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Abstract
As quantum computing approaches its first commercial implementations, quantum simulation emerges as a potentially ground-
breaking technology for several domains, including biology and chemistry. However, taking advantage of quantum algorithms
in quantumchemistry raises a number of theoretical and practical challenges at different levels, from the conception to its actual
execution. We go through such challenges in a case study of a quantum simulation for the hydrogen (H2) and lithium hydride
(LiH) molecules, at an actual commercially available quantum computer, the IBM Q. The former molecule has always been a
playground for testing approximate calculationmethods in quantum chemistry, while the latter is just a little bit more complex,
lacking themirror symmetry of the former. Using the variational quantum eigensolvermethod, we study themolecule’s ground
state energy versus interatomic distance, under the action of stationary electric fields (Stark effect). Additionally, we review
the necessary calculations of the matrix elements of the second quantization Hamiltonian encompassing the extra terms
concerning the action of electric fields, using STO-LG-type atomic orbitals to build the minimal basis sets.

Keywords Quantum simulation · Stark effect · IBM QISKit

1 Introduction

The beginning of the twentieth century witnessed a revolu-
tion in physics, which led to the development of quantum
mechanics that proved the ability to solve problems of the
classical physics at very small scales, and to predict accu-
rately and elegantly the behavior of sub-atomic particles.
From the beginning, chemistry has been a natural field of
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application for the quantum mechanics, as quantum effects
are relevant at molecular scale in many phenomena, originat-
ing the new field of quantum chemistry—see, e.g., Levine
(2014). The same happens in biology, where it is known
that quantum effects are relevant in several processes, and
it is even believed they can help explaining several macro-
phenomena in the life sciences (Abbott et al. 2008).

However, looking through quantum mechanics to these
disciplines faces major obstacles, as calculations rapidly
become intractable with the size of the molecular sys-
tems involved, even with the help of the most advanced
classical computational tools. The concept of quantum sim-
ulation, idealized by Feynman (1982) in the 1980s and
later refined by Lloyd (1996), has raised expectations on
the mitigation on some of these problems via achieving an
exponential gain in simulation on quantum systems, with
potential impact throughout all areas of physics (Georgescu
et al. 2014), including quantum chemistry (Cao et al. 2019)
and the Life Sciences (Wang et al. 2018). Recently, as the
“second quantum revolution”1 is coming of age, the first

1 Technological revolution, in which ideal quantum effects have a cru-
cial role, with application inmany areas, from health, to communication
and information technology—seeNielsen andChuang (2010) andSchu-
macher and Westmoreland (2010).
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quantum computers are starting to emerge and become avail-
able to broad researcher’s community, giving means to the
fulfillment of the Feynman’s vision. Compared with classi-
cal computers, quantum devices are ultimately expected to
perform quantum chemistry calculations more quickly and
accurately, handling larger molecules than it is possible with
classical algorithms. This “quantum speedup” may lead to
the design and discovery of new pharmaceuticals, materi-
als, and industrial catalysts (Sim et al. 2018). A number of
successful cases are described in literature on the efficient
calculation of properties of interest for Chemistry, such as the
electronic structure ofmolecules, phase diagrams, or reaction
rates (Lidar and Wang 1999; Paesani et al. 2017; Aspuru-
Guzik et al. 2005; Lanyon et al. 2010). A good review on the
subject is written by Cao et al. (2019).

The conceptualization of a quantum simulation, from the-
ory to experiment, poses many challenges (Whitfield et al.
2011), with no general recipe to tackle them. We hope to
contribute to the progress in this area by exploring the simu-
lations of two molecular systems, hydrogen (H2) and lithium
hydride (LiH) on a commercially available quantum com-
puter, the IBM Q, accessed through the QuantaLab UMinho
Academic Q Hub, and programmed using the QISKit plat-
form (Cross 2018). The hydrogen molecule, the simplest
existing one and also very important in nature, has been the
natural test case of experimental and theoretical research.
In particular, its ground-state properties and the dissociation
curve have recently been recalculated using advanced classi-
cal (Vuckovic et al. 2015) and quantum (Colless et al. 2018)
algorithms (the latter with extension to excited states). In
a recent work, Rubin et al. (2020) describe Hartree–Fock
calculations (done on the Google Sycamore quantum
processor) for linear chains of up to twelve hydrogen atoms
and discuss resulting errors in the system’s energy, along
with possible ways tomitigate these errors. Similar works are
likely to appear now in rapidly growingnumbers; their impor-
tance is not in an increased speed or accuracy in tackling
the corresponding quantum-chemical problems, as compared
with established “conventional” algorithms, but the demon-
stration that these problems enter into the circle of practical
feasibility for quantum computer. By the path of getting nec-
essary experience in obtaining accurate and stable results for
benchmark systems, testing different algorithms, the power
of working quantum computers being simultaneously on the
rise, the question of “quantum supremacy” may soon enough
be posed while confronting problems of genuine challenge
for contemporary quantum chemistry.

In this work, we extend the study of the H2 molecule
as a standard benchmark toward the case of asymmetric
LiH,whose ground-state calculation requires the inclusion of
p-type atomic orbitals. Moreover we investigate the steady-
state electronic Stark effect, i.e., the ground-state energy shift
in response to a stationary external electric field (Gurav et al.

2018). We try to elucidate the essence of the quantum simu-
lation algorithms to the broad community of physicists and
chemists who may find the original works on quantum com-
putation too technical to follow. We start from the definition
of the molecular Hamiltonian, followed by its preparation
for quantum simulation to the application of the variational
quantum eigensolver (VQE) method, as well as its imple-
mentation and testing on the IBM Q.

The article is organized as follows: in Sect. 2, we briefly
introduce the quantum Hamiltonian formalism for many-
body systems, the Hartree–Fock approximation and the
second quantization representation; in Sect. 3, we explain
the mapping onto a system of qubits and designing the quan-
tum circuit corresponding to the initial Hamiltonian, and the
working principle of the VQE. Section 4 is dedicated to the
case study of H2 and LiH molecules where we present and
discuss the procedure details and results of the calculation
of the dissociation curves in the presence of electric field.
The last section offers a summary and concluding remarks.
“Appendix A” contains details of the necessary matrix ele-
ment’s calculation for this molecular setting, which is not
commonly available in the literature.

2 Quantum chemistry background

2.1 QuantumHamiltonian formalism

In this section, we outline the basic principles of the formula-
tion of molecular Hamiltonians and the latter’s “preparation”
for numerical calculation of electronic characteristics rele-
vant for physics and chemistry. This is the domain, albeit
represented by a quite simplistic case, of traditional quan-
tum chemistry. A good introduction to the subject has been
offered, for instance, by Levine (2014) and Szabo and
Ostlund (2012). Here, we briefly describe just a few con-
cepts and approximations essential for the formulation of the
computational problem to be solved using quantum tools.

The quantum Hamiltonian formalism, in the Schrödin-
ger’s formulation, is centered at the Hamiltonian operator,
H = T + V , T being the kinetic energy of the constituent
particles and V the potential energy of all interactions and
fields in the system, both internal and external. The action
of this operator on the system’s wavefunction (WF), |�〉,
describes the latter’s evolution,

i h̄
∂

∂t
|�(t)〉 = H |�(t)〉 , (1)

or yields the total energy of the system if it is in a stationary
state,

H |�〉 = E |�〉 . (2)
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The wavefunction |�〉, beyond time, depends on other argu-
ments (such as spatial coordinates and spin components)
according to the representation used. Usually, there are sev-
eral possible solutions to the equation, which correspond to
different values of the energy (energy levels or eigenvalues,
En), which are discrete for a confined (or bound) physical
system. These states, called stationary states or eigenstates,
are denoted |�n〉, with the index n = 1, . . . ,m, in general,
corresponding to a set of so-called quantum numbers that
distinguish the eigenstates. The set of eigenstates constitutes
the eigenbasis of the system that can be seen as a set of mutu-
ally orthogonal vectors in a Hilbert space of dimension m.
The quantum system is also allowed to be in a superposition
state,

|�〉 = λ1|�1〉 + λ2|�2〉 + · · · + λm |�m〉 , (3)

whose energy is not well defined (and, therefore, such a
state is non-stationary). According to the statistical interpre-
tation of quantummechanics originally proposed byM. Born
(Saunders et al. 2010), a measurement of such a quantum
state can randomly yield one of the eigenvalues of its energy,
En , with the probabilities given by the squared amplitudes
of the basis eigenstates participating, |λn|2.

2.2 Many-particle systems

The Schrödinger equation for a system of non-interacting
particles can be decomposed into a set of uncoupled equa-
tions for each particle, and the system’sWFcan be factorized.
A combination of two non-interacting and non-entangled
systems can be described by applying the tensor product on
the two vector spaces,2 with resultant basis given as follows:

|�(1)〉 ⊗ |�(2)〉 =
M1∑

α

M2∑

β

λαμβ |�(1)
α 〉 ⊗ |�(2)

β 〉

=
M1∑

α

M2∑

β

λαμβ |�(1)
α �

(2)
β 〉 . (4)

In Eq. (4), �
(s)
α denotes an eigenfunction of a state α =

1, . . . , Ms of the system �(s) (s = 1, 2). The dimension of
the product vector is dim(�(1)) ∗ dim(�(2)) = M1 · M2.

When the particles constituting the system are identical,
their spin becomes highly relevant. The spin, which is an
intrinsic angular momentum of the particle, distinguishes

2 For interacting or entangled systems, the total WF cannot be written
as a product of those of its parts. Entangled parts of a system, even if
they do not interact physically,may not be described by awave function,
they only can be represented by a density matrix. Entanglement is out
of scope of this article, the interested reader may refer to an appropriate
textbook, e.g., that of Schumacher and Westmoreland (2010).

two different types of particles, bosons (e.g., photons) and
fermions (e.g., electrons and protons). For fermions, thePauli
exclusion principle states that the system’s WF must be anti-
symmetric with respect to permutation of any two particles.
It implies important restriction upon the WF, namely that
the product vector (4), if applied to a pair of non-interacting
electrons, is not compatible with the Pauli principle.

In quantum chemistry, a single-electron WF is called
orbital (Szabo and Ostlund 2012). One can distinguish spa-
tial orbitalsφ(r), where r corresponds to spatial coordinates,
and spin orbitals χ(x), where x = (r; s) and s =↑,↓ stands
for two possible orientations of electron’s spin. For two elec-
trons, the Pauli principle means that

χ(x1, x2) = −χ(x2, x1) (5)

or, equivalently,

φ(r1, r2) = ∓φ(r2, r1) , (6)

where the upper (lower) sign corresponds to parallel (anti-
parallel) spins of the two electrons. If the electron–electron
interaction is neglected, the correct (i.e., compatible with the
Pauli principle) two-electronWF is written in the form of the
so-called Slater determinant,

|χ(1)
α χ

(2)
β 〉 = 1√

2

∣∣∣∣
χα(x1) χβ(x1)
χα(x2) χβ(x2)

∣∣∣∣ , (7)

where χα(x) and χβ(x) designate different spin orbitals.
A Slater determinant can be straightforwardly generalized
toward the case of N identical non-interacting particles. It
vanishes when any two electrons “occupy” the same spin
orbital, as required by the Pauli exclusion principle.

The Slater determinant is a simple way of constructing
a many-electron WF from spin orbitals representing non-
interacting electrons. Complete neglection of the Coulomb
interaction between the electrons would be too crude an
approximation, while solving directly the many-electron
Schrödinger equation is an intractable problem. A compro-
mise is achieved by a self-consistent field method also called
Hartree–Fock (HF)approximation.Aneffective one-electron
operator is introduced, vHF (x), called Fock operator, which
includes, as a part of the single electron potential energy, the
electron’s interactionwith all other electronswhose positions
are averaged under an assumption that the WF representing
the system of N electrons is a single Slater determinant. An
explicit expression for vHF (x) will be presented below.
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Fig. 1 Left: the hydrogen atom consists of a single electron and a pro-
ton and has the energy of −0.5 a.u. in the ground state. Right: in the
hydrogen molecule H2, made of two nuclei and two electrons, the total
energy can be lower than −1 a.u., which makes the molecule stable

2.3 Molecular Hamiltonian and Hartree–Fock
approximation

The general form of a molecular Hamiltonian is (in atomic
units):

Hmol = −
N∑

i=1

1

2
∇2
i −

M∑

A=1

1

2MA
∇2

A −
N∑

i=1

M∑

A=1

ZA

ri A

+
N∑

i=1

N∑

j>i

1

ri j
+

M∑

A=1

M∑

B>A

ZAZB

rBA
. (8)

The first and second terms of (8) correspond to the kinetic
energy of the electrons (numbered by i and j = 1, . . . , N )
and nuclei (numbered by A = 1, . . . , M), respectively. The
third one represents the Coulomb attraction of each electron
to each nucleus with ri A being the electron–nucleus distance
and ZA the nucleus charge. Finally, the fourth and fifth terms
correspond to the repulsion among the electrons and among
the nuclei, respectively. It is common andwell justified to use
the Born–Oppenheimer approximation, which neglects the
motion of the nuclei because they aremuch heavier than elec-
trons, whereby the potential energy of the nucleus-nucleus
interactions becomes a constant (for fixed placement of the
nuclei) hence a parameter for the electron problem.With this,
the electron Hamiltonian (8) reduces to:

Hel = −
N∑

i=1

1

2
∇2
i −

N∑

i=1

ZA

ri A
+

N∑

i=1

N∑

j>i

1

ri j
. (9)

For the H2 molecule, the Hamiltonian (9) depends on a single
parameter, the distance between the protons d. If the lowest
eigenvalue of (9), E0(d) < 0, is larger in absolute value
than the proton–proton repulsion energy, Erep(d) = d−1,
the molecule is bound, as illustrated in Fig. 1.

The Hamiltonian (9) has to be reduced to a single-electron
one in order to proceed with finding its eigenvalues, which
is achieved by means of the HF approximation, where one
takes an average over the positions and spins of all elec-
trons but one (to be labeled by i = 1). This is done by

multiplying (9) by |χ(1)
α χ

(2)
β . . . χ

(N )
γ 〉 and the corresponding

“bra,” both in the form of Slater determinants of dimension
N (the number of electrons in the system), and integrating
over x2, x3, . . . , xN , which leads to :

(
−1

2
∇2
1 −

M∑

A=1

ZA

r1A
+ vHF

1

)
χα(x1) = εαχα(x1), (10)

where vHF
1 is the average potential experienced by the “cho-

sen” electron and εα is the single-electron energy. The HF
potential can be written in the form:

vHF
1 =

∑

β

∫
|χβ(x2)|2 1

|r12| dx2

−

∑

β

∫
χ∗

α(x1)χ∗
β(x2)

1

|r12|χβ(x1)χα(x2) dx2

|χα(x1)|2
.

(11)

The two terms in Eq. (11) are called Coulomb and exchange
energies, respectively. The latter poses the main difficulty
in solving Eq. (10); however, its neglection (known as the
Hartree approximation) results in unsustainable error. Due
to the nonlinearity of the HF approximation, the equations
are solved in practice by self-consistent (iterative) methods,
using a finite set of spatial basis functions, φμ(r) (μ = 1, 2,
. . . , K )—see, e.g., Szabo and Ostlund (2012). The solution
yields a setHF spin orbitals {χα}with corresponding energies
{εα}, α = 1, 2, . . . , 2K . It must be 2K ≥ N , the number of
electrons in the system. The possibilities to place N electrons
over 2K spin orbitals gives rise to (2K )!/(N !(2K − N )!)
Slater determinants, one of which represents the ground state
of the system and the others correspond to excited states. The
HF approximation takes into account the quantum mechan-
ical correlation caused by the Pauli principle, however, only
of electrons with parallel spins. The difference between the
approximate HF energy and the exact energy of the system
is known as correlation correction (or energy).

It is common to use, as initial approximation basis sets
to represent molecular orbitals (MO) in the HF equations,
the linear combinations of atomic orbitals (LCAO). Since the
exact atomic orbitals for a givenmany-electron atomare diffi-
cult to construct, the so-called Slater-type orbitals (STOs) are
sometimes used, which are inspired by the (exactly known)
radial asymptotics of spatial orbitals of the hydrogen atom,3

φ(r)∼rn−1e−ζr Yl,m(θ, ϕ)

(here Yl,m is a spherical harmonic). For instance, one can use

3 The STO includes a simple power function of radius instead of a
polynomial, and hence do not possess radial nodes.

123



Quantum simulation of the ground-state…

φSTO
1s (ζ, r − RA) =

(
ζ 3

π

)1
2
e−ζ |r−RA|

for s-states, where ζ is the Slater orbital exponent. As the
STO functions are difficult to handle in many-center inte-
grals, one practical resort consists of approximating these
functions with linear combinations of Gaussian functions,
known as STO-LG functions. The calculation of necessary
matrix elements is then greatly facilitated, because the multi-
center integrals with Gaussian functions can be evaluated
analytically (see “Appendix A”). In this work, a set of such
functions with n = 3 Gaussians mimicking each STO func-
tion, named STO-3G basis, is used. For the 1s state, such a
function is:

φSTO−3G
1s (ζ, r) = c1

(
2α1

π

)3
4

e−α1r2

+ c2

(
2α2

π

)3
4

e−α2r2 + c3

(
2α3

π

)3
4

e−α3r2 . (12)

Here, αi are the Gaussian orbital exponents that have been
optimized for the best possible approximation of φSTO

1s (ζ, r)
for a given ζ (Hehre et al. 1969). The corresponding spin
orbitals, χα(x), are obtained from φSTO−3G

μ by multiplying
them with a spinor ψ(s), s =↑, ↓.

2.4 Second quantization

In the quantummechanics of systems consisting of a number
of identical particles (electrons, in our case), it is common
to use the formalism called second quantization, originally
introduced by P. Dirac—see, e.g., Dirac (1981). This formal-
ism deals with the whole system of particles, instead of each
particle individually, by introducing a new way of describ-
ing states, by the latter’s occupation numbers. Let {χα(x)}
be a complete set of one-electron (atomic or molecular) spin
orbitals that constitute theHilbert space of a single particle. If
the particleswere non-interacting bosons, a state of thewhole
system could be entirely specified by indicating the numbers
of particles, nα , occupying each of these orbitals. Such an
occupation number state can be designated by a state vec-
tor |n1, n2, ...〉. If the particles interact with an external field
or with each other (but still assuming that they are bosons
and no restrictions are imposed by particle’s spin), the state
vector in the occupation number representation will evolve
with time, obeying the time-dependent Schrödinger equation
(1) with the Hamiltonian written in the occupation numbers
representation:

H = H1 + H2 =
∑

α,β

ταβa
†
αaβ + 1

2

∑

α,β,
γ,δ

μαβγ δa
†
αa

†
γ aδaβ .

(13)

The summation is over states in the single-particle Hilbert
space, e.g., 1s-, 2p-like, etc., ταβ being a matrix element of
the single-electron energy,

ταβ =
∫

dx1χ∗
α(x1)

(
−∇2

2
+
∑

A

ZA

|rA1|

)
χβ(x1) . (14)

The second term in (13) represents the Coulomb interactions
between the particles, with thematrix element given [accord-
ing to the convention used in quantum chemistry (Szabo and
Ostlund 2012)] by:

μαβγ δ =
∫

dx1dx2χ∗
α(x1)χβ(x1)

(
1

|r12|
)

χ∗
γ (x2)χδ(x2) .

(15)

The integration in Eqs. (14) and (15) is over coordinates (and
summation over spins) of one or two electrons labeled 1, 2.

The Hamiltonian (13) is written in terms of so-called
creation, a†, and annihilation, a, operators, which add one
particle to (or, remove from) an orbital α, respectively:

a†α |n1, n2, . . .〉 = √
nα+1 |n1, n2, . . .〉 ;

aα |n1, n2, . . .〉 = √
nα |n1, n2, . . .〉 . (16)

The product a†αaα is the occupation number operator for the
orbital α. In the case of bosons, the creation and annihilation
operators for different α and β commute, because different
orbitals are filled independently. These is not the case for
fermions, because of the Pauli exclusion principle. By virtue
of this, the following (anti-commutation) relations hold for
the electron operators:

aα a
†
β + a†α aβ = δαβ . (17)

It can be shown that (17) guarantees that the occupation num-
bers can take only values 0 and 1 in accordance with the Pauli
principle (Dirac 1981). Therefore, the Hamiltonian (13) has
the same form for bosons and fermions, the only difference
being in the (anti-)commutation relations of the creation and
annihilation operators. For fermions, each state |n1, n2, ...〉
of thisHamiltonian corresponds to a Slater determinant in the
Fock space (of dimension 2K ), with the number of columns
and rows equal to the number of electrons in the system,
N =∑2K

α=1 nα .
The choice of single-electron basis functions χ∗

α(x) is, in
principle, arbitrary, but if we “guess” their form close to the
“true”WFsof the system (which actually are notwell-defined
in the single-electron form!), the non-diagonal elements of
the matrices ταβ and μαβγ δ will be much smaller than the
diagonal ones. For practical calculations of these integrals,
the basis functions are expressed in terms of the STO-3G sets
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explained in the previous section. The choice of molecular
orbitals is based on the MO-LCAO approximation. One can
improve this initial approximation by solving first the HF
equation (10) and using its solutions to calculate the matrix
elements. Then, the diagonalization of Eq. (13) amounts to
the evaluation of the correlation energy.

In this article, we are going to consider also the station-
ary Stark effect described by the following (single-electron)
Hamiltonian:

HS = −E · r, (18)

whereE is the electric field intensity. Its second-quantization
representation is identical to H1 in (13), and the correspond-
ing matrix element is written as

τ S
αβ =

∫
dx1χ∗

α(x1) (−eE r cos θ) χβ(x1), (19)

where E = |E| and z-axis is assumed to be directed along E.
The use of second quantization formalism is facilitated, for
instance, by the PyQuante (Muller 2017) and the PySCF
(Sun et al. 2018) tools, Python libraries targeted to quantum
chemistry calculations. We present the matrix elements (14),
(15) and (19) calculated for 1s, 2s and 2pz atomic orbitals
in “Appendix A”.

3 Quantum simulation of a quantum
chemistry Hamiltonian

3.1 Mapping the fermion Hamiltonian onto a qubit
representation

In order to perform quantum computations, one needs to
map the second-quantization Hamiltonian onto a qubit (spin)
representation and then design the corresponding quantum
circuit that implements it. The basic idea is to replace the
fermionic operators a and a† with tensor products of the
Pauli matrices,

σx =
[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
,

which can be done in a number of ways, such as the Jordan–
Wigner or Bravyi–Kitaev transformations (Cao et al. 2019).
The former, addressed in this section, is a specific method
based on the isomorphism between the creation and annihila-
tion operators and the algebra of the Paulimatrices (Whitfield
et al. 2011).

s = 1
2

|↑〉

|↓〉

|1〉 ≡ a†|0〉

|0〉 ≡ a |1〉

Fig. 2 A scheme illustrating the mapping of a fermion onto a qubit. We
may assume that the magnetic field splitting two spins states is directed
downwards, so that | ↓〉 ≡ |0〉 is the ground state

In the case of a single (one-electron) state, the Jordan–
Wigner (JW) mapping is simple:

a† ⇔ σ+ ≡1

2

(
σx + iσy

) =
[
0 1
0 0

]
; (20)

a ⇔ σ− ≡1

2

(
σx − iσy

) =
[
0 0
1 0

]
; (21)

a†a − 1
2 ⇔ − 1

2
σz =

[− 1
2 0
0 1

2

]
. (22)

It is illustrated in Fig. 2. The matrices σ± represent the
spin-raising and spin-lowering operators, respectively, while
σz is related to the occupation number operator.

In case of N >1 fermions, in order to satisfy the anti-
commutation relations (17) between any pair of fermionic
operators, one numerates the states by a single index (α) and
adds the string, i.e., [spin]=[fermion]×[string], taking into
account the occupation numbers, nα , of states with β < α,
for a given α:

σ+
α ⇔ aαe

iπ
∑

β<α nβ , σ−
α ⇔ a†αe

iπ
∑

β<α nβ . (23)

The relation (23) holds for multiple fermions and the phase
factors can be represented by the Pauli matrix σz acting on
the corresponding fermionic state. Therefore, the fermionic
operators are mapped onto direct products of Pauli matrices
as follows:

aα ⇔ 1⊗(α−1)⊗ (σ+)α⊗(σz)
⊗(N−α)

=
[
1 0
0 1

]⊗(α−1)

⊗
[
0 1
0 0

]

α

⊗
[
1 0
0 −1

]⊗(N−α)

; (24)

a†α ⇔ 1⊗(α−1)⊗ (σ−)α⊗(σz)
⊗(N−α)

=
[
1 0
0 1

]⊗(α−1)

⊗
[
0 0
1 0

]

α

⊗
[
1 0
0 −1

]⊗(N−α)

. (25)

Thus, any Hamiltonian operator written in the second quanti-
zation representation can be rewritten in terms of the raising
and lowering spin operators and the Pauli matrix σz . A cat-
alogue of such translations can be found in Table A2 of the
work by Whitfield et al. (2011). For a Hilbert space of 2K
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spin orbitals, a systemof 2K fermions (i.e., qubits) is required
for the JWmapping. The resulting qubit Hamiltonian has the
following generic form:

H =
∑

i; q
hiqσ

(q)
i +

∑

i1,i2; q1,q2
hi1,i2q1,q2σ

(q1)
i1

⊗ σ
(q2)
i2

+ · · · (26)

where the indices i mean the type of the Pauli matrix (x , y or
z), the indices q run over qubits and h are some coefficients.
This form is useful for the algorithms discussed in the next
section.

3.2 Quantum computation of the eigenvalues of a
Hamiltonian

Once the molecule’s Hamiltonian has been transformed into
the qubit representation, the ground-state energy can be eval-
uated using several methods. One of such methods where
the quantum advantage seems likely is the calculation of
eigenvalues of Hamiltonians through the application of the
quantum phase estimation (QPE) algorithm (Luis and Peřina
1996), which also has several other applications, such as in
the resolution of linear equations (Harrow et al. 2009). The
method requires an approximation of the evolution operator,
Û = exp (−i Ht) (t is time), and applying it to the initial
state an appropriate number of times. For an eigenstate, the
application of Û results in adding a phase (−Et), so that the
energy eigenvalue E can be estimated.Unfortunately, despite
its theoretical attractivity and a broad scope of possible appli-
cations, themethodposes serious technical difficulties,which
makes its practical realization unlikely at the present level of
maturity of quantum computers. Namely, the QPE method
requires a very large number of entangled qubits and quan-
tum gates to be effective.

Alternatively, one can adopt a strategy of applying the
Hamiltonian over a state several times, measuring the result
(i.e., performing the quantum sampling), in order to obtain
an estimation of the expected eigenvalue, for which effective
algorithms are available, particularly the quantum expected
eigenvalue estimation (QEE) method. The method requires
that theHamiltonian operator can be decomposed into a poly-
nomial (M) independent n-qubit operators as exemplified by
Eq. (26) and consists in the “measurement” of the expecta-
tion values of such operators for a trial state |�〉 (also known
as the ansatz):

〈H〉 = 〈�|H |�〉
=
∑

i; q
hiq〈σ (q)

i 〉 +
∑

i1,i2;
q1,q2

hi1,i2q1,q2〈σ (q1)
i1

⊗ σ
(q2)
i2

〉 + · · · (27)

The estimation of the expectation values, 〈· · · 〉, requires
repeated measurements with a large number of qubits, but,

Table 1 Comparison of resources needed for two methods, QPE and
QEE

Method Number of
state preparations

Coherence
time

Number of
steps

QEE O(M) O(1) O(|hmax |2Mp−2)

QPE O(1) O(p−1) O(p−1)

M : the number of independent terms of the Hamiltonian approxima-
tion, p: the precision chosen, O(...): asymptotic lower bound of the
associated resource function. See text for details

on the other hand, the computational effort amounts to the
evaluation of a polynomial number of independent terms.

An objective comparison of the QPE and QEE methods
is presented by McClean et al. (2016) and summarized in
Table 1. One main advantage of the QEE, when compared
with QPE, is that it largely reduces the need for gates, but,
more important—the amount of time the entanglement over
sets of qubits has to be maintained, i.e., the coherence time,
is O(1) (independent of precision, p), which is within grasp
of existing quantum computers, while it grows linearly with
p, O(p−1), for QPE. However, QEE introduces the need
to prepare more copies of the ansatz to maintain the inde-
pendence of the terms in Eq. (27)—O(M) against O(1)
for QPE— requiring polynomially more memory, i.e., more
qubits. Moreover, for a desired precision p, the number of
necessary sampling steps is O(|hmax |2Mp−2), where hmax

is the term with the maximum norm in the decomposition
of the Hamiltonian. In summary, the QEE method reduces
the required minimum coherence but introduces a polyno-
mial complexity penalty, both in terms of memory and in
terms of the number of steps necessary. Yet, it still holds an
exponential advantage when compared to classical methods.

3.3 Trial wave functions (ansätze)

The ground-state energy estimation requires an appropriate
ansatz. If the number of electrons in the system, N , is fixed,
one may use the Slater determinant solution of the HF prob-
lem for the considered molecule, corresponding to its ground
state. We shall denote it by |�0〉 and it may be written as

|�0〉 =
N∏

α

a†α|vac〉,

where α runs over occupied orbitals and |vac〉 denotes vac-
uum (with no particles). Alternatively, one may start by
defining a new “vacuum” state in the N -particle sector of the
Fock space, which can be chosen as |�0〉 and used to prepare
the parametrized trial quantum state (Barkoutsos et al. 2018).
It can be done by a quantum circuit implementing a unitary
operator, Û , that represents a set of perturbations to the state

123



C. Tavares et al.

|�0〉:

|�(
−→
θ )〉 = Û (

−→
θ )|�0〉 , (28)

The parametrized ansatz will be used to estimate the energy
with respect to theHamiltonian. Here

−→
θ stands for thewhole

set of parameters (also called “gate angles” in this context)
that can be adjusted and used in the optimization procedure
(see Sec. 3.4 below).

There are several possible choices of constructing this
operator, leading, e.g., to the so-called unitary coupled cluster
(UCC) and Heuristic approaches that have been overviewed
by Cao et al. (2019) and Barkoutsos et al. (2018). There
are options of choosing different ansätze implemented in the
QISKit package. Let us briefly consider theUCC approach,
which has mainly been used in this work.

A flexible way to generate multi-determinantal (hence
overcoming the HF approximation) reference states within
the coupled cluster (CC) method, suggested by Jeziorski and
Monkhorst (1981), has been translated by Barkoutsos et al.
(2018) (specifically under an angle of quantum algorithms
for electronic structure calculations) into the unitary version
of the CC approach (UCC). The operator acting on the “vac-
uum state” according to Eq. (28) is chosen as follows:

|〈�(
−→
θ )〉 = eT̂ (

−→
θ )−T̂ †(

−→
θ )|�0〉 . (29)

Here T̂ is an operator representing excitations from occu-
pied to unoccupied states (labeled below by Greek and Latin
indices, respectively), composed of hierarchical terms,

T̂ = T̂1 + T̂2 + . . . ,

corresponding to n-particle excitations, namely,

T̂1(
−→
θ ) =

∑

α,a

θaαa
†
a aα, (30)

T̂2(
−→
θ ) = 1

2

∑

α,β; a,b

θa bα βa
†
a a

†
b aα aβ,

· · · (31)

The UCC ansatz usually retains only the two first terms in
the expansion of T̂ , i.e., neglects 3-particle and higher-order
excitations. The expansion coefficients in (30), (31) can be
interpreted as matrix elements of a certain excitation opera-
tor between occupied and unoccupied orbitals. They can be
assumed real, i.e., {θaα , θa bα β, . . .} ∈ R.

The anti-Hermitian combination T̂ − T̂ † in (29) makes
the exponential operator unitary. Unitary operations are nat-
ural on quantum computers, yet the implementation into
quantum circuits is not that straightforward because of the
non-commutation of different parts of the Hamiltonian, so

the order in which the different terms are written in the expo-
nent is important. This difficulty is bypassed by using the
Trotter identity:

e( Â+B̂) = lim
n→∞

[
eÂ/n⊗eB̂/n

]n
, (32)

where Â and B̂ are two non-commuting operators, e.g.,
Â = T̂1 − T̂ †

1 and B̂ = T̂2 − T̂ †
2 . Exact in the limit n→∞, it

is an approximation for finite n. Different Trotter approxima-
tions of the operator (29) can be implemented on a quantum
computer by transforming it to the qubit representation and
using standard circuit compilation techniques for the “expo-
nentiation” of the Pauli matrices (Cao et al. 2019). Some
examples of such circuits and comparison of results obtained
for different orders (n) of the Trotter approximation can be
found in the work by Barkoutsos et al. (2018).

3.4 Variational Quantum Eigensolver

The variationalmethod for the calculation of the ground-state
energy, also known in physics as the Rayleigh-Ritz method,
has widely been used for a long time in quantum chemistry—
see, e.g., Levine (2014). It is an approximation method used
to estimate the lowest eigenvalue (the ground-state energy)
of a Hamiltonian,

E[�(
−→
θ )] = 〈�(

−→
θ )|H |�(

−→
θ )〉

〈�(
−→
θ )|�(

−→
θ )〉

. (33)

The optimization consists in the determination of the set of
parameters

−→
θ that minimize the E function.

In the hybrid quantum-classical algorithm implemented
as the variational quantum eigensolver (VQE), the quantum
computer prepares the parametrized trial function �(

−→
θ ), as

discussed in Sect. 3.3, and evaluates the energy with respect
to the system’s Hamiltonian, as discussed in Sect. 3.2. Then,
a classically implemented algorithm updates the parameters−→
θ ∈ R

n of the quantum state using a classical optimization
routine and then repeats the previous step until convergence
criteria (e.g., in energy and/or iteration number) are satis-
fied. Any optimization method capable of performing this
task can, in principle, be used. On IBM Q (Cross 2018), a
few methods for this purpose are available, for instance, the
simultaneous perturbation stochastic approximation algo-
rithm (SPSA, see Bhatnagar et al. 2012), characterized by a
very good performance under noise, or the Cobylamethod
(Powell 2007).

The VQE was introduced by Peruzzo et al. (2014)
and applied since then in a number of quantum simula-
tion/optimization tasks—see, e.g., Moll et al. (2017). The
scheme of the method is depicted in Fig. 3, adapted from the
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Fermionic problem

Classical cost function

qubit Hamiltonian

Hq =
∑

α

hαPα =
∑

α

hα

N⊗

J=1

σ
αj

j

�

�

classical
calculate energy

E =
∑

α

hα〈Ψ(θ)|Pα|Ψ(θ)〉 ≥ Eexact

adjust parameters θ

�
quantum

prepare trial state |Ψ(θ)〉

measure expectation value

〈Ψ(θ)|
N⊗

j=1

σ
αj

j |Ψ(θ)〉

�
opti-
miza-
tion

�

�

�
solution θ∗

Fig. 3 Application of the variational method to fermionic problems,
adapted from Moll et al. (2017)

latter work. A good additional discussion of this method can
be found in the work by McClean et al. (2016).

3.5 Procedure summary

The principal steps can be summarized as follows.

– The effect of fermionic annihilation-creation operators,
aα and a

†
β , on the system of one-electron states is mapped

onto (↑,↓) states in a model system of s = 1
2 spins (via

the Jordan–Wigner transformation).
– The state of each spin is represented by a qubit.
– Excitations in multi-electron system are then represented
as qubits, which interact and run through a quantum cir-
cuit.

– The circuit consists of a number of basic elements
(quantum gates), arranged according to the structure of
equations to solve.

– At the beginning, each qubit is prepared according to
the starting configuration (i.e., occupation of the electron
orbitals) chosen.

– The output of the circuit (measurement) yields the expec-
tation value of each qubit. It can be redirected to the input
till convergence.

– The configuration emerging in the repetitive process,
taken together with the (previously calculated) matrix
elements, yields the physical solution (energy and wave-
function).

4 Results and discussion

4.1 Calculation details

We used the procedure outlined in previous sections to calcu-
late the ground-state energy (which can be straightforwardly
converted into the dissociation energy) of two molecules,
hydrogen (H2) and lithium hydride (LiH), also (that is pre-

sumably a novel result) under the action of stationary electric
fields of four different magnitudes (E = 0.0001, 0.001, 0.01,
0.1 atomic units; 1 a.u. ≈ 5 · 1011 V/m). These calculations
were performed for the interatomic distances, d, from 0.2 to
4 Å with the step 0.1 Å.

The actual computational environment,where these exper-
iments were conducted, was the IBM Q, an ensemble
of quantum computers and simulators and able to per-
form quantum computation. Such computational environ-
ment is available remotely through the internet and can be
accessed and programmed using the QISKit framework,
written in the Python language. The actual code devel-
oped to this work is available in the following GitHub
repository: https://github.com/arcalab/experiments_quantum
_chemistry/tree/master/Qiskit_Programmatic_version_src
itmakes use notably of theQISkit and thePySCFpython
framework.

The PySCF tool was used to specify the molecules and
calculate the respective one-body and two-body integrals,
encompassing already the action of electric fields, using the
theory developed throughout “Appendix A”. Both molecules
were assumed to have zero global charge and spin zero; the
STO-3G basis (12) was used to calculate the integrals.

The tasks of evaluation of corresponding integrals can
then be reformulated into an assembling of quantum cir-
cuits, to be executed in quantum computers supplied, using
the set of software packages available, e.g., in the QISkit
framework: Terra, Aer, Aqua and Ignis. The calcula-
tion of the dissociation curves requires the calculation of the
ground-state energies (discussed in Sect. 3.4) over a range
of distances, to be able to identify the minimum (bound
molecule) and the asymptotics (separated atoms). For this
purpose, we used two methods: the exact eigensolver (clas-
sical matrix-multiplicationmethod, as a benchmark) and the
VQE.

We used the UCC (discussed in Sect. 3.2) as the vari-
ational method, i.e., the technique to build the ansätze for
the molecules under study, and the HF approximation to
obtain the initial solution for the VQE method. In this rela-
tion, several parameters had to be considered: the maximum
number of iterations with the Cobyla method,4 the opti-
mization level (an IBM Q-specific parameter determining
the degree of optimization of the circuits generated), the
mapping method to use, such as the Jordan–Wigner (25),
Bravyi–Kitaev, or parity methods [see Cao et al. (2019) for
more information on these methods], each offering different
(precision)/(circuit size) relationships. The technical param-

4 In this quantum computation setting, an iteration in the Cobyla
method is an expensive operation in terms of computation time, and
therefore, one may be interested to limit the number of iterations. How-
ever, the method stops if convergence is verified and in our particular
case, the method always converged before 15000 iterations.
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Table 2 The set of technical parameters used for quantum calculations

Parameter Value

Shotsa 4096

Max. number of iterations of Cobyla 15000

Max. number of iterations of PySCF 5000

Optimization level 3

Mapping method Jordan–Wigner

QISkit version 0.13.0

a Number of times the execution of circuits is to be performed due to
the stochastic nature of quantum computers. See text for detail

Fig. 4 Dissociation curve of H2 molecule, as calculated with a classical
solver (full lines) and with the VQE (symbols connected by lines), for
several values of the external electric fieldEmarked by color. The Stark
effect (i.e., the shift of the minimum energy with electric field) is shown
in the inset

eters of calculation, selected after a course of trial and error,
are summarized in Table 2.

The quantum or hybrid (such as VQE) procedures in the
IBM Q require that a backend is specified, i.e., an actual pro-
cessing node able to execute the quantum circuits, which can
be either a classical computer able to perform the quantum
computation (simulator), with or without simulated quan-
tum noise, or a real quantum device, with a number of qubits
from 2 to 53. The results of this work were obtained using a
simulator, the qasm_simulator.

4.2 Results: H2 molecule

The total energy as a function of the interatomic distance,
hence the molecule’s dissociation curve for different values
of the electric field, is depicted in Fig. 4. The effect of electric
field on the shape of the dissociation curve remains negligible
at small values of the field inspected yet results in a drastic
change of the d→∞ asymptotic (slope) and in a noticeable
shift of the equilibrium position for E = 0.1 a.u. The abrupt

Fig. 5 Same as in Fig. 4 for the LiH molecule

change in the E(d) dependence slope at large distances, for
very large electric field E = 0.1 a.u., can be related to the
onset of the molecule’s dissociation, which becomes possi-
ble via tunneling through the energy barrier (blue curves in
Fig. 4).

The inspection of the VQE results, represented by sym-
bols connected by lines in Fig. 4, reveals a numerical noise
that apparently increases with the electric field magnitude.
Possibly, the HF approximation used as input for the quan-
tumcalculation becomes unstable under the action of a strong
electric field.

The inset of Fig. 4 shows the Stark effect for the molecule
under study, that is, the shift between the ground-state energy
calculated under the action of the electric field and at E = 0.
The distance at which the respective energies have been
extracted was the energy minimum position yielded by the
classical solver at E = 0, deq = 0.7 Å. We took this option
because of the fluctuations of E(d) obtained with the quan-
tum solver.

For a nonpolar molecule without intrinsic dipole moment,
as is the case for H2, the stationary electronic Stark effect
should be quadratic in the electric field. However, with
the limited minimal basis used, it looks even weaker and
becomes noticeable only for very strong fields.

4.3 Results: LiHmolecule

The results for the lithium hydride molecule are shown in
Fig. 5, where the effect of the applied electric field is quite
noticeable. The displacement of the E(d) curve increases
with the electric field: already for 0.01 a.u. the shift of the dis-
sociation curve becomes appreciable. The Stark effect (inset
in Fig. 5) increases with the field magnitude much faster than
for the H2 molecule. This is because of the intrinsic dipole
moment the LiH molecule already possesses in the ground
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state. The Stark effect is linear in E for small fields but then
starts growing much faster because of the additional polar-
ization of the ground state induced by the external field.

Similar to the case of H2 molecule, the numerical noise
is visible in the results and becomes more pronounced
in stronger electrical fields. Also, the ground-state energy
obtained with the different solvers results in different values
of the equilibriumdistance,deq , obtained for the quantumand
classical solver, – 1.5 Å and 1.6 Å, respectively—at E = 0.
Again, the latter was taken as the reference value for the Stark
effect evaluation.

5 Conclusions

We attempted to outline, in a concise way yet indicating the
essential elements and the underlying theory, a representative
practical resolution of a simple quantum chemistry problem
on a quantum computer. Special attention has been paid to
the connection between the fermionic Hamiltonians and the
quantum circuits, as well as the state preparation, running
of the algorithm and evaluation of the results. An interested
reader may wish to find out more details and discussions in
the excellent recent review by Cao et al. (2019). In practi-
cal terms, we programmed and executed the calculation of
ground-state energies ofmolecules (H2 andLiH), on the com-
mercially available (since recently) quantum computer, IBM
Q, of which we used the quantum device simulator.

The calculated results comprise the total energy as a func-
tion of bond length (i.e., the dissociation curve), also under
applied stationary electric field. We also evaluated the shift
of themolecule’s energy at a fixed d (equal to the equilibrium
interatomic distance) with the electric field, i.e., the station-
ary electronic Stark effect, supposedly quadratic in E and
small for the nonpolar H2 molecule but containing the linear
term and much stronger in case of the polar LiH molecule.
The quantum calculations were characterized by a consider-
able numerical noise, the magnitude of which increases with
the strength of the electric field. The nature of these instabil-
ities is still under inspection. In total, our case study seems to
provide evidence for the feasibility of the use of this quantum
computer for small molecules, with a reasonable number of
iterations performed. Thus, the current quantum computation
and simulation technology, even though yet far from being
able to address large molecules in order to answer relevant
questions in chemistry and biology, already is able to provide
physically meaningful results for small systems, constituting
an important milestone for further work.
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A Calculation of thematrix elements

A..1 STO-LG wavefunctions

The STO-3G-type combinations of Gaussian functions are
used to calculate the matrix elements of various electronic
interactions in the molecules under study. As the minimal
basis of the H2 molecule includes the s-type orbitals only,
whereas that for LiH comprises both the s- and the p-type
orbitals, by throughout covering the latter molecule we leave
a possibility to fall back to theH2 case by removing the factor
of 3 (Li nucleus charge) in those matrix elements where it
appears explicitly (namely, in Table 4 ). Also, the parameters
of the STO-3G functions have to be chosen accordingly (see
Table 3).

The minimal basis will include the following atomic
orbitals: 1s for H; 1s, 2s and 2pz for Li. All of them will
be approximated by the STO-3G-type combinations of the
following Gaussian functions (Szabo and Ostlund 2012):

ψ1s(ζ ) =
L∑

i=1

di,1sg1s(αi,1s); (34)

ψ2s(ζ ) =
L∑

i=1

di,2sg1s(αi,2sp); (35)
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Fig. 7 Coordinate systemand angles used in the calculation of integrals.
See text for details

ψ2pz (ζ ) =
L∑

i=1

di,2pg2pz (αi,2sp). (36)

Here ζ is a parameter appearing in the Slater-type orbitals
(ζ = 1.24 for H and ζ = 2.69 as the “recommended” value
for Li1s); the coefficients di and αi are fitted parameters and
g are the normalized Gaussian functions:

gs(α) = c(s)
α e−αr2 , with c(s)

α =
(
2α

π

)3
4 ; (37)

gp(β) = c(p)
β r cos θe−βr2 , with c(p)

β =
(
128β5

π3

)1
4

.

(38)

The fitted Gaussian exponents and the corresponding coeffi-
cients di depend on the parameter ζ in the Slater orbital, also
called “scaling factor,” which is different for each atomic
shell (e.g., for 2s and 2p states of Li the recommended
value is ζ = 0.75). The exponents for ζ = 1 are given
in Table 3.7 of Szabo and Ostlund (2012); for ζ �= 1 they
scale as α(ζ ) = α(1) · ζ 2, whereby the coefficients d are the
same for each type of states in different atoms—e.g., 1s (H)
and 1s (Li)—although α’s are different. The parameters used
by us are compiled in Table 3.

A..2 One-electronmatrix elements

We shall use spherical coordinates with the origin at the Li
atom, as shown in Fig. 6. From now on, the Li atom will be
denoted “B” and the H atom will be “A,” and, according to
the previous section, we shall consider the matrix elements
between the following three functions:

|A〉 = c(s)
α e−α(r−d)2 ; |B〉1s or 2s = c(s)

β e−βr2 ;
|B〉2p = c(p)

β r cos θe−βr2 . (39)

Nuclear Potential Energy Matrix Elements

To calculate the nuclear potential energy matrix elements,
one needs to calculate the following integrals:

I (s(1))
ab = 〈A|1

r
|B〉s = c(s)

α c(s)
β

∫
e−α(r−d)2−βr2 1

r
dr ; (40)

I (s(2))
ab = 〈

A
∣∣ 1

|r − d|
∣∣B
〉
s

= c(s)
α c(s)

β

∫
e−α(r−d)2−βr2 1

|r − d| dr . (41)

These integrals are the same as for the H2 molecule, so we
can use the result of Equation (A33) from Szabo and Ostlund
(2012):

I (s(1))
ab = c(s)

α c(s)
β

2π

α + β
exp

(
− αβ

α + β
d2
)
Fo

(
β2

α + β
d2
)

;
(42)

I (s(2))
ab = c(s)

α c(s)
β

2π

α + β
exp

(
− αβ

α + β
d2
)
Fo

(
α2

α + β
d2
)

,

(43)

where Fo(x) is expressed via the error function, Fo(x) =√
π

4x
erf
(√

x
)
. The matrix elements involving the p-orbital

are:

I (p(1))
ab = 〈A∣∣1

r

∣∣B
〉
p = c(p)

β c(s)
α

∫
e−α(r−d)2r cos θe−βr2 1

r
dr

= c(p)
β c(s)

α

∫
e−α(r−d)2 cos θe−βr2 dr

= c(p)
β c(s)

α

∫
f1(r) f2(r)dr, (44)

where f1(r) = e−α(r−d)2 and f2(r) = cos θe−βr2 . It is con-
venient to use the Fourier transform of these functions:

f1(k) =
∫

f1(r)e−ik·rdr

= e−ik·d
∫

e−α(r−d)2e−ik(r−d) d(r − d)

= e−ik·d (π
α

)3
2 e− k2

4α ; (45)

f2(k) =
∫

cos θe−βr2e−ik·rdr . (46)

For f2(k) we need to express cos θ in terms of cos γ , since
k · r = kr cos γ . The vectors k, ez and r, in general, do not
lie in the same plane, so we need to consider the spherical
triangle shown in Fig. 7. We can use the following formula
relating the angles θ , θk and γ :

cos θ = cos θk cos γ + sin θk sin γ cos (φ − φk) (47)
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Table 3 Parameters of STO-3G orbitals for H and Li atoms used in the calculations

H Li

α1s (ζ = 1.24) d1s α1s (ζ = 2.69) d1s α2s,p (ζ = 0.75) d2s d2p

3.425250914 0.1543289673 16.11957475 0.1543289673 0.6362897469 −0.09996722919 0.1559162750

0.6239137298 0.5353281423 2.936200663 0.5353281423 0.1478600533 0.3995128261 0.6076837186

0.1688554040 0.4446345422 0.7946504870 0.4446345422 0.04808867840 0.7001154689 0.3919573931

Using (47), we obtain:

f2(k) = 2π
∫ ∞

0
r2 dr

∫ 1

−1
cos θk cos γ e−βr2−ikr cos γ dγ

[notice that the integration over φ eliminated the second term
in (47)]. The integral with respect to cos γ yields:

∫ 1

−1
ze−ikr zdz = 2i

kr

[
cos (kr) − sin (kr)

kr

]
= −2i ji (kr),

where ji (x) is the spherical Bessel function. Then,

f2(k) = 2π cos θk

(
2i

k

)∫ ∞

0

[
cos (kr) − sin (kr)

kr

]
e−βr2r dr (48)

= 2π i cos θk
1

kβ

{
1 −

(
2β

k2
+ 1

)
FD

(
k

2
√

β

)}
, (49)

whereby

FD(t) =
√

π

2
e−t2erfi(t), (50)

in which erfi(t) = −ierf(t), is called the Dawson’s function.
Then

I (p(1))
ab = c(p)

β c(s)
α

∫
dr
{∫

f1(k1)eik1r
dk1

(2π)3

×
∫

f2(k2)eik2r
dk2

(2π)3

}

= c(p)
β c(s)

α

∫
dk

(2π)3
f2(k) f1(−k) . (51)

The angular part of the integral in (51) is:

2π
∫ 1

−1
eikd cos θk cos θk d cos θk

= 4π

ikd

[
cos (kd) − sin (kd)

kd

]
,

and we have:

I (p(1))
ab (α, β; d) = c(p)

β c(s)
α

(π

α

)3
2

× 1

πβd

∫ ∞

0

[
1 −

(
2β

k2
+ 1

)
FD

(
k

2
√

β

)]

× exp

(
− k2

4α

)[
cos (kd) − sin (kd)

kd

]
dk . (52)

Another integral of this type, describing electrons interaction
with the H atom, is:

I (p(1))
ab = 〈A∣∣ 1

|r − d|
∣∣B
〉
p (53)

= c(p)
β c(s)

α

∫
r cos θe−βr2 1

|r − d|e
−α(r−d)2 dr,

(54)

where f1(r) = r cos θe−βr2 and f2(r) = 1

|r − d|e
−α(r−d)2 .

The Fourier transforms of these functions are:

f1(k) = 2i
cos θk

k
2π
∫ ∞

0
r2
[
cos (kr) − sin (kr)

kr

]
e−βr2 dr

= i cos θk
π

3
2 k

2β
5
2

exp

(
− k2

4β

)
; (55)

f2(k) = e−ik·d2π
∫ ∞

0

∫ 1

−1
e−αr2−ik cos γ r dr d cos γ

= 4π

k
e−ik·d 1√

α
FD

(
k

2
√

α

)
. (56)

With this,

I (p(2))
ab (α;β; d) = c(s)

α c(p)
β

2π
5
2

√
αβ

5
2

i
∫

dk
(2π)3

cos θkke
−ik·d

× exp

(
− k2

4β

)
FD

(
k

2
√

α

)

= c(s)
α c(p)

β

√
π

√
αβ

5
2 d

∫ ∞

0
exp

(
− k2

4β

)
FD

(
k

2
√

α

)

×
[
cos (kd)− sin (kd)

kd

]
kdk
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= c(s)
α c(p)

β

√
π

√
αβ

5
2 d3

∫ ∞

0
(x cos x − sin x)e−b′x2 FD(a′x) dx,

(57)

where b′ = 1

4βd2
and a′ = 1

2
√

αd
, FD is the Dawson’s

function (50). Note that the dimension of the normalization

constants is [c(s)
α ] = L− 3

2 , [c(p)
β ] = L− 5

2 , while [α] = [β] =
L2; thus, overall dimension of (57) is L−1, as it should be.
The integral in (57) could not be evaluated analytically, so it
has to be calculated numerically.

We still need matrix elements of r−1 diagonal in atomic
index, which are as follows:

I (s(1))
aa (α, β) = c(s)

α c(p)
β

∫
1

r
e−(α+β)r2dr

= 2π(s)
α c(p)

β

α + β
; (58)

I (s(1))
bb (α, β) = I (s(1))

aa (α, β);
I (ps(1))
bb = c(s)

α c(p)
β

∫
1

r
r cos θe−(α+β)r2dr = 0 ; (59)

I (p(1))
bb (α, β) = c(p)

α c(p)
β

∫
1

r
r2 cos2 θe−(α+β)r2dr

= 4π

3

c(p)
α c(p)

β

(α + β)2
; (60)

I (s(2))
aa (α, β; d) = c(s)

α c(s)
β

∫
1

r
e−(α+β)(r−d)2dr

= c(s)
α c(s)

β

2π
3
2

(α + β)
3
2 d2

erf
(√

α + β d
)

;

(61)

I (s(2))
bb = I (s(2))

aa ;
I (ps(2))
bb (α, β; d) = c(s)

α c(p)
β

∫
1

|r − d|e
−(α+β)r2r cos θ dr .

(62)

Here, we use the following expansion:

1

|r − d| = 1√
r2 + d2 − 2rd cos θ

= 1

d

∞∑

l=0

Pl(cos θ) ×
{
xl(x < 1),

x−l−1(x > 1),
(63)

where x = r

d
; since cos θ = P1(cos θ) (Pl are the Legendre

polynomials), the angular integration in (62) eliminates all

the terms in the sum over l except l = 1. Therefore, we have:

I (ps(2))
bb (α, β; d) = c(s)

α c(p)
β

{
1

d2

∫ d

0
e−(α+β)r2r4 dr

+ d
∫ ∞

d
e−(α+β)r2r dr

}
× 4π

3

= π

√
π erf(

√
α+β d) − 2

√
α+β d e−(α+β)d2

2(α + β)
5
2 d2

c(s)
α c(p)

β .

(64)

Finally, the last integral of this type is:

I (p(2))
bb (α, β; d) = c(p)

α c(p)
β

∫
1

|r − d|e
−(α+β)r2r2 cos2 θ dr .

(65)

Again, we use the formula (63) and the relation

z2 = 2

3

[
P2(z) + 1

2
P0(z)

]
. (66)

Using (66), the angular integration in (65) yields:

2π
∫ 1

−1
cos2 θ

∞∑

l=1

Pl(cos θ) ×

⎧
⎪⎨

⎪⎩

( r
d

)l
(r < d)

( r
d

)−l−1
(r > d)

⎫
⎪⎬

⎪⎭
d cos θ

= 8π

15

⎧
⎪⎪⎨

⎪⎪⎩

( r
d

)2

(
d

r

)3

⎫
⎪⎪⎬

⎪⎪⎭
+ 4π

3

⎧
⎨

⎩
1
d

r

⎫
⎬

⎭ .

The result is:

I (p(2))
bb (α, β; d) = π

{[
1 + (α + β)d2

]√
π erf(

√
α+β d)

2(α + β)
7
2 d3

−
[
1 + (α + β)d2

]

(α + β)3d2
e−(α+β)d2

}
. (67)

A..3 Kinetic energymatrix elements

The calculation of the kinetic energy matrix elements
involves the following integrals:

K (s)
ab = 〈A| − ∇2|B〉s = −csαc

s
β

∫
e−α(r−d)2∇2e−βr2dr

(68)

= −csαc
s
β

∫
dk

(2π)3
f1 (k) f2 (−k) , (69)
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where f2(r) = e−α(r−d)2 and f1(r) = ∇2e−βr2 . Fourier
transforms of these functions are:

f1 (k) =
∫

dr e−ik·r∇2e−βr2 = −k2
(π

α

)3
2 exp

(
− k2

4β

)
.

(70)

f2 (k) = e−ik·d (π

α

)3
2 exp

(
− k2

4α

)
; (71)

Then,

K (s)
ab = csαc

s
β

(
π2

αβ

)3
2
∫

dk
(2π)3

e−ik·d exp
(
−α + β

4αβ
k2
)
k2

= csαc
s
β

π

2(αβ)
3
2

∫ ∞

0

sin kd

kd
exp

(
−α + β

4αβ
k2
)
k4dk .

Denoting x = kd, we have the following integral,
∫∞
0 sin x

e−bx2x3 dx , where b = α + β

4αβd2
. The result of the integration

reads:

K (s)
ab =csαc

s
β

4π
3
2 (αβ)2d2

(α+β)
7
2

[
3(α+β)

2αβd2
−1

]
exp

(
−α+β

4αβ
d2
)

.

(72)

The similar integral involving the s and p states:

K (p)
ab = −csαc

p
β

∫
r cos θe−βr2 ∇2e−α(r−d)2 dr

= −csαc
p
β

∫
dk

(2π)3
f1(k) f2(−k), with (73)

f2(k) = e−ik·d
∫

d(r − d)e−ik·(r−d) ∇2e−α(r−d)2

= e−ik·dk2
(π

α

)3
2 exp

(
− k2

4α

)
and (74)

f1(k) = i
4π

k
cos θk

∫ ∞

0

[
cos (kr) − sin (kr)

kr

]
e−βr2r2 dr

= i cos θk
π
3
2 k

2β
5
2

exp

(
− k2

4β

)
. (75)

Using (74) and (75),

K (p)
ab = csαc

p
β i

π3

2α
3
2 β

5
2

∫
cos θke

i(k·d)k3 exp

(
−α + β

4αβ
k2
)

dk
(2π)3

= csαc
p
β

π2

2α
3
2 β

5
2 d6

∫ ∞

0

(
cos x − sin x

x

)
x4e−bx2dx .

The integral is calculated with the help ofMathematica, with
the result:

K (p)
ab (α, β; d) = csαc

p
β

π2

64α
3
2 β

5
2 d6

b5 ×
{
1 + 4b(3b − 4)

− [1 + 6b(4b2 + 6b − 3)] 1√
b
FD

(
1

2
√
b

)}
, (76)

where b = α + β

4αβd2
and FD is the Dawson’s function (50).

Thematrix elements diagonal in atomic index are as follows:

K (s)
aa (α, β) = c(s)

α c(s)
β

(
π2

αβ

)
1

2π2

∫ ∞

0
exp

(
−α + β

4αβ
k2
)

k4 dk

= c(s)
α c(s)

β

3π
3
2

2

αβ

(α + β)
5
2

; (77)

K (s)
bb (α, β) = K (s)

aa (α, β) ;
K (sp)
bb (α, β) = 0 by symmetry ;

K (p)
bb (α, β) = 〈B|p − ∇2|B〉p

= −c(p)
α c(p)

β

∫
dk

(2π)3
exp

(
−α+β

4αβ

)
k2

⎛

⎝−k2 cos2 θk
π3k2

2(αβ)
5
2

⎞

⎠

= c(p)
α c(p)

β

5π
3
2 αβ

2(α + β)
7
2

. (78)

Summary of one-electron Hamiltonian (for zero external
field):

Theone-electronHamiltonian in the absence of external elec-
tric field is as follows:

H1 = −∇2 − 3

r
− 1

|r − d| .

For convenience, the necessary integrals are presented in
Table 4, and Table 5 indicates the reference of the corre-
sponding equation.

A..4 Matrix elements of the interaction with
external electric field

We shall consider the field parallel to the z axis, so the inter-
action Hamiltonian reads:

HS = −Er cos θ .

We shall keep the same notation as for the kinetic energy
matrix elements just changing K → J . First, we have:

Jaa = Ed; J (pp)
bb = J (ss)

bb = 0, (79)
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Ta
bl
e
4

M
at
ri
x
el
em

en
ts
of

on
e-
el
ec
tr
on

in
te
ra
ct
io
ns

|A
1s

〉
|B

1s
〉

|B
2s

〉
|B

2
p
〉

〈A
1s

|
K

(s
)

aa
(α

i,
1s

,

α
j,
1s

)
−I

(s
(1

))
aa

(α
i,
1s

,

α
j,
1s

)
−3

I(s
(2

))
aa

(α
i,
1s

,

α
j,
1s

;d
)

K
(s

)
ab

(α
i,
1s

,

α
′ j,
1s

;d
)
−3

I(s
(1

))
ab

(α
i,
1s

,

α
′ j,
1s

;d
)
−I

(s
(2

))
ab

(α
i,
1s

,

α
j,
1s

;d
)

K
(s

)
ab

(α
i,
1s

,

α
′ j,
2s
p
;d

)
−3

I(s
(1

))
ab

(α
i,
1s

,

α
′ j,
2s
p
;d

)
−I

(s
(2

))
ab

(α
i,
1s

,

α
′ j,
2s
p
;d

)

K
(
p)

ab
(α

i,
1s

,

α
′ j,
1s

;d
)
−3

I(
p(
1)

)
ab

(α
i,
1s

,

α
′ j,
2s
p
;d

)
−I

(
p(
2)

)
ab

(α
i,
1s

,

α
′ j,
2s
p
;d

)

〈B
1s

|
K

(s
)

bb
(α

′ i,
1s

,

α
′ j,
1s

)
−3

I(s
(1

))
bb

(α
′ i,
1s

,

α
′ j,
1s

)
−I

(s
(2

))
bb

(α
′ i,
1s

,

α
′ j,
1s

;d
)

K
(s

)
bb

(α
′ i,
1s

,

α
j,
2s
p
)
−3

I(s
(1

))
bb

(α
′ i,
1s

,

α
j,
2s
p
)
−I

(s
(2

))
bb

(α
′ i,
1s

,

α
j,
2s
p
;d

)

−I
(
ps

(2
))

bb
(α

′ i,
1s

,

α
j,
2s
p
;d

)

〈B
2s

|
K

(s
)

bb
(α

i,
2s
p
,

α
j,
2s
p
)

−3
I(s

(1
))

bb
(α

i,
2s
p
,
α
j,
2s
p
)

−I
(s

(2
))

bb
(α

i,
2s
p
,
α
j,
2s
p
;d

)

−I
(
ps

(2
))

bb
(α

i,
2s
p
,
α
j,
2s
p
;d

)

〈B
2
p
|

K
(
p)

bb
(α

i,
2s
p
,
α
j,
2s
p
)

−3
I(

p(
1)

)
bb

(α
i,
2s
p
,
α
j,
2s
p
)

−I
(
p(
2)

)
bb

(α
i,
2s
p
,
α
j,
2s
p
;d

)
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Table 5 Equations specifying matrix elements of Table 4

Matrix elements Equations Matrix elements Equations

K (s)
aa (α, β) (77) I (s(1))

aa (α, β) (58)

K (s)
ab (α, β; d) (72) I (s(2))

aa (α, β; d) (61)

K (p)
ab (α, β; d) (76) I (s(1))

ab (α, β; d) (42)

K (s)
bb = K (s)

aa I (s(2))
ab (α, β; d) (43)

K (p)
bb (α, β; d) (78) I (p(1))

ab (α, β; d) (52)

I (p(2))
ab (α, β; d) (57) I (s(1))

bb = I (s(1))
aa

I (s(2))
bb = I (s(2))

aa I (ps(2))
bb (α, β; d) (64)

I (p(1))
bb (α, β) (60) I (p(2))

bb (α, β; d) (67)

because the diagonal matrix elements for any atom vanish
for non-degenerate atomic states and Jaa is compensated by
the energy of the proton at point d (see Fig. 6). For the matrix
element between the s and p-orbitals of the Li atom,we have:

J (ps)
bb = J (sp)

bb = −c(s)
α c(p)

β E

∫
r2 cos2 θe−(α+β)r2 dr

= c(s)
α c(p)

β E
π

3
2

2(α + β)
5
2

. (80)

The matrix elements J (s)
ab are the same as for H2:

J (s)
ab (α, β; d) = −c(s)

α c(s)
β

∫
(E · r) e−α(r−d)2−βr2dr . (81)

We use the transformation:

e−α(r−d)2−βr2 = exp

(
− αβ

α + β
d2
)
e−p(r−RP ), (82)

where P = α+β andRP = 1

p
(αRA + βRB) = α

p
d. Then,

J (s)
ab = −c(s)

α c(s)
β exp

(
− αβ

α + β
d2
)∫ [

E · (r − RP )

+ E · RP
]
e−p(r−RP )2dr

= −c(s)
α c(s)

β exp

(
− αβ

α + β
d2
)

(J1 + J2) , where

J1 =
∫

(E · r′)e−p(r′)2dr′ = 0, and

J2 = (E · RP )

∫
e−pr2dr =

(
π

α + β

)3
2 α

α + β
E d .

Thus, we have:

J (s)
ab (α, β; d) = −c(s)

α c(s)
β exp

(
− αβ

α + β
d2
)

π
3
2 α

(α + β)
5
2

E d .

(83)

Obviously, J (s)
ab = J (s)

ba . Now we shall calculate

J (p)
ab = −c(s)

α c(p)
β E

∫
r2 cos2 θe−βr2e−α(r−d)2dr

= −c(s)
α c(p)

β E

∫
f1(r) f2(r)dr, (84)

where

f1(r) = r2 cos2 θe−βr2 and f2(r) = e−α(r−d)2 .

The Fourier transform of f1(r) is:

f1(k) =
∫

f1(r)e−ik·rdr

=
∫ ∞

0
dr
∫ 1

−1
d cos γ

∫ 2π

0
dφ
[
cos γ cos θk

+ sin γ sin θk sin (φ − φk)
]2

× e−βr2−ikr cos γ ,

where we made use of (47). The term linear in sin (φ − φk)

vanishes after integration over φ, while
∫ 2π
0 sin2 (φ − φk)dφ

= π . Therefore,

∫ 1

−1
d cos γ

[
cos2 θk cos

2 γ + 1

2
(1 − cos2 γ ) sin2 θk

]
e−ikr cos γ

= 2

(kr)3

{
(3 cos2 θk − 1)kr cos kr

+ [(1 − 3cos2θk) + (kr)2cos2(θk)] sin kr
}

≡ g(k, r)

and

f1(k) = 2π
∫ ∞

0
r4e−βr2g(k, r)dr

=
(
k2

2β

)
1

k2

[
2β

k2
− cos2 θk

](
π

β

)3
2
exp

(
− k2

4β

)
;
(85)

f2(k) =
∫

e−αr2−ik·(r+d)dr = eik·d (π

α

)3
2 exp

(−k2

4α

)
.

(86)

The integral (84) is given by

J (p)
ab = −c(s)

α c(p)
β E

∫
f1(k) f2(−k)

dk
(2π)3

. (87)
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In (87), the following angular integrals come about:

∫ 2π

0
dφk

∫ 1

−1
eikd cos θk d cos θk = 4π

sin kd

kd
= 4π j0(kd)

(88)

and

∫ 2π

0
dφk

∫ 1

−1
cos2 θke

ikd cos θk d cos θk

= 4π
2kd cos kd + [(kd)2−2] sin kd

(kd)3

= −4π

[
j2(kd) + j1(kd)

kd

]
≡ −4π Z(kd) . (89)

In (88) and (89), jl(c) are the spherical Bessel functions and
Z(x) is just a short-hand notation.With this, Eq. (87) reduces
to:

J (p)
ab (α, β; d) = −c(s)

α c(p)
β E

πd

β2

(
1

4αβd4

)3
2

×
∫ ∞

0
[2βd2 j0(x) + x2Z(x)]e−bx2dx, (90)

where b = α + β

4αβd2
. The calculation of the integral in (90)

yields:

√
π

1 + 4

(
α + β

4αβd2

)

4

(
α + β

4αβd2

)3
2

exp

⎛

⎜⎜⎝− 1

4

(
α + β

4αβd2

)

⎞

⎟⎟⎠

+ 2βd2 − 2

2
π erf

⎛

⎜⎜⎝
1

2

√
α + β

4αβd2

⎞

⎟⎟⎠

= √
π
1 + 4b

4b
3
2

exp

(
− 1

4b

)
+ a − 2

2
π erf

(
1

2
√
b

)
,

where a = 2βd2.

Summary of the perturbation operator

Thematrix elements of the perturbation operator due to exter-
nal electric field, HS , are summarized in Table 6, and the
corresponding equations are referred to in Table 7. Notice
that the proton energy (−Ed) has been added to compensate
Jaa and it is necessary to substitute αi,1s , αi,2sp for α and β,
respectively, and α′

i,1s is for Li in the appropriate relations.

A..5 Two-electronmatrix elements

Matrix elements of the electron–electron interaction, r−1
12 =

|r1 − r2|−1, in the “chemist’s notation,” are written in round
brackets (Szabo and Ostlund 2012):

(i j |r−1
12 |kl) =

∫
dr1dr2ψ∗

i (r1)ψ j (r1)r
−1
12 ψ∗

k (r2)ψl(r2),

which is different from the physicist’s notation for the same
thing, 〈ik|r−1

12 | jl〉, which uses angular brackets and different
order of orbitals. Here,ψi denotes a molecular spatial orbital
constructed as a linear combination of atomic orbitals, i.e.,
in our case

|ψ〉 = c1|A〉 + c2|B〉1s + c3|B〉2s + c4|B〉2p . (91)

TheHF energy includes the so called Coulomb and exchange
integrals:

Ji j = (i i |r−1
12 | j j) = 〈i j |r−1

12 |i j〉 (Coulomb) ; (92)

Ki j = (i j |r−1
12 | j i) = 〈i j |r−1

12 | j i〉 (exchange) . (93)

Since |i〉 and | j〉 are linear combinations of g1s(r−d), g1s(r)
and g2p(r) functions with different coefficients in the expo-
nent, several kinds of integrals occur in (92) and (93), namely:
(i) four kinds of one-center integrals; (i i) four kinds of two-
center integrals. We proceed by elaborating on the first type
(one-center) integrals, (i).

D(ss)
aa (α, β, γ, δ)

=
∫

dr1dr2g1s(α, r1)g1s(β, r1)r
−1
12 g1s(γ, r2)g1s(δ, r2)

= c(s)
α c(s)

β c(s)
γ c(s)

δ

∫
dr1dr2 e−(α+β)r21

(
r−1
12

)
e−(γ+δ)r22

= c(s)
α c(s)

β c(s)
γ c(s)

δ

∫
dk

(2π)3

[( π

α + β

)3
2 exp

(
− k2

4(α + β)

)]

×
[4π
k2

][( π

γ + δ

)3
2 exp

(
− k2

4(γ + δ)

)]

= c(s)
α c(s)

β c(s)
γ c(s)

δ

2π2

[(α + β)(γ + δ)]32

√
π

2
[ 1

4(α + β)
+ 1

4(γ + δ)

]1
2

;

D(ss)
aa (α, β, γ, δ) = 2π

5
2

c(s)
α c(s)

β c(s)
γ c(s)

δ

(α+β)(γ +δ)(α+β+γ +δ)
1
2

. (94)

The same expression applies to D(ss)
bb (α, β, γ, δ).

D(pp)
bb (α, β, γ, δ)

=
∫
dr1dr2g2p(α, r1)g2p(β, r1)r

−1
12 g2p(γ, r2)g2p(δ, r2)

= c(p)
α c(p)

β c(p)
γ c(p)

δ

∫
dr1dr2 cos2 θ1r

2
1 e

−(α+β)r21
(
r−1
12

)
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Table 6 Matrix elements for the perturbation operator

|A1s〉 |B1s〉 |B2s〉 |B2pz 〉

〈A1s | 0 J (s)
ab (αi,1s , α

′
j,1s; d) J (s)

ab (αi,1s , α j,2sp; d) J (p)
ab (αi,1s , α j,2sp; d)

〈B1s | J (s)
ab (αi,1s , α

′
j,1s; d) 0 0 J (ps)

bb (α′
i,1s , α j,2sp; d)

〈B2s | J (s)
ab (αi,1s , α j,2sp; d) 0 0 J (ps)

bb (αi,2sp, α j,2sp; d)

〈B2pz | J (p)
ab (αi,1s , α j,2sp; d) J (ps)

bb (α′
i,1s , α j,2sp; d) J (ps)

bb (αi,2sp, α j,2sp; d) 0

Table 7 Equations specifying
matrix elements of Table 6

Matrix elements Equation Matrix elements Equation Matrix elements Equation

J sab(α, β; d) (83) J p
ab(α, β; d) (90) J ps

bb (α, β; d) (80)

× cos2 θ2r
2
2 e

−(γ+δ)r22

= c(p)
α c(p)

β c(p)
γ c(p)

δ

∫
dk

(2π)3

{[
k

2(α+β)

]2 [2(α+β)

k2
−cos2 θk

]

×
(

π

α + β

)3
2
exp

(
− k2

4(α + β)

)}
×
[
4π

k2

]

×
{[

k

2(γ + δ)

]2[2(γ +δ)

k2
−cos2θk

](
π

γ +δ

)3
2

× exp

(
− k2

4(γ +δ)

)}
,

where we used the Fourier transform result (85). The calcu-
lation of such integrals finally yields:

D(pp)
bb (α, β, γ, δ)

= c(p)
α c(p)

β c(p)
γ c(p)

δ

π
5
2

[(α + β)(γ + δ)]2
1

(α+β+γ +δ)
1
2

×
{
− 1

12
+ 6

5

(α + β)(γ + δ)

(α + β + γ + δ)2

}
. (95)

In the calculation of exchange-type integrals,

D(spE)
bb (α, β, γ, δ)

=
∫

dr1dr2g1s(α, r1)g2p(β, r1)
(
r−1
12

)
g1s(γ, r2)

× g2p(δ, r2) = c(s)
α c(p)

β c(s)
γ c(p)

δ

×
∫

dr1dr2 cos θ1r1e
−(α+β)r21

1

r12
cos θ2r2e

−(γ+δ)r22

= c(s)
α c(p)

β c(s)
γ c(p)

δ

×
∫

dk
(2π)3

[
i cos θk

kπ
3
2

2(γ + δ)
5
2

exp

(
− k2

4(γ + δ)

)]

×
[
4π

k2

][
i cos θk

kπ
3
2

2(α + β)
5
2

exp

(
− k2

4(α + β)

)]
,

where we used the Fourier transform (55). The calculation
of the integral finally yields:

D(spE)
bb (α, β, γ, δ) = π

5
2

c(s)
α c(p)

β c(s)
γ c(p)

δ

3(α + β)(γ + δ)(α+β+γ +δ)
3
2

.

(96)

For the Coulomb-type integrals,

D(spC)
bb (α, β, γ, δ) =

∫
dr1dr2g1s(α, r1)g1s(β, r1)r

−1
12

× g2p(γ, r2)g2p(δ, r2)

= c(s)
α c(s)

β c(p)
γ c(p)

δ

π
5
2

(α + β)(γ + δ)2(α + β + γ + δ)
1
2

×
[
1 − 2

3

α + β

α + β + γ + δ

]
. (97)

Passing now to the discussion of two-center integrals, we
beginwith the exchange-type ones, involving the s functions
on both centers:

D(ssE)
ab (α, β, γ, δ; d) =

∫
dr1 dr2g1s(α, r1 − d)g1s(β, r1)

× 1

|r1 − r2|g1s(γ, r2 − d)g1s(δ, r2)

=
∫

dr1 dr2 f1(r1) f2(r12) f3(r2), (98)

where

f1(r1) = g1s(α, r1 − d)g1s(β, r1) ,

f2(r12) = 1

|r1 − r2| ,

f3(r2) = g1s(γ, r2 − d)g1s(δ, r2) .

Following (Szabo and Ostlund (2012), “Appendix A”),
we first express products of Gaussian functions occurring

123



C. Tavares et al.

Ta
bl
e
8

M
at
ri
x
el
em

en
ts
of

tw
o-
el
ec
tr
on

in
te
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ct
io
ns

|A
1s

〉
|B

1s
〉

|B
2s

〉
|B

2
p
〉

〈A
1s

|
D

(s
s)

aa
(α

i,
1s

,
α
j,
1s
,

α
k,
1s

,
α
l,
1s

)

D
(s
sE

)
ab

(α
i,
1s

,
α

′ j,
1s

,

α
k,
1s

,
α

′ l,
1s

;d
),

D
(s
sC

)
ab

(α
i,
1s

,
α
j,
1s

,

α
′ k,
1s

,
α

′ l,
1s

;d
)

D
(s
sE

)
ab

(α
i,
1s

,
α
j,
2s
p
,

α
k,
1s

,
α
l,
2s
p
;d

),

D
(s
sC

)
ab

(α
i,
1s

,
α
j,
1s

,

α
k,
2s
p
,
α
l,
1s
p
;d

)

D
(s
p
E

)
ab

(α
i,
1s

,
α
j,
2s
p
,

α
k,
1s

,
α
l,
2s
p
;d

),

D
(s
pC

)
ab

(α
i,
1s

,
α
j,
1s

,

α
′ k,
2s
p
,
α
l,
2s
p
;d

)

〈B
1s

|
D

(s
s)

bb
(α

′ i,
1s

,
α

′ j,
1s

,

α
′ k,
1s

,
α

′ l,
1s

)

D
(s
s)

bb
(α

′ i,
1s

,
α
j,
2s
p
,

α
′ k,
1s

,
α
l,
2s
p
;d

),

D
(s
s)

bb
(α

′ i,
1s

,
α

′ k,
1s

,
α
j,
2s
p
,

α
′ l,
2s
p
;d

)

D
(s
p
E

)
bb

(α
′ i,
1s

,
α
j,
2s
p
,

α
′ k,
1s

,
α
l,
2s
p
;d

),

D
(s
pC

)
bb

(α
′ i,
1s

,
α

′ j,
1s

,

α
k,
2s
p
,
α
l,
2s
p
;d

)

〈B
2s

|
D

(s
s)

bb
(α

i,
2s
p
,
α
j,
2s
p
,

α
k,
2s
p
,
α
l,
2s
p
)

D
(s
p
E

)
bb

(α
i,
2s
p
,
α
j,
2s
p
,

α
k,
2s
p
,
α
l,
2s
p
;d

),

D
(s
pC

)
bb

(α
i,
2s
p
,
α
j,
2s
p
,

α
k,
2s
p
,
α
l,
2s
p
;d

)

〈B
2
p
|

D
(
p
p)

bb
(α

i,
2s
p
,
α
j,
2s
p
,

α
k,
2s
p
,
α
l,
2s
p
)
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in f1(r1) and f3(r2) as other Gaussian. Normalization con-
stants will be ignored at this step; they will be introduced in
the final results. The integral in (98) becomes:

M
∫

dr1 dr2e−p(r−Rp)
2 1

r12
e−q(r−Rq )2 , (99)

where

Rp = α

p
d, Rq = γ

q
d, p = α + β, q = γ + δ , and

M = exp

(
−
[

αβ

α + β
+ γ δ

γ + δ

]
d2
)

. (100)

Now we can use Fourier transform for each factor in the
integral (99):

f1(k) =
(

π

p

)3
2
exp

(
− k2

4p
− i(k · Rp)

)
; f2(k) = 4π

k2
;

f3(k) =
(

π

q

)3
2
exp

(
− k2

4q
− i(k · Rq)

)
. (101)

The integrals over r1 and r2 introduce two δ-functions of
k and remove two integrations over different k-vectors that
appear after substituting the Fourier integrals into (99), so
we obtain:

D(ssE)
ab (α, β, γ, δ; d) = c(s)

α c(s)
β c(s)

γ c(s)
δ

πM

2(pq)
3
2

×
∫

dk
k2

exp

(
− p + q

4pq
k2 + ik · (Rp − Rq)

)

= c(s)
α c(s)

β c(s)
γ c(s)

δ

πM

2(pq)
3
2

4π

∞∫

0

j0(kRz) exp

(
− p + q

4pq
k2
)
dk

= c(s)
α c(s)

β c(s)
γ c(s)

δ

π3M

(pq)
3
2

erf

[√
pq

p + q
· Rz

]
, (102)

where Rz = |Rp − Rq |.
The two-center s-s Coulomb-type integrals read:

D(ssC)
ab (α, β, γ, δ; d)=

∫
dr1dr2g1s(α, r1−d)g1s(β, r1−d)

× 1

|r1 − r2|g1s(γ, r2)g1s(δ, r2) . (103)

We can use here the previous result with Rp = d, Rq = 0

and M → exp

(
− αβ

α + β
d2
)
. Explicitly, we have:

D(ssC)
ab (α, β, γ, δ; d) = c(s)

α c(s)
β c(s)

γ c(s)
δ

π3

[(α + β)(γ + δ)] 32

× exp

(
− αβ

α+β
d2
)

× erf

[√
(α + β)(γ + δ)

α+β+γ +δ
d

]
.

(104)

The two-center exchange-type integrals involving s and p-
functions are:

D(spE)
ab (α, β, γ, δ; d) =

∫
dr1dr2g1s(α, r1 − d)g2p(β, r1)

× 1

|r1 − r2|g1s(γ, r2 − d)g2p(δ, r2)

=
∫

dr1dr2 f1(r1) f2(r12) f3(r2), (105)

where:

f1(r1) = g1s(α, r1 − d)g2p(β, r1),

f2(r12) = 1

|r1 − r2| ,
f3(r2) = g1s(γ, r2 − d)g2p(δ, r2).

Now we shall use Fourier transform in the integral (105):

f1(k) =
∫

r1 cos θ1e
−p(r1−Rp)

2−ik·r1dr1

= 1

Rp
e−ik·Rp

×
[∫ [

(r1 − Rp) · Rp
]
e−p(r1−Rp)

2−ik·(r1−Rp)dr1

+R2
p

∫
e−p(r−Rp)

2−ik·(r1−Rp)dr1

]

= e−ik·Rp
[ ∫

r cos θe−pr2−i(k·r)dr

+Rp

∫
e−pr2e−ik·rdr

]

= e−ik·Rp

[
i cos θk

π
3
2 k

2p
5
2

exp

(
− k2

4p

)

+Rp
π

3
2

p
3
2

exp

(
− k2

4p

)]
,

where we have used the result (75)

= e−ik·Rp
π

3
2

p
3
2

[
i cos θk

(
k

2p

)
+ Rp

]
exp

(
− k2

4p

)
.

(106)

As before,

f2(k) = 4π

k2
, and
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f3(k) = e−ik·Rq
π

3
2

q
3
2

[
−i cos θk

(
k

2q

)
+ Rq

]
exp

(
− k2

4q

)
.

(107)

Substituting this into (105),

D(spE)
ab (α, β, γ, δ; d) = c(s)

α c(p)
β c(s)

γ c(p)
δ 4π M

π3

(pq)
3
2

×
∫

dk
(2π)3

{[
Rp + i cos θk

( k

2p

)]

×
[
Rq − i cos θk

( k

2q

)] 1
k2

exp
[(

− 1

4q
+ 1

4p

)
k2
]}

(108)

= c(s)
α c(p)

β c(s)
γ c(p)

δ M
π

2(pq)
3
2

×
∫

dk
k2

[
RpRq + i

( Rq

p
− Rp

q

)k
2
cos θk

+ k2

4pq
cos2 θk

]

× exp
(
− p + q

4pq
k2 + ik · (Rp − Rq)

)

= c(s)
α c(p)

β c(s)
γ c(p)

δ M
π

2(pq)
3
2

(
I1 + I2 + I3

)
, (109)

where I1, I2, I3 are given by the following expressions:

I1 = RpRq

∞∫

0

[ 1∫

−1

eik(Rp−Rq ) cos θk d cos θk

]

× exp

(
− p + q

4pq
k2
)
dk

= RpRq

∞∫

0

j0(kRz) exp

(
− p + q

4pq
k2
)
dk

= RpRq

Rz

∞∫

0

j0(x)e
−sx2dx = π

2

RpRq

Rz
erf

[
1

2
√
s

]
,

(110)

with Rz = |Rp − Rq | and s = p + q

4pqR2
z
;

I2 = 1

2
i

(
Rp

p
− Rq

q

)

×
∞∫

0

[ 1∫

−1

d cos θk cos θk e
ik(Rp−Rq ) cos θk

]
k

× exp

(
− p + q

4pq
k2
)
dk

= Rqq − Rp p

pqR2
z

∞∫

0

j1(x)xe
−sx2dx

= Rqq − Rp p

pqR2
z

{√
π

4s
exp

(
− 1

4s

)
− π

2
erf

(
1

2
√
s

)}
;

(111)

I3 = 1

16pq

∞∫

0

[ 1∫

−1

d cos θk cos2θk e
ik(Rp−Rq ) cos θk

]
k2

× exp

(
− p + q

4pq
k2
)
dk

= 1

8pqR3
z

∞∫

0

[
− j2(x) − j1(x)

x

]
e−sx2x2dx

=
√

π

8pqR3
z

[
1 + 4s

4s
3
2

exp

(
− 1

4s

)
− √

π erf

(
1

2
√
s

)]
.

(112)

Thus, D(spE)
ab is given by (109) where M is given by (100),

p = α +β, q = γ + δ; I1, I2 and I3 are given by Eqs (110)–

(112), Rz = |Rp − Rq |, Rp = α

p
d, Rq = γ

q
d and s =

p + q

4pqR2
z
.

Finally, the evaluationof theCoulomb-type integrals between
s and p functions at different sites proceeds as follows:

D(spC)
ab (α, β, γ, δ; d)

=
∫

dr1dr2g1s(α, r1 − d)g1s(β, r1 − d)

× 1

|r1 − r2|g2p(γ, r2)g2p(δ, r2)

=
∫

r1dr2 f1(r1) f2(r12) f3(r2), (113)

where

f1(r1) = g1s(α, r1 − d)g1s(β, r1 − d),

f2(r12) = 1

|r1 − r2| ,
f3(r2) = g2p(γ, r2)g2p(δ, r2) .

The Fourier transforms of these functions are:

f1(k) = exp

(
− αβ

α + β
d2
)(

π

p

)3
2
exp

(
− k2

4p
− ik · d

)
,

f2(k) as in (50),
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Table 9 Equations specifying matrix elements of Table 8

Matrix elements Equation Matrix elements Equation

D(ss)
aa (94) D(ssE)

ab (102)

D(ssC)
ab (104) D(spE)

ab (109)–(112)

D(spC)
ab (115) D(spE)

bb (96)

D(spC)
bb (97) D(pp)

bb (95)

f3(k) =
∫

eik·rr2 cos2 θe−(γ+δ)r2dr

=
(
k2

2q

)2
1

k2

[
2q

k2
− cos2 θk

](
π

q

)3
2
exp

(
− k2

4q

)
, (114)

as it has been calculated before, Eq. (85). Therefore,

D(spC)
ab = c(s)

α c(s)
β c(p)

γ c(p)
δ exp

(
− αβ

α + β
d2
)

×
∫

dk
(2π)3

ei(k·d)

(
π

p

)3
2

× exp

(
− k2

4p

)
× 4π

k2

(
π

q

)3
2
exp

(
− k2

4q

)

× 1

2q

[
1 − k2

2q
cos2 θk

]

= π3

(pq)
3
2

2π

q

1

(2π)3
exp

(
− αβ

α + β
d2
)[

X1 + X2
]
,

with

X1 =
∫

dk
k2

exp

(
i(k · d) − k2

4p
− k2

4q

)

= 2π2

d
erf

(√
pq

p + q
d

)
,

X2 = −
∫

dk
k2

ei(k·d) k
2

2q
cos2 θk exp

(
− p + q

4pq
k2
)

= 2π

qd3

[√
π
1 + 4s

4s
3
2

exp

(
− 1

4s

)
− π erf

(
1

2
√
s

)]
,

where s = p + q

4pqd2
. Finally, we obtain:

D(spC)
ab = c(s)

α c(s)
β c(p)

γ c(p)
δ exp

(
− αβ

α + β
d2
)

×
[

π3

2p
3
2 q

5
2 d

(
1 − 1

qd2

)
erf

(√
pq

p + q
d2
)

+ π
5
2

(p + q)
3
2 q2

(
1 + p + q

pqd2

)
exp

(
− pq

p + q
d2
)]

.
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The equations according to which the matrix elements sum-
marized in Table 8 are calculated are given in Table 9.
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