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Abstract. The application of machine learning techniques to satellite
imagery has been the subject of interest in recent years. The increase
in quality and quantity of images, made available by Earth observation
programs, such as the Copernicus program, led to the generation of
large amounts of data. Among the various applications of this data is
the creation of land cover maps. The present work aimed to create ma-
chine learning models capable of accurately segment and classify satellite
images, to automatically generate a land cover map of the Portuguese
territory. Several experiments were carried out with the spectral bands of
the Sentinel-2 satellite, with vegetation indices, and with several sets of
land cover classes. Three machine learning architectures were evaluated,
which adopt two different techniques for image classification. One of the
classification techniques follows an object-oriented approach, and in this
case the architecture adopted in our models was a U-Net artificial neu-
ral network. The other classification technique is pixel-oriented, and the
machine learning models tested were random forest and support vector
machine. The overall accuracy of the results obtained ranged from 68.6%
to 94.75%, depending strongly on the number of classes into which the
land cover is classified. The result of 94.75% was obtained when clas-
sifying the land cover only into 5 classes. However, a very interesting
accuracy of 92.37% was achieved by the model when trained to clas-
sify 8 classes. These results are superior to those reported in the related
bibliography.

Keywords: machine learning, deep learning, remote sensing, land cover
map

1 Introduction

Recent scientific advances in remote sensing (RS) have resulted in easy access
to satellite imagery. Among the countless applications of satellite imagery, the
present work highlights the creation of land use land cover (LULC) maps. LULC
refers to human constructions and natural features of the earth’s surface. LULC
are used in various fields of study, such as urban planning, natural resource
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management, carbon circulation, epidemiology, and climate change. Using the
Portuguese territory as a case study, this work intends to apply machine learn-
ing (ML) techniques to reproduce the results of the Corine Land Cover (CLC)
European Union project.

One of the expected outcomes for this project was to train a model capable
of successfully classifying satellite imagery into a LULC map. In a LULC clas-
sification task, the term of comparison is an overall accuracy of 85% and where
none of the classes have an accuracy of less than 70% [1]. If a trained model
performs better than this threshold, it will be considered successful.

RS tasks, such as LULC classification, exhibit some unique specificities. Al-
though there are huge amounts of satellite imagery, most of this data is not
classified or it is outdated, therefore not being useful for training deep learning
(DL) models [2]. The seasons introduce variability, and hence complexity, espe-
cially due to changes in phenology [3]. However this variability can be captured
by DL methods, provided it is reproduced in the training data [4].

Several techniques can be implemented for LULC classification, however,
these can be divided into two categories: pixel-oriented and object-oriented.
Pixel-oriented techniques are more traditional and consider each pixel as an
independent unit, classifying each pixel according to its spectral values. Due to
their technical limitations, pixel-oriented methods should not be used with high-
resolution images [5], as they lower model accuracy and generate images that
suffer from the salt and pepper problem, as mentioned by [6]. These methods
have two additional limitations [7]:

– Cann’t handle mixed pixels, a phenomenon that occurs when features from
multiple classes are present in a single pixel.

– Don’t take advantage of the content of adjacent pixels and their contextual
information.

Object-oriented methods, also called geographic object-based image analysis
(GEOBIA), group pixels into segments that ideally represent real-world objects.
Typically GEOBIA takes place in two phases: segmentation and classification.
Note that the segmentation process, not present in pixel-oriented techniques,
can also introduce errors into the model, especially in cases of sub-segmentation
[8].

2 Related Work

Several papers reporting the application of machine learning to remote sens-
ing have been published recently. This section focus on related approaches to
pixel- and object-based land cover classification, the employed ML models, the
datasets, the considered land cover classes, and other techniques such as the
inclusion of spectral indexes.

A comparison of five ML models was documented in [4]. The chosen models
where Random Forest (RF) and four Convolutional Neural Networks (CNNs).
These models classified Sentinel-2 imagery into 8 classes using the 4 bands with
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a spacial resolution of 10 meters (red, green, blue, NIR). The achieved results
where compared to TOP10NL data from the Infrastructure for Spatial Infor-
mation in the European Community (INSPIRE). The RF was the worse model
with an overall accuracy of 81%, and the best model obtained 86% accuracy.
The main conclusions from this were (i) CNNs and RFs are capable of classify-
ing land cover classes, (ii) hyper-parameter optimization has reduced effect on
results when adequate amount of training data is available, (iii) seasonal variety
can be handled by introducing it into the training set, (iv) in 3 out of 4 CNN
models the size of the input impacts the classification results, and (v) transfer
learning shows acceptable results, making the usage of several additional data
valid when the application targets an European map.

[9] presents another comparison of ML models, including Support Vector
Machines (SVM), extreme gradient boosting (XGBoost), RF, and an Artificial
Neural Network. Their case study was the boreal climate and the considered
surface area has a dimension of 10km× 12km. The models were feed with four
images, one per season, which improved the classification of some classes. The
model with the best result was a SVM with an accuracy of 75.8%.

The work presented in [1] has objectives and methodology similar to ours and
can therefore be used as a comparison term. The paper evaluates the feasibility
of applying the U-Net neural network to classify the land cover. It achieved a
classification accuracy of 92% using the 5 CLC level 1 classes, which decreases
to 84% when 13 CLC level 2 classes are considered. The model obtains the
worst results when using only RGB bands, on the contrary, the best model was
obtained with a combination of spectral bands and computed spectral indexes
such as NDVI.

[10] reports a successful application of a RF, over a combination of Sentinel-1
and Sentinel-2 imagery data, to crop mapping in Belgium. The Model mapped
the Belgium territory in 12 classes and two steps. The first step classifies the
objects in one out of 4 classes: built-up, water, forest, and crop. The second step
expands the crop class into 9 more specific classes. They achieved an 82% overall
accuracy.

The paper from [11], published in 2019, introduced a new large-scale dataset
for training ML models to classify or segment satellite imagery. The dataset is
called BigEarthNet and contains 590, 326 image patches. This significant amount
of data alleviates the problem encountered in RS, the lack of large training sets,
a bottleneck that prevents the use of the more recent and complex deep learning
models.

3 Methodology

3.1 BigEarthNet Dataset

The main dataset we adopted to to train MLmodels was the mentioned BigEarth-
Net [11]. This dataset consists of 590, 326 Sentinel-2 image patches, composed
of 12 spectral bands with 10, 20, and 60 meters of spacial resolution, and each
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patch is labeled with one or more CLC classes. The bands with 60 meters spacial
resolution were discarded.

Although this dataset is aimed for classification problems, a layer was added
to each patch, obtained from a Web Map Service, containing the correspond-
ing 2018 CLC map. This layer was necessary to train the models for pixel-wise
classification, instead of patch-wise classification. From the total of 590, 326 im-
ages, 16, 110 were removed, either because they contain clouds or because there
was no CLC map available. Although the BigEarthNet dataset contains images
covering the four seasons, land cover classes are not balanced. The CLC class
corresponding to glaciers and perpetual snow is totally absent from the dataset.

3.2 LandCoverPT Dataset

The BigEarthNet dataset gathers images from several European countries, some
of which have biomes drastically different from Portugal. The LandCoverPT
was created with the objective of having dataset more appropriate to train ML
models capable of generating a Portuguese land cover map.

The creation of the dataset used 26 Sentinel-2 products, captured in June
and August 2019, and the products where divided into 153, 347 patches with the
same size as the BigEarthNet patches (120× 120).

A few aspects to take in consideration when analysing the results produced
with the LandCoverPT dataset:

1. It does not include seasonal variety.
2. A thorough examination to identify the presence of clouds was not carried

out, and so there may be a residual amount of clouds not detected by manual
inspection.

3. Some level 3 CLC classes are missing, since they do not exist in Portuguese
territory.

3.3 Models

The first attempt to classify the land cover was carried out with a Support Vec-
tor Machine (SVM) [12] [13]. The work reported in [9] compares the SVM to
the random forest, the extreme gradient boosting (XGBoost), and a deep neural
network. An SVM constructs a hyperplane, in a high dimensional space, to sep-
arate each pair of classes. A good separation is achieved by the hyperplane that
has the largest distance to the nearest training samples, in order to minimize
the generalization error of the classifier. The separating hyperplane depends on
a subset of the training data, called the support vectors. A hard margin SVM
tries to fit a decision boundary that maximizes the distance between the sup-
port vectors of the two classes, but this type of SVM classifier is very sensitive
to outliers and it only works on data that is linearly separable. The soft margin
SVM addresses these problems by allowing some samples to be located on the
boundary region. Thus, a soft margin classifier deals with a trade-off between
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maximizing the width of the separating margin and minimizing the misclassifi-
cations. The trade-off is controlled by the C hyperparameter of scikit-learn SVC

classifier.

In machine learning, kernels can help to construct non-linear decision bound-
aries using linear classifiers. A kernel function only calculates the relationships
between every pair of samples as if they were in a higher dimensional space.
This trick, consisting in calculating the high-dimensional relationships without
actually transforming the samples to the higher dimension, is called the kernel
trick. The kernel trick reduces the amount of computation required by SVMs
by avoiding the transformation of the data from a lower to higher dimensional
space. There are several types of kernels, such as polynomial and Gaussian ker-
nels. The (Gaussian) Radial Basis Function kernel, computed with the pair of
samples xi and xj , is expressed by:

K(xi, xj) = e−γ||xi−xj ||2 (1)

Parameter C can be interpreted as the inverse of regularization. Parameter
gamma (γ) controls the influence that the classification of a given training sample
has over the classification of its neighbors, where a larger gamma means that only
closer samples are affected. Natively, SVC only supports binary classification, but
it was extended with a one-versus-one approach to allow multi-class classifica-
tion. All attempts to classify the land cover with SVMs, were done with 5 classes
and the scikit-learn SVC classifier, which is based on LibSVM [14] [15].

The second ML model evaluated was Random Forest (RF), a supervised
Machine Learning algorithm based on the concept of ensemble learning [16]. An
example of a successful application of a RF model to land cover classification
is documented in [10]. RF improves the Decision Tree (DT) algorithm, and
emerged with the objective of minimizing its main limitations: they are prone
to overfitting and even a small change in the training data can result in a huge
difference on the decision tree structure. The random forest overcomes these
limitations by taking the prediction from each tree and based on the majority
votes from the trees (figure 1). It uses bagging and feature randomness when
building each individual tree, in order to create an uncorrelated forest of trees
whose prediction by committee is more accurate than that of any individual
tree. Randomness is built into RF mainly in two ways: each tree is fitted on a
subset of the entire dataset, and each tree can grow differently, by virtue of the
randomized order or subset of the features considered for optimum split in the
Decision Tree.

The Random Forest uses an ensemble technique called Bootstrap Aggregat-
ing, or Bagging. First, each decision tree is trained independently with a different
bootstrapped set, obtained from the entire dataset using sampling with replace-
ment (bootstrap step). During inference, a prediction is made by each decision
tree, and the final prediction by the random forest is returned as a majority vote
(aggregation step). The cost function, or criterion, used more often during the
learning process to split a node of the decision tree is called the Gini Impurity.
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Fig. 1. A RF model is a forest of decision trees.

It is basically a concept to quantify how homogeneous or ”pure” a node is. A
node is considered pure (G=0) if all training samples in the node belong to the
same class, while a node with many training samples from many different classes
will have a Gini Impurity close to 1. The Gini impurity at a node is computed
by equation 2.

G = 1−
NC∑
c=1

nc

n

2
(2)

Where NC is the number of classes, nc is the number of samples belonging
to class c on the node, and n is the total number of samples on the node.

In the present work RFs were implemented with the scikit-learn RandomFo-

restClassifier. The most relevant hyperparameters of RandomForestClassi-
fier are the number of trees the algorithm builds (n estimators), the maximum
number of features considered when splitting a node (max features), and the
minimum number of samples that must be allocated to each leaf node to be
created (min sample leaf).

The last model, and the one that was most thoroughly evaluated, to classify
the land cover was the neural network U-Net. U-Net is a CNN model initially
developed for biomedical image segmentation and to be trained with few im-
ages [17]. However, both U-Net and other variants of it, were successfully applied
to the RS domain, as reported in works [1] [7] [18] [19].
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Fig. 2. U-Net model trained on patches with 120x120 pixels and 10 bands.

As can be seen in figure 2, U-Net comprises two parts, a contracting path that
captures context (top part), and a symmetric expanding path that enables pre-
cise localization of features (bottom part). The contracting part extracts features
through convolutions with 3 × 3 filters and max pooling layers. The expanding
part uses convolutions and transposed convolutions to reduce the number of fea-
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ture maps from 512 to 64, while it increases their dimensions from 15 × 15 to
120 × 120. Feature maps from the contracting part of the network are copied
to the expanding part to avoid losing spatial information. The copy is imple-
mented by the 4 vertical skip connections in figure 2. The copied features are
then concatenated with same size features from the expanding path.

In our experiments, the U-Net receives as input 120×120 patches and outputs
#classes segmentation masks with the same size, one mask per land cover class.
As documented in the next section, experiments were carried out with different
numbers of land cover classes.

4 Experiments and Results

4.1 Support Vector Machine Classifier

In the first experiment with SVMs, the model was trained with unbalanced
samples from 256 image patches of size 120x120 pixels and 10 bands. The model
was trained with C=2.0, the RBF kernel, gamma=’scale’, unlimited number
of iterations, and decision function shape=’ovr’. The achieved validation
accuracy was 79.3%. Since the dataset is quite unbalanced, a reasonable high
accuracy is achieved by a model that is tuned to classify correctly the 3 most
frequent classes (1, 2, 5) and misclassifying the least frequent ones (0, 3). The
next step was to balance the dataset, considering the same number of samples for
all the classes. The considered number of samples was defined as the minimum
value of the occurrences among the 5 classes.

Another direction that was explored was applying Principal Component
Analysis (PCA) to reduce the number of features per sample from 10 (bands) to
3 (principal components), those that explain around 99% of the variance. Fig-
ure 3 shows the result of plotting the samples, after being projected on a 2D/3D
space, defined by the two/three principal components of PCA that explain most
of the variance. The projection on 3D makes it easier to visualize the clustering
of the samples belonging to the same class. The visual analysis of this figure
reveals that the classes exhibit a significant overlapping on the 3D space, which
will make separation difficult. It was applied grid search cross-validation (CV)
to find best values for the hyperparameters C and gamma of the SVM model.
It was found that C = 1.0 and gamma = 5.0 allow the best accuracy. When
using a C ≥ 10000 it was observed that the computation time, necessary to run
a ”batch” with a combination of hyperparameters, became extremely high. The
global test accuracy of the model was 59.1%. Finally, we dropped PCA and keep
the 10 original features per pixel. Considering 2048 image patches, 10 features
per pixel (corresponding to 10 Sentinel-2 bands) which allowed us to achieve the
highest accuracy with SVM, 68.6%.

Evaluation metrics for the best SVM model are presented in table 1 and the
confusion matrix is in figure 4. Considering the F1-score, the worst result belongs
to the wetlands class (class 3). Although the improvement of the SVM model
after balancing the dataset, optimizing the hyperparameters and reducing the
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number of features with PCA is not a satisfactory result and reveals that SVM
is not the best fit to classify the land cover. Moreover, even a moderated number
of image patches, such as 1024, turns the training very slow.

Fig. 3. Plotting the samples after being projected on a 2D/3D space defined by the
two/three principal components of PCA.
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Table 1. Results for SVM model, using 10 features per sample, and the 5 CLC level
1 classes.

Class Precision Recall F1-score

0 - Artificial surfaces 0.69 0.65 0.67

1 - Agricultural areas 0.57 0.67 0.62

2 - Forest and semi-natural areas 0.59 0.73 0.66

3 - Wetlands 0.75 0.46 0.57

4 - Water bodies 0.89 0.91 0.90

Fig. 4. Normalized confusion matrix for the classification in 5 classes with SVM.

4.2 Random Forest Classifier

Training of the RF was done with 1024 image patches of 120x120 pixels each, the
number of land cover classes was 5, classes were balanced by considering a num-
ber of pixels per class equal to the least frequent class, PCA was applied to select
the 3 features that explain most of the variance, the criterion used to evaluate
the splits was log loss, the RF included 100 decision trees, bootstrap=False
meaning the whole dataset is applied to train each tree. The test accuracy score
achieved by the trained model is 0.557.

Next, the number of image patches was increased to 2048, the number of fea-
tures per pixel remained on 3, the evaluation criterion was changed to gini, the
number of decision trees was kept on 100, bootstrap=True and max samples=

0.8. The test accuracy score achieved by the trained model is 0.573. It was also
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tried increasing the number of decision trees to 200, but there was no improve-
ment on the model performance.

Since using only 3 features per pixels resulted in poor results, it was decided to
remove PCA and keep the 10 original features per pixel. Considering 2048 image
patches, 10 features per pixel (corresponding to 10 Sentinel-2 bands), 5 land
cover classes, balancing the frequency of the classes, with the gini evaluation
criterion, bootstrap=True, max samples= 0.8, and max features=3, the test
accuracy score achieved by the trained model raised to 0.706. The confusion
matrix is presented in figure 5. This confusion matrix reveals that the percentage
of samples correctly classified is 68.0% for class 0, 67.0% for class 1, 72.0% for
class 2, 55.0% for class 3, and 93.0% for class 4. Precision, recall, and F-score
metrics for the trained RF model are shown on table 2.

Fig. 5. Normalized confusion matrix for the classification in 5 classes with RF.

4.3 U-Net

U-Net model was described with the TensorFlow library, especially the Keras
API, it was trained with Adam optimizer, the categorical cross-entropy loss, the
ModelCheckpoint, EarlyStopping, and ReduceLROnPlateau clallbacks, during
200 epochs. Models were evaluated based on accuracy, precision, recall, and F1-
score metrics.



12 Antonio Esteves et al.

Table 2. Results for RF model, using 10 features per sample, and the 5 CLC level 1
classes.

Class Precision Recall F1-score

0 - Artificial surfaces 0.70 0.68 0.69

1 - Agricultural areas 0.59 0.67 0.62

2 - Forest and semi-natural areas 0.63 0.72 0.67

3 - Wetlands 0.77 0.55 0.64

4 - Water bodies 0.88 0.93 0.91

A list of all experiments carried out, as well as the results obtained, can be
seen in the table 3. The set of experiments accomplished with U-Net and the
BigEarthNet dataset will be summarized now.

Table 3. Summary of the different experiments.

Model Classes Dataset Overall Accuracy

SVM 5 BigEarthNet 68.6%

RF 5 BigEarthNet 70.6%

U-Net 43 BigEarthNet 82.32%

U-Net + NDVI 43 BigEarthNet 77.95%

U-Net 15 BigEarthNet 87.11%

U-Net 11 BigEarthNet 86.88%

U-Net 8 BigEarthNet 92.37%

U-Net 5 BigEarthNet 94.75%

U-Net 5 LandCoverPT 87.26%

The experiment with all 43 CLC level 3 classes will work as our baseline, i.e,
with all the other experiments we will try to improve the results of the baseline.
The overall accuracy achieved was 82.32% with most misclassifications being
within very similar classes, such as continuous urban fabric and discontinuous
urban fabric. The class with the lowest results was green urban areas, being
misclassified as urban fabric or forests.

The second experiment tried to improve the results of the previous attempt
through the insertion of the Normalized Difference Vegetation Index (NDVI).
NDVI was chosen because of its popularity in the literature, for example in [20]
and [21]. The final results were worse than in the previous scenario, analysing
each class individually shows that some classes were being completely misclassi-
fied and this did not happen in the previous experiment. Taking into considera-
tion these results the idea of using other spectral indexes was abandoned.

The next step taken to improve the results was to reduce the number of land
cover classes. The experiment with 15 CLC level 2 classes improved the overall
accuracy to 87.11%. The normalized confusion matrix for the segmentation in
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15 classes with U-Net is shown in figure 6. While the baseline presented some
values for the F1-score metric of the order of 0.4, this model presents 0.65 as the
lowest value.

Fig. 6. Normalized confusion matrix for the segmentation in 15 classes with U-Net.

The automatic classification of land cover in 15 classes is still a very ambitious
objective, and therefore another model was trained to classify the land cover only
in the 5 CLC level 1 classes. The trained U-Net model achieved a 94.75% overall
accuracy, the best result among all experiments. Evaluation metrics for this
model are presented in table 4 an the confusion matrix is in figure 7. Considering
the F1-score, the worst result belongs to the wetlands class (class 3).
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Table 4. Results for U-Net model, using 10 spectral bands and the 5 CLC level 1
classes.

Class Precision Recall F1-score

0 - Artificial surfaces 0.86 0.82 0.84

1 - Agricultural areas 0.94 0.94 0.94

2 - Forest and semi-natural areas 0.95 0.95 0.95

3 - Wetlands 0.77 0.80 0.78

4 - Water bodies 0.98 0.99 0.98

Fig. 7. Normalized confusion matrix for the segmentation in 5 classes with U-Net.

Two attempts with a combination of CLC classes from levels 1 and 2 were
realized. The first one used 11 classes and obtained an overall accuracy of 86.11%,
a result worse than the experiment with 15 classes.

The second attempt used 8 classes and its overall accuracy was 92.37%, a
result very similar to the experiment with 5 classes (table 5). The chosen level
2 classes are those that were best classified by U-Net trained with the level
2 classes. The remaining level 2 classes were collapsed into the corresponding
level 1 classes. The CLC hierarchy was maintained, i.e, only level 2 classes that
would be part of the same level 1 class were gathered. Confusion matrix analysis
(figure 8) shows that 11% of the samples belonging to class 0 (artificial surfaces)
are classified as class 1 (agricultural areas), 12% of class 2 (pastures) is classified
as class 1 (agricultural areas), 17% of class 4 (inland wetlands) is classified as
class 3 (forest and semi-natural areas), and 18% of class 5 (maritime wetlands)
is classified as class 7 (maritime waters).
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Table 5. Results for U-Net model, using 10 spectral bands and 8 CLC level 1 and level
2 classes.

Class Precision Recall F1-score

0 - Artificial surfaces 0.84 0.81 0.83

1 - Agricultural areas 0.91 0.88 0.90

2 - Pastures 0.81 0.83 0.82

3 - Forest and semi-natural areas 0.94 0.96 0.95

4 - Inland wetlands 0.78 0.76 0.77

5 - Maritime wetlands 0.79 0.72 0.76

6 - Inland waters 0.94 0.94 0.94

7 - Maritime waters 0.99 0.99 0.99

Fig. 8. Normalized confusion matrix for the segmentation in 8 classes with U-Net.

Experiments with the LandCoverPT dataset, the U-Net model, and level
1 land cover classes, were also accomplished. The results of these experiments
were worse than those achieved with the BigEarthNet dataset, quantified as an
overall accuracy of 87.26%. Classes with the worst results in this experiment were
artificial surfaces and wetlands. A possible explanation for this results can be the
low number of samples containing those classes in the LandCoverPT dataset.
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The visual inspection to the predictions with the trained models, and to
the correspondent ground-truth, revealed that the classification errors were pre-
dominantly located at the boundary of the patches (figure 9). The most likely
explanation for this fact is the existence of mixed pixels. Another explanation,
mentioned in the literature, is the lower ability of U-Net to correctly segment
pixels at the object’s boundaries.

Figure 9 shows a satellite image patch, randomly chosen from the test set.
The leftmost column of the figure shows the ground truth masks for the 5 level
1 classes (0 to 4). The next column shows the model prediction for the same
classes. In the upper right corner are presented 4 of the 10 bands of the input
patch, in this case the ones with the best spatial resolution: red, green, blue and
near infrared. Pixels that were misclassified are shown in yellow in the central
right part of the figure.

When we evaluate the trained models with a dataset distinct from the train-
ing set, the results are inferior. It was observed that several land cover parcels,
classified as agricultural areas in the 2018 CLC map (yellow regions in figure 10),
are misclassified by our models as artificial surfaces (red regions in figure 10) or
forests and semi-natural areas (green regions in figure 10).

Another problem, observed in some parts of the automatically generated
map, is the discontinuity between patches. This problem occurs because the
masks generated by the model are obtained patch by patch, where the patch
size is 120× 120. A possible solution is to discard the pixels on the periphery of
the patches and use only the inner part (figure 11). The innermost pixels have
more contextual information and better accuracy than peripheric pixels, as it
can be seen in table 6. The drawback of this solution is the longer time is takes
to generate the land cover map. For example, considering only a inner part of
20×20 pixels on each patch, the time to classify the same land area will increase
6 ∗ 6 times.

Table 6. Accuracy achieved when using only the inner part of each patch, for different
sizes of the considered area.

Size of the area 43 CLC 15 CLC 5 CLC
used on each patch classes classes classes

120× 120 82.38% 87.02% 94.75%

110× 110 82.71% 87.27% 94.87%

100× 100 82.91% 87.42% 94.94%

90× 90 83.07% 87.51% 95.00%

80× 80 83.17% 87.60% 95.03%

70× 70 83.26% 87.68% 95.08%

60× 60 83.37% 87.74% 95.08%

50× 50 83.43% 87.76% 95.08%

40× 40 83.50% 87.83% 95.09%

30× 30 83.55% 87.88% 95.11%

20× 20 83.59% 87.89% 95.11%

10× 10 83.62% 87.93% 95.10%
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Fig. 9. Random satellite image patch from the test set: input masks (left), predicted
masks (middle), input visible bands (top right), and misclassified pixels (center right).

Figure 12 contains a complete and continuous land cover map for continen-
tal Portugal. This map was generated with the U-Net model, trained on the
BigEarthNet dataset and 5 classes. Sentinel-2 products, downloaded from the
https://scihub.copernicus.eu website, were used to generate the full map. Im-
ages were captured by the satellite on July 7, 2021 and August 22, 2021, and
have a maximum cloud percentage of 5%. Because products with a minimum
cloud percentage were needed, it was impossible to use all the images from the
same day. To visualize the map we used the QGIS tool, where the various parcels
of the map generated by the model were merged and trimmed with the help of
a shapefile that defines the boundaries of the Portuguese mainland.
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Fig. 10. Ground truth 2018 CLC map with 5 classes, for the northwest region of
Portugal (top) and corresponding map generated by the trained U-Net model (bottom).
Color scheme: artificial surfaces (red), agricultural areas (yellow), forest and semi-
natural areas (green), wetlands (magenta), water bodies (blue).

5 Conclusions and Future Work

The results achieved in the present work provide an evidence that it is possible
to automatically and reliably generate an updated land cover map. Thus, the
results of this study are relevant for those working in the field of remote sensing.

The biggest difficulty encountered in the course of the work was the pro-
cessing of large amounts of data from a dataset such as the BigEarthNet or
the Sentinel-2 satellite products. To overcome these difficulties techniques such
as feeding the training loop with data stored in TFrecords files and adopting
iterative processes whenever possible.

The best trained model achieved an overall accuracy of 94.75%, which can
be increased to 95.11% if only the central pixels of the patches are considered
during the segmentation of each patch. Although this result is very good, it
should however be taken into consideration that the visual comparison between
the official 2018 CLC map and the map generated by the developed model, for
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Fig. 11. Discontinuity problem in the segmentation of patches (top) and its mitigation
(bottom).

the same geographical area and the same year, shows that the overall quality of
the generated map is lower than 94.75%.

When classifying land cover into 5 classes, a consistent result across all models
is a greater difficulty in identifying artificial surfaces (class 0) and wetlands (class
4). The explanation lies in the similarity between the spectral characteristics
of artificial surfaces and agricultural areas (class 1), and between wetlands and
semi-natural areas (class 2). In the case of Portuguese territory, the identification
of class 3 constitutes an added problem because wetlands are not frequent.

The latest official CLC map is relative to 2018 and required a production
time of about one and a half year. While training, tuning and generating the
land cover map with the proposed model requires a time of less than a month.
The ML model will never have a higher accuracy than the CLC project since the
model learns from the official CLC map data. However, given the time difference
needed to produce the maps, the maps generated with ML models are feasible
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Fig. 12. Land cover map for the Portuguese mainland generated by the U-Net model.
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in several scenarios, because they may be more up-to-date than the official CLC
map.

To conclude it is necessary to point out that the CLC maps and the Land
Use and Land Cover charts have a human error, and when these maps are used
to train ML models the error remains. In case of the 2018 CLC map, each
participating country commissioned a team to create their map, but all countries
used the same methodology and nomenclature, to ensure an accuracy higher than
85%.

Although the best model achieved good results, some alternatives remained
to be explored. Here are some possibilities to improve the presented results:

– Test other segmentation models that address some of the U-Net limitations,
such as models based on Feature Pyramid Networks [22] [23] [24] [25] [26]
and DeepLab [27].

– Test other datasets, improve and increase the tested LandCoverPT dataset,
which exhibit some limitations to obtain optimal results. Another possibility
is to improve the dataset would be to optimize the size of the patches into
which the Sentinel-2 products were divided.

– Implement other strategies to minimize the segmentation problem at the
periphery of patches.

– Take a more consistent approach to optimizing model hyperparameters, for
example by using a library such as Optuna or TPOT.

– Add other types of data to the optical images, such as radar images collected
by the Sentinel-1 satellite.

– Test spectral indexes with the random forest model.
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