) and Fig. 7 (b), respectively. The trans-
formation rules to generate EAXML for event functions and
event function �owports within timing are depicted in Fig.
7 (a), where placeholders (e.g., «timing.name») are replaced

with instance values from the textual model when executing
the transformation. Similarly, EAXML transformation rules
are implemented for other timing and variability concepts.

4.2.4 Serialisation. EAXML transformations convert a
textual instance model into a basic EAXML structure. Then,
we implemented a serialiser, using Java and XML DOM, to
encode all model information into EAXML’s XSD. Further-
more, we provide a merger, which puts the serialised textual
instance model into the EAXML representing the graphical
model. To ensure the correctness of the merge operation, we
validate the conformance of the resulting EAXML with the
XSD. For this, we implemented a validator for the merged
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(a) Timing package (b) Variability package

Figure 5. Implemented Xtext grammars

(a) Timing package (b) Variability package

Figure 6. Textual editors

(a) Timing package (b) Variability package

Figure 7. EAXML transformations in Xtend
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EAXML, by leveraging XML DOM. This validation is essen-
tial for seamless change propagation from textual to graphi-
cal notations, as most EAST-ADL tools operate on serialised
EAXML only.

In this section, we provided details on our proof-of-concept
implementation for validating our approach. Although we
implemented grammars and textual editors only for the sub-
set of EAST-ADL timing and variability packages, the same
approach can be used to provide blended modelling sup-
port for other EAST-ADL packages as well. Similarly, the
proposed synchronisation mechanisms can be extended to
cover other EAST-ADL packages too. The proof-of-concept
implementation (Xtext grammars and synchronisation mech-
anisms) is publicly available at [30].

4.3 Feasibility of our approach

In this section, the feasibility of our approach is shown
through the car wiper use case using our proof-of-concept
implementation. Notably, the design-level modelling of the
car wiper is carried out in the EATOP graphical editor. The
modelling of timing constraints and variability is done in-
stead using our textual notations and related editors. When
modelling in our textual editors, design-level elements de-
�ned in the graphical editor are available for auto-completion
and syntax highlighting. On the other hand, although mod-
elled in our textual editors, timing constraints and variability
details are re�ected in the graphical editor. Any alteration
done to the timing and variability concepts in either notation
is seamlessly propagated on the �y to the other as well.
With the evolution of vehicular technology, the wiping

systems also evolves, and advanced features are incorpo-
rated in modern vehicles. In our use case, we consider the
design of a basic car wiper with a stalk and a motor. The
modelling is done using EAST-ADL design-level concepts in
the EATOP graphical editor, as shown in Fig. 8 (a). Particu-
larly, we de�ne two DesignFunctionTypes of car wiper (i.e.,
with and without controller) through 13 DesignFunctionPro-
totypes, 20 FunctionConnectors and 3 FunctionFlowPorts.
Moreover, the behaviour of the car wiper is modelled through
6 FunctionBehaviors. Furthermore, di�erent basic software
and hardware FunctionTypes are de�ned for the wiper mo-
tor. For brevity, we do not describe in detail the design level
meta-concepts like DesignFuctionPrototype; for more details
on them please refer to the EAST-ADL speci�cation [9].

We model timing constraints in our textual editor. In par-
ticular, we model three data types (i.e., period, second and
time) and two EventFunctions (WiperCtrlBasic and Wiper-
ParkPositionLDM). Moreover, we model four types of timing
constraints i.e., ExecutionTime, periodic, delay and age con-
straints. In Fig. 8 (b), all DesignFunctionPrototypes are acces-
sible in a dropdown list through content assistance (CTRL
+ Space) during the textual modelling of EventFunctions.
Similarly, other design elements like DesignFunctionTypes,
software and hardware FunctionTypes are accessible in the

textual editor too. Initially, timing constraints are speci�ed
in the textual editor, but after that, they can be edited in both
notations seamlessly. Changes to timing concepts across no-
tations are propagated on the �y through Steps 4 and 5 of
our approach via the synchronisation mechanisms. It can be
seen in Fig. 9(a) that the data types, EventFunctions, and tim-
ing constraints modelled in the textual editor are re�ected
in the graphical editor. We de�ne BLENDED EventFunction
in the graphical editor for demonstration purposes. This
EventFunction is immediately accessible in the textual editor
during the modelling of periodic constraint, as shown in Fig.
9(b). Concerning variability, for demonstration purposes, we
model an additional variant of car wiper, automatic with a
rain sensor, as shown in Fig. 10. When textually modelling
variants, graphical elements like FeatureModel and Vehicle-
Features are accessible. Changes across notations are propa-
gated by the same mechanisms as for the timing constraints.
It can be seen in Fig. 10 that EAXML is also generated on the
�y by the EAXML transformations when textually modelling
timing and variability.
We showed the feasibility of the proposed approach by

modelling a car wiper. We focused on showing the textual
modelling capabilities and the seamless synchronisation
mechanisms between textual and graphical editors.

5 Discussion

We provided a solution for blended modelling of timing and
variability for EAST-ADL. These packages are deemed to
bene�t the most from a textual speci�cation according to
internal investigations at our industrial partner for multiple
reasons. The e�ective management of variability enables our
partner to meet the growing demand for customised prod-
ucts and produce vehicle variations at higher rates, while
compliance with timing requirements is pivotal for safety cer-
ti�cations and the overall functional suitability of vehicular
systems. More e�cient modelling of these aspects, which is
brought by blended modelling, is a core aim for engineering
teams at Volvo and was the driving factor of this work.
The scalability of the solution, especially in terms of la-

tency for change propagation across editors is a very impor-
tant aspect, especially in the case of large system models. We
assessed this aspect for our synchronisationmechanisms.We
used an HP CORE i5 8th generation laptop with 8 GB RAM to
perform the blended modelling of the car wiper use case. The
initial size of the use case model in EAXML format is around
72 KB. We model two EventFunctions in graphical and tex-
tual editors separately for analysis purposes. We found that
the changes from textual to graphical are propagated in <900
milliseconds while change propagation from graphical to tex-
tual takes <1800 milliseconds. The change propagation time
from graphical to textual is larger because the deserialisation
of EAXML for an entire systemmodel is a compute-intensive
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(a) Graphical modelling of car-wiper’s architecture (b) Textual modelling of car-wiper’s timing constraints

Figure 8. Blended modelling

(a) Real-time change propagation of timing package from tex-

tual to graphical editor

(b) Real-time “BLENDED” EventFunction change propagation

from graphical to textual editor

Figure 9. Real-time synchronisation between editors

task. Furthermore, additional transformations need to be per-
formed before propagating the changes to the textual editor.
On the other hand, since the target EAXML is generated
concurrently under the hood while modelling via our textual
editors, related transformations are not required for change
propagation from textual to graphical. Therefore, the change
propagation time from textual to graphical editor is much
lower. We are planning further investigations on larger use
cases to realistically assess scalability and perform optimisa-
tions to the synchronisation mechanisms if needed.

Our approach encompasses the notations of the standard
EAST-ADL meta-model, which is available in EMF [3]. In
EATOP, which is EMF-based, the abstract syntax can be in-
stantiated through both graphical and tree-based concrete
syntaxes. We leverage EATOP’s tree-based syntax for exper-
imentation (and in the paper for brevity). However, the same

models shown in tree-based syntax can be visualised dia-
grammatically using the Graphical Viewer plug-in [10]. Our
approach does not a�ect the tree-based syntax, but the ab-
stract syntax behind it, and thereby the same model changes
can be appreciated in all concrete syntaxes provided out-of-
the-box by the hosting tool, in this case, EATOP.
Blended modelling is based on runtime synchronisation

between notations. In the proposed approach, we provide
on-the-�y synchronisation, that is applied when models are
saved in either notation. Note that this can be simply con-
�gured so that changes are propagated in real-time (upon
editing, rather than saving). This was not a viable option
in our industrial settings for reasons related to the editing
rights of di�erent stakeholders who may be working collab-
oratively on the same models.
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Figure 10. Textual modelling of variability with synchronisation

The proposed approach operates on two resources (i.e.,
Xtext and EAXML) to achieve runtime synchronisation be-
tween notations. Therefore, the implementation is accom-
plished throughmodel transformations. This is a common so-
lution in state-of-the-art blendedmodelling approaches, such
as Latifaj et al.[25], which operates on two resources (Xtext
and UML). An exception is the approach by Addazi et al.
[22], where synchronisation between notations is achieved
through a single resource (i.e., UML). We de�ned our textual
notations according to the needs of our industrial partner,
as in related approaches [23]. However, ours is the �rst doc-
umented approach towards e�ectively providing blended
modelling for EAST-ADL via EAXML. This sets a solid plat-
form to bring the bene�ts of blended modelling into the
development of vehicular embedded systems.

One of the core requirements of this work was applicabil-
ity. Tomaximise applicability, we selected EAXML as the syn-
chronisation pivot for change propagation between editors.
EAXML format is expected to be supported by themajority of
EAST-ADL tools, and therefore, the proposed blended mod-
elling approach can easily be included in toolsets supporting
EAXML. In this work, we tested the proposed approach in
EATOP, but we are planning to evaluate it with other EAST-
ADL tools too. In this context, it is pertinent to mention
that an updated EAXML schema is also released along with
every new version of the EAST-ADL speci�cation. In this
work, we used EAXML schema version 2.1.12 [9] for our
proof-of-concept implementation. Consequently, integration
of the current solutions with EAST-ADL tools supporting
version 2.1.12 is straightforward; for coming versions, a few
adjustments may be required in the synchronisation mecha-
nisms depending on how the EAST-ADL speci�cation would
evolve.

6 Conclusion and future work

This article presents a novel approach to the provision of
blended modelling in terms of textual and graphical concrete
syntaxes for EAST-ADL. Notably, for selected portions of the
EAST-ADL language (i.e., timing and variability packages),
we introduced ad-hoc textual concrete syntaxes to repre-
sent the language’s abstract syntax using textual notations,
while preserving the language’s semantics. Furthermore, the
approach o�ers runtime synchronisation between the no-
tations using EAXML – a standard model exchange format
for EAST-ADL tools – as a pivot language. The feasibility
of the proposed approach was shown through a car wiper
use case from our industrial partner - Volvo. In particular,
textual concrete syntaxes representing EAST-ADL’s timing
and variability packages were implemented and the EATOP
tool was used for graphical modelling. The car wiper use case
was modelled through both textual and graphical concrete
syntaxes simultaneously. This signi�cantly boosts collabo-
ration and lowers development time, eventually improving
the overall productivity of vehicular embedded systems.
Important aspects like the scalability of the synchroni-

sation mechanisms need further investigation. We are cur-
rently performing a more in-depth assessment of the pro-
posed approach on larger use cases. Furthermore, we will
extend blended modelling to other EAST-ADL packages at
di�erent levels of abstraction. This will provide room for fur-
ther enhancements of the current approach. Lastly, we are
in the process of assessing the applicability of our approach
by leveraging it on other EAST-ADL tools.
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Abstract
Model comparison is a prerequisite task for several other
model management tasks such as model merging, model
differencing etc. We present a novel approach to efficiently
compare models using programs written in a rule-based
model comparison language. As the comparison is done at
the model element level, and each element needs to be tra-
versed and compared with its corresponding elements, the
execution of these comparison algorithms can be compu-
tationally expensive for larger models. In this paper, we
present an efficient comparison approach which provides
an automated rewriting facility to compare (both homoge-
neous and heterogeneous) models, based on static program
analysis. Using this analysis, we reduce the search space by
pre-filtering/indexing model elements, before actually com-
paring them. Moreover, we reorder the comparison match
rules according to the dependencies between these rules to
reduce the cost of jumping between rules. Our experiments
demonstrate that the proposed model comparison approach
delivers significant performance benefits in terms of execu-
tion time compared to the default ECL execution engine.
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1 Introduction
While there is increased adoption of Model-Driven Engi-
neering (MDE) principles, tools and technologies in indus-
try [10], going forward scalability of these tools remains
one of the key challenges [9]. To enable the use of MDE in
large-scale applications it is essential to make MDE tools
and technologies scalable. Model management languages
are often interpreted and hence slower compared to general-
purpose programming languages [22]. So, optimising these
model management languages can deliver performance ben-
efits on the top of already provided underlying dedicated
task-specific support.
Model comparison is usually a prerequisite to various

other key model management activities such as model differ-
encing, model versioning, etc. It involves establishing match-
es/correspondences between elements of two models. There
are different possible ways to compare models, such as tradi-
tional text-based comparison, comparison based on unique
identifiers, model-to-model (M2M) transformation to estab-
lish comparison as in [11], or to use a dedicated comparison
language, such as the Epsilon Comparison Language (ECL),
which supports specifying matching criteria. Such model
comparison can be computationally very expensive because
each element of the first model needs to be traversed and
compared to a corresponding element of the second model,
which does not scale well.

In this paper, we introduce an efficient model compari-
son approach based on static program analysis and auto-
mated program rewriting. We have developed a prototype
implementation of the proposed approach that can rewrite
ECL programs, which operate on models with Ecore-based
metamodels. According to the current ECL engine, all el-
ements of one type are compared against the elements of
their matching type based on the provided comparison logic
by the developer. Using program analysis, we pre-filter the
elements to be compared, index them and then compare
the pre-filtered instances rather than all instances. These
pre-filtered elements are automatically embedded into the
original ECL program, using program rewriting, and exe-
cuted using the traditional ECL engine. Also, we ensure that
all the rules that are needed for the execution of a particular
rule have already been executed, by reordering the rules,
to avoid extra overhead of finding the appropriate rule to
invoke. The output of an ECL program is a match trace that
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contains all the established results of matches between ele-
ments of two models. Our approach yields a reduced match
trace, by omitting any unsuccessful matches, whenever it
was possible to identify these beforehand through program
analysis.

Our proposed approach has shown performance gains up
to 95% in terms of execution time in the experiments we
have conducted.
The rest of the paper is structured as follows: Section 2

presents the background concepts, tools and technologies
used for the implementation of the proposed approach, fol-
lowed by a running example. Section 3, presents the overview
of the proposed comparison optimisation approach and then
discusses each component step-by-step. Experiments, case
studies and the obtained results are presented and analysed
in Section 4. Section 5 discusses the relevant state-of-the-
art in the field of model comparison optimisation and static
analysis. Finally, Section 6 concludes the paper and presents
direction for future work.

2 Background & Motivation
This section provides the background concepts and a brief
overview of the technologies used to implement the proposed
approach. It also presents a running example which will be
used to motivate this work.

2.1 Model Comparison
Model comparison is one of the fundamental model man-
agement tasks, usually a prerequisite for other tasks such as
versioning, model merging, model differencing and model
transformation testing. Model comparison establishes corre-
spondences between matching elements of two models[14].
Such comparison can be performed both on homogeneous
and heterogeneous models. One example scenario could be
to identify matching elements before merging two models.
Such correspondences can also be used to test model-to-
model transformation pairs (source and corresponding tar-
get elements). Moreover, model comparison can be used in
order to establish matching elements before calculating the
differences between two models.

2.2 Epsilon
Epsilon [4] is a family of task-specific languages for per-
forming several model management tasks, such as model
merging (Epsilon Merging Language - EML [17]), model
validation (Epsilon Validation Language - EVL [1]), model-
to-model transformation (Epsilon Transformation Language
- ETL [18]) and pattern matching (Epsilon Pattern Language
- EPL [15]). All these languages extend a core language, the
Epsilon Object Language (EOL) [16], which provides imper-
ative constructs such as loops, conditionals and operations
(both built-in and user-defined). All languages of Epsilon

support managing models from a number of modeling tech-
nologies (and their respective persistence formats), through
a uniform interface, the Epsilon Model Connectivity (EMC)
layer [5].

The reason for choosing Epsilon as the basis of this work
is twofold. Firstly, Epsilon provides a dedicated language
for model comparison. Secondly, the developed optimisation
facilities can be leveraged by a wide range of modelling tech-
nologies, as Epsilon supports languages like EMF, Simulink
and XML, and can be further extended toworkwith currently
unsupported technologies using its EMC layer.

2.3 Epsilon Comparison Language
The Epsilon Comparison Language (ECL)1 is a hybrid rule-
based dedicatedmodel comparison language, provided by the
Epsilon framework. ECL lets developers specify custom com-
parison algorithms in a rule-based script to identify matching
elements between homogeneous and heterogeneous mod-
els. An ECL program contains a number of MatchRules and
optional pre and post-block(s) executing before and after
the rules respectively. A MatchRule enables developers to
specify comparison logic between model elements at a high
level of abstraction. MatchRules consist of a declared name
along with two parameters (left and right) to specify the
types of elements they can compare. A MatchRule can also
optionally extend a number of match rules and can be la-
belled as abstract, lazy and/or greedy using corresponding
annotations.
• An abstract match rule must be extended by other
MatchRules. Abstract match rules cannot be invoked
standalone, they get invoked only when the rules that
extend them are invoked.
• A lazy match rule will get executed only when it
is required by another MatchRule, using the matches
operation.
• A greedy match rule is executed for all pairs that
have a kind-of relationship with the types specified by
the left and the right parameters of the MatchRule.

The execution engine automatically evaluates non-abstract,
non-lazy match-rules in two passes, starting with the order
in which they appear.

2.4 Motivating Example
In this paper, as a running example, we consider comparing
class diagrams with sequence diagrams. Figure 1 is illustrates
the metamodel of a class diagram language. The class dia-
gram shows a structural view of the system containing the
classes, their attributes and their operations.

Then we consider a metamodel of a sequence diagram, an
excerpt of which is shown in Figure 2. Sequence diagrams
show the interaction between objects of a system - its in-
tended behaviour.
1https://www.eclipse.org/epsilon/doc/ecl/
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1 model Left driver EMF{

2 nsuri = "sd"

3 };

4

5 model Right driver EMF{

6 nsuri = "cd"

7 };

8

9 rule Lifeline2Class

10 match l : Left!Lifeline

11 with r : Right!Class {

12 compare : l.type = r.name

13 }

14

15 rule Message2Operation

16 match l : Left!Message

17 with r : Right!Operation {

18

19 compare : l.`operation` = r.name

20 and (l.`to`.matches(r.class) or l.`to`.
matches(r.class.superTypes)) and l.

parameters.matches(r.parameters)

21 }

22

23 rule Param2Param

24 match l: Left!Parameter

25 with r: Right!Parameter {

26

27 compare : l.name = r.name and l.type = r.

type.name

28 }

29

30 operation String matchOperation(others :

Collection <Right!Operation >) : Boolean

{

31 return others.exists(o|o.name = self);

32 }

Listing 1. Example ECL script before optimisation

Type

+ name: EString

Model

+ name: EString

Class

+ isAbstract: EBoolean

Parameter

+ name: EString

Operation

+ name: EString

DataType

0..1  returnType

1  type

1..*parameters

1..* operations

1..* classes

Figure 1. An excerpt of the Class Diagram metamodel

Now, as a sequence diagram depicts the interaction be-
tween objects and a class diagram represents the classes and

their features, we can establish correspondences between
the two, which can be used for downstream activities such
as validation, model merging etc.

1 model Left driver EMF {

2 nsuri = "sd"

3 };

4

5 model Right driver EMF {

6 nsuri = "cd"

7 };

8

9 pre {

10 var Lifeline2ClassMap = Right!Class.all.

mapBy(param|param.name);

11 var Message2OperationMap = Right!

Operation.all.mapBy(param|param.name)

;

12 var Param2ParamMap = Right!Parameter.all.

mapBy(param|param.name);

13 }

14

15 rule Lifeline2Class

16 match l : Left!Lifeline

17 with r : Right!Class

18 from : Lifeline2ClassMap.get(l.type) ?:

Sequence {}{

19 compare : true

20 }

21

22 rule Param2Param

23 match l : Left!Parameter

24 with r : Right!Parameter

25 from : Param2ParamMap.get(l.name) ?:

Sequence {}{

26 compare : true and l.type = r.type.

name

27 }

28

29 rule Message2Operation

30 match l : Left!Message

31 with r : Right!Operation

32 from : Message2OperationMap.get(l.`
operation`) ?: Sequence {} {

33 compare : true and (l.`to`.matches(r.
class) or l.`to`.matches(r.class.
superTypes)) and l.parameters.

matches(r.parameters)

34 }

35

36 operation String matchOperation(others :

Collection(Right!Operation)) : Boolean

{

37 return others.exists(o : Right!Operation|

o.name = self);

38 }

Listing 2. Example ECL script after optimisation
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Table 1.Match trace produced from the execution of Listing 1 on the models in Figure 3 and Figure 4

S # Left Right Matching

1 Lifeline (qa: User) Class (User) True
2 Lifeline (qa: User) Class (ATM) False
3 Lifeline (qa: User) Class (Card) False
4 Lifeline (hsbc: ATM) Class (User) False
5 Lifeline (hsbc: ATM) Class (ATM) True
6 Lifeline (hsbc: ATM) Class (Card) False
7 Message (enterPin) Operation (verifyPin) False
8 Message (enterPin) Operation (dispenseCash) False
9 Message (enterPin) Operation (enterPin) True
10 Message (enterPin) Operation (depositCash) False
11 Message (enterPin) Operation (withdrawCash) False
12 Message (enterPin) Operation (activate) False
13 Message (verifyPin) Operation (verifyPin) True
14 Message (verifyPin) Operation (dispenseCash) False
15 Message (verifyPin) Operation (enterPin) False
16 Message (verifyPin) Operation (depositCash) False
17 Message (verifyPin) Operation (withdrawCash) False
18 Message (verifyPin) Operation (activate) False

Lifeline

+ name: EString

+ type: EString
Message

+ operation: EString

SequenceDiagram

+ name: EStringlifelines

from

to

Parameter

+ name: EString

+ type: EString
parameters

messages

1..*
1

1..*

1

0..*

1

Figure 2. An excerpt of the Sequence Diagram metamodel

A custom comparison algorithm written in ECL is shown
in Listing 1. For this comparison, we have the following basic
criteria:

• A lifeline matches a class when the type of the lifeline
is the same as the name of the class in class diagram.
• A message matches an operation when the operation
of themessage is the same as the name of the operation.
Also, the class corresponding to the “to" lifeline of the

:User

enterPin

:ATM

verifyPin

Figure 3. Sequence Diagram of ATM

message or one of its supertypes should contain the
operation.
• The parameters of the message need to be matched
with the parameters of the operation.

We discuss some builtin operations supported by ECL and
EOL that are used in the running example.
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EOL supports a safe navigation operator ?., for making
the null checks more concise. The use of the safe naviga-
tion operator is shown in the listing below, where we re-
turn someProperty if the a has a non-null value and returns
anotherProperty if a contains a null value. var result = a?.

someProperty?.anotherProperty;

Map (mapBy(iterator : Type | expression)) is a function that
returns a map containing the results of the expression as
keys and the respective items of the collection or collections
of elements as values.

ECL provides a built-in operation matches(right :Any) for
model elements and collections.When invoked, thematches()
operation returns the cached result, if the elements have been
already matched, otherwise, it finds rules that can compare
the elements, executes them, and returns the result. In this
ECL program, we have three match rules: Lifeline2Class (Line
9-13), which compares the type of lifeline to the class name
(Line 12), Message2Operation, which compares the operation
ofMessagewithOperation name (Line 20).Message2Operation
also compares whether the operation’s owner class is the
same as the to (Lifeline) of theMessage. Finally, Param2Param
compares the name and type of the parameters of both mod-
els (Line 27).

User

enterPin()

depositCash()

withdrawCash()

ATM

verifyPin()

dispenseCash()

operates

Card

activate()

owns

Figure 4. Class Diagram of ATM

As an example, let us consider matching a class diagram of
an ATM system as shown in Figure 4) with its corresponding
sequence diagram as shown in Figure 3. If we execute the
ECL program (Listing 1) over these two models it would
produce the match trace shown in Table 1. As we can see, it
returns all matches of each element with its corresponding
type and a boolean indicating if the element were matched
or not.

The default execution engine of ECL will compare each in-
stance of the left parameter (i.e., Lifeline) to all the instances
of the right parameter (i.e., Class). The complexity of this
rule here would be O(M×N), if there are M number of Life-
lines and N number of Classes. Using program analysis, we
could index the instances by analysing these compare blocks

as shown in Listing 2. Considering example sequence and
class diagrams in Figure 3 and Figure 4, as there are 2 Life-
lines and 3 Classes so there will be 6 matches for the rule
Lifeline2Class. In the rule Lifeline2Class, we can filter the
Class instances only keeping ones where the name of the
class is equal to the type of the Lifeline. These indices can be
pre-computed once, and then used as required. This could
reduce the complexity to O(M), considering the complexity
of the hash function to be O(1). Again considering the ex-
ample models, if we execute Listing 2, the resultant match
trace would be the same as shown in Table 2. This can be
observed that there are only two matches for the same Life-
line2Class rule. Hence, the idea of this work is to analyse the
ECL matching program and to automatically replace it with
an efficiently rewritten program, to reduce the complexity
of (some of) the comparisons.

3 Proposed Approach
In this section, we present proposed approach, an overview
of which is illustrated in Figure 5. The idea is to optimise
ECL matching programs automatically using program anal-
ysis. The developer writes the comparison algorithm in ECL
to compare two models, say left and right. The expected
outcome is a match trace resulting from computing the com-
pare block of each match rule. The match trace contains a
number of matches, each match contains the two objects
that were matched and a boolean to indicate if the match
was successful or not. So using the proposed optimisation
approach we generate a match trace, which is a reduced or
pre-filtered version, containing a significantly smaller num-
ber of unsuccessful matches. We have hence reduced the
search space, making the comparison faster. This is because
we do not compare all instances of left parameter to all in-
stances of right parameter (which is done in existing ECL
execution), rather we compare instances of left parameter to
pre-filtered/pre-indexed instances of the right parameter.
The first step in our proposed approach is the 1 static

analyser, a block used to populate the Abstract Syntax Tree
(AST) of the ECL matching program, with the respective
type information. This type resolved AST is then used for
two purposes: i) For the 2 dependency graph extractor, a
block that extracts the dependencies between different match
rules of an ECL program by analysing compare blocks and
matches() operations. Dependency here means that if a rule
MRx invokes another rule MRy then the rule MRx would
be dependent on MRy. The dependency graph is then used
by the 4 rule scheduler to efficiently reorder the execu-
tion of rules. So that if a rule invokes another rule like in
Line 20 of Listing 1, rule Message2Operation is dependent
on rule Lifeline2Class and Param2Param. Both the rules on
which Message2Operation is dependent should be executed
before the execution of Message2Operation. ii) For the 3
optimisable rule detector, a block for program analysis to
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Table 2.Match trace produced from the execution of Listing 2 on the models in Figure 3 and Figure 4

S # Left Right Matching

1 Lifeline (qa: User) Class (User) True
2 Lifeline (hsbc: ATM) Class (ATM) True
3 Message (enterPin) Operation (enterPin) True
4 Message (verifyPin) Operation (verifyPin) True
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EOL 
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Figure 5. An overview of the proposed approach

identify the match rules which can be optimised based on
the expressions in compare block. Here, optimisable rules
mean the rules which are matching two elements on the
basis of a specific property and can be indexed. So, this step
identifies optimisable match rules along with the specific
property name. Finally, 5 the rewriter block will replace
the original program with a rewritten optimised program
along with the new order of the match rules. This optimised
comparison program will then be executed by the existing
ECL engine. The resultant match trace would be a subset
of the trace that would have been produced by the original
comparison program. This subset trace would exclude the
matches which would not satisfy the domain (an EOL expres-
sion to narrow the search space), while including all positive
matches.

3.1 Static Analysis
Static analysis is the first step of our proposed approach
workflow. It analyses the ECL program’s abstract syntax tree

(AST) and computes the types of all expressions in it. This
type information is extracted using metamodel introspection,
type resolution and type inference. ModelDeclarationState-
ments in Lines (1-3 and 5-7) in Listing 1 actually access the
metamodel structure and help retrieve the types and their
hierarchy available in the metamodel. To statically analyse
ECL programs, we extended the already available EOL static
analyser 2 by adding language specific support (e.g. analysing
MatchRules, compare blocks etc.). The resolved types of var-
ious constructs in Listing 1 are shown in Table 3. The
outcome of the static analyser block is a type-resolved AST,
which is just the input AST with its nodes populated with
their respective types.

3.2 Dependency Graph
When matches() operation is invoked, it returns the cached
result, if the elements have been already matched. Other-
wise, it finds the rule comparing the same two elements and
2https://github.com/epsilonlabs/static-analysis
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Table 3. Resolved types of various constructs in Listing 1

Line# Expression Resolved Type

13 l Left!Lifeline

14 r Right!Class

15 l.type String

15 r.name String

19 l Left!Message

20 r Right!Operation

21 l.operation String

21 r.operations Collection<Right!Operation>

21 r.superTypes.operations Collection<Right!Operation>

29 l.parameters Collection<Left!Paramter>

29 r.parameters Collection<Right!Paramter>

33 l Left!Parameter

34 r Right!Parameter

36 l.name String

36 r.type.name String

Message2Operation

Lifeline2Class Param2Param

Figure 6. Dependency graph of Listing 1

then returns its results. Due to these rule invocations, rules
can be dependent on one another. These dependencies can
be extracted by the help of the type resolved AST, as done
for model-to-model transformations in [8]. To construct a
dependency graph, we create a vertex for each MatchRule
declared in the ECL program. If a rule MRx has a statement
in its compare block that calls a matches() operation which
invokes another rule, say MRy. The resolution of which rule
is invoked by the matches() operation is done by finding the
rule where the type of the left and right parameters of rule
is the same as the type of the target and parameter expres-
sions of the matches() operation. Then, we create an edge
from the vertex corresponding to MRx, to the vertex corre-
sponding to MRy. If there are multiple rules invoked by the
matches() operation, we create multiple edges fromMRx. For
example, as in rule Message2Operation Line 19 of Listing 1
there is a call to the matches() operation with l.to (resolved
type: Lifeline) as the target expression and r.class (resolved
type: Class). This means that this matches operation call will

invoke a rule which is matching Lifeline with Class i.e., rule
Lifeline2Class. So, we create an edge fromMessage2Operation
to Lifeline2Class as shown in Figure 6. The reason for extract-
ing the dependency graph is to reorder the rules in a way
that if MRx is invoked by a rule MRy then MRy is scheduled
before MRx. When x.matches(y) is called in ECL, if x and y
have not already been matched, the ECL engine needs to
find rule(s) that can match them, invoke these rules and re-
turn the result to matches(...). This can have a non-negligible
cost for large models and sets of match rules. By reordering
rules to maximise the number of pairs of x and y that have
been already matched before x.matches(y) is called, we re-
duce that cost of jumping between rules. This rescheduling
can help improve performance, because it can reduce the
number of attempts needed to find the appropriate rules to
invoke. Any rule invocation using a matches() operation can
use the cached results in the match trace, if the rules have
been reordered properly. We do not create an edge when a
rule invokes itself, as it does not affect the reordering for
which we extract dependency graph. However, ECL provides
a mechanism to avoid an infinite loop, in case of a cyclic invo-
cation of a rule i.e., two rules implicitly invoking each other.
ECL maintains a temporary trace along with the primary
trace. In a primary trace the matching value is added after
the execution of compare block, while the matching value
is set to true in the temporary trace before the execution
of the compare block. In case of another attempt to match
elements from already invoked rules, these rules would not
be re-invoked. Finally, the temporary trace is reset when a
top-level rule returns.

3.3 Identifying Optimisable MatchRules
This is the third step of the approach that takes in a type-
resolved AST as an input with the aim to identify the rules
which can be optimised. By optimisable rules, we mean the
rules which are comparing the elements of the two models
based on a specific property. This is done by traversing the
compare block of each MatchRule and finding expressions
where two elements are compared on the basis of a specific
property or attribute. Currently, the rewriting approach only
considers equality operators, as checking for name/id-like
attribute equality is very common in model matching in our
experience, but it can be extended to support other operators
in the future too. In this case, the elements can be indexed
based on that property. The process for identifying such op-
timisable rules is specified in Algorithm 1. The algorithm
traverses a set of Match rules and its compare block. Then, in
a compare block all DOM elements are traversed to identify
cases where a PropertyCallExpression is used within an Equal-
sOperatorExpression and it records the relevant Match rules
and properties in a HashMap for later use in indexing. With
one exception, if there is a logical operator between equals
expression, we just record the index if it is an and operator.
For instance, in Listing 1 Line 12 the rule Lifeline2Class is
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comparing the Lifeline from Sequence diagram to Class from
Class diagram on the basis of the property name, in this class.
So the Algorithm 1, would return the hashmap containing
rule Lifeline2Class with the respective property “name".

Algorithm 1 Algorithm for Identifying optimisable rules
1: Let op = HashMap<rule, NameExpression>
2: for all Matchrules re do
3: Visit all DOM elements (eem) of compare block of

re
4: if eem instanceof PropertyCallExpression and

!(op.contain(re)) then
5: prent ← eem.parent
6: if prent instanceof EqualsOperatorExpression

then
7: prent ← prent.parent
8: if prent instanceof OperatorExpression then
9: if prent instanceof AndOperatorExpression

then
10: op← re and elem.NameExpression
11: end if
12: else
13: op← re and elem.NameExpression
14: end if
15: end if
16: end if
17: end for

3.4 Program Rewriting
The final step is the rewriting phase illustrated in Algo-
rithm 2, now that we have all the program analysis in place.
As discussed in the previous step, we have identified the
optimisable rules say MR1, MR2.., MRn along with the spe-
cific properties say p1, p2.., pn on the basis of which we are
comparing the elements in the compare block. We index all
instances of the right parameter of the identified rule MRn
on the basis of the respective property pn. This is done using
a built-in method called mapBy (Line 10 in Listing 2), which
returns a map containing the results of the parameter expres-
sion as keys and the respective items of the target collection
as values. ThemapBy operation is called with all instances of
the identified rule’s right parameter and assigned to a newly
declared variable (Line 4-10 of Algorithm 2). The naming
convention of these variables is the rule name concatenated
with the string “Map". So, a Map for the rule Lifeline2Class
will be called as Lifeline2ClassMap (Line 11 of Algorithm 2).
These variable statements are then added to the pre block of
the ECL program (Line 13 of Algorithm 2). The Pre block is a
set of EOL statements that are executed before the execution
of match rules in ECL. This can be seen in Listing 2 (Line
10-12).

The next step is to utilise these pre-computed hashmaps
(indices). For this, we have added the facility of specifying

domains in ECL. Each parameter in an ECL rule can define
a domain, which is an EOL expression that yields a set of
model elements, allowing the developers to narrow down the
search space. We support two types of domains in ECL. Static
domains which are computed once for one match rule and
are independent of bindings of the other parameter of the
MatchRule. Static domains are denoted by the “in" keyword)
and dynamic domains which are recomputed every time the
other parameter value is changed. Dynamic domains are
dependent on the other parameter values and are denoted
by the “from" keyword. So we use these hashmap variables
added in the pre block, as a dynamic domain for the right pa-
rameter of the correspondingMatchRule. For instance in Line
18 of Listing 2, we retrieve the value from the corresponding
hashmap i.e., Lifeline2ClassMap using the left parameter’s
compared property (identified in the previous step) as a key.
Hashmaps return null values if they don’t contain the

mapping for a particular key, so to cater for possible null
pointer exceptions, we use a safe navigation operator. The
use of the safe navigation operator is shown in Line 18 of
Listing 2, where we return an empty Sequence if the get()
operation returns a null value. var result = a?.someProperty?.

anotherProperty;

If a is not null, someProperty would be assigned to result,
otherwise, anotherProperty would be assigned.

The last step of the rewriting phase is to rewrite the order
of the rules as described in the Rule Scheduler step. The
reordering is done on the basis of the dependency graph as in
Figure 6, so that dependency-free rules can be executed first
and then the ones dependent on them. Now, instead of the
ECL engine executing the original program written by the
developer, as listed in Listing 1, the automatically rewritten
program as in Listing 2 will be executed. During execution,
to minimize the storage of unnecessary unsuccessful match
traces, only the unsuccessful traces that are required based
on the dependency graph (i.e., if there are no corresponding
matches() calls are saved.

4 Evaluation
In this section, we first present the experimental setup, in-
cluding the case study and the models used for our bench-
marks, and then we present the results of the conducted
experiments. Finally we conclude the section by analysing
and then stating any threats to the validity of the presented
results.

4.1 Experimental Setup
To evaluate the proposed approach, we measured the exe-
cution time of the original ECL programs using the existing
ECL engine with the rewritten ECL programs (also using the
existing ECL engine). Since Epsilon already supports parallel
execution of ECL programs, we conducted all these experi-
ments with the parallel execution mode. Program rewriting

188



Towards Efficient Model Comparison using Automated Program Rewriting SLE ’23, October 23–24, 2023, Cascais, Portugal

Algorithm 2 Algorithm for Program Rewriting
1: Let op = HashMap of rules with the corresponding prop-

erties as in Algorithm 1
2: DG = Dependency Graph
3: for all re in op do
4: Construct property call expression (pce)
5: target← type of right parmeter of re
6: property← all
7: Construct operation call expression (oce
8: target← pce
9: operation← mapBy
10: expression← op.get(re)
11: declare variable () with name

re.getName()+"Map"
12: ← oce
13: add  to pre block
14: add domain block with expression

.get(leftParameter.property)
15: end for
16: reorder rules according to topological order of DG

with the help of dependency graph, identifies the indepen-
dent rules that can be executed in parallel. First, wemeasured
the execution time for running the comparison programwith
the existing ECL engine (without any optimisations) in par-
allel mode and we refer this as ECL in all the results tables
and graphs. Second, we use the proposed approach to auto-
matically rewrite the ECL program (as described in Section 3
and execute the rewritten program using the existing ECL
engine in parallel mode. We refer to this as Optimised ECL
in the results tables and graphs.

Table 4. Sizes of the models used for benchmarking

ID
No of model elements

OO DB OO+DB Seq Class Class+Seq

1 287 184 471 305 356 661

2 357 229 586 417 356 773

3 427 274 701 417 469 886

4 497 319 816 342 356 698

5 567 364 931 342 356 698

6 637 409 1046 305 469 774

7 707 454 1161 342 469 811

4.1.1 Case Study &Models. For evaluating our approach,
we used two case studies: one is the class and sequence di-
agram comparison as shown in Listing 1, the second is the
comparison of object oriented (OO) models with database
(DB) models. We have used the class and sequence diagram

models of different sizes conforming to these metamodels
publicly available on GitHub [13]. OO & DB are the syn-
thetic models generated in [8]. The number of elements of
different models are mentioned in Table 4. The point to note
is that the sizes of the models that we are using are not very
large but the comparison of these models still becomes com-
putationally very expensive. Hence, a notable performance
gain can be observed in these models.

1 rule Class2Table

2 match l : OO!Class

3 with r : DB!Table{

4

5 compare : l.name = r.name

6 }

7

8 rule Attribute2Column

9 match l : OO!Attribute

10 with r : DB!Column

11 {

12 compare : l.name = r.name and l.owner.

matches(r.table)

13 }

Listing 3. ECL comparison program for OO-DB models

To compare OO models with DB ones, we used a simple
comparison algorithm (depicted in Listing 3) to establish
matches between tables and classes, when their names are
same. In the second rule, we compare attributes with columns
on the basis of the property name, and also whether they
belong to same class and table respectively. This example
is quite simple but we have used this as a case study to
show the substantial performance benefits observed even
for simpler matching programs, with increasing model sizes.
The comparison program in Listing 3 would be optimised
and rewritten as represented in Listing 4.

4.1.2 Correctness. As the approach is based on automatic
rewriting of the program, it is crucial that the rewritten pro-
gram preserves the semantics of the original program. To
ensure this, we use equivalence testing to compare the match
trace for both the original and the rewritten programs. We
used several ECL comparison programs mined from GitHub
to compare models both conforming to same and different
metamodels and then compared their output match traces.
Mostly, comparison programs available on GitHub were com-
paring models from the same modelling language. We veri-
fied that the number of successful matches in both the op-
timised and the unoptimised version remained the same,
as shown in Table 5 and 6. While the number of success-
ful matches are the same, one can observe the difference
in number of unsuccessful matches in the Table 5 and 6.
This is because of the successful pre-filtering/pre-indexing
in the proposed approach. We filter some of the instances
which, using the static program analysis, can be categorised
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as unsuccessful, before actually running the comparison al-
gorithms.

1 pre {

2 var Class2TableMap = DB!Table.all.mapBy(

param|param.name);

3 var Attribute2ColumnMap = DB!Column.all.

mapBy(param|param.name);

4 }

5

6 rule Class2Table

7 match l : OO!Class

8 with r : DB!Table

9 from : Class2TableMap.get(l.name) ?:

Sequence {} {

10 compare : true

11 }

12

13 rule Attribute2Column

14 match l : OO!Attribute

15 with r : DB!Column

16 from : Attribute2ColumnMap.get(l.name) ?:

Sequence {} {

17 compare : true and l.owner.matches(r.

table)

18 }

Listing 4. ECL rewritten program for OO-DB models

4.1.3 Machine Specification. The set of evaluation ex-
periments presented in this paper were performed on a Mac-
BookPro @ M2 Core i7, 24 GBs of RAM, Mac operating
system Ventura version 13.0, and Java 17 on JDK 17.0.6 with
JVM MaxHeapSize 6GBs.

4.2 Results
In this section, we present the results from the conducted
experiments. Table 7 presents the execution time in millisec-
onds for the OO and the DBmodel comparison, and the Class
and Sequence Diagram model comparison respectively. This
execution time also includes the time taken for indexing.
The rewriting and reordering of rules are done before the
execution and takes negligible amount of time (≈2ms). The
results can also be visualised for the OO & DB comparison
in Figure 7 and the Class and Sequence diagram in Figure 8.

Table 7. Execution time of existing ECL and optimised ECL,
in ms

ID
OO - DB CL - SEQ

ECL Optimised ECL Optimised

1 1962 535 3287 196

2 3488 781 3109 194

3 6745 1238 3894 205

4 14051 1735 4046 188

5 22044 1924 4286 287

6 31611 3705 4342 199

7 52159 4520 5050 250
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Figure 7. Comparison of Execution time in OO DB Compar-
ison

As seen in Table 4, the OO and the DB models are of
increasing sizes, while this is not the case with the Class and
Sequence Diagram models. Keeping these sizes of models
in mind, we can see a continuous rise in performance gain
as the model size increases (Figure 7). While in Figure 8, we
can see almost a constant performance gain compared to
the existing ECL engine. This suggests that our performance
benefits are proportional to model size.

This performance gain is achieved by reducing the search
space needed for matching. We can clearly observe in the
match traces produced for both case studies in the Tables Ta-
ble 5 and Table 6 that the number of unsuccessful matches
are significantly reduced in our proposed approach.
Another important factor to notice here is that this ap-

proach might not bring performance benefits when compar-
ing very small models. As the proposed approach provides
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Table 5.Match Trace of Class and Sequence Diagram Comparison

ID ECL (All) Optimised (All) ECL (Successful) Optimised(Successful)

1 29400 92 38 38

2 29400 92 38 38

3 33700 78 0 0

4 33284 54 0 0

5 33284 54 0 0

6 33700 78 0 0

7 38100 208 72 72

Table 6. Match Trace of OO and DB Comparison

ID ECL (All) Optimised (All) ECL (Successful) Optimised(Successful)

1 18060 4120 60 60

2 28200 6400 75 75

3 40590 9180 90 90

4 55230 12460 105 105

5 72120 16240 120 120

6 91260 20520 135 135

7 112650 25300 150 150
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Figure 8. Comparison of Execution time in Class Sequence
Diagram Comparison

a caching mechanism, the optimization indeed comes at
the expense of increased memory footprint. As the size of
the computed caches can be estimated from the number of

rules/indexed properties in a straightforward manner. Pre-
computing the indices (as mentioned in the program rewrit-
ing section) has an overhead, which is paid off for larger
models, and we expect to see a much clearer improvement
in performance when it comes to larger models.

4.3 Threats to Validity
A primary threat to the validity of the results presented
here, is that the measured performance may be particular
to the models that were created for the tests, to the kind
of model, or to the comparison programs that were pro-
posed. A key challenge identified in MDE research is a lack
of publicly accessible real-world models [20]. Although we
used both synthetic models in the OO-DB case studies and
publicly available models for the class and sequence dia-
grams one, this can still affect the measured performance
benefits. To further generalise the results, we would need to
perform experiments with different models and comparison
programs as well as with different modeling technologies
such as Simulink and CDO to demonstrate the scalability of
our proposed approach, especially for larger models.

As the rewriting is based on static analysis, we recommend
explicitly stating the types of the constructs wherever possi-
ble, to allow accurate type resolution and enable automated
rule optimisation (as described in Section 3).
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5 Related Work
Model comparison deals with finding similarities and differ-
ences between elements of differentmodels. This comparison
can be done on the basis of structure, semantics and metrics
etc., [12]. In the context of this paper we will be stating the
use of program rewriting in optimisation and also the state
of the art that involves structural model comparison.

Program rewriting has proven to be beneficial for various
optimization purposes, as demonstrated in [24] where it was
utilized for optimizing type level model queries. Addition-
ally, rewriting has played a crucial role in translating EOL
expressions to Viatra for incremental evaluation [6], as well
as converting them to MySQL queries for efficient execution
on relational databases [7].
It has been demonstrated in [23] that conventional text-

based comparison and differencing techniques are insuffi-
cient for model comparison due to the structured nature of
models.
Model-to-model transformations have shown to be used

for comparing models as in [11]. As M2M languages are not
tailored for model comparison task and hence generally very
verbose as M2M languages do not have constructs tailored
for model comparison activities.
Change-based model comparison was presented in [25]

where the comparison is done only for the model elements
that have been changed since the previous version which is
quite efficient compared to state-based comparison.
EMF Compare [2] & EMF Diff Merge[3] are two tools

available to compare and then merge two models. EMF Com-
pare uses built-in heuristics formodel element references and
attribute values while a tailored language like ECL lets you
write custom matching rules for different model elements.

There are other comparison approaches as shown in [21]
that demonstrates comparison between different UML mod-
els but the approach is only limited to models conforming
to a single metamodel. Additionally as mentioned in [14],
most similarity-based approaches such as SiDiff [23] and
DSMDiff [19], have limited support when it comes to hetero-
geneous models which is supported by ECL, where one can
specify complex matching algorithms for models conforming
to different metamodels.

6 Conclusions & Future Work
We have presented an approach for efficiently comparing
models using programs written in rule-based model compar-
ison language. This efficient comparison approach incorpo-
rates an automatic rewriting facility to speed up the model
comparison (both homogeneous and heterogeneous) based
on static analysis. The rewriting automatically extracts dy-
namic domains to provide pre-filtering of model elements
before actually comparing them. Additionally, static analy-
sis also helps reorder the rules based on the dependencies
identified between these match rules through the creation of

a dependency graph. This enables us to execute independent
rules before those dependent on them, optimizing the com-
parison process by reducing the cost of jumping between
comparison rules. Through experiments, we demonstrate
that our approach significantly improves execution time
compared to the default ECL execution engine, providing
substantial performance benefits.

In future work, the proposed approach can be potentially
used to provide correspondence between models from het-
erogeneous modelling technologies. For instance, it can fa-
cilitate the comparison between Simulink models and EMF
models. Moreover, this automatic domain rewriting facility
can be integrated with other rule-based languages such as
Epsilon’s pattern matching language (EPL).
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Abstract

In modern systems engineering, domain experts increas-
ingly utilize models to de�ne domain-speci�c viewpoints
in a highly interdisciplinary context. Despite considerable
advances in developing model composition techniques, their
integration in a largely heterogeneous language landscape
still poses a challenge. Until now, composition in practice
mainly focuses on developing foundational language com-
ponents or applying language composition in smaller sce-
narios, while the application to extensive, heterogeneous
languages is still missing. In this paper, we report on our
experiences of composing sophisticated modeling languages
using di�erent techniques simultaneously in the context of
heterogeneous application areas such as assistive systems
and cyber-physical systems in the Internet of Things. We
apply state-of-the-art practices, show their realization, and
discuss which techniques are suitable for particular modeling
scenarios. Pushing model composition to the next level by in-
tegrating complex, heterogeneous languages is essential for
establishing modeling languages for highly interdisciplinary
development teams.

CCS Concepts: • Software and its engineering→Model-

driven software engineering;Domain speci�c languages.
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1 Introduction

Software and systems engineering faces an increasing level
of complexity as we have to handle the increasing complexity
of the world. Using modeling approaches has proven to be a
suitable approach to handle this complexity [86]. To create
models of reality for domains such as production [10, 32],
automotive [87], and medicine [77], to be used in, e.g., dig-
ital twins [36], for explainable cyber-physical systems [9],
or complex systems-of-systems, it is necessary to consider
a range of perspectives and viewpoints. This requirement
is commonly known as multi-viewpoint modeling, which
entails addressing di�erent properties of systems for the
diverse disciplines involved in an accessible fashion.
One approach to meeting the speci�c needs of particular

disciplines in their engineering e�orts is to use Domain-
Speci�c Languages (DSLs). Although such DSLs can be em-
ployed simultaneously for di�erent use cases, in practice,
they often cover only a single viewpoint if not further sup-
ported by tooling, such as projective approaches. As a result,
also considering that a single DSL often cannot suit every
use case alone, this requires combining several languages
to achieve a more holistic view of a system. To address this
issue, researchers have proposed various techniques, such
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as using multiple DSLs, developing a uni�ed language that
covers di�erent viewpoints such as UML or SysML, or using
language workbenches, which provide an integrated envi-
ronment for designing, implementing, and using DSLs.
It can be argued that the number of modeling languages

in di�erent domains is steadily increasing [15, 20, 59, 66]
which, next to maturity and evolution, raises the question
on how to integrate these languages—not only for coping
with the complexity of contemporary software systems that
consist of many heterogeneous parts, but also for the sake
of reuse [80]. Reuse in software engineering bene�ts, among
others, (i) quality by gradually accumulating error �xes; (ii)
productivity by decreasing the demand for new software;
and (iii) reliability by increasing the chance to �nd errors
through higher usage rates [78]. However, a key ingredient
for software reuse is the establishment of interoperability
between heterogeneous components, e.g., by means of mutu-
ally agreed interfaces. These reuse considerations also apply
to the DSLs and their related tooling. When integrating het-
erogeneous modeling languages, we aim to reuse both, the
languages or parts of the languages themselves as well as
the already developed or generated tools such as parsers,
pretty printers, or full generators. We study the integration
of heterogeneous modeling languages by leveraging di�er-
ent mechanisms for language composition. This allows us to
make independently developed languages reusable, achiev-
ing di�erent viewpoints at the model level for the distinct
application domains.
This experience report tackles the research question of

how to integrate di�erent modeling languages via established

language composition techniques achieving multi-viewpoint

modeling languages. In this paper, we elaborate on our experi-
ences from two case studies of complex, real-world, software-
intensive systems and show which language composition
methods are applied there. One is a language family for
model-driven development of IoT applications. The other
language family is used to support the model-driven engi-
neering of assistive systems and to use models at runtime
of the system. Additionally, we discuss the di�erent mech-
anisms for language composition used and detail our expe-
riences on which techniques were suitable for which cases
and whether they contribute to establishing multi-viewpoint
modeling. For our studies, we use the MontiCore language
workbench [45] as it comes with various composition tech-
niques.

Structure. Sec. 2 provides background information for our
approach. Sec. 3 discusses related work for the composi-
tion of modeling languages, language workbenches with
composition support, and modeling languages. In Sec. 4, we
introduce two use cases from complex, real-world, software-
intensive systems, namely to develop IoT systems and assis-
tive systems. Sec. 5 discusses the application of the di�erent

language composition approaches in our modeling scenar-
ios and their contribution to achieving a multi-viewpoint
modeling environment. The last section concludes.

2 Background

We provide relevant background on model-driven engineer-
ing as well as language composition mechanisms.

2.1 Model-Driven Engineering

Model-Driven Engineering (MDE) [18] is a software engi-
neering paradigm that promotes the use of models as �rst-
class citizens in all or selected phases of the software engi-
neering process. In the sense of MDE, a model is a software
artifact that abstracts from certain details of a software sys-
tem, and can replace speci�c parts of the system for certain
purposes such as implementation, testing, or simulation.

Next to model application, MDE also systematizes model
construction, evolution, and maintenance. All of these activ-
ities require an unambiguous notion of model validity that
is commonly de�ned by the language in which a model is
expressed [18].

To this end, a modeling language consists of (i) an abstract
syntax that speci�es the essential information of models in-
dependent of their representation; (ii) a concrete syntax that
speci�es the user-facing representation of model elements;
and (iii) a semantic associating each model element with a
meaning [18, 44].

Language workbenches [29] denote IDEs that bundle tools
for modeling language construction, e.g., meta-grammars,
parser generators, and language composition facilities.
Examples of contemporary language workbenches include
MPS [70], Xtext [30], and MontiCore [45]. Due to its
mature support for a variety of language composition
mechanisms, we henceforth leverage MontiCore to study
the derivation of multi-viewpoint modeling languages by
language composition.
MontiCore is a language workbench [45] whose EBNF-

like [88] meta-grammar allows the speci�cation of gram-
mars for modeling languages with textual concrete syntaxes.
From a language grammar expressed in its meta-grammar,
MontiCore is able to generate (i) the implementation of the
corresponding abstract syntax in the form of a metamodel;
(ii) the parser infrastructure to instantiate the metamodel
from input �les adhering to the grammar; and (iii) additional
infrastructure for common concerns in modeling language
implementation such as context condition checking, sym-
bol table management, and template-based code generation.
With its generative approach, MontiCore e�ectively reduces
the e�ort in modeling language implementation. In addition,
and by contrast to other language workbenches, MontiCore’s
meta-grammar also provides constructs for modeling lan-
guage composition [13], thereby facilitating the integrated
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evolution of a modeling language from a single source arti-
fact, i.e., the language’s grammar.

Given its versatility, MontiCore is actively used to create
and maintain DSLs targeting heterogeneous domains such as
automotive [24], cloud services [27], Internet of Things [53],
robotics [1], and systems engineering [19].

2.2 Language Composition Mechanisms

For the e�cient engineering of modeling languages, Monti-
Core especially focuses on compositional language design.
To this end, MontiCore supports multiple language composi-
tion techniques and corresponding design patterns, enabling
combining multiple DSLs [26]. Furthermore, it provides an
extensive library of language components [12] serving as a
common foundation for building more sophisticated mod-
eling languages. Overall, MontiCore supports four di�erent
types of language composition realized either directly via
the language speci�cation, i.e., the grammar, or indirectly
via the symbol table infrastructure [14] of a language.

To explain the various composition techniques, we
consider a number of languages developed in MontiCore’s
ecosystem. The following language de�nitions are simpli�ed
versions for clarity reasons and space limitations. The
original sources are referenced accordingly.
First, we introduce a simple automata language. Such an

automaton gradually processes letters of an input alphabet.
A sequence of letters (i.e., a word) is accepted if there exists a
path to a �nal state. Otherwise, the word is rejected. Overall,
the automaton represents the set of words it accepts. Fig-
ure 1 contains the grammar of the automata language1. An
Automaton (l. 02) starts with the respective keyword, has
a name, and consists of multiple states and transitions (l. 03).
A State (also indicated via a corresponding keyword) has a
name (l. 05) and can be marked as «initial» or «final»
(l. 06). Finally, a Transition (l. 08) describes the change
from the source (src) to a target (tgt) state via an input
letter enclosed in an arrow-like syntactical structure.

grammar Automata extends MCBasics {

symbol scope Automaton = 

"automaton" Name "{" (State | Transition)* "}" ;

symbol State = "state" Name

(("<<" ["initial"] ">>") | ("<<" ["final"] ">>"))* ;

Transition = src:Name "-" input:Name ">" tgt:Name ";";

}
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Figure 1. Simpli�ed version of MontiCore’s automaton
language1 for modeling non-hierarchical automata with
states and transitions.

The production rules of the automaton language employ
prede�ned constructs such as the Name token (cf. l. 03). This

1Automata language de�nition available at:
https://github.com/MontiCore/automaton

usage already indicates the �rst application of language ex-
tension as this respective token comes from the base gram-
mar MCBasics, which is extended by the automaton lan-
guage (l. 01), importing its productions.
The next DSL under consideration is the class diagram

language CD4Analysis used to describe data structures
consisting of classes and their attributes. Its context-free
grammar is depicted in Figure 2. Please note that the original
speci�cation2 is designed in a highly compositional fashion,
further modularizing the di�erent constituents. Thus, the
Class Diagram (CD) languages in this paper are simpli�ed
versions that roughly sketch the structure and are tailored
to explain the distinct composition techniques.
The root node of a class diagram model is the

CDCompilationUnit (l. 02). It consists of a pack-
age declaration and a set of import statements, two inherited
properties. It entails a CDDefinition, representing the
actual diagram (l. 03). The CDDefinition (l. 05) depicts
the start of the diagram via a corresponding keyword. It
has a name and comprises multiple elements contained in
curly brackets. These elements are speci�ed by the interface
nonterminal CDElement (l. 07). This interface can be
implemented by other nonterminals, thus serving as an
explicit extension point. In this grammar, the only element
implementing it is the CDClass (ll. 09-12) that has a name
and comprises multiple CDAttributes. In turn, these
attributes (l. 14) consist of a type and a corresponding name.

grammar CD4Analysis extends MCBasics, MCBasicTypes {

CDCompilationUnit = MCPackageDeclaration

MCImportStatement* CDDefinition;

CDDefinition = "classdiagram" Name "{" CDElement* "}";

interface CDElement;

symbol scope CDClass implements CDElement = 

"class" Name "{"

CDAttribute*

"}";

symbol CDAttribute = MCType Name;
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Figure 2. Simpli�ed version of MontiCore’s class diagram
language2 for modeling the data structure of a system via
classes and their attributes.

2.2.1 Language Inheritance. The �rst composition tech-
nique of MontiCore is language inheritance. Here, the con-
structs of an original language are adopted and extended or
modi�ed for a new use case. While the original language
remains unchanged, the new DSL incorporates concrete and
abstract syntax, as well as the generated tooling and its hand-
written extensions.

2Compositional class diagram language de�nition available at:
https://github.com/MontiCore/cd4analysis
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Figure 3 shows an example of language inheritance by an
extended class diagram language. The inheritance relation
is indicated by the extends keyword (l. 01) followed
by the corresponding host language name that should
be adopted. As the overall structure of a class diagram
remains unchanged, we keep the starting nonterminal
CDCompilationUnit (l. 02). In addition to the adopted
constructs, we expand the language by modifying or
adding production rules for modeling elements. Thus, the
nonterminal CDClass is overwritten (ll. 04-08) to enable
basic method signatures in the class body in addition to
the already existing attributes. For these signatures, we
introduce the corresponding nonterminal CDMethod,
which describes the syntax of the element (ll. 10-11) and can
be referenced in other production rules. Besides modifying
the class contents, the extended language also introduces
interface de�nitions (ll. 13-16) and enumerations (ll. 18-23)
as new diagram elements.

grammar CD4Code extends CD4Analysis {

start CDCompilationUnit;

@Override

symbol scope CDClass implements CDElement = 

"class" Name "{"

(CDAttribute | CDMethod)*

"}" ;

symbol CDMethod = 

MCType Name "(" (argT:MCType argN:Name)* ")" ";";

symbol scope CDInterface implements CDElement = 

"interface" Name "{"

CDMethod*

"}" ;

symbol scope CDEnum implements CDElement = 

"enumeration" Name "{" 

(EnumLiteral || ",")*

"}" ;

symbol EnumLiteral = Name;

}
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Figure 3. Extended class diagram language2 including meth-
ods, interfaces, and enumerations. Application of language
inheritance with conservative extension.

2.2.2 Language Extension. Language extension is a spe-
ci�c, more restrictive form of language inheritance. This
technique also takes over all constituents of a host language.
The di�erence is that changes are only allowed in the form of
conservative extension. This means that only new elements
may be added to a language or existing elements may only
be modi�ed in an extending but non-restricting way. Thus,
valid models of the original language still remain valid in
the context of the extended variant.
In fact, the inheritance example in Figure 3 features only

conservative extensions. Adding further elements such as
CDInterface or CDEnum only extends the set of valid
sentences. Also, despite being overwritten, the altering of

CDClass remains conservative as it further introduces
methods inside a class without impacting the use of their
attributes (l. 07). Figure 3 also illustrates the bene�t of
languages being intentionally tailored for their extension (or
the drawbacks if not). Thus, while adding methods to classes
via overwriting the production is possible, it includes lots of
duplication in the production rules. This is a considerable
overhead for adding a single reference inside a production
rule. In contrast, adding CDInterface and CDEnum to
the overall diagram yields no overhead. The di�erence is
that the newly introduced nonterminals implement the
already existing interface nonterminal CDElement (cf.
Figure 2, l. 07) of the original language. This element is an
explicit extension point that supports inheriting languages
to weave new constituents into existing production rules.
In this case, the original CDDefinition (l. 05) references
the interface, allowing all incarnations as valid CD elements.
Thus, designing a language with extension in mind can
signi�cantly improve the engineering of further variants.

2.2.3 Language Embedding. Language embedding inte-
grates multiple DSL de�nitions, combining their production
rules in a single grammar, enabling integrated modeling via
their combined constituents. Therefore, this technique not
only collects the entirety of nonterminals of all included lan-
guages but automatically combines their usages concerning
shared interface de�nitions and usages. This is especially
useful for integrating default language components, such as
expressions, into an existing DSL. A language component is a
(possibly incomplete) de�nition comprising a grammar, cor-
responding generated and handwritten artifacts, as well as
an integration interface established via prede�ned extension
points. They constitute a decoupled set of reusable standard
productions explicitly tailored for embedding. Technically
in MontiCore, language embedding employs multiple inheri-
tance. Thus, embedding a language into another is as simple
as extending both in the grammar signature.

grammar MealyAutomata extends Automata, 

CommonExpressions, AssignmentExpressions {

MealyAutomaton = MCImportStatement* Automaton;

@Override

Transition = 

from:Name "-" input:Name "/"

output:Expression ">" to:Name ";" ;

}
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Figure 4. Language for modeling mealy automata, non-
conservatively inheriting from the automaton language and
embedding expressions.

Figure 4 contains an example of embedding expressions
into the already established automata language by extending
both de�nitions (ll. 01-02). Simultaneously, the new language
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adds the possibility to import other artifacts (l. 04) and ad-
vances the automaton to mealy machines (i.e., processing an
input and producing a corresponding response action). The
latter is achieved via overwriting the production rule of the
Transition (ll. 06-09) and further separating the input
from a newly established output expression, separated by
a slash. As this addition is not optional, the language is ex-
tended in a non-conservative way, i.e., original automaton
models are not valid anymore in this variant. Realizing the
output as an expression enables arbitrary terms of all embed-
ded languages, such as s1 - a / (x == 4+3) > s2,
indicating a state change from s1 to s2 on the input a and
triggering the action evaluation for the boolean expression
x == 4+3.

2.2.4 Language Aggregation. Language aggregation en-
ables integrating models of multiple DSLs while simulta-
neously keeping them as separate artifacts. In contrast to
embedding, the technique of aggregating languages only
loosely couples DSL de�nitions and makes them operable
in a common context. This inter-operationality is achieved
via MontiCore’s symbol table infrastructure, allowing cross-
referencing, even over multiple artifacts.

import games.Tennis.*;

automaton PingPong {

state NoGame <<initial>> <<final>>;

state Ping;

state Pong;

NoGame – start / strokes=0 > Ping;

Ping – returnBall / strokes++ > Pong;

Pong – returnBall / strokes++ > Ping;

Ping – missBall / p2_points+=strokes > NoGame;

Pong – missBall / p1_points+=strokes > NoGame;

}
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classdiagram games {

class Tennis {

int strokes;

int p1_points; 

int p2_points;

}

}
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Figure 5.Models of the extended automaton and CD DSLs
used in a shared context via language aggregation.

Considering again the extended automata language in Fig-
ure 4 introduced for language embedding, we can further
extend its usage aggregating class diagrams. The main idea
here is to combine a structural and a behavioral language.
Figure 5 presents the composition of two exemplary models,
preserving them as separate artifacts. At the top, we have
a simpli�ed automaton model of a customized PingPong
game featuring three states (top, ll. 03-05) and �ve transitions
for depicting the gameplay (top, ll. 07-11). The second model
is a class diagram de�ning a set of variables for counting the
strokes and the points of two respective players (bottom,
ll. 03-05). Furthermore, the automaton imports the class dia-
gram (top, l. 01), making all types and variables accessible.

Thus, the embedded expressions at the transitions can be
employed to reference the externally de�ned variables3, e.g.,
for incrementing the number of strokes when the ball is re-
turned (top, ll. 08-09) or assigning points to a player when
the other misses the ball (top, ll. 10-12). That way, the em-
bedded expressions are additionally employed to reference
symbols of other models, enabling a seamless composition
over multiple artifacts.

3 Related Work

This section presents work related to the composition of
modeling languages (Sect. 3.1), language workbenches with
composition support (Sect. 3.2), and families of modeling
languages derived by language composition (Sect. 3.3). For
a comprehensive overview of model view approaches, we
refer the readers to [11].

3.1 Composition Approaches

A straightforward approach to modeling language compo-
sition is the exploitation of inter-model references [89]. To
realize this approach, the referring modeling language must
integrate modeling concepts by which it can establish links
to instances of another modeling language’s concepts. On the
model-level, such links appear as references from elements
in the referring model to elements in the referenced model.
While this approach is versatile, e.g., it can be retro�tted into
the referring language without impacting the referred lan-
guage, it requires the user to comprehend models in di�erent
languages, scatters information across di�erent models, does
not enable directed alteration of elements in referred models,
and may result in invalid models when referred elements are
changed independently of the referring model.
A more sophisticated approach to reference-based lan-

guage composition is the conversion of technology-speci�c
language metamodels into more abstract representations.
This enables the speci�cation of correspondence relation-
ships between concepts from heterogeneous modeling lan-
guages [48]. These correspondence relationships may antici-
pate conversion rules between modeling concepts, thereby
making links between model elements actionable, e.g., to
base the validity of a correspondence relationship on the
concrete peculiarity of a referred model element. However,
the same drawbacks as for inter-model references apply.
Modeling language variability [41] constitutes an

approach to language composition when considering the
base modeling language as one language and the delta
sets of language concepts derived from activated base
language features as their own languages. While modeling
language variability can anticipate all possible language
compositions and provide exhaustive tooling from the

3We do not distinguish between type and instance level in this example for
simplicity reasons.

198



SLE ’23, October 23–24, 2023, Cascais, Portugal M. Heitho�, N. Jansen, J. C. Kirchhof, J. Michael, F. Rademacher, and B. Rumpe

beginning, composition is constrained to the supported
features of the base language.
A base language may also explicitly delegate the real-

ization of certain modeling concepts to independently de-
veloped languages that provide concrete support for such
concepts [35, 55]. This approach requires a priori reasoning
about compositionality by base language designers as well
as meta-languages or meta-operators that systematize the
delegation of modeling concept realization. Furthermore, it
may be necessary to add additional glue code for concept re-
alization in order to align the semantics of concept-realizing
languages with that of the corresponding base languages.

3.2 Language Workbenches with Composition

Support

Melange [21] is a language workbench that supports model-
�rst composition on the level of metamodel concepts in-
cluding their operational semantics. However, composition
of language artifacts besides metamodel implementations
is out of Melange’s scope. Similarly, MetaEdit+ [83] allows
language integration via references between metamodel con-
cepts. MPS [85] inherently exhibits support for model-�rst
composition because language de�nition is also model-�rst.
Concepts from the abstract syntax of a composed language
can thus embed, extend, or adapt concepts from the abstract
syntaxes of other languages, including related tooling like
code generators.
Xtext [8] is a language workbench with grammar-�rst

composition support, i.e., its meta language for grammar
speci�cation and subsequent metamodel derivation inte-
grates keywords for language composition. Speci�cally,
Xtext supports composition by importing the rules of an
independent language grammar into a composed grammar
and the derivation of new languages by leveraging the
rules of a base language as an initial, yet extensible, rule
set. Similarly to Xtext, Neverlang [16] is a grammar-�rst
language workbench, which provides a more �ne-grained,
but rather complex, support for language composition based
on language modules, roles, and role slicing for language
feature speci�cation.

3.3 Composed Modeling Language Families

Modeling language composition fosters the systematic cre-
ation of modeling language families, which constitute sets of
two or more integrated languages, to enable the application
of MDE to coherent parts of a problem domain.
Inter-model references (Sect. 3.1) represent a �exible

means of generic language creation because they can be used
to non-intrusively relate modeling languages, thus giving
rise to language families by enriching or constraining mod-
eling syntaxes and semantics. For example, reference-based
composition allows for (i) constraining modeling syntaxes or
model element peculiarities by linking metamodel concepts
with invariants expressed in another language [72, 82];

or (ii) making relationships between diverse parts of a
software architecture explicit, thereby fostering architecture
comprehension and reasoning [34, 74].

When being based on a more abstract representation act-
ing as an intermediate language to bridge between heteroge-
neous language concepts, inter-model references also foster
independent evolution of composed languages and exten-
sibility of language families [79]. Similarly, they facilitate
the creation of modeling languages whose concepts are tai-
lored to domain expert concerns but map to other languages’
concepts of a di�erent domain, e.g., to generate executable
code [76].

Modeling language families derived from variability-based
language composition (Sect. 3.1) often consist of sibling lan-

guages, or sub-families of such siblings, that are immedi-
ate descendants of the base language. They can be auto-
matically derived by modelers and afterwards applied to
related, yet slightly di�erent problem sets, in the target do-
main [54, 57, 90].

4 Case Studies from Complex, Real-World,
Software-Intensive Systems

For a better understanding of the possible uses of the dif-
ferent language composition techniques, we describe two
speci�c case studies. Their size and complexity show, why
di�erent composition techniques are needed in practice.

4.1 IoT Systems

The Internet of Things connects objects with each other and
with the Internet. Applications of the IoT include both indus-
trial and consumer sectors and range from connected vehi-
cles (and �eet tracking), to Asset Tracking, to Smart Homes.
To do so, these objects are equipped with sensors and actua-
tors. As inherently distributed applications, the development
of IoT systems requires di�erent skills than the development
of classic software systems such as smartphone apps [81].
One way to manage the heterogeneity and complexity of IoT
solutions is to use model-driven techniques [28, 62, 67], as
they raise the level of abstraction.
MontiThings [53] is a language family for model-driven

development of IoT applications. MontiThings covers the
design, deployment [50], and analysis [51, 52] of the applica-
tions generated from the models. MontiThings aims to sim-
plify the complicated development of IoT applications and
abstract from the heterogeneity of IoT devices. To separate
concerns and not mix, e.g., technical details with high-level
business logic, MontiThings consists of a family of multiple
languages. The core of MontiThings is a component-and-
connector (CnC) architecture description language that is
used to describe the business logic of the applications. From
the models of this language, MontiThings generates the C++
code for distributed applications and the scripts to package

199



Deriving Integrated Multi-Viewpoint Modeling Languages from Heterogeneous Modeling Languages ... SLE ’23, October 23–24, 2023, Cascais, Portugal

OCL Project

OCL

OCLExpressions

OptionalOperators

SetExpressions

MontiCore Project

MCCommonStatements

MontiThings

MontiArc Project

MontiArc

ArcBasis

�

SI Units Project

SIUnitTypes4Computing

SIUnitLiterals
�

MCCommonLiterals

CD4A Project

CD4Analysis
type usage

only

MCL

Figure 6. An overview of languages integrated by the MontiThings language (adapted from [49]).

them in the containers. Shared infrastructure such as inter-
faces to message brokers or the serialization of messages is
provided by MontiThings. If the generated code does not
meet the user’s requirements, it is possible to supplement
or overwrite the code with handwritten code using Monti-
Core’s TOP mechanism. In addition to this main language,
other languages exist, e.g., for con�guring models for speci�c
hardware/software platforms or for de�ning tests.
The MontiThings language is composed of 46 grammars

of the MontiCore project reusing 4371 lines of grammar [49].
Particularly noteworthy is the fact that the combined lan-
guages are not just smaller subgrammars, but modeling lan-
guages in their own right. Figure 6 shows a reduced overview
of MontiThings’ grammar reuse. In doing so, MontiThings
uses several types of language composition: Language ex-
tension (and, thus, language inheritance), language embed-
ding, and language aggregation (cf. [42]). Most importantly,
MontiThings extends MontiArc [43]. MontiArc is a CnC ar-
chitecture description language for simulating distributed
systems. Consequently, MontiArc provides large parts of
the abstract and concrete syntax of MontiThings’ CnC lan-
guage. However, MontiThings’ generator is very di�erent
from MontiArc’s generator, because MontiThings is focused
on generating applications intended to be executed on real
IoT devices while MontiArc is focused on simulations. In
addition to the inherited language elements, MontiThings
extends MontiArc with numerous elements, e.g., for error
handling [53] to deal with often unreliable sensor input.

MontiThings’ type system is mainly based on MontiCore’s
Java-like type system. For primitive types, MontiThings
reuses MontiCore’s primitive types through language embed-
ding. Furthermore, MontiThings uses MontiCore’s SI unit

language via language embedding. This enables modelers
to use SI units like primitive types, e.g., de�ne a variable
of type km/h or °C. If two convertible but di�erent units
are calculated together (e.g., km/h and m/s), MontiThings
automatically ensures that the units are converted into the
same unit. More complex data structures can be de�ned in
class diagrams. The class diagrams are speci�ed in their own
�les. MontiThings can import the symbols de�ned in the
class diagrams via language aggregation. Using aggregation,
loose coupling and separation of concerns can be achieved,
resulting in isolated yet synchronized views between the
architectural models and their referenced types. Thus, the
CD4A language could simply be replaced by another data
type language as long as it conforms to MontiCore’s type
system. For example, if a class diagram de�nes a type Photo,
variables, ports, and other elements in MontiThings models
can use the type Photo if the artifact imports the corre-
sponding class diagram. Besides the type system for vari-
ables, MontiThings also reuses MontiArc’s type system for
specifying component types. Most parts of the type check
could be reused 1:1. Only in cases where the combination
of languages results in new cases that the type checks of
the individual languages cannot handle or languages deviate
from MontiCore’s defaults, individual manual adjustments
have to be made.

The behavior of MontiThings components can be de�ned
using four techniques:

1. Subcomponents
2. A Java-like language
3. Statecharts
4. Handwritten code (C++ or Python)

200



SLE ’23, October 23–24, 2023, Cascais, Portugal M. Heitho�, N. Jansen, J. C. Kirchhof, J. Michael, F. Rademacher, and B. Rumpe

The ability to instantiate and connect subcomponents is a
capability that the MontiThings language inherits fromMon-
tiArc. The Java-like behavior language is included in Mon-
tiThings through language embedding and is based onMonti-
Core’s MCCommonStatements. Statecharts are another way
of de�ning behavior. Similar to the MCCommonStatements,
they are included in MontiThings via language embedding.
The embedded languages are augmented with other Mon-
tiCore languages such as the OCL for writing boolean ex-
pressions. In this regard, MontiCore’s common foundation of
types and symbols reduces the e�ort of integrating languages.
By providing a common denominator for common symbol
types (functions, variables, etc.), languages can be reused
largely unchanged, reducing the need to write adapters. In-
tegrating OCL expressions only required us to include the
statements once for the whole language, while the concepts
applied to multiple locations within the language (e.g., both
Pre- and Postconditions, as well as within the statement lan-
guage). An alternative way of de�ning behavior is through
handwritten code. As always in MontiCore, generated code
can be overridden using MontiCore’s TOP mechanism. Be-
sides overriding generated classes using C++ code via the
TOP mechanism, MontiThings also has the ability to inte-
grate Python code for behavior. In this case, MontiThings
serializes data sent via ports using Google Protobuf4 and ex-
changes this information with a generated Python wrapper
that forwards the data to the handwritten code.
Besides its main language, MontiThings also includes a

separate language for con�guring components for speci�c
targets. This language acts as a tagging language (cf. [40]),
adding extra properties to components and ports. For exam-
ple, the con�guration language can be used to de�ne that
the code generator should treat a component as a single de-
ployment unit that includes all its subcomponents instead
of creating its subcomponents as independent services. This
can be used, e.g., to reduce communication overhead if a
component is expected to be deployed on the same device.
Furthermore, di�erent variants of a component for di�erent
target platforms can be de�ned. For example, if the gener-
ated code is expected to be deployed on an Arduino it might
require other handwritten code for accessing sensors than
code intended to be deployed on a Raspberry Pi.
Moreover, the MontiThings project landscape includes a

testing language inherited from MontiCore’s sequence dia-
grams. The testing language uses MontiCore’s resolving del-
egate mechanism to refer to symbols from the MontiThings
models under test. It enables users to de�ne white box test
cases using sequence diagrams that model the interaction
between a component’s subcomponents. It is of course also
possible to only de�ne in- and outputs of the test case to
de�ne a black box test. A code generator independent of

4Protobuf Documentation: h�ps://protobuf.dev/, Last accessed: 11.04.2023

MontiThings’ main code generator uses the sequence di-
agrams for C++ code transformations written against the
GoogleTest framework.

The con�guration and testing languages inherit fromMon-
tiThings and MontiArc, respectively. While language aggre-
gation over symbols would have led to a better separation
of languages, and external, exchangeable views, inheritance
avoided the development e�ort of importing the symbol table.
The disadvantages of this approach are the bad reusability
(because of high coupling) and the long compile time of the
tagging languages.

4.2 Assistive Systems

Assistive systems play an important role in ensuring safety
and supporting individuals in a variety of settings, including
work [61, 77, 91], driving [87], and daily life activities [5,
60, 64]. To be able to provide human behavior support, an
assistive system needs context information [63] as well as be-
havior data, e.g., via activity recognition systems [58], both
previously stored and real-time monitored [46]. After ana-
lyzing and reasoning about this information [3, 56], support
information is provided either in a situation a person needs
it or when she asks for it.
We have investigated which modeling languages are

needed to apply a model-driven approach for the engineer-
ing of assistive systems and which languages are needed
to use models at runtime [7]. We have used the assistive
system language family to develop assistive systems to
support processes in a smart kitchen as well as processes for
manual assembly in production.

For the model-driven approach, we use the MontiGem [2,
38] generator framework. MontiGem was developed to sup-
port the model-based engineering of web-based information
systems. It uses models in the CD4A language as input to
de�ne domain information in the data structures, models
in the GUI language [37] to de�ne user interfaces and OCL
to de�ne constraints for user input. Out of these languages,
it generates the backend, frontend, and database of a web
application, in this case, the core of an assistive system. Addi-
tionally, we have added hand-written components to handle
relevant information during runtime, e.g., to transform data
into runtime models, to reason about information, or to cre-
ate support information. The support information for end
users includes full sentences (in the �rst version in German)
as well as additional pictures and acoustic information for
each de�ned task.

To use models at runtime of the assistive system, we have
de�ned a language family for model-based assistive systems
(see Figure 7). This includes a ContextLanguage to de-
�ne concrete objects to be used in supported processes and a
TaskLanguage to describe the processes in a textual way.

As the set-up of assistive systems for a concrete loca-
tion and tasks is time-consuming, we have developed the
ContextLanguage. It allows us to de�ne what tools and
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Figure 7. Overview of the Language Family for Assistive Systems

objects to use in supported tasks and where they can be
found. More speci�cally, it allows de�ning objects in four
object groups: Machines, Storages, Utensils, and Items. These
groups describe the spatio-temporal and environmental con-
text of a task. As we aim to use this language during runtime,
these concepts also have to appear in the CD4A models as
part of the concepts describing the domain. Thus, the use
of the Context Language during the runtime of the assistive
system relies on the existence of certain classes in the CD4A
model. Figure 8 shows this relationship with an example.
The concepts Machine (ContextLanguage Grammar l.9) and
MachinePart (l.13) are de�ned in the CD4A model. As the
CD4A model is used as input for generating the assistive
system, we can use ContextLanguage models during run-
time and store their information via data access objects in
the backend into the database.

The ContextLanguage reuses the Java-like comments
and names (MCBasics) and Java-like number speci�cations
(MCJavaLiterals) provided by MontiCore through lan-
guage embedding. This not only allows the reuse of terms
like 2.2d but also the reuse of MontiCore’s type system, e.g.,
to check whether the range in a StepWiseComponent is
type safe (see Figure 9).

Further reusable parts relevant to theContextLanguage
were moved to new language components: The �rst version
of the Article language component included a set
of German de�nite articles. The Direction language
component includes a set of phrases used to de�ne directions
relative to a certain place, e.g., left, in front of, or in the
middle. To help write a more intuitive model, our languages
use numbers in combination with units such as 3 l

for three liters, e.g., to appropriately indicate quantities
in a cooking recipe. The MontiCore SIUnit language
�ts most of our needs for the most common SI and SI-
derived units [68]. Additionally, the ContextLanguage

Figure 8. Relationship ContextLanguage grammar con-
cepts and CD4A model concepts

Figure 9. Extent of the ContextLanguage grammar em-
bedding a MontiCore component grammar

needed to de�ne its own set of Units, e.g., °Celsius
instead of °C or EL (common German word describing a
spoon full of an ingredient). Here, the Unit component
language inherits from MontiCore’s SIUnit language
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adding more informal units and removing others, e.g., m3.
The ContextLanguage embeds these three language
components. The concepts in these language components
are needed later on to assemble correct German sentences
based on model information.
In the generated assistive system, we want to inform the

user by providing crucial information needed for the next
task. In MontiGem, the web interface is modeled using the
GUILanguage v1 which we will use to model user inter-
faces. Models of this language refer to the data types de-
�ned in the corresponding domain model (CD4Analysis)
to specify data access in the running system. OCL expres-
sions constrain the domain model. The MontiGem frame-
work is then responsible for generating infrastructure for
data transfer and validators for each constraint. In our assis-
tive system, we use one generic GUILanguage v1 model
which presents all necessary information to the user for one
step of behavior. This model is accompanied by others for
domain-speci�c presentation tasks, e.g., providing overviews,
or allowing to change settings.
The TaskLanguage can be used to model human be-

havior tasks in sequential order. It is especially designed to
be as user-friendly as possible with not only a task order
but also a natural description of how to perform those. The
core elements of such a sequential order are Find tasks
to instantiate a �ndable item, Placing, Filling and
Setting tasks to alter items, as well as Waiting and
Moving tasks to give an order directly to the user. Here, we
again embed MCBasics to use common names and com-
ments, MCJavaLiterals for Java-like number usage. The
SIUnit language is again used on multiple occasions, for
which we restrict the usage in one place to only allow time
units like s or h.
As, e.g., recipes or manuals, describe tasks in sequen-

tial order, we have assumed that it is su�cient if the
TaskLanguage supports behavior sequences. But more
complex processes might require a lot of waiting where
other tasks can be done in parallel or might require a
(valid) reordering based on personal preferences. Modeling
languages like UML activity diagrams or the BPMN
standard [69] also allow specifying the parallel ordering of
tasks/activities. Since the BPMN also speci�cally targets
human interaction, we will inherit from the textual version
of the BPMN standard [25] in the next version of the
language, TaskLanguage v2. This allows us to specify
more real-world suitable task ordering. For this, we will
only allow user tasks (removing, e.g., sending or service
tasks) and extend them by the task types identi�ed in the
TaskLanguage. We will also need to additionally embed
MCJavaLiterals and SIUnit to �t our user-friendly
notation. With these steps, we achieve a new language
suitable for our needs. Models of the TaskLanguage v2

could then stand for themselves or can be used to generate
multiple valid TaskLanguage models. In the generated

assistive system, we could reuse a standardized work�ow
engine to manage our task de�nitions. To ensure backward
compatibility, modeling in TaskLanguage (v1) could
then be a starting point for a transformation in a sequential
TaskLanguage v2 model.

5 Discussion

For our investigation, we have considered the notion of view-
point in its broadest sense, i.e., as a conceptual means for
the model-based description and reasoning about di�erent
concerns pertaining to a software system. Our consider-
ation of the notion is thus consistent with other publica-
tions in the MDE area [6, 17, 33, 39, 65, 75], and speci�cally
with those at the intersection of MDE and software architec-
ture [22, 23, 31, 47, 71, 73]. Recently, Multi-Paradigm Model-
ing (MPM), which has its roots in simulation [84], has been
discovered to greatly bene�t the MDE-based development
of cyber-physical systems as it enables to model and sub-
sequently process heterogeneous parts of the system with
the most appropriate MDE formalisms and work�ows [4].
Hence, we perceive multi-viewpoint modeling and MPM to
constitute two sides of the same coin, both aiming to tackle
complex system design, development, and operation by the
integration of heterogeneous modeling languages. These lan-
guages’ application eventually results in models that can be
analyzed and processed leveraging well-understood MDE
techniques such as quality analysis, model transformation,
code generation, and simulation [18].
Constructing sophisticated modeling languages and lan-

guage families in heterogeneous domain use cases delivered
a comprehensive set of observations, which composition
technique is applicable in particular scenarios. Overall, we
summarize our experiences from the two presented case
studies into seven potential language engineering scenarios,
depicted in Table 1. Please note that the table only re�ects the
conceptual composition technique and not its implementa-
tion. That is, while in MontiCore, extension and inheritance
are methodically di�erent executions of the same mecha-
nism, or embedding always incorporates inheritance as well,
they are distinguished concerning their assessment.

Adapting a single, already existing language to a use case
(S1) requires only inheriting from that language. Applying
modi�cations to the original can either be achieved by con-
servative extension or via inheritance. The latter also allows
for overriding or restricting productions, which, in some
cases, might be necessary. However, this leads to the orig-
inal models not being valid in the context of the modi�ed
language anymore. If original models must be retained (S2),
only conservative extension is applicable. Overall, these com-
position techniques are the easiest to apply since constructs
are directly adopted from an existing language. In the case of
extension, engineers must further methodically care to keep
all modi�cations genuinely conservative. To facilitate this,
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Table 1. Suitability assessment of the investigated language composition techniques concerning di�erent modeling scenarios
(• = suitable, ⊙ = partially suitable, ◦ = not suitable)

Scenario / Use Case Inheritance Extension Embedding Aggregation

(S1)Modifying a language, tailoring it to a speci�c use case • ⊙ ◦ ◦

(S2) Extending a language to a use case while maintaining the
integrity of the original models

⊙ • ◦ ◦

(S3) Combining multiple language components into a model-
ing language

◦ ◦ • ◦

(S4) Combining modeling languages into a language family ◦ ◦ • •

(S5) Constructing huge languages with di�erent constituents ◦ ◦ • •

(S6) Constructing a language or language family with hetero-
geneous parts for interdisciplinary use

◦ ◦ ⊙ •

(S7)Modularization of model artifacts ◦ ◦ ◦ •

MontiCore provides a warning when this is not the case. As
these scenarios only relate to a single DSL, embedding or
aggregation are unsuitable.

For scenarios that involve employing multiple languages
or language components, single inheritance (and extension,
respectively) is not applicable. Evolving DSLs and tailor-
ing them towards more sophisticated applications usually
implies including various modeling techniques. Language
embedding combines the constituents of multiple languages
into a single one, connecting the di�erent constructs. This is
especially e�ective when the integrated DSLs share common
interfaces, enabling the automatic embedding with nearly
no glue code necessary. Thus, although requiring intricate
knowledge of the involved components, embedding can still
be facile when prepared well. For integrating (potentially
incomplete) language components (S3), e.g., MontiThings
comprising various literals, statements, and expressions, lan-
guage embedding is the only applicable technique. As ag-
gregation establishes a loose coupling only, this technique
does not complete the components into a fully functional
DSL. On the other hand, when integrating already functional
languages into a family (S4), both embedding and aggrega-
tion might be applicable. The choice mainly depends on the
respective modeling goal. An integrated view can be support-
ive in scenarios where the same domain experts create all
aspects of models (e.g., in the context language of assistive
systems). On the other hand, splitting dependent constructs
of a large language (S5) into separate artifacts (which is au-
tomatically achieved by language aggregation) supports the
organization and structuring of larger modeling projects.
While opting for language aggregation over embedding

can positively impact structuring, this e�ect becomes even
more apparent for interdisciplinary modeling teams working
together on a product (S6). Here, the composed yet separated
artifacts represent di�erent domain-speci�c views of the
system under development. This way, domain experts can
contribute without getting distracted by the information of
other modeling views. This observation results from both

case studies as they employ class diagrams as separated
artifacts for delivering type information. Finally, language
aggregation for modularizing modeling artifacts (S7) is, even
while not always necessary, a technique that language engi-
neers should consider to foster a suitable modeling project
structure and avoid model cluttering.
While all composition techniques are essential, the gen-

eral impression is that the more sophisticated a language
becomes, the more likely it is to apply a more elaborate ap-
proach. Therefore, minor DSL modi�cations usually employ
inheritance or extension and keep the scope within a single
domain or use case. Furthermore, reusing multiple concepts
requires embedding constituents of di�erent languages ap-
propriately. Reasons such as structuring logical units of big
models into artifacts or engineering whole language fam-
ilies incorporating multiple viewpoints of heterogeneous
domains, both following the notion of separation of con-
cerns, require language aggregation.
With this in mind, language aggregation is also the only

composition technique natively supporting multi-viewpoint
modeling. One of the main challenges in multi-viewpoint
modeling is maintaining consistency between the individual
views [11]. Aggregation automatically ful�lls this require-
ment as models are organized in di�erent artifacts. Thus,
each artifact represents a separate, integrated view of the
overall system automatically synchronized with other do-
main models’ elements.

As usual for experience reports, our observations are sub-
ject to threats of validity, especially concerning generalizabil-
ity. We have conducted our case studies in the technological
space of MontiCore and are therefore tied to its capabili-
ties and restrictions. However, we intentionally have cho-
sen this ecosystem as it is speci�cally tailored for language
composition, and the proposed composition techniques are
state-of-the-art. Additionally, the presented approaches can
conceptually, at least partially, be found in other frameworks
as well, such as MPS or Xtext. This mitigates the threat to
generalizability.
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6 Conclusion

In this paper, we studied the composition of heterogeneous
modeling languages which were originally developed inde-
pendently but yet address di�erent concerns in the same
domain. While our investigation shows that the composi-
tion of such languages is both sensible and feasible, we also
found that their composition requires di�erent techniques
whose application depends on a language’s use case in the
envisioned composition.
In total, we considered four composition techniques,

namely inheritance, extension, embedding, and aggregation,
and employed them to derive integrated, non-trivial
language families for two distinct case studies concerning
the engineering of cyber-physical systems for IoT and
assistive systems. As a result, these language families are
not only practically applicable for the integrated modeling
of di�erent viewpoints on systems of the mentioned kinds
but also enabled us to assess the suitability of the afore-
mentioned composition techniques. In this context, a major
�nding is that embedding and aggregation are indispensable
for the composition of modeling language families, and
even complement each other in a natural fashion. Finally,
language aggregation automatically supports establishing
di�erent viewpoints on the model level for interdisciplinary
modeling tasks, making it a considerable technique for
realizing multi-viewpoint modeling scenarios.
Further evolvement of the language families, e.g., to in-

clude DSLs for describing requirements or goals, and the
development of language families for other domains will
provide additional examples to evaluate the composition
techniques.
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Abstract
Low-code platforms have gained popularity for accelerat-
ing complex software engineering tasks through visual in-
terfaces and pre-built components. Software language engi-
neering, specifically language composition, is such a complex
task requiring expertise in composition mechanisms and lan-
guage workbenches including multi-dimensional language
constituents (syntax and semantics). This paper presents an
extensible low-code platform with a graphical web-based in-
terface for language composition. It enables composition by
using language components, facilitating systematic composi-
tion within language families promoting reuse and streamlin-
ing the management, composition, and derivation of domain-
specific languages.

CCSConcepts: • Software and its engineering→Reusabil-
ity; Software notations and tools.
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1 Introduction and Motivation
In recent years, the demand for efficient software develop-
ment processes has led to the emergence and widespread
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adoption of low-code development platforms [1]. These plat-
forms provide visual interfaces and pre-built components
that accelerate the development of complex applications [10].
Among the intricate aspects of software development, soft-
ware language engineering and composition play a vital role
in achieving effective and customizable solutions, e.g., in
the domain of digital twins [4]. Software language engineer-
ing involves designing and implementing domain-specific
languages, while language composition combines languages.
Understanding compositionmechanisms and language work-
benches is essential [7]. Although web-based language work-
benches exist [11], limited reuse for multi-dimensional lan-
guages remains a challenge. To address this, we introduce
a low-code platform based on a method for black-box lan-
guage composition using language components that encom-
pass syntax and semantics [3]. We refer to this method for
systematic component-oriented language reuse as SCOLaR
in the following. The platform allows language engineers
to derive language components from existing projects and
systematically compose them within a language family. By
selecting and combining language features within the plat-
form’s language family, language engineers can create tai-
lored languages that cater to specific application domains.
Through this research, we aim to contribute to the advance-
ment of low-code development methodologies and empower
language engineers with a powerful tool to create and reuse
languages in a more intuitive and efficient manner.

2 Systematic Component-Oriented
Language Reuse

The low-code platform is grounded in the concepts of SCO-
LaR that uses language components encompassing the con-
stituents of language definitions in the language workbench
MontiCore [6]. Language components can be reused by their
interface in language families.

2.1 Language Components
Language components [3] provide the three essential lan-
guage definition constituents: (1) syntax, (2) well-formedness
rules, and (3) code generators, realizing the semantic map-
ping between the problem and the solution domain, that are
exposed by extensions in their interface. SCOLaR differen-
tiates between required and provided extensions. Provided
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Figure 1. The systematic language composition process ex-
emplified with a language family for statecharts.

extensions offer DSL functionality to be reused by other com-
ponents. Required extensions make missing functionality
of a DSL component explicit and can be either optional or
mandatory. Provided and required extensions can reference
productions of the grammar or a generator for a specific
grammar production. Well-formedness rules are contained
in sets that can act as both provided and required extensions
at the same time.

2.2 Systematic Composition with Language Families
Language family architects arrange language components
into a feature model representing a family of DSLs (cf. Fig-
ure 1). In this feature model, each feature either is related
to a language component or is an abstract feature [9] for
logical grouping. Through this relation, the language fam-
ily architect decides how the components will be composed
when their related features are selected. Once the language
family architect completes the language family, DSL owners,
who are experts of the application domains derive a suitable
DSL for their application domain, by selecting appropriate
features from the family in a feature configuration. The com-
position of two DSL components is the directed application
of bindings between these components. Currently, SCOLaR
supports the composition operators embedding and aggre-
gation [8]. For the composition the provided extensions of
one component are bound to required extensions of another
component. The composition includes two main activities:

(1) Composing the components’ interfaces; and (2) Com-
position of the comprised language definition constituents
(grammars, well-formedness rules, code generators).

3 The Low-Code Platform for Language
Composition

The SCOLaR low-code platform is designed around the SCO-
LaR process (cf. Figure 1) and provides a graphical web-based
environment to support it. This section outlines the essential
requirements that the platform must meet and then delves
into the workflow of the SCOLaR low-code platform.

3.1 Requirements
To transform the SCOLaR method from a conceptual method
into a user-friendly low-code platform accessible to language
architects, we have created an enhanced version of the SCO-
LaR process, illustrated in Figure 2. The numbers in Figure 2
refer to the requirements we derived for the low-code plat-
form:
Req 1: Language engineers can continue developing languages

in their language workbench together with the asso-
ciated technology-specific artifacts. Hence, existing
language projects can be imported and a language
component representation is derived automatically.

Req 2: Imported language projects and created language fam-
ilies should be persisted, e.g., in a database.

Req 3: The low-code platform enables DSL Family Architects
to create language families.

Req 4: DSL owners can configure existing language families
and derive new languages by composition.

Req 5: The composed languages should be exportable for de-
ployment.

3.2 Workflow of the Low-Code Platform
The workflow of the SCOLaR low-code platform can be di-
vided into three steps (cf. Figure 2). Firstly, languages are
constructed within a language workbench and subsequently
imported into the platform. However, the only language
workbench that is supported to this date is MontiCore [6].
Once imported, these languages can be reused within a lan-
guage family. The configuration of the language family leads
to the creation of a new language component, which includes
a composed language project that can be downloaded.

3.2.1 Automatic Derivation of DSL Components. Cre-
ating a language component model is tedious and error-
prone. However, in pursuit of our low-code platform’s objec-
tive to empower users to compose languages with minimal
manual coding, we have developed a derivation function that
automatically generates language components from existing
MontiCore language projects. After the automatic derivation
of a language component, the low-code platform enables the
customization of this component to restrict the provided ex-
tensions for generator and grammar productions. After the
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Figure 2. The systematic language composition process including the development of a language in a language workbench,
the import into the SCOLaR tool, the selection of language features, and the derivation of the configured language variant.

import and customization step, the components are ready to
be reused in language families. The following describes how
the automatic derivation of different language component
constituents is realized.

Grammar. The grammar reference is derived directly
from the grammar name and its package specified in the
project’s grammar directory. Within this grammar, we iden-
tify that each production rule with a right-hand side serves
as a provided grammar extension. Each production rule with
the keyword interface, indicating that implementation is
open for extension, becomes a required extension in the
language component.

Well-formedness Rule Sets. The well-formedness rule
sets are linked to particular grammar production rules. Mon-
tiCore provides infrastructure for validating model well-
formedness, including checkers that allow developers to
register specific well-formedness rules. In the language com-
ponent, a set is defined for each checker, which precisely
matches the rules registeredwithin the corresponding checker.

Generator. In order to derive generator extensions, it is
expected that generators are constructed in accordance with
the concept described in [2]. This entails that generators
should have explicit product and producer interfaces.

3.2.2 Creating a Language Family. The low-code plat-
form offers a dedicated language family workbench for com-
posing language components. Within this workbench, users
have the option to start with a blank canvas or modify an
existing language family. Using a side menu, the user can
add or remove features of the language family. Each feature
is characterized by a name and a type, i.e., abstract or nor-
mal feature. Abstract features are used for grouping. Normal

features make references to language components available
in the platform’s language component library. Connections
between features are established and defined with types such
as or, xor, and, optional, or mandatory. These connections
establish bindings between the extensions of the referenced
language components, linking child features to parent fea-
tures. The resulting composition tree can be saved to the
language family library and utilized for deriving composed
languages through feature configuration in subsequent steps.

3.2.3 Configuring andExportingComposed Languages.
To derive new languages, the initial step involves selecting a
language family from the language family library. Each lan-
guage family within the library comes with a comprehensive
description and is visually represented as a tree structure.
The user can interact with this tree by clicking on specific
language features to select them. Once the desired language
family configuration is established, the user can click on
the "Derive DSL" button. This action triggers a validation
process where the language family configuration is checked
against the constraints of the feature tree. If the configura-
tion is deemed valid, the SCOLaR framework in the backend
proceeds to compose the referenced language components.
Once the composition process is completed, the user is noti-
fied through a pop-up message and provided with the option
to download the composed language project source files. To
utilize the language, the project can be built using Maven
and subsequently used with the tooling provided by the
MontiCore language workbench.

4 Software Architecture
The SCOLaR low-code platform is realized as a classic three-
tier architecture consisting of a persistency layer, a backend
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and a frontend. The software architecture is depicted in Fig-
ure 3. Our low-code platform is designed with deployability
in mind, and every component of the software architecture
is packaged as a Docker image. This Dockerization enables
seamless and scalable deployment of our platform, allowing
for efficient utilization of resources and easy management
of the platform’s infrastructure.

«Docker Container»

Backend

«Docker Container»

MySQL Database

Language Family

Manager

Language Component Tool

extensible with 

implementation specific to 

language workbench

DSL Comp

Processor

Artifact Composer

Language Infrastructure 
Generator

DSL Comp

Composer

SCOLaR Framework
Controller

User 

Management

«Docker Container»

Frontend

Language

Component Viewer

DSL Family

Viewer
Welcome Page DSL Family

Workbench

Data 

Access

Figure 3. The 3-tier architecture of the low-code platform.

4.1 Frontend
The frontend of the SCOLaR low-code platform is developed
using Vue.js and provides different components for user
interaction. The Welcome Page enables to log into the plat-
form and choose from the Language Component Viewer,
the Language Family Viewer, and the Language Family
Workbench, afterward. Utilizing the Language Family Workbench
users can assemble new language families or reuse and ex-
tend existing ones following the process described in Sec-
tion 3.2. With the Language Component Viewer language
projects can be managed and imported into the platform.
The Language Family Viewer shows available language
families for configuration.

4.2 Backend
The backend of the platform is built on Java Spring Boot. The
backend comprises a Controller for the overall workflow
control of the platform, and to provide the RESTAPI for inter-
action with the frontend. Additionally, the backend includes
a User Management. Today, the SCOLaR platform supports
the roles 1) engineer, that has rights to create, remove and
modify language families and components, 2) and user, that
can only view components, and families and configure and
derive language products by selecting features of a language
family already available in the language family library. For
persisting imported language projects together with their
associated language components, as well as created language
families, the Data Access component persists them into a
MySQL database. In addition, the existing tooling of SCOLaR

is reused in the backend, to perform the processing of lan-
guage componentmodels, language families, language family
configurations, and the composition of the language com-
ponents and their comprised artifacts. Furthermore, there
exists a language infrastructure generator that generates the
composed language project and exports it as a zip file.

4.3 Database
The persistency layer of the platform is implemented using
MySQL. The database of the platform is used to persist all
artifacts related to the SCOLaR process (cf. Figure 1), i.e.,
language components, their related language projects, the
language familymodel, and users, together with roles and the
associated permissions. This enables the platform to provide
a library of language components and families for reuse that
were imported and assembled before.

4.4 Extensibility
Since SCOLaR is subject to ongoing research, the software
architecture should be refined accordingly. We see the fol-
lowing concepts being subject to changes that have to be
taken into account in all three layers of our architecture.
1. The extension of constituents of language components
and their composition according to bindings. When extend-
ing the constituents of language components, in the backend,
the DSL Comp Processor (cf. Figure 3) has to be extended.
In the frontend, the Language Component Viewer has to
be updated. Furthermore, in the database the schema for
language components has to be adapted to the changes to
the language component constituents and to represent the
project structures of new technological spaces. 2.When intro-
ducing new composition operators between language com-
ponents, in the backend, the Artifact Composer for the
specific artifacts of technological spaces and the Language
Infrastructure Generator has to be implemented. Fur-
thermore, the Language Family Manager has to be extended
with the bindings specific to this new language composition
operator. In the frontend, these changes have to be adopted
by the DSL Family Viewer and DSL Family Workbench.
Finally, the database schema for language families has to be
updated. For all of these changes, the software architectures
provides dedicated extension points or interfaces that can
be extended and implemented, respectively.

5 Demonstration
This section performs a walk through the presented platform
by an example of a language family for statecharts. First, the
language component library together with the import mech-
anism is shown. Afterwards, the language family workbench
where imported languages can be reused as components and
arranged in a language family is presented. And at last, the
language family language family for statecharts is configured
to derive a specific language variant.
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Figure 4. Importing languages into the SCOLaR platform
and configuring the derived language component.

Figure 5. The workbench for creating language families.

5.1 Importing a Language Project
The first step towards reuse of existing language projects
in SCOLaR is the import as language components. As men-
tioned in Section 3 our platform provides an automatic lan-
guage component derivation mechanism. Importing lan-
guage projects into the platform is possible via the language
component library. By clicking the button import, a dialog
for importing language projects opens. The selected project
is uploaded to the platform, persisted, and a fitting language
component is derived automatically. This language compo-
nent can then be customized according to its provided and
required extensions (cf. Figure 4). After the configuration,
the component is persisted and available in the language
component library, and the language family workbench for
reuse.

5.2 Creating a Language Family
Figure 5 shows the language family workbench in the SCO-
LaR platform exemplified with a language family for state-
charts. In the workbench, features can be removed and added,
and features can be associated with language components
from the library. In the view, abstract features are filled white
and features backed with language components are filled
grey. Editing the family is possible via the sidebar. The layout
of the family is adjusted automatically whenever a feature is
added or removed.

Figure 6. The systematic language composition process ex-
emplified with a language family for automatons. Selected
features are highlighted blue.

5.3 Configure and Export
To derive language variants from language families, the lan-
guage family library enables choosing from a set of existing
language families built in the workbench. To configure a
language family, the user can simply select a family in the
library and choose the variant of his choice by clicking on
the features in the feature tree (cf. Figure 6). By clicking the
button Derive DSL the configuration is applied, the selected
language features are composed, and the language variant is
downloaded as a zip archive. After that, the user can build the
language project and utilize the language to define models
in his language variant.

6 Conclusion
The SCOLaR low-code platform provides graphical means for
language engineers to 1) import existing languages, 2) auto-
matically derive a language component interface, that 3) en-
able reuse along a language family, 4) create and config-
ure language families for various language variants, 5) and
manage language components and families for reuse. The
platform is still in its early development and since SCOLaR
framework is built using MontiCore this is the only language
workbench supported currently. However, in the future, we
plan to extend our platform by supporting other language
workbenches, e.g., XText1 and to add other language compo-
sition operators besides embedding and aggregation [5] and
even composition between different compatible technologi-
cal spaces. Early user reports indicated that extending the
platform with more detailed error reporting, and language
component and family versioning would be helpful. For the
exported language variants, we plan to add LSP2 genera-
tion, providing languages with common editor features, e.g.,
syntax highlighting, folding, auto-completion etc..

1https://www.eclipse.org/Xtext/
2https://microsoft.github.io/language-server-protocol/
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Abstract
The development of Open Source Software (OSS) projects
is a collaborative process that heavily relies on active con-
tributions by passionate developers. Creating, retaining and
nurturing an active community of developers is a challeng-
ing task; and finding the appropriate expertise to drive the
development process is not always easy. To alleviate this sit-
uation, many OSS projects try to use bots to automate some
development tasks, thus helping community developers to
cope with the daily workload of their projects. However, the
techniques and support for developing bots is specific to the
code hosting platform where the project is being developed
(e.g., GitHub or GitLab). Furthermore, there is no support
for orchestrating bots deployed in different platforms nor
for building bots that go beyond pure development activi-
ties. In this paper, we propose a tool to define and deploy
bots for OSS projects, which besides automation tasks they
offer a more social facet, improving community interactions.
The tool includes a Domain-Specific Language (DSL) which
allows defining bots that can be deployed on top of several
platforms and that can be triggered by different events (e.g.,
creation of a new issue or a pull request). We describe the
design and the implementation of the tool, and illustrate its
use with examples.

CCS Concepts: • Software and its engineering → De-
velopment frameworks and environments; Designing
software; Open source model.

Keywords: Open Source, Bot, Domain-Specific Language
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1 Introduction
Open Source Software (OSS) projects are generally devel-
oped on social code-hosting platforms, such as GitHub or
GitLab, which provide a set of tools to support the creation
of software in a collaborative way. These platforms are built
on top of Git and rely on the so-called pull-based develop-
ment model [10], introduced by GitHub, where developers
can create a copy (i.e., fork) of any project’s repository and
submit a pull request to the original repository to propose
changes. Moreover, they provide tools to enable and foster
the collaboration, such as issue trackers and forums; as well
as social features such as stars, followers, and notifications.
Indeed, the development of OSS projects heavily relies

on active contribution by passionate developers [18]. How-
ever, retaining and creating an active community of develop-
ers is a challenging task [24]. To address this problem, OSS
projects attempt to delegate part of the work to automation
tools and bots to support the development process. Neverthe-
less, this has several drawbacks. To begin with, it involves
manual coding and expertise on the different platform APIs.
Bots are therefore platform-specific making it also very time-
consuming to create any type of bot that needs to interact
with projects deployed on several platforms (e.g., case of
mirror repositories of projects). Furthermore, the bots are
usually designed to fulfill automation tasks related to the
code development, even though the community behind a
project is more than just the code contributors [12] and sup-
port for automatic community management would also be
important to optimize project collaboration.
In this sense, this paper proposes a tool to define and

deploy bots for OSS projects. The tool includes a Domain-
Specific Language (DSL) to define bots that can be deployed
on different platforms and that can be triggered by different
events (e.g., creation of a new issue or a pull request). The set
of events covered by the language is a superset of all events

214

https://doi.org/10.1145/3623476.3623524
https://doi.org/10.1145/3623476.3623524


SLE ’23, October 23–24, 2023, Cascais, Portugal Ait et al.

available on popular code-hosting platforms and their APIs,
thus enabling users to define generic bots. These events
also cover community events to facilitate the creation of
more social bots. Beyond the tool, we also provide a DSL
to define the bots, and the runtime to execute the modeled
bots, translating automatically the bot behavior to calls to
the underlying APIs, depending on the target platform.

The rest of the paper is structured as follows. Section 2 in-
troduces the background and relatedwork. Section 3 presents
our proposal. Section 4 details the tool infrastructure, the
language domain and syntax, and illustrates its use with an
example. Section 5 describes the runtime design. Section 6
concludes the paper and presents future work.

2 Background and Related Work
This section covers the role of bots in OSS project develop-
ment, the benefits of DSLs and the related work trying to
use DSLs for bot definitions.

2.1 Bots in OSS Project Development
The development and success of OSS relies on the coordi-
nation and contributions by the community, usually named
social coding [4]. Some studies address specific tasks in OSS
project development, such as recommending developers to
open tasks [23], detecting unmaintained projects [3], or pre-
dicting whether newcomers may become long-term contrib-
utors [1].

In the last years, this collaborative behavior has leveraged
the use of bots to help and automatize some development
tasks [11], thus reducing the workload of contributors [21]
(or covering the lack of them). The idea of bots helping in
software development has been explored in several works
(e.g., [7, 8, 19]), which recognize their key role in address-
ing specific development tasks, but none of them propose
solutions to create bots in a holistic and scalable way. Further-
more, some studies contemplate some drawbacks or effects
of bots being a part of the project’s community, such as the
impact of adopting bots in pull requests code revisions [20],
the problems of human-bot interactions in pull requests [22]
or the interaction between software developers and a bot
that recommends pull request reviewers [15].

However, these works propose concrete bots as solutions
instead of mechanisms to build the bots themselves.

2.2 DSLs for the Definition of Bots for OSS Projects
Domain-Specific Languages (DSLs) are languages specially
designed to help to solve a problem in a particular domain.
A DSL is composed of three main elements [14]: (1) abstract
syntax, which defines the concepts and relationships of the
domain where the language is applied; (2) concrete syntax,
which defines the notation of the language (e.g., textual,
diagram-based, etc.); and (3) semantics, which defines the
meaning of the language constructs. Furthermore, DSLs can
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Definition

Helpers

«uses»
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«interacts»
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Connectors
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Figure 1. Architecture of our proposal.

be classified into external DSLs, which are generally defined
by a grammar; and internal DSLs, which are embedded in
a general-purpose programming language (known as host
language). By using a DSL, the developer can use domain-
specific constructs and therefore address the problem more
efficiently [9]. We believe a DSL targeting the domain of bots
for OSS would solve some of the issues commented in the
introduction. So far, such DSL does not yet exist.
Some platforms offer mechanisms to define automation

tasks relying on configuration languages, such as GitLab
CI or, more recently released, GitHub Actions (GHA). Some
works have analyzed the usage and impact of GHA [2, 6, 13]
exposing its spread on this platform. These alternatives are
completely platform-dependent and focus on core develop-
ment tasks.

There are a couple of approaches proposing DSLs for bots,
mainly focused on chatbots. Pérez-Soler et al. [16] propose
a DSL, Conga, which leverages on modeling techniques to
design chatbots according to a platform-independent meta-
model. Xatkit [5] is a flexible multi-platform chatbot devel-
opment framework, which comprises three DSLs allowing
the definition of different components of a chatbot, namely:
Intent DSL, Execution DSL and Platform DSL. Nevertheless,
these approaches do not have primitives covering the OSS
development domain, making it difficult to write bots able
to manage OSS concepts, or running them.

3 Our Proposal
To the best of our knowledge there is no DSL to build bots in
OSS in a way that is agnostic to the code-hosting platform
as the one we propose here.
With our approach, bots are defined independently with

our platform-independent tool and then can be configured
to interact with any specific code-hosting platform. Figure 1
shows the architecture of our proposal. As can be seen, the
Tool Infrastructure includes the DSL definition and helper
libraries to facilitate the definition of bots in an agnostic
way (i.e., helpers provide constructs to efficiently and trans-
parently access the code-hosting platform generically). The
Runtime is responsible for listening and tracking the events
in the code-hosting platforms, triggering the bots linked to
those events and executing their behavior which in turn
will call the connectors to interact with the corresponding
code-hosting platform. Next we describe each component.
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4 Tool Infrastructure
To build the tool infrastructure, we first define the abstract
syntax of the DSL, and then discuss its concrete syntax and
implementation. We finalize the section with some examples
of the language usage.

4.1 Abstract Syntax
The abstract syntax of our language can be clearly organized
in two main sublanguages, namely: OSS domain and bot. The
former covers those concepts of the domain (OSS community
development in our case) required to define bots in an agnos-
tic way, that is, independently of the code-hosting platform
where the bots will be deployed; while the latter defines the
core language constructs to define the bots themselves.

4.1.1 OSS Domain Sublanguage. To build the language
domain, we explored existing code-hosting platforms and
selected the following: GitHub and GitLab. We chose these
platforms due to their activity, the number of projects they
host, the ability to perform a detailed analysis of their fea-
tures and their popularity. In Appendix A we provide a list
of the platforms identified and eventually discarded.

Figure 2 defines the metamodel inferred from the analysis
of the features and concepts of the selected platforms. Our
bots will need to be able to read and get triggered by changes
on those elements and update them when needed. Note that
to avoid crossing lines, we sometimes express associations
between classes as an attribute with the corresponding type.

The main element of the diagram is the Repository class.
This element represents the project’s repository, the central
element of any code-hosting platform. The class includes
the main properties available in code-hosting platforms (e.g.,
name, topics, stargazers, etc.). The remaining classes describe
the other elements playing a role during the development
process, besides the User hierarchy, which identifies plat-
form users and the authors of commits, and the Group class
which represent the ownership and contributors of the repos-
itory.
For instance, the Contribution class comprises issues

and pull requests. Key characteristics of all contributions are
its title and body, which describe its creation reason, and its
state, whether it is resolved or pending for resolution, for
example. Contributions can be assigned to a milestone (see
Milestone class). The Contribution hierarchy includes the
Issue and PullRequest classes, which represent the two
types of contributions available in code-hosting platforms.
While issues are designed for open discussions or feature
requests in the project, pull requests are the mechanisms to
accept new code changes from a branch or a fork into the
repository, a process known as pull-based development [10].
The latter is composed by a set of reviews that validate or
reject the proposed changes. These reviews are often super-
vised by the owner or an internal contributor of the project.

As pull requests can be created from discussions in issues,
there may be links between them.
The communication in issues and pull requests is based

on comments, which are represented by the Comment class
and hierarchy. Comments at the contribution level are rep-
resented as ContributionComment class, and they are used
to discuss both pull requests and issues. Additionally, for
pull requests, reviews may include one or more comments
(see PRReviewComment class). Furthermore, we identified the
comments of a commit as a part of the comment hierarchy, as
it has common information with the other type of comments.
However, these comments are usually stored directly as part
of the version control system (VCS) information and visible
in the commit tracking history.

Another important feature is themanagement of the project
documentation hosted in the repository1. The documenta-
tion, called wiki, is composed by pages, and changes are
tracked for each page.
The domain also includes the User hierarchy, which rep-

resents the users of the platform. We distinguish platform
users and VCS users (see PlatformUser and GitUser). The
former are the accounts registered in the code-hosting plat-
form, while the latter are users only detected in the VCS tool,
in our case Git (i.e., commit users). Platform users can be
organized in groups, which are represented by the Group
class, and they own a set of repositories. A key aspect of
groups is the chance of assigning certain roles to the users,
determining which actions can perform (see Member class).
This facilitates the project management for corporations,
organizations and other possible groups of developers.

4.1.2 Bot Sublanguage. The part of the abstract syntax
devoted to define the core bot aspects of our DSL is presented
in Figure 3. A BotDefinition represents a bot, which listens
to a set of events of code-hosting platforms, defined by the
Event class, and performs a set of actions, defined by the
Behavior class. An Event has a condition (see Condition)
which may query elements in the domain (see from asso-
ciation). Due to space limitations, we only show a subset
of events (see Event hierarchy). The Behavior hierarchy
includes Executes and Creates, which may also query do-
main elements. We describe these elements below. Finally,
the DomainElement concept is the superclass of all elements
in the metamodel of Figure 2.

4.2 Concrete Syntax & Implementation
We designed our DSL as a textual language, and implemented
it as an internal DSL in Java to leverage on the Java ecosys-
tem and its existing libraries. As a textual language, the
language definition is driven by a set of statements, which
are identified by keywords. Being an internal DSL, we relied
on fluent interfaces using the method chaining pattern [9]
to enable the language statements. The language currently
1GitLab creates a separate Git repository.

216



SLE ’23, October 23–24, 2023, Cascais, Portugal Ait et al.

User

fullname: String

username: String

email: String

Repository

name: String 

private: Boolean

stargazers_count: Integer

watchers_count: Integer

0..1

Contribution

number: Integer

state: String

title: String

body: String

assignee: PlatformUser [ ]

Issue

draft: Boolean

type: String

priority: String

Comment

parent: Integer

body: String

author: PlatformUser

author_association: AssocEnum

ContributionComment PRReviewComment

in_reply_to: PRReviewComment

line: Integer

old_line: Integer

Review

body: String
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Figure 3. Bot metamodel.

includes five statements using the corresponding keywords,
namely, createBot, on, creates, executes, and validate.
In the following, we describe each statement following a
function-based format (i.e., keyword name and parameters).
createBot(name) This statement sets the bot name.
on(event, condition) This statement defines the event

and the optional conditional statement triggering the
bot. Several on statements may be used if a bot is trig-
gered by several events.

creates(element) This statement specifies the domain el-
ement that must be created once an event triggers the
bot. One or more domain elements can be created. Con-
structors to build each domain element are provided.

executes(code) This statement defines the bot behavior
to be executed when it is triggered by an event. Un-
like the previous statement, the executes statement
accepts a lambda expression that must be executed as
part of the bot behavior.

validate() This statement ends the definition of the bot
and validates the bot definition.

A bot definition must use the keywords in a specific order.
The first statement must be createBot and one or more on
statements afterward. Each set of on statements must be
followed by either a creates or an executes keyword. The
creates or executes keyword can be followed by either
a validate keyword, which finalizes the bot definition; or
another set of on statements, thus defining a new set of trig-
gering conditions. Note that any bot definition must always
finalize with a validate keyword.
As a Java internal language, we leverage on the host lan-

guage to be able to ignore most newlines, thus improving
the readability and making debugging easier. To enforce the
order of the keywords, we use progressive interfaces, that is,
the usage of using multiple interfaces to drive and enforce a
fixed sequence of method-chaining calls. However, one of
the disadvantages of using method chaining and progres-
sive interfaces is the finishing problem, summarized to the
lack of a clear end-point to a method chain. To mitigate this
problem, we added the validate statement, which closes
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Listing 1. Example using creates statement.
1 exampleBot = Bot.createBot("Commenter")
2 .on(Event.CONTRIBUTION_COMMENT , (payload) -> {
3 Issue issue = DomainHelper.digestPayload(payload ,

domainClass:Issue.class);
4 return issue.getNum_comments () == 1;
5 })
6 .creates(CreateHelper.createComment(body:"Thanks␣for␣your␣

contribution!"));
7 .validate ();

the bot definition but introduces syntactic noise. To alleviate
the situation, the validate statement also validates that the
bot definition and state is correct.

4.3 Example
To illustrate the use of our language, we show two examples
of simple bots, which (1) thanks the author of the first com-
ment in an issue and (2) notify project contributors when
a pull request is created without requested reviewers. List-
ings 1 and 2 show these examples, respectively. Listing 1
illustrates the use of the creates statement, while Listing 2
uses the executes statement.
In both examples, the name is a unique Java string. Note

that the event is defined among a set of predefined events,
and it is declared using Java enumerations. Along with the
declared event, the conditional statement is represented as a
Java lambda expression, accessing to the platform entities via
the DomainHelper. The DomainHelper facilitates the extrac-
tion of any domain element from the payload of the webhook
notification, thus liberating developers from building and
navigating the domain elements. For instance, line 3 in List-
ings 1 extracts the issue related to the event, while line 3
in Listing 2 does so for the pull request. In both examples,
conditional triggers are defined with Java comparison op-
erators with the attributes of the retrieved element. At last,
each bot includes the definition of the behavior of the bot,
via a creates and executes statements, respectively.

In Listing 1, note that the creates statement allows the
developer to define the bot behavior effectively. To this aim,
our approach provides the so-called CreateHelper, which
implements typical behavior when creating elements, in the
example, the creation of a comment in the issue linked to the
event. Note that more complex behavior should be defined
by using the executes statement. On the other hand, the
executes statement showed in Listing 2, allows the user to
bemore precise, thus enabling the definition ofmore complex
actions. In this case, we rely on the Member domain element
to recover the set of project maintainers to be notified.

5 Runtime
The execution of bots is governed by the Runtime (cf. Fig-
ure 1). The Runtime includes an Event Listener to track the
events from code-hosting platforms, and to trigger the exe-
cution of the corresponding bot, and a set of Connectors to
interact with the code-hosting platforms APIs.

Listing 2. Example using executes statement.
1 exampleBot = Bot.createBot("MailNotifier")
2 .on(Event.PULLREQUEST , (payload) -> {
3 PullRequest pr = DomainHelper.digestPayload(payload ,

domainClass:PullRequest.class);
4 return pr.getRequested_reviewers ().isEmpty ();
5 })
6 .executes (( payload) -> {
7 Repository repo = DomainHelper.digestPayload(payload ,

Repository.class);
8 ArrayList <Member > members = repo.getGroup ().getMembers ().

stream ().filter ((m) -> m.getRole () == RoleEnum.
MAINTAINER);

9 for (Member m : members) {
10 message.addRecipient(m.getEmail ());
11 }
12 String body = "Hi␣developer ,␣there␣is␣a␣new␣pull␣request␣

with␣no␣requested␣reviewers␣in␣your␣repo:" + repo.
getName ();

13 message.SetContent(body);
14 Transport.send(message);
15 })
16 .validate ();

We have implemented the Runtime as a web application,
able to track and listen events from code-hosting platforms
via webhooks. The Event Listener only triggers the bot if
the event conditions defined in the on statement are fulfilled.
Being an internal DSL, the event listener delegates the ex-
ecution flow to the creates or executes statement of the bot.
The execution of these statements calls the corresponding
connector, which is in charge of mapping the bot actions to
the code-hosting platform API calls.

6 Conclusion
In this paper, we have presented a tool for defining and
deploying bots independently of the code-hosting platform.
For this, we have defined a language as an internal DSL
in Java. Bots defined with our tool can be easily deployed
in potentially any code-hosting platform via the Runtime,
which currently supports GitHub and GitLab. We have
illustrated the use of our approach with several examples.
This is the first step of a more ambitious vision towards

providing every OSS project with a swarm of bots able to
collaborate among them and with the community members
to ensure the project’s long-term sustainability. Along this
line, future work includes extending our bots with NLP ca-
pabilities and LLM connectors for more advanced interac-
tions, the ability to model bots’ orchestrations and their
collaboration, and coordination towards a common goal, e.g.,
involving ecosystems of projects deployed over multiple
repositories and platforms. Works on the swarm robotics
domain (e.g., [17]), can be useful to adapt swarm algorithms
and communication methods into our domain.
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A. Platform selection

Table 1. Discarded platforms considered for building the
language domain.

Platform URL
Gitea . . . . . . . . . . . . . . . . . . . . . . . https://gitea.io/en-us/
Codeberg . . . . . . . . . . . . . . . . . . . https://codeberg.org/
BitBucket . . . . . . . . . . . . . . . . . . https://bitbucket.org/
SourceForge . . . . . . . . . . . . . . . . https://sourceforge.net/
HuggingFaceHub . . . . . . . . . . . . https://huggingface.co/
ProjectLocker . . . . . . . . . . . . . . https://www.projectlocker.com/
Launchpad . . . . . . . . . . . . . . . . . . https://launchpad.net/
Assembla . . . . . . . . . . . . . . . . . . . . https://get.assembla.com/
Beanstalk . . . . . . . . . . . . . . . . . . https://beanstalkapp.com/
Savannah . . . . . . . . . . . . . . . . . . . https://savannah.gnu.org/
RepositoryHosting.com . . . . . https://repositoryhosting.com/
Codebase . . . . . . . . . . . . . . . . . . . https://www.codebasehq.com/
SourceRepo . . . . . . . . . . . . . . . . . http://sourcerepo.com/
Gerrit . . . . . . . . . . . . . . . . . . . . . . https://www.gerritcodereview.com/
Backlog . . . . . . . . . . . . . . . . . . . . . https://nulab.com/backlog/
Codegiant . . . . . . . . . . . . . . . . . . https://codegiant.io/home
Kallithea . . . . . . . . . . . . . . . . . . . https://kallithea-scm.org/
RhodeCode . . . . . . . . . . . . . . . . . . https://code.rhodecode.com/
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Abstract

Software language design and implementation often involve
speci�cations written in various esoteric meta-languages.
Language workbenches generally include support for precise
name-based navigation when browsing language speci�ca-
tions locally, but such support is lacking when browsing the
same speci�cations online in code repositories.

This paper presents a technique to support precise name-
based navigation of language speci�cations in online reposi-
tories using ordinary web browsers. The idea is to generate
hyperlinked twins: websites where verbatim copies of spec-
i�cation text are enhanced with hyperlinks between name
references and declarations. By generating hyperlinks di-
rectly from the name binding analysis used internally in a
language workbench, online navigation in hyperlinked twins
is automatically consistent with local navigation.
The presented technique has been implemented for the

Spoofax language workbench, and used to generate hyper-
linked twin websites from various language speci�cations
in Spoofax meta-languages. However, the applicability of
the technique is not limited to Spoofax, and developers of
other language workbenches could presumably implement
similar tooling, to make their language speci�cations more
accessible to those who do not have the workbench installed.
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grated and visual development environments; Software

libraries and repositories; • Information systems →

Browsers.

Keywords: code navigation, hyperlinked twins, language
speci�cations, meta-languages, language workbenches

SLE ’23, October 23–24, 2023, Cascais, Portugal

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0396-6/23/10.

h�ps://doi.org/10.1145/3623476.3623528

ACM Reference Format:

Peter D. Mosses. 2023. Online Name-Based Navigation for Software

Meta-languages. In Proceedings of the 16th ACM SIGPLAN Inter-

national Conference on Software Language Engineering (SLE ’23),

October 23–24, 2023, Cascais, Portugal. ACM, New York, NY, USA,

6 pages. h�ps://doi.org/10.1145/3623476.3623528

1 Introduction

Name-based navigation is a signi�cant aspect of software
language engineering. IDEs generally include support for
precise name-based navigation when browsing code locally,
but such support is lacking online when using ordinary web-
browsers on code repositories.
Here, we suggest to generate hyperlinked twin websites

from code repositories. The code on the website should look
the same as it does in an IDE, and the hyperlinks should
support the same name-based navigation as the IDE.

Software meta-languages are a particularly important spe-
cial case of software languages, and language workbenches
implement name-based navigation for the meta-languages
that they use. Moreover, a language workbench is likely to
provide an API to access ASTs and name binding analyses,
facilitating generation of hyperlinked twin websites.
To illustrate the suggested technique, the Spoofax lan-

guage workbench [4] has been used to generate hyperlinked
twins from various language speci�cations in Spoofax meta-
languages.1 This involved writing only a small amount of
code in the Spoofax meta-language Stratego. The code uses
generic AST traversals to generate HTML from parsed and
analysed speci�cations, and a simple API for accessing name
binding information. The code is available on GitHub.2

The rest of this section expands on the above points. Sec-
tion 2 then explains the main steps of the generation process,
which may be of interest to developers of other language
workbenches. Section 3 brie�y mentions some details spe-
ci�c to the use of Spoofax. Section 4 concludes, and discusses
future work. Appendix A shows how a fragment of a lan-
guage speci�cation looks in Spoofax, in a GitHub repository,
and in the hyperlinked twin generated from that repository.

1h�ps://pdmosses.github.io/hyperlinked-twins/
2h�ps://github.com/pdmosses/sdf/tree/sle23/org.metaborg.meta.lang.

template/trans/generation/docs/

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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1.1 Name-Based Code Navigation

Software languages generally include declarations that bind
names to entities, and references to those entities using the
declared names. Name-based navigation between declara-
tions and references is essential for browsing and exploring
code in software languages.

Manual name-based navigation can be tedious and error-
prone: it may require scrolling, or entering text in search
boxes. It becomes signi�cantly more di�cult when decla-
rations can be in di�erent �les from references to them –
particularly when code is divided into hundreds of �les, per-
haps with a complicated import relationship.
Integrated software development environments (IDEs)

support name-based navigation when locally browsing or
editing code. When a reference to a name is selected, the
IDE allows navigation directly to the relevant declaration(s).
When a declaration is selected, the IDE may also support
navigation directly to some or all the references to it.

Often, a name can be used in more than one declaration in
the same project – either in di�erent namespaces (e.g., types
and constructors) or in di�erent parts of the project. Support
for name-based navigation using simple textual search may
then be signi�cantly inferior to precise navigation using
name binding analysis, due to false positives in search results.
Support for name-based navigation is often weak in on-

line code repositories when using ordinary web browsers.
GitHub repositories currently support search-based code
navigation in about a dozen mainstream programming lan-
guages [3], but precise name-based navigation in only one
language [1]: Python. GitHub’s implementation of precise
online name-based navigation requires specifying the name
binding analysis of the language in terms of stack graphs [2].
Apart from the signi�cant amount of expertise and e�ort
required for that, a potential drawback of GitHub’s approach
may be the di�culty of validating that the navigation in
the repository accurately re�ects the name-binding analysis
implemented in compilers. In any case, precise navigation
on GitHub seems likely to be limited to a few major pro-
gramming languages, despite the possibility for language
developers to contribute support for further languages [6].

1.2 Software Meta-languages

A meta-language is a language for specifying languages
(primarily their syntax and semantics). A software meta-

language is simply a meta-language for specifying software
languages. Speci�cations of major software languages can
be large, and di�cult to navigate. Moreover, unfamiliarity
with a particular software meta-language can hinder manual
name-based navigation in language speci�cations – espe-
cially when name binding in the meta-language di�ers signif-
icantly from that in conventional programming languages.
Development and validation of software language spec-

i�cations is supported by software language workbenches,

which generally implement precise name-based navigation.
However, that navigation is not generally available for such
language speci�cations when browsing them in online repos-
itories using ordinary web browsers. To browse a language
speci�cation with precise name-based navigation, users then
need to install a workbench locally and download a copy of
the repository.

1.3 Prior Examples of Hyperlinked Twins

The reference manuals of most current programming lan-
guages are available online in HTML or PDF, and can be
browsed using ordinary browsers. There, hyperlinks already
support name-based navigation in grammars that specify
language syntax. When the hyperlinks are generated from
repositories containing the plain text of the grammars, the
reference manuals may then be regarded as hyperlinked
twins.
The author has previously developed support for precise

name-based navigation of language speci�cations online:
the CBS-beta website,3 which was generated from CBS spec-
i�cations whose syntax and name binding were speci�ed
in Spoofax meta-languages. In [5] he speculated that the
approach used to generate the CBS-beta website might be
applicable to other software meta-languages; the present
paper con�rms that, but it turned out not to be possible to
reuse the implementation of the generation process directly:
the code involved case analysis on the constructs of CBS,
and would need to be almost completely reimplemented for
each meta-language.

Various other speci�cation frameworks provide tool sup-
port for generating hyperlinked websites from speci�cations.
For example, the web version of an online book [7] includes
hyperlinked pages generated from (literate) Agda source
code. If web versions of source code in other speci�cation
languages can be generated using the same tool support, it
would be interesting to compare the generation process with
that outlined here.

2 Generating Hyperlinked Twin Websites

The aim is tool support for online name-based navigation
of language speci�cations in ordinary web browsers. The
main idea is to generate web pages where verbatim copies
of the speci�cations are enhanced with hyperlinks between
name references and declarations. By generating the hy-
perlinks directly from analyses used internally in language
workbenches, online navigation in language speci�cations
is automatically consistent with local navigation.
The proposed technique has been implemented in the

Spoofax language workbench, with only modest e�ort, as
outlined in Section 3; it might be possible to implement it in
other language workbenches in much the same way.

3h�ps://plancomps.github.io/CBS-beta/
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Suppose that some language workbench is to generate
a hyperlinked website from the plain code of a language
speci�cation found online in some GitHub repository. The
suggested technique is to proceed as follows.

Requirements. The language workbench needs to parse
and analyse the plain language speci�cation. Unless the
workbench can directly access the repository online, a local
clone is required; and to add the source �les for the gener-
ated website to the repository using pull-requests, the clone
will need to be published as a fork of the repository.

If the language speci�cation is in meta-languages sup-
ported by the workbench, it can already parse and analyse
them. However, the results also need to be accessible for
transformation to HTML. (That should always be possible
when the implementation of the meta-languages in the work-
bench is bootstrapped.) If the speci�cation uses external
meta-languages, those languages need to be loaded into the
workbench before proceeding.

The following steps are to be applied to a complete lan-
guage speci�cation project.

Creating ASTs. To support generation steps that involve
tree traversal, the �rst step is to parse the language speci�-
cation �les and create corresponding abstract syntax trees
(ASTs). The generation process is to be completely indepen-
dent of the detailed structure of the ASTs (and hence of the
meta-language used for speci�cation). The ASTs might cor-
respond closely to parse trees, or they could be ‘de-sugared’
to remove semantically-irrelevant structure such as white
space, line breaks, and literal terminal symbols (depending
on the language).
However, the ASTs must support the addition of name

binding information to nodes that correspond to declarations
and references. Such nodes also need to reveal the start and
end positions of their source text.
The language workbench may automatically parse �les

and generate their ASTs, otherwise this step needs to be
explicitly executed.

Adding name binding analysis. Based on the relevant
name binding analysis for themeta-language, this step should
ensure that all declarations and references can be detected
when traversing the ASTs. Each declaration node needs to
provide the source text of the declared name; each refer-
ence node needs to provide not only the name, but also the
declaration(s) to which the reference has been resolved.
In general, a reference may resolve to a declaration in

a di�erent �le; and a declaration of a single name may be
spread across multiple �les.

As with generating ASTs, a language workbench may au-
tomatically analyse �les and add the resulting information
to their ASTs, otherwise this step needs to be explicitly exe-
cuted. The remaining steps are speci�c to the generation of
hyperlinked websites, but could also be made automatic.

Generating plain HTML.. The obvious way to generate
HTML that renders exactly as some plain source text is to
enclose the text in <pre><code>...</code></pre> tags. In
general, this preserves the white space (i.e., indentation and
line breaks) of the source text – assuming that the rendering
uses a �xed-width font.
The source text might also contain the characters ‘<’, ‘>’,

and ‘&’, which are all treated specially in HTML. These need
to be replaced by the corresponding HTML entities ‘&lt;’,
‘&gt;’, and ‘&amp;’, respectively.

Subsequent steps are to enclose parts of the source text
in tags for hyperlinks and highlighting. To avoid the need
for obtaining the source text of all nodes in an analysed
AST, plain HTML can be generated gradually, by copying
characters from the source �le to the generated �le while
traversing the AST (top down, left to right).

Generating hyperlinks. To generate hyperlinks between
declarations and references, the relevant tags can be inserted
whenever the traversal reaches the corresponding node.

When the node is a declaration of name # at position % ,
the element <span id="#_%">#</span> provides a unique
target for references that resolve to this declaration of # .
The inclusion of the position % ensures that the ID of the tag
is unique in the generated �le

Similarly, when a reference to name # resolves to a single
declaration of # at position % in �le � , the anchor element
<a href="�##_%">#</a> renders as the desired hyperlink
to the declaration.
In general, a reference to a single name may resolve (un-

ambiguously) to multiple declarations, possibly located in
multiple �les. Similarly, multiple references may resolve to
the same declaration(s). Such information can be added to
HTML elements as a title attribute, which is usually dis-
played by HTML browsers as a tooltip while hovering over
the element. (Pop-ups or modals could support links to mul-
tiple targets, but might be too distracting due to the high
density of names in language speci�cations.)

Generating highlighting. Independently of name-based
navigation, language workbenches use syntax highlighting
to enhance code readability. To make code rendered on the
generated website look the same as in a workbench, the
website needs to replicate the colours and fonts that it uses.

Websites often highlight code in many software languages
automatically. For example, GitHub highlights code in its
repositories for hundreds of languages, using Tree-sitter4

parsing and context-aware token scanning to recognise dif-
ferent kinds of language construct – also coping gracefully
with incomplete or syntactically ill-formed code.

When a code editor of a language workbench supports
the same automatic highlighting framework as a website, it
might seem attractive to exploit it, and avoid the need for

4h�ps://tree-si�er.github.io/tree-si�er/
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adding highlighting markup when generating web pages.
However, this seems incompatible with the simple approach
adopted here for generating hyperlinks in HTML. In any
case, websites seldom support automatic highlighting for
software meta-languages.
So here, highlighting is added to generated HTML using

tags of the form <span class="�">...</span>, where �
indicates the (syntactic or lexical) sort of the enclosed text.
The rendering of the text – font colour, style, and weight
– can then be speci�ed in CSS (generated from data in the
language workbench).

Generating a website. When generating a website from
code in a repository, it is natural to generate a separate web
page for each code �le, and copy the directory structure.
The website navigation panel can then display the direc-
tory structure as a tree, with links to the individual pages
as leaves. The detailed rendering of the navigation panel on
the website is not so important, because name-based nav-
igation reduces (or even eliminates) the need for drilling
down through the directory structure of a code project when
browsing or exploring code online.

Static site generators (SSGs) such as MkDocs5 and Jekyll6

can generate websites automatically from HTML �les. Meta-
data can be pre�xed to the HTML content as so-called front
matter, e.g., speci�ed in YAML. HTML can also be embed-
ded directly in Markdown, which facilitates the inclusion
of headings and links in the generated source �les for the
website. An important advantage of relying on an SSG to
generate web pages from Markdown is that the resulting
HTML can be expected to render properly in any (modern)
web browser, on mobile devices as well as desktop and laptop
computers.

Figure 1 illustrates the form of the generated HTML. It is a
single line from a source �le for a hyperlinked twin website
(here wrapped to �t the page width).

3 Using Spoofax

The Spoofax Language Workbench7 currently uses three
main meta-languages: SDF3 for syntax, Statix for name bind-
ing, and Stratego for transformation. Themeta-languages are
themselves speci�ed using Spoofax meta-languages (includ-
ing the now-deprecated SDF2, NaBL, and NaBL2). A further
meta-language is ESV, for specifying editor services, includ-
ing syntax highlighting details. The speci�cations of all the
meta-languages are available as Spoofax language projects
on GitHub in repositories of the MetaBorg organisation.8

5h�ps://www.mkdocs.org
6h�ps://jekyllrb.com
7h�ps://spoofax.dev
8h�ps://spoofax.dev/references/

The Spoofax language workbench is implemented as an
Eclipse plugin. To implement generation of hyperlinked web-
sites for an external language speci�ed using Spoofax meta-
languages, it is possible to add the required code to the lan-
guage speci�cation using the plugin. (That is how the CBS-
beta website was generated, based on the speci�cations of
the CBS meta-language in SDF3 and NaBL2.)

To add the required code to a Spoofax meta-language such
as SDF3, however, it is necessary to build the complete base-
line version for bootstrapping Spoofax-2, following the steps
explained in the documentation on Spoofax Development.9

By adjusting the version number in the dependency speci�-
cation of the relevant meta-language, Spoofax can be used
to parse, analyse, and transform its own speci�cations.
Spoofax provides a Stratego API for reading text from

a �le, and for parsing it to produce an AST. The parser is
generated automatically from the SDF3 speci�cation of the
language when the language project is built. The API also
supports analysing the name binding of all the �les in an
Eclipse project, and adding the analysis as annotations on the
AST nodes, which can also be accessed using Stratego. And it
supports accessing the source text of nodes in the AST, which
is based on origin-tracking. The same API includes strategies
for obtaining the character positions of name declarations
and references.

The generation of a web page with hyperlinks from each
source �le in a project is speci�ed as a generic traversal in
Stratego, independently of the syntax of the language.

For example, Figure 2 shows the Stratego code for gener-
ating HTML from references.

Currently, there is no Stratego API for accessing the kinds
of individual lexical tokens determined by parsing. As a
workaround, highlighting markup is added using pattern
matches on the source text (expressed by Stratego strategy
combinators) and rendered using CSS generated from an
ESV speci�cation. The result corresponds closely to the high-
lighting in Spoofax.

The documentation site theme used for the main Spoofax
documentation website (Material for MkDocs10) automati-
cally generates a navigation panel with the same structure
as the source project, with language-independent con�gu-
ration. However, the underlying MkDocs SSG transforms
directory names; a plugin11 is required to ensure that the ren-
dered links in the navigation panel show the untransformed
names.
It is straightforward to deploy the generated web pages

to GitHub Pages using Actions. Versioned web pages could
also be deployed for di�erent releases or branches.12

9h�ps://spoofax.dev/howtos/development/
10h�ps://squidfunk.github.io/mkdocs-material/
11h�ps://github.com/lukasgeiter/mkdocs-awesome-pages-plugin
12h�ps://squidfunk.github.io/mkdocs-material/setup/se�ing-up-

versioning/
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<a href="../AssignmentOperators.sdf3#FieldAccess_938_949" id="FieldAccess_331_342"

title="Referenced at ../AssignmentOperators.sdf3 line 30; ../Disambiguation.sdf3 line 57;

line 16">FieldAccess</a>.<span class="cons_Constructor"><span id="QSuperField_343_354"

title="Not referenced locally, nor via imports">QSuperField</span></span> = &lt;&lt;<a

href="../../names/Names.sdf3#TypeName_145_153" id="TypeName_359_367" title="Defined

at ../../names/Names.sdf3 line 11, 21, 22">TypeName</a>&gt;<span class="cons_String">

.super.</span>&lt;<a href="../../lexical/Identifiers.sdf3#Id_141_143" id="Id_376_378"

title="Defined at ../../lexical/Identifiers.sdf3 line 15, 23">Id</a>&gt;&gt;

Figure 1. A fragment of a generated source �le for a hyperlinked twin.

Figure 2. Stratego code for generating HTML from references.

4 Conclusion and Future Work

Using the technique presented in this paper, hyperlinked
twin websites have been successfully generated from the syn-
tax of several Spoofax meta-languages (SDF3, NABL, NaBL2,
Statix) and from the name binding speci�cation of NaBL.13 A
future release of Spoofax should support generation of hyper-
linked twins from code in all the Spoofax meta-languages, so
hyperlinked twins can be published for all repositories that
use Spoofax language speci�cations. It may also be possible
to support meta-languages used in other frameworks.
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A Appendix

The screenshot in Figure 3 shows how a �le from an SDF3
speci�cation of Java looks when editing it in Spoofax. Fig-
ure 4 shows how the same �le looks when browsing it on
GitHub, and Figure 5 shows browsing it on the generated hy-
perlinked twin. Both Spoofax and the hyperlinked twin sup-
port name based navigation in SDF3, in contrast to GitHub.

13h�ps://pdmosses.github.io/hyperlinked-twins/
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Figure 3. Editing a �le in the Spoofax language workbench.

Figure 4. Browsing the same �le in a GitHub repository.

Figure 5. Browsing the same �le in the hyperlinked twin.
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Abstract

Software languages have pros and cons, and are usually cho-
sen accordingly. In this context, it is common to involve
different languages in the development of complex systems,
each one specifically tailored for a given concern. However,
these languages create de facto silos, and offer little support
for interoperability with other languages, be it statically or
at runtime. In this paper, we report on our experiment on
extracting a relevant behavioral interface from an existing
language, and using it to enable interoperability at runtime.
In particular, we present a systematic approach to define the
behavioral interface and we discuss the expertise required
to define it. We illustrate our work on the case study of Sci-
Hook, a C++ library enabling the runtime instrumentation of
scientific software in Python. We present how the proposed
approach, combined with SciHook, enables interoperability
between Python and a domain-specific language dedicated
to numerical analysis, namelyNabLab, and discuss overhead
at runtime.

CCS Concepts: • Software and its engineering→ Source

code generation; General programming languages; Do-
main specific languages; • Applied computing;
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1 Introduction

Software languages are tools providing specific abstractions
to support developers in describing efficient solutions (i.e.,
software systems) to their problems. According to the ab-
stractions provided, a given software language is more or
less relevant for a specific concern. For instance, in the field
of scientific computing, it is common to use C or C++ for
implementing efficient simulation models, complemented by
Python to help in data processing or debug instrumentation.
This leads to polyglot development of software systems [1].

In this polyglot development context, existing approaches
are either focusing on the use of specific libraries unifying
on a single language runtime (e.g., Truffle/GraalVM [3, 10],
LLVM [5], WebAssembly [4]), or with ad-hoc bindings be-
tween different language runtimes defined at the program
level (e.g., CORBA [8], CCA [1], CoLoRS [13]). While the
former limits to the use of a specific execution platform,
the latter requires to define bindings at the program level.
This either prevents the use of specific language runtimes
(e.g., specific C++ compilers such as GCC, or mainstream
Python interpreters like CPython or Pypy), or imposes the
overhead of defining ad-hoc bindings for each new program.

In this paper, we introduce an approach to support interop-
erability between different language runtimes (interpreters
and compilers) through specific interfaces defined at the lan-
guage level.We present our approach to define such language
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interfaces for NabLab1, a Domain-Specific Language (DSL)
for scientific computing, and report on our experience using
it with SciHook2, our C++ library to enable Python-based
runtime instrumentation for scientific software.

Using SciHook, computational scientists can write analy-
ses as Python scripts that will run during the simulation, also
called in-situ analyses [12], with the full power of Python’s li-
braries for scientific computing [9]. Such analyses can access
the data they require in-memory, which allows to turn off
expensive input/ouput operations (I/Os) and speeds up the
simulation time significantly [2]. Furthermore, with write ac-
cess to the execution context of the simulation, instruments
can implement complex behaviors varying on a case-by-case
basis such as the physical behavior of the environment of a
simulation, without needing to recompile the simulator.
We experimented the use of SciHook with simulation

models implemented in NabLab [6], a compiled DSL for nu-
merical analysis. Based on these experiments, we discuss the
required effort for the definition of the behavioral interfaces,
the resulting performance at runtime, and the suitability of
runtime instrumentation coupled with software language
interoperability.

We demonstrate the practicality of enabling interoperabil-
ity between different languages through well-defined and
purposefully designed language behavioral interfaces, with
a limited overhead. We also show how the combination of in-
teroperability and runtime instrumentation capability opens
up new usage scenarios for the instrumented programs.

The remainder of this paper is as follows. Section 2 presents
the motivation behind this work. Section 3 details the pro-
posed approach. Section 4 discusses how we applied the
approach to NabLab, using SciHook to enable the instru-
mentation of NabLab programs in Python. Section 5 presents
our evaluation of the overhead induced by the approach over
a selection of use cases. Section 6 discusses related works,
and Section 7 provides concluding remarks.

2 Motivation

In this paper, we use the field of scientific computing and the
software languages used in that field as our illustrative ex-
ample. The two main use cases for language interoperability
in scientific computing are (𝑖) C++ and Fortran, to call legacy
Fortran code from C++ code [1], and (𝑖𝑖) Python and C/C++,
to pilot efficient C/C++ libraries from Python-based GUIs or
with libraries such as SciPy [1, 11]. In both use cases, inter-
operability is mainly used to provide program-level bindings
for black box software components, and does not allow to
interact with the internal state of such components.
Yet, specific operations might be more easily or robustly

implemented in a different software language, or require
scriptability to access the execution state of the component

1
https://github.com/cea-hpc/NabLab

2
https://github.com/cea-hpc/scihook

at runtime. For example, in the context of complex simu-
lation codes, this allows to submit scripts to process data
in-situ [2], waiving the need to persist complete data sets to
disk. Another use case is to expose the execution state at a
mathematical level of abstraction, in a language well-suited
for mathematical operations (e.g., Python with NumPy sup-
port). This in turn enables debugging and domain-specific
property monitoring at an adequate level of abstraction for
numerical analysts, while keeping the computation-intensive
parts of the simulator efficient.

Unfortunately, support for such a gray-box usage of soft-
ware language interoperability is tedious and error-prone to
implement, and does not contribute directly to the business
logic of the application. This can be dissuasive for practition-
ers of scientific computing, who are not software engineers
and/or might not have the manpower to spare on these con-
cerns. To remedy this, we present a systematic approach to
define and realize a behavioral interface dedicated to instru-
mentation for existing software languages. We then illustrate
the approach through a case study using SciHook, a C++
library to enable Python-based runtime instrumentation, and
provide performance measurements for a range of relevant
use cases for scientific computing.

3 Systematic Runtime Instrumentation of

Software Languages

We define runtime instrumentation as the dynamic introduc-
tion of code at specific points in the execution of a program,
and with controlled access to a subset of the execution state
of the program. We detail below our proposed approach
for enabling this at the language level, which relies on the
systematic definition of behavioral interfaces for software
languages, that are then realized through an instrumentation
runtime supporting software language interoperability.

3.1 Defining the Behavioral Interface

In this paper, we adopt a definition for language behavioral
interfaces similar to the definition given in [7], albeit more
restricted. Indeed the behavioral interfaces defined with our
approach consist of the set of language-level events that are
exposed by any program written with that language, and
that provide their execution context as a parameter. The
process for defining such behavioral interfaces is as follows.

Identify execution events. The first step consists in iden-
tifying the set of abstract syntax tree (AST) nodes whose
execution will result in the emission of an execution event,
and crafting a static analysis to extract this set of AST nodes
from the AST of a program. At runtime, the set of exposed
execution events can then be queried by instruments, allow-
ing them to register to and unregister from these events, and
thus be triggered by their emission.

Determine execution contexts. The second step consists
in providing the means for instruments to operate on the

227

https://github.com/cea-hpc/NabLab
https://github.com/cea-hpc/scihook


Practical Runtime Instrumentation of Software Languages: The Case of SciHook SLE ’23, October 23–24, 2023, Cascais, Portugal

current execution state when they are triggered by the emis-
sion of an execution event. To this end, instruments must be
provided an execution context when triggered.

However, depending on the purpose for which the behav-
ioral interface is defined, it might not be desirable to expose
the complete internal state of a program to its instruments.
For example, in the context of execution events emitted on
a method call, a behavioral interface designed for regular
users might only expose the public fields and methods of the
containing object, whereas one designed for developers or
expert users might also expose private fields and methods.
Thus, extracting the proper execution context of each

execution event of the behavioral interface requires a static
analysis tailored to the purpose of the interface.

3.2 Specification of the Instrumentation Runtime

In the remainder of this section, we differentiate the host
language from the instrumentation language. In the context
of a given program, the host language is the language used
to write the program being instrumented, which we refer
to as the host program. Instrumentation languages are the
languages used to write the instrumentation code (i.e., the
instruments) for the host program. We describe below the
API that the instrumentation runtime must provide.

Event declaration. The runtime must provide a way for
the host program to declare events to which instruments can
subscribe. This allows to specify which parts of the applica-
tion can be instrumented. Note that events can be declared
in different granularities, to open more or less parts of the
application to instrumentation, similarly to logging levels.

Event subscription. Conversely, the instrumentation run-
time must provide a way for the instruments to query, sub-
scribe to, and unsubscribe from execution events. This allows
to write instruments that are able to dynamically activate
and deactivate themselves, and to identify specific subsets
of the exposed execution events to which register.

Event emission. Finally, the runtime must offer a way for
the host program to emit execution events, thereby execut-
ing the instruments registered to these events, passing along
the corresponding execution context. That way, the instru-
mentation runtime acts as a bridge between host language
runtime and instrumentation language runtime.

3.3 Realizing the Interface

Host languages must then provide facilities as part of their
infrastructure to derive the instrumentation interface of any
program, and realize it through the API of the instrumenta-
tion runtime, exposing (i) the different execution events to
which instruments can register, and (ii) a wrapper exposing
the associated execution contexts to instruments.

Depending on the host language and on the software lan-
guage used to implement the instrumentation runtime, using
the API of the instrumentation runtime might require the
use of foreign function interface or similar technologies.

SciHook 
Runtime

CPython 
Interpreter

Scientific
Computing
Libraries

Scientific
Software
Specification 
(e.g. with NabLab)

Scientific
Software
Implementation 
(in C++)

Scientific
Software SciHook dependency

SciHook 
Instruments

Instrumentation 
Interface

generation
Python

Figure 1. Overview of SciHook.

Finally, interoperability bindings must be defined over the
exposed execution contexts so they can be accessed from
the desired instrumentation languages. These can be defined
systematically for each execution context once bindings for
the basic types manipulated by the host language are defined.

4 The Case of SciHook

In this section, we first provide an overview of SciHook, our
C++/Python instrumentation runtime. We then discuss the
work required to apply the proposed approach to NabLab, a
DSL with compiler back-ends targeting C++, using SciHook
as the instrumentation runtime.
4.1 SciHook Overview

Figure 1 provides an overview of SciHook. On the left is
a piece of scientific software, which can be implemented
directly in C++, or generated from its specification when
written in a language transpiling to C++ (such as NabLab).

To leverage SciHook, this piece of scientific software pro-
vides an instrumentation interface, as defined in the previous
Section. This instrumentation interface can be generated di-
rectly for a given program (in C++), or it can be generated
from the software specification (using NabLab).
At the center of Figure 1 are the SciHook runtime and

its registered instruments. Using the SciHook API, appli-
cations define their execution events as specified in their
instrumentation interface, and trigger those events during
the execution. Conversely, SciHook instruments use the Sci-
Hook API to register and unregister to the runtime, listing
their triggering events from the instrumentation interface.
The SciHook runtime stores the registered events and

instruments, and triggers instruments upon the emission
of events to which they are registered. Triggered SciHook
instruments are provided with the execution context of the
application, on which they can perform read and possibly
write operations, depending on how the context was exposed,
as well as call functions exposed as part of the context.
To achieve this, the SciHook runtime depends on the

CPython interpreter, as shown on the right of Figure 1, to
which it delegates the execution of SciHook instruments.
This means that, when writing instruments, SciHook users
have access to the vast ecosystem of libraries for scientific
computing such as NumPy, Matplotlib, Numba, and so on [9].
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With access to scientific computing libraries and to the
execution state of the application, users can craft analyses
that are easily plugged into the application and that can be
turned on or off at runtime. In addition, the separate “instru-
mentation state” (i.e., the heap of the CPython interpreter)
enables unanticipated, execution-wide analyses (e.g., moni-
toring temporal properties), without relying on I/Os.

Beyond analysis and debugging, write access to the execu-
tion context also allows to configure simulation workflows
with Python scripts, from input and output data processing,
to simulation initialization, to system behavior specification.
4.2 Experimentation with NabLab

NabLab is a DSL for scientific computing allowing numeri-
cal analysts to define their numerical schemes at a level of
abstraction close to discrete mathematics, and then generate
the corresponding C++ simulator. The C++ code generation
infrastructure handles system-level concerns such as mem-
ory and programming paradigm (GPU, CPU, MPI, etc.). In
this experiment, it is extended to derive the instrumentation
interface from the NabLab program, and realize it.

Identifying Execution Events. The execution events ex-
posing the instrumentation points of a NabLab program
include calls to the jobs defined in aNabLab program (i.e., its
callable entities), as well as all variables writes. Job call events
are emitted before and after the triggering calls, and write
events are emitted before and after the triggering writes.
In the case of variable writes, we define two kinds of

events: global writes and local writes. Global write events
are emitted when writing to any global variables. Local write
events are emitted when writing to a variable (global or local)
in the context of a specific Job. Thus, when a global variable
is written to, two write events are emitted before and after
the write: a global one and a local one.

As a design decision wemade when applying the approach
to NabLab, when a variable is written to inside a loop but
declared outside of that loop, the corresponding write events
are only emitted before/after the entire execution of the loop.
This allows to only be notified before and after the complete
update of arrays or accumulator variables.

Exposing the Execution Context. With execution events
identified, the corresponding execution contexts must be
computed to be exposed as part of the instrumentation inter-
face. In the case of job call events, only the global variables
and parameters of the call are exposed in the execution con-
text. In the case of global write events, only global variables
are considered in the execution context, whereas in the case
of local write events, local variables are included as well, as
are the parameters provided to the encompassing job.

Realizing the Interface. We realize the instrumentation
interface during the C++ code generation.
First, we insert calls to the SciHook runtime to declare

the execution events exposed by the interface. Next, we gen-
erate each distinct execution context as a C++ struct holding
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Figure 2. Performance measurements of NabLab model
instrumented with SciHook in various use cases.

references to the variables accessible therefrom. We then
generate code instantiating these structs at each new execu-
tion context, and calls to the SciHook runtime triggering
execution events with their execution context.
Finally, we generate Python bindings for these structs,

exposing the variables they encapsulate to registered instru-
ments. We also generate a Python-facing interface to expose
these execution events to Python-based instruments.
Library for Code Generation. To apply the approach,

we developed an Xtend library of around 900 lines of code
for analyzing NabLab programs and generating C++ instru-
mentation code, which we added to the code generation
infrastructure of NabLab, also written in Xtend. This library
provides facilities for computing the set of execution events
of a NabLab program, the set of corresponding execution
contexts, and the set of concrete types that must be exposed
to Python. To mesh well with scientific computing Python
libraries, we exposed the array types of NabLab as NumPy
arrays, thereby avoiding expensive copy operations.

The code generation library also provides facilities to gen-
erate the Python bindings for the execution contexts, and
the CMake build files integrating SciHook into the appli-
cation. This code generation library is disabled by default
and, when enabled, places all instrumentation code between
#ifdef/#ifndef directives. As a result, C++ code is gener-
ated without instrumentation by default, and when gener-
ated, the instrumentation must be turned on at compile-time,
allowing the instrumented code to be used in production.

5 Performance Evaluation

In this Section we evaluate and discuss the overhead induced
by SciHook-based instrumentation of NabLab in various
use cases. For each use case, we measured the execution time
of 30 runs of the same simulation, and provide the average
execution time in Figure 2, as well as its relative overhead
with regard to the baseline execution time. We performed
the measurements on a 11th Gen Intel® Core™ i5-1145G7
@ 2.60GHz × 8, on Ubuntu 20.04.4.
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Baseline. For this evaluation, we consider two baselines
(dashed lines in Figure 2): the average execution time of the
non-instrumented code with, and without I/Os. As we use
SciHook instruments instead of post-processing to address
the use cases, we disable the built-in I/Os. However, we still
compare execution times against the "with I/Os" baseline,
as they are mandatory for addressing the use cases with
non-instrumented code, through post-processing. Note that
we do not consider the overhead of this post-processing in
our comparison.
No instrument. This use case shows the overhead in-

duced by the instrumentation alone, without any instrument
registered. For the evaluatedmodel, the overheadwith regard
to the “no I/O” baseline is minimal as it stands at 0.30%.
Legacy I/O. This use case reproduces the original I/Os

by calling the original C++ code responsible for I/Os, but
through Python bindings, via a SciHook instrument. We
estimate that the 27.31% induced overhead is due to the back-
and-forth between the Python interpreter and the simulator,
and to the absence of link-time optimization. This shows
that SciHook is not best used to naively reproduce core
functionalities of a C++ simulator such as I/Os. However,
the dynamic nature of SciHook allows developers to write
adaptive instruments, as discussed next.

Adaptive I/O. This use case leverages the separate Python
interpreter state to adapt the frequency of I/Os at runtime, di-
viding their frequency by 10 once the maximum temperature
over the simulation domain goes below 75% percent of its
starting value. In our case, this happens after 733 iterations
out of 1628, with 895 iterations remaining, yielding 27.64%
shorter execution times. However, this requires to be able to
determine the “points of interest” of a simulation.
Safety property. In this use case, we monitor a safety

property ensuring that the difference between a computed
quantity of interest (temperature in this case) and its ref-
erence value never exceeds a given threshold across the
simulated domain. The 57.58% shorter execution time corre-
sponds to runs where the property is never violated, and is
thus monitored during the entire execution.
Lightweight simulation. This use case exemplifies the

use of scientific computing for exploratory purposes, where
simulations are run in a fast and iterative process. All input
data are provided through SciHook instruments, and a plot
of the final state of the simulation is the only produced out-
put, meaning no time is spent on I/Os. The 82.59% shorter
execution time is an important speed-up compared to non-
instrumented code, which allows to quickly obtain insights
on a simulated physics problem.
These results demonstrate the practicality of enabling

runtime instrumentation at the language level, and instru-
menting scientific software to perform analyses during the
execution, reducing the need for highly sequential work-
flows relying on writing data to disk and reading it back

in another tool. In particular, the use case of lightweight
simulation greatly benefits from this, as the approach allows
to prototype simulations quickly. In the case of simulations
where the output is kept as a reference and analyzed multi-
ple times by a variety of tools, the I/O-intensive approach
remains best, as long as the computing infrastructure is able
to handle the amount of data produced by the simulation.

6 Related Work

We identified two categories of related works in the context
of enabling software language interoperability.

The first category regroups approaches providing interop-
erability inside a single language runtime, through a unified
intermediate representation used by all supported languages.
This is the case of Truffle/GraalVM [14], LLVM [5], or We-
bAssembly [4]. This means that interoperability with specific
language runtimes such as Pypy, CPython, GCC, or the In-
tel compiler must be implemented at the program level. In
comparison, our proposed approach aims to support inter-
operability between language runtimes.

The second category regroups approaches like CORBA [8]
and CCA [1], which relies on interfaces defined for each
component to allow them to communicate, whether they are
defined in the same language or not. However, as interfaces
are defined at the component level, each new component
necessitates the definition of its interface, and its implemen-
tation by the component. In our proposed approach, the
interface is instead defined at the language level, and real-
ized at compile-time, and can thus be reused for each new
component defined with that language.

7 Concluding Remarks and Perspectives

In this paper, we presented an approach to support interop-
erability between different software languages, relying on
the definition of language behavioral interfaces, and on the
use of an instrumentation runtime to realize those interfaces.
We demonstrated the approach on the NabLab DSL, using
SciHook as our instrumentation runtime to realize the inter-
face and provide interoperability between C++ (the target
language of NabLab), and Python. The ability to instrument
scientific software in Python allowed for greater agility when
prototyping and debugging, illustrating the benefits of open-
ing language-induced silos to other languages.
From here, we envision several threads of future work.

A first perspective is to explore the interplay between the
instrumentation interface of a language and testing frame-
works, with the goal to provide testing support out-of-the-
box to languages exposing an instrumentation interface. An-
other perspective is to explore solutions based on just-in-
time compilation to reduce the time spent in the Python
interpreter, to circumvent the pitfalls of Python such as its
global interpreter lock, minimizing the crossing of language
boundaries, and optimizing Python code implementing com-
plex behaviors and/or acting as glue between native libraries.
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