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Abstract. We consider a certain class of polynomials with coefficients in Zjy, all of which admit
aunique zero. We prove that the zero of each of those can be given by a (multiple) sum involving
the coefficients and a vectorial generalization of the Fuss-Catalan numbers.

‘We also consider the sequence of the partial sums of the generating function of the d -Fuss-
Catalan numbers. Using the holonomy of this sequence, we study its asymptotic behaviour. The
main difference from the known case d = 2 is, in that one, we have a “closed” expression for
the generating function.

1. Introduction

The Catalan numbers were studied by Euler, in the context of enumerating trian-
gulations of regular polygons [5]. Their study by the Mongolian mathematician Antu
Ming in the eighteenth century was announced in 1988 by Luo in [10] and further
discussed by Larcombe in [9].

These numbers have multiple interpretations and applications, several of which
can be found, for example, in [ 18], which also covers different generalizations of them.
Throughout this paper we focus on a couple of these, the d-Fuss-Catalan numbers, for
d € N\ {1}, whose element of order n, Cy(n), is defined by

Cil0) = = <‘i”) M

and a vectorial generalization of the Catalan numbers, which we will define in (4).
Cy(n), introduced by Fuss in [6], counts, for example, the number of partitions of a
n(d —1)+2-gon into d + 1-gons and the number of d-ary trees with n internal nodes
(see [7]). Recall that the Catalan numbers are the 2-Fuss-Catalan numbers.

The first problem we are interested in is finding the zeros of some polynomials in
Zy , the ring of the integers modulo M € N. Consider a polynomial Q = Q(x) with
coefficients in Zy; of the form

adxd +---4+ajx+ap, where qg; is nilpotent for i > 2 and a; invertible.  (2)
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The Chinese remainder theorem and the Hensel lemma guarantee that there exists
exactly one zero of Q in Zy;. In this work, we will find a polynomial P in d + 1
variables such that the zero of any polynomial as in (2) is equal to P(ay, a]_1 A2, ,Aq).
The coefficients of P are essentially vector generalized Catalan numbers, which are d -
Fuss-Catalan numbers if ¢; =0 for 1 <i<d.

The second problem was motivated by sequences presented in OEIS, The On-Line
Encyclopedia of Integer Sequences [17]. For d € N\ {1}, r € R\ {0}, and n € N,
consider the sequence

X(d,r,n) = Z Ca(k)rk. (3)
k=0

In connection with the first problem, we will see that, if p is a prime number and
r amultiple of p then, X(d,r,n) is the zero, in Z 11 of the polynomial rxd —x41.

OEIS, in the sequence A112696 and onwards, presents recurrence formulas for
(X (2,r, n))n N for some values of r, conjecturing them for some others. In this work,
we obtain recurrence formulas for all values of 4 and r.

We also study the asymptotic behaviour of this sequence, when it diverges. For
d =2, this was done by Mattarei in [ | 1], using, among other instruments, the generating
function of the Catalan numbers F>(x) = @. Elezovié, in [3, 4] gives an efficient
algorithm for recursive calculations of asymptotic expansions of several sums including
X(2,1,n). If d > 2 we do not have a nice expression for F;(x), apart from the equality
Fy(x) = 14+xFy(x)?.

We use some well-known results for holonomic sequences such as the Poincaré-
Perron Theorem in [13, 12], and Corollary 1.6 of [&] to prove that
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X(d,r,n) ~

where A(d) = #, and A(d)[r[ > 1.

2. Preliminaries
The Catalan numbers have a lot of generalizations. In this work we are interested

in the d-Fuss-Catalan numbers, defined in (1), and the natural vectorial generalization,
C;(#), seen, for example, in [2] and a more general case in [14]. Cy(7) is defined by

1 Vi 1 V41
CGil)=————| . | == . 4)
() (V—l)-ﬁ—l—l(n) v~n+1( 7t ) (

where, given s €N, 7i € Njj and vV € N°, V-7 denotes the inner product of 7 and v and

(F7)!
nyl-ng!(V-i—(ny+-+ng))!

Cy(#) is, for example, the number of ways that V-7 people can be seated at a
(round) table in such a way that, for all i = 1,...,s, there exist n; groups of v; people

giving a v;-hand shake with no crossings between different groups [2]. Of course, this

(V#ﬁ) is the multinomial coefficient
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Figure 1: This is one of the 92810 possible configuration for 18 people to be seated
around a table, as referred to in the text for 77 = (3,4) and V= (2,3).

is the same as the number of subdivisions of V-7 points on a circumference in n; sets
of v; point groups without crossing.

Cy(ii) is also is the number of polygonal dissections of an (¥ — 1) -7+ 2-gon into
ni +---+ng polygons with n; of them having v; 4 1 edges, for i = 1,...,s. This can
be found, for example, in [15].

Analogously with what happens with the Catalan numbers [16] and Fuss-Catalan
numbers [6], these generalized Catalan numbers satisfy a recurrence relation that is an
easy consequence of a result of Rhoades in [14] stating, in particular, that, if 7 € NJ),
Ve N*, m e N then

Y G cli = ("), )

Pt AP =7 m+\77 7
LEMMA 1. For s€N, i € N} and Vv € N* we have
N
viie Nj\ {0}  Gy(it) = ) Y G GHE) | (6)

=1 \ Pty =i ;

where &; is the unit-vector with 1 in its i'" coordinate.

Proof. For i =1,...,s such that n; > 0, using (5) for m = v; and 7 =7 —¢;, we
obtain
B B v; vi+v- (i — )
Cy(#)--Cy(Fy,) = ——=———~
L amat= i ()

Fi oot Ty =78

and then

i{~ ) Gi(F1) - Cy(7,) =

P AT iid, e ong! ((vfi) it 1)!

TAs i 0 the sum is never empty, although the second summation is, if n; =0



completing the proof. O

Recall that a sequence (a,)uen is holonomic of order s (s € N) and degree ¢
(t € Np) if there exist pg, p1,...,ps polynomials in n such that py never vanishes (to
simplify), the maximum of their degrees is ¢ and

VneN

5
n>s = p()(i’l)a” = Zpi(n)anx‘| .
i=1

It is well known (the proof can be made, for example, using the Stirling approxi-

mation) that
Caln) ~ —— V4 < d! )n
T Var (@ —1)i \d -1 '

In the article [1] one can find good approximations of binomials of the form (dn”) .

(195
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3. The zero of polynomials of particular kind

As it was said in the Introduction, any polynomial of the form (2) has a unique
zero in Zyy. This is a consequence of the following result, which is just a version of
Hensel’s Lemma applied to this kind of polynomials, and of the Chinese Remainder
Theorem.

LEMMA 2. Let p be a prime number and Q = Q(x) a polynomial of the form
agx? + -+ ajx+ag, where p divides a; for i >?2 and p do not divide a;. Then, for
all k € N, the congruence Q(x) =0 mod p* has a unique solution.

Proof. If k=1 then the result is trivial as Q(x) =0 mod p is equivalent to a;x+
ap =0 mod p and a; is invertible modulo p. For m > 1, if x,, is the unique solution
of Q(x) =0 mod p™, then all solutions of Q(x) =0 mod p™*! are of the form x =
Xm+sp™, with s € Z. As p divides a; for i >2 and p™ divides Q(x,,),

0(x)=0 modp"™™' < Q(x,)+ap™s=0 mod p™*!
& M—l—alszo mod p
pm

and the conclusion follows as this last congruence has only one solution modulo p. [

We now present an expression for the zero of polynomials of the form (2), for
M € N. All the operations in this section are made in the ring Zy, and it is clear that all
the “infinite” sums referred to here only have a finite number of non-zero terms.

Let d > 2 and ¥ = (vy,...,v4) € N~ Consider, for X = (x2,...,x;) whose
coordinates are all nilpotent in Zj, the (finite) sum in Zy,

yi® =Y GC(i)x3?---xj!, where ii=(na,...,nq). (8)

= -nd—1
IS

Notice that y;(X) is always invertible as it is a sum of 1 with a nilpotent element.



LEMMA 3. With the above notation,

yi(X) = 14x0y5(X)" + - xgyp(X)™. ©)
Proof. It is easy to see by comparing the terms of the sums that, for i =2,...,m,
iw@i= Y | L GG, | xR
AENd—1 \ Fi-+-+ 7, =ii

= Z Z Cy(71) -+ Cy(7y,) x'zlz ... de

ﬁeNgfI,niZI P, =18

and then, denoting by z the right side of (9),

d
=1+Y | X Y Go) - ColR) | A

=2 \eNd~p>1 \Fit+7, =18

d
=1+ Y (X X GGl | A

RENGTI\(0) \/=271++7 =18

and the conclusion follows using (6) and the fact that C(0) = 1. O

We are now in the conditions to show an (algebraic) expression for the zero of a
polynomial as in (2), whose existence and uniqueness are guaranteed by Lemma 2 and
the Chinese Remainder Theorem.

THEOREM 1. Let M € N and P(x) = agx? +---+a1x+ag be a polynomial in
Zyr as in (2). Then the unique zero x of the polynomial is equal to the (finite) sum
X0 = —a; 'ag Z (—1)V'ﬁCV(ﬁ)agLl)'ﬁafv'ﬁagz cedf, (10)
ﬁ:(nz,...,nd)eNgfl

where V= (2,3,...,d) and 1= (1,...,1).
Moreover x is invertible if and only if ay is invertible.

Proof. We find a solution xy of the form x;y, where y = y(X) is defined in (8) for
X2,...,%g nilpotents. Using equality (9),

d
P(x1y) =0+~ Zaix’ly‘ +aixiy+ap=0

i=2
d . .

= ) apxpy +ax (1 —|—x2y2 R xdyd) 4+ap=0
i=2
d . .

— Z(aix’l +a1x1x;)y' +aix; +ao =0.
i=2



So, if we choose

{ X1 = —aoaf1

X = —a,-aflx’fl = (—l)iaf)*lafla,-, i>2,

we obtain the referred solution.
The last observation is an immediate consequence of the fact that y is invertible,
as mentioned before. O

For example, the zero of the polynomial azx¢ 4 ajx + aq is, with the previous
notation, equal to the sum

Xo=— Z (—1)dde(k)aé‘Fl)kHafdk*laZ.
keNy

In particular, if p is a prime number and » a multiple of p then, for n € Ny,

i Ca(k)r*
=0

is a solution of the congruence rx¢ —x+1 mod p"*+!.

The rate of growth, in n, of this sum, for all r # 0, follows from Theorem 3.

REMARK 1. Suppose we have a polynomial Q(x) = Y4 ,a;x’ in Zy such that
a; are nilpotent for i < d —2, and ay_; and a4 are invertible, which can be seen as a
kind of reverse form of (2).

QO may have more than one solution, as we can see, for example, if Q(x) =
C+x2+3x+9 and M =27, but only one is invertible. To prove this, consider the
polynomial Q*(y) = Y% ;a;y*", of the form (2), noticing that y/Q(y~") = Q*(y), for
invertible y.

4. Holonomic sequences related to Fuss-Catalan numbers

For d e N\ {1}, r e R\ {0} and n € N, consider X(d,r,n) defined in (3). We
intend to obtain a recurrence relation for the sequence (X (d ,r,n)) generalizing
some cases referred to in OEIS, as mentioned in the Introduction.

For n,k € N, we let (n); denote the falling factorial Hf:ol (n—1i) (= (nﬁ!k)! ).

neN’

Notice that (n); is a polynomial in n of degree k.

THEOREM 2. Let d € N\ {1}, and r € R\ {0}. Then (X(d,r,n)),
nomic sequence of order 2 and degree d — 1. More precisely, for po(n) = ((d —n+
1)d_1, pa(n) = d(dn— l)d_1 and p1 = po +rp2, we have

is a holo-

Yne N\ {1} po(n)X(d,r,n)=p1(n)X(d,r,n—1)—rp2(n)X(d,r,n—2).



Proof. As
p1(n)X(d,r,n—1)—rp2(n)X(d, rn—Z)

n—1 n-2
n) ZCd( 4 pa(n ZCd = pa(n) Y Call)* !
k=0

= po(n ZCd (k)r* + p2(n)Ca(n—1)7"

= po(n)X (d,nn) po(n)Ca(m)r" + pa(n)Ca(n—1)r",

we only need to prove that po(n)Cy(n) = p2(n)Cq(n—1). In fact,
Catr) _ ((d—D)(n—1)+ 1)(%)
Caln=1)  ((d—1)n+1) (‘")
(d=1D)(n—1)+1) (n=1)((d—1)(n—1))! (dn)!

~ (@=1)(n—1)+1)!(dn)!
~n((d—Dn+1)! (d(n—1))!
(d”)d
n((d—l)n+1)d71
_ d(dn—l)d_1
((d_l)”‘i‘l)d,l’

which concludes the proof. O

The following observation will be useful in the next section.

REMARK 2. Notice that a constant sequence satisfies the recurrence referred to
in the previous theorem. As a consequence, if (Z,), is a non-constant solution of the
recurrence, then ((Z,),,(1),) is a basis of the space of solutions of the recurrence.

Notice also that the characteristic polynomial of the recurrence, po(n)x* — py(n)x—

rpa(n), has the zeros 1 and 2 2((”>) and that

d
lim rpan) _ rd .
n=eo po(n)  (d—1)4-1

5. Asymptotics for Generating Functions of the Fuss-Catalan Numbers

We are now in conditions to establish the asymptotic behaviour of the sequence

d
(X(d,r,n)),, when (dﬂ% > 1 which, using (7), is when it diverges.

We use the following asymptotic behaviour: if a,b € Z, with a # 0, then

ntl n+1 r 24 b
[Taj+s) = TlG+2 =200l L IO ety
=2 =2 r2+2) r(2+2)



as I'(x+ a) ~T'(x)x* when x — H-oo.

REMARK 3. In order to apply Corollary 1.6 of [8] in the next theorem we draw
the attention to the fact that, if p and g are two polynomials of the same degree s and
q is never zero in N, then

oo

)y

n=1

p(n+1) p(n) -
g+ 1) gl =

as the degree of the polynomial, in n, p(n+ 1)g(n) — p(n)g(n—+1) is at most 25 — 2.

THEOREM 3.  With the above notation, if A(d) = # and A(d)|r| > 1,
1 Vd  Ald)r
V27 (d—1)3 Ald)r—1

Proof. By Remark 2, the zeros of the characteristic polynomial of the recurrence
equation converge, when n tends to infinity, to different numbers, namely A(d)r and
1. Therefore, and using Remark 3 for p = p;, i = 1,2 and g = po, we are in the
conditions to apply Corollary 1.6 of [8]. In particular, there exists a solution (Y,), of

X(d,r,n) ~ (A(d)r)"rf%.

the recurrence equation such that ¥, ~ ;’i% Z’(f((f)) . Notice that, using (11), we have
ﬁ rpZ(J) o rd(djil)d—l ( d)n‘i:[ln+1 djil
. == . = (r 71 4N - A -
=2 PO(]) j=2 ((d_l)]'i'l)dfl i=1 j=2 (d_l)]+2_l
d—1 2= n
I o feas ",*1) ( d ) =
i T(2- 7) d—1
4 \@-bn d=1T(2 4 2=i
=kyr"d" <> n_%, where k; = H(idjl)
d—1 i=1 F(2 - J)

As {(Yy)n, (1),) is a basis of the space of solutions of the recurrence, there exist
a,b € R such that, letting X,, denote X(d,r,n), (X,), = a(¥y)n + b(1), and then

X, ~ a¥, ~ akg(A(d)r)"n~3. (12)
To calculate ak,, using (7), we have

Xn —Xn,1 Cd(n) r 1 \/g
= —_— 3
Y, Y, n kgV2mw (d-1)2

and, on the other hand, using (12),

Xy — Xn—1 :Yn_Ynfl —>a(1— 1 )7
n

Y, Y,



from where we obtain

concluding the proof. O

REMARK 4. Although it is not relevant, we would like to point out that k; re-

. . 1 d aur%
ferred to in the above proof is equal to T (ﬂ)
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