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Abstract. In this paper, we explore and compare three recently pro-
posed Automated Machine Learning (AutoML) tools (AutoGluon, H2O,
Oracle AutoMLx) to create a single regression model that is capable
of predicting smart city energy building consumption values. Using a re-
cently collected one year hourly energy consumption dataset, related with
29 buildings from a Portuguese city, we perform several Machine Learn-
ing (ML) computational experiments, assuming two sets of input features
(with and without lagged data) and a realistic rolling window evalua-
tion. Furthermore, the obtained results are compared with a univariate
Time Series Forecasting (TSF) approach, based on the automated FE-
DOT tool, which requires generating a predictive model for each building.
Overall, competitive results, in terms of both predictive and computa-
tional effort performances, were obtained by the input lagged AutoGluon
single regression modeling approach.

Keywords: Automated Machine Learning · Smart Cities · Regression.

1 Introduction

Due to advances in Information Technology (IT) and Artificial Intelligence (AI),
nowadays it is easy to collect, store and process data that reflect relevant phe-
nomena within the context of smart cities [13]. In particular, the efficient and
environmentally responsible use of energy resources has become an important
concern of smart cities decision makers, which aim to create ecological and sus-
tainable environments for its citizens. Following this need, several works have
been proposed regarding the usage of ML to predict energy consumption and de-
mand, aiming to improve energy efficiency and sustainability [15,16,11,14,20,7].

In this paper, as a real-world demonstration use case, we address the predic-
tion energy consumption of several buildings from a Portuguese city. Following
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a typical smart city context, energy consumption data is collected on a regular
basis with an associated timestamp, thus its prediction can be addressed as a
univariate Time Series Forecasting (TSF) task [12]. However, this TSF approach
implies modeling each building separately, which can lead to a vast amount of
forecasting models (one for each building), increasing the difficulty of ML model
maintenance and monitoring. A different approach is to use a single regression
model capable of predicting the energy consumption of any building, increasing
the learning task difficulty but simplifying the ML deployment phase, since only
one model is maintained.

Regarding the related works, the usage of a single regression building en-
ergy prediction model approach is a recent trend (e.g., [14,17,7]). Nevertheless,
the majority of these related works do not adopt an Automated ML (AutoML)
model selection and tuning. AutoML is particularly valuable for smart cities,
allowing non-experts to more easily create and maintain ML predictive models
[13]. In effect, the related works typically adopt a manual tuning of ML algo-
rithms, performing some trial-and-error comparison performances on a particular
dataset. Within our knowledge, there are only two studies that have employed
AutoML tools for building energy consumption prediction, addressing this goal
as a regression [19] or TSF [12] tasks. Yet, in these two studies, the authors have
modeled each building separately, resulting in one ML model for each building.
In contrast, in this work we target a single energy consumption prediction ML
model for all buildings. In particular, we empirically compare 3 distinct and
recent AutoML tools (AutoGluon, H2O, Oracle AutoMLx), using two sets of
input features. The comparison assumes both predictive and computational ef-
fort performances measures, under a realistic and robust rolling window scheme
[18]. Moreover, we also compare the single AutoML regression approach with
an individual building ML modeling, obtained by using the FEDOT Automated
TSF (AutoTSF) tool [12].

The remainder of the paper is organized as follows. Section 2 presents the
related work. Then, Section 3 describes the datasets used, the AutoML and
AutoTSF tools and the adopted evaluation procedure. Next, Section 4 presents
and discusses the obtained empirical results. Finally, Section 5 presents the main
conclusions and future work directions.

2 Related Work

Most related studies address the energy consumption prediction using one of the
following approaches: 1) build a ML model to each building for which they want
to predict future consumption [12,20,19]; or 2) model all public building using a
single, and consequently more complex, ML model [3,15,4,14,17,7]. In most cases,
the former approach involves having dozens or hundreds of models, increasing the
complexity of ML deployment and monitoring tasks. Nevertheless, modeling the
pattern from a specific building can simplify the training process and potentially
lead to better predictions. On the other hand, the latter single model approach
simplifies the deployment phase. For the multiple learning models approach,
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the previous works assumed an univariate TSF [12] or a regression task [20,19].
Regarding the single model approach, most works address assume a regression
task (e.g., [17,7]).

In terms of the modeling phase, most of related works perform the ML model
selection process manually, by implementing and comparing several ML algo-
rithms [20,15]. Given the extensive set of models used in previous studies, in
[16], the authors proposed a framework for selecting the most appropriate ML
model for energy consumption prediction, based on multiple factors (e.g., size
of dataset, number of attributes). Regarding the ML algorithms, the relevant
recent studies that assumed regression tasks used: Artificial Neural Networks
(ANN) [17,20,15,1,3], including Long Short-Terms Memory (LSTM) ANN [7];
Decision Trees (DT) [7,3]; Support Vector Machines (SVM) [7,17,20,15,3]; K-
Nearest Neighbours (kNN) [17,3]; Linear Regression (LR) [20,15]; Ridge [3]; and
Ensemble methods [3], including Random Forest (RF) [20,14], eXtreme Gradi-
ent Boosting (XGBoost) and Adaptative Boosting (Adaboost) [15]. It should be
noted that all these research studies performed a ML algorithm selection without
tuning its hyperparameters, thus no hyperparameter selection was executed.

In a different approach, in [12,19] the authors applied AutoML algorithms
for data preprocessing, model selection and tuning. AutoML compares several
algorithms with different hyperparameters values, returning the configuration
with the best predictive performance. Recent studies have shown the value of
these algorithms in the smart cities domain [13]. In particular, Wang et. al
[19] apply two AutoML algorithms, namely auto-sklearn and TPOT, for electric
load forecasting, comparing them with LR, RF, SVM, XGBoost and Gradient
Boost Machines (GBM) using two different datasets. The data was modeled as
a regression task and the TPOT algorithm presented the best overall results.
In another study [12], the authors tested several Automated TSF (AutoTSF)
algorithms under 9 time-series smart cities open datasets, 3 of which were re-
lated to energy consumption. The best overall results were achieved by FEDOT
framework. Yet, both these studies using automated approaches modeled each
building separately.

In this paper, we address the building energy consumption prediction task
by using automated modeling tools, implementing and comparing two different
approaches: 1) modeling all buildings with a single regression model, comparing
3 different and popular AutoML tools: AutoGluon, H2O and Oracle AutoMLx;
and 2) modeling each building separately, using the AutoTSF FEDOT tool that
provided the best overall results in [12]. Within our knowledge, this is the first
study comparing these different approaches based on automated tools for model
selection and tuning. To evaluate our models, we used a real-world dataset of
energy consumption from 29 buildings from a Portuguese city. Furthermore, we
employ a robust Rolling Window evaluation procedure [18] with statistical tests
to validate our results.
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3 Materials and Methods

3.1 Data

In this work, we explore energy consumption data that was provided by a Por-
tuguese company. Due to commercial privacy concerns, several data details (e.g.,
geographic location, specific time stamps or individual energy consumption val-
ues) are not disclosed. The data were recently collected, corresponding to around
one year of records. In total, we had access to 29 distinct energy consumption
files, each including the consumption values from a public building that were
recorded every 15 minutes during the collected time period. The data records
contained several attributes, including the building unique delivery point iden-
tifier, the consumption time and date and the average energy consumed in kW.
It is worth noting that the data correspond to the energy consumption of spe-
cial low voltage connection, that is, buildings with contracted power equal to
or less than 45 kVA, which are associated with small buildings or residential
customers. Additionally, a supplementary dataset was provided, containing spe-
cific information about the buildings, namely the address, typology (e.g., school,
administrative, cultural, parking lot, civil protection), useful area in m2, year of
construction and the delivery point identifier.

In terms of data preprocessing, the 29 energy consumption files were firstly
integrated into a single Comma-Separated Values (CSV) file. Then, we merged
the additional building attributes (provided in the supplementary dataset) into
the same CSV file. Next, following a feedback that was obtained from the private
company experts, the 15 minute values were aggregated into an hourly scale, by
summing four consecutive consumption values for each building. Then, aiming to
improve the predictive performance of the ML models, we generated three new
lagged inputs, related to energy consumption values for the same building, as
recorded in three distinct time periods: the previous hour; the previous day at the
same hour; and the previous week at the same hour. The rationale of the lagged
inputs is to allow an autoregressive ML modeling for the regression approach,
as typically performed by univariate TSF models [12]. To verify the impact of
the lagged attributes, we designed two input feature scenarios, described on
Table 1. Scenario A includes only features related to the time and hour of the
targeted energy consumption and contextual building information, while scenario
B complements these inputs with the three additional lagged energy consumption
values. It should be noted that Scenario B does not require a large storage of
historical data to perform predictions on new buildings (only one week of data
is needed).

3.2 AutoML Methods

As previously explained, in this work we explore two main ML approaches to pre-
dict energy consumption data: regression, assuming a single prediction model
that is capable of predicting the hourly energy consumption for all buildings;
and pure univariate TSF, generating an individual prediction model for each
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Table 1. List of analyzed data attributes.

Context Name Description Scenarios

Time Hour Consumption time. A,BWeekday Day of the week of consumption.

Building Typology

Building type, one of the 6 levels
{administrative, cultural, school,
parking lot, civil protection, oth-
ers}).

A,B

Useful area Building floor area (in m2).

Energy

Previous hour Consumption in the previous hour.

B
Previous day Consumption in the previous day

and same hour.
Previous weekday Consumption in the previous

weekday and same hour.

Target Consumption Energy consumption(in kW). –

building (total of 29 models). For both approaches, we selected automated tools
for the model selection and hyperparameter tuning.

The tool selection for the regression approach, is based on our previous work,
published in 2023 [13], in which we developed an AutoML platform for smart
cities (AI4CITY) that automatically creates full ML pipelines, choosing data
preprocessing steps and AutoML tools based on the data characteristics and the
ML task. The AI4CITY plaform makes use of H2O and AutoGluon AutoML
search engines. In [13], it was shown that the automatic AI4CITY ML pipelines
produced better results for 15 of the 26 analyzed smart city datasets when com-
pared with the direct usage of the H2O and AutoGluon tools. Following this
result, in this paper we adopt the AI4CITY tool under two variants, where the
AutoML is executed using the H2O or AutoGluon algorithms. Additionally, by
requirement of the private company that provided the data, we also explore the
recently proposed Oracle AutoMLx tool [21] for the regression ML approach and
that works under a computational cloud infrastructure. Regarding the univari-
ate TSF approach, a recent study compared 8 distinct AutoTSF open-source
tools under 9 smart city time series, 3 of which were related to energy consump-
tion [12]. The FEDOT tool presented the best overall results and, therefore, we
selected it for our TSF experimentation.

In terms of ML models tested by each AutoML tool, we used the default
settings (in order to achieve an unbiased comparison). When available in the
tool documentation, we detail the searched ML algorithms and the number of
hyperparameters (H) tuned by the AutoML:

– H2O – Generalized Linear Model (GLM) (H = 1), RF (H = 0), Extremely
Randomized Trees (XRT) (H = 0), GBM (H = 8), XGBoost (H = 9), Deep
Learning Neural Network (DLNN) (H = 7) and two Stacked Ensembles (all
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– uses all base learners; and best – uses the best model per searched ML
algorithm, total of 6 individual models). The Stacked Ensembles adopt a
second-level GLM learner that weights the individual base learner predic-
tions.

– AutoGluon – assumes the tabular prediction feature, which first executes
several ML algorithms under a default hyperparameter grid search: GBM
(H = 2), CatBoost Boosted Trees (H = 0), RF (H = 1), Extra Trees
(H = 1), kNN (H = 1), and a DLNN (H = 0). Then, a Stacked Ensemble is
created and returned as the global prediction model. The Stacked Ensemble
works as special DLNN, in which the individual ML models are stacked in
multiple layers and trained in a layer-wise manner, such as detailed in [6].

– Oracle AutoMLx – AdaBoost (H = 2), DT (H = 4), Extra Trees (H = 6),
ANN, kNN (H = 2), Light GBM (H = 9), Linear SVM (H = 2), LR (H = 3),
RF (H = 4), SVM (H = 3), and XGBoost (H = 8).

As for the automatic preprocessing, both AI4CITY and Oracle AutoMLx use
standard z-score scaling for numeric features and one-hot encoding for the cate-
gorical attributes (generation of binary value for each categorical level). However,
the Oracle tool uses a maximum limit of 5 unique levels, after which a label en-
coding is applied, instead of one hot encoding. On the other hand, AI4CITY
sets this limit as 50, after which the Inverse Document Frequency (IDF) trans-
formation is applied. In the analyzed building energy consumption dataset, the
typology attribute is the only categorical feature, with 6 unique values. Con-
sequently, AI4CITY applies one hot encoding transformation to this column,
while Oracle AutoML applies a label encoding. Lastly, for the univariate TSF
approach, no preprocessing is applied to the dataset by the AI4CITY tool, thus it
directly feeds the time series data into the FEDOT AutoTSF tool. Furthermore,
to ensure a fair comparison between these tools, we used all AutoML search de-
fault values, except for two aspects. Firstly, the maximum execution time was set
to 60 minutes, in order to prevent an excessive computational execution time.
Secondly, all default internal cross validation procedures were disabled, being
replaced by an internal time ordered holdout split scheme, since time matters in
this domain, i.e., all prediction models should be trained using older data and
validate or tested using more recent data records [18].

3.3 Evaluation

In order to develop a realistic and robust comparison, a Rolling Window (RW)
procedure was developed to simulate several training and testing iterations over
time [18,5]. The RW iteratively trains the ML models, using a window W of
the oldest data observations, to perform H-ahead predictions. Then, for the
next iteration, the window rolls a step of S, by discarding the S oldest data
observations from the training data and updating it with the S newest records,
during a total of U iterations. In this work, aiming to achieve a reasonable
amount of U = 20 iterations, we have set W = 5, 760 hours (approximately 8
months) and H = 24 hours (corresponding to one day), while S = 144 hours
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(6 days) was calculated according to the formula S = D − (W +H)/U , where
D = 8, 760 hours is the length of the full dataset. For a particular RW iteration,
for the AutoML tools (Gluon, H2O and Oracle), the available training data is
further split by using a time ordered holdout split method, producing validation
(with V =12 most recent records, corresponding to half a day) and and fitting
(with the remainder older examples). The fitting set is used to train the ML
models, while the validation set is used to rank the ML algorithms and guide
the AutoML search. As for the FEDOT tool, we used its default internal time
series validation scheme, similarly to the setup adopted in [12].

Both the predicted performance and the computing effort required by the Au-
toML tools were taken into consideration during the evaluation process. To mea-
sure the accuracy of a predictive model, we use two popular regression measures,
namely the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE).
To evaluate the computational effort, two temporal measures were used, namely
the time to train the model (in minutes) and the test time (in milliseconds). The
results that are shown in the next section correspond to the median values of
the U = 20 RW iteration executions. We used the median aggregation function
since it is less sensitive to outliers when compared with the average function.
Regarding the specific FEDOT tool, it performs a pure TSF modeling for each
of the 29 buildings, thus generating 29 distinct forecasting models. The FEDOT
results were thus aggregated by first computing the median of the U = 20 RW
iterations for each individual TSF model and then computing the overall median
for all buildings. Statistical significance is measured by using the nonparametric
Wilcoxon test [9].

4 Results

All experiments were executed using code written using the Python programming
language. The FEDOT, H2O, and AutoGluon computational experiments were
executed using a Linux virtual machine with 12 cores and 64 Gb of RAM. As for
the Oracle AutoMLx, the tool license we had access only runs in a cloud system
with 16 Gb of RAM and a VM.Standard.E4.Flex computational environment
which includes one GPU.

The overall results are presented in Table 2, in terms of the median values
of the U = 20 RW iterations. From the table, it becomes clear that scenario B
performance values are much improved, demonstrating the importance of time-
dependent (lagged) factors. For the B scenario, the Gluon model obtained the
most accurate prediction measures, exhibiting MAE and RMSE values of 3.38
kW and 7.57 kW, followed by H2O and Oracle. As for the computational ef-
fort, the Oracle tool provided the most computationally efficient results. Yet, it
should be noted that the Oracle results were obtained by using a different (and
better) computational cloud infrastructure. Thus, the computational measures
cannot be directly compared with the ones obtained by Gluon and H2O. When
using the same computational environment, Gluon required less computational
effort, in terms of both training and prediciton times, when compared with the
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H2O tool and for both scenarios (A and B). Regarding FEDOT, which performs
the pure TSF modeling approach, the obtained predictive performance values
are significantly worse (for both MAE and RMSE) when compared with all sce-
nario B AutoML executions. As for the computational effort, FEDOT requires
a median computational effort (when modeling just one building) that is higher
when compared with the AutoML tools. This is a relevant issue, since the actual
FEDOT running time for all buildings 29 times higher (e.g., the total FEDOT
RW median training time for all 29 buildings is around 2,175 minutes). Thus,
considering the obtained results, it becomes clear that the usage of a single re-
gression model for scenario B is the best energy consumption modeling approach,
since it produces a single ML model that requires less computation and provides
better predictive performances.

Table 2. Comparison of results (median RW values; best values in bold).

Scenario ML MAE RMSE Train Time Prediction
Model (kW) (kW) (min) Time (ms)

A
Gluon 14.33 25.56 27.0 0.39
H2O 15.56 27.63 60.0 1.23
Oracle 14.11 25.76 1.0 0.02

B
Gluon 3.38? 7.57 42.0 0.83
H2O 3.51† 7.81 60.0 1.15
Oracle 3.60† 9.26 9.0 0.11

TSF FEDOT 6.89 15.96 75.0 12.99

? – Statistically significant under a paired comparison with all other methods.
† – Statistically significant under a paired comparison with FEDOT.

Further scenario B result comparison details are provided in Table 3, which
shows the median values of the predictive performance measures for each tool
and building typology type, comparing the AutoML results with the FEDOT
tool. The last row shows the average values, when considering all six building
types. Overall, Table 3 favors the Gluon tool, which obtains the best median
MAE values for 4 building types (Schools, Parking lots, Civil Protection, and
Others) and the best median RMSE values for 3 types (Administrative, Parking
lots and Civil protection), while also presenting the lowest average (last row)
MAE (5.68 kW) and RMSE (9.83 kW) values. In terms of the distinct Gluon
performances, the predictive errors are substantially higher for the parking lots
(median MAE of 12.66 kW), civil protection (9.13) and administrative buildings
(6.58 kW). In contrast, high quality predictions were obtained for the cultural
buildings (median MAE of 0.90 kW), schools (2.44 kW) and others (2.38 kW).

For demonstration purposes, the left of Fig. 1 plots the median of the Re-
gression Error Characteristic (REC) curves [2] for all RW interactions with their
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Table 3. Comparison of results by building typology (median rolling window values;
best values in bold).

Typology Gluon H2O Oracle FEDOT
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Administrative 6.58 15.64 6.97 18.20 6.53 15.89 18.61 35.48
Cultural 0.90 1.29 0.83 1.25 0.96 1.40 1.26 1.96
Schools 2.44 4.49 2.45 4.24 2.46 4.27 5.10 9.21
Parking lots 12.66 20.37 14.61 22.95 13.32 20.68 20.79 27.52
Civil protection 9.13 13.63 10.39 15.11 13.17 17.58 16.50 20.35
Others 2.38 3.54 2.71 3.78 2.44 3.51 4.68 5.88

Average 5.68 9.83 6.33 10.92 6.48 10.56 11.16 16.73

respective Wilcoxon 95% confidence intervals. For all absolute tolerance values
(x-axis) the Gluon results are significantly better when compared with FEDOT.
For instance, when assuming a tolerance of 5 kW, Gluon correctly predicts 80%
of the records while FEDOT only predicts 60%. The middle of Fig. 1 exemplifies
the quality of the obtained Gluon forecasts for the last RW U = 20 iteration and
one administrative building. Finally, the right of Fig. 1 plots the full RW Gluon
results in terms of a regression scatter plot (x−axis denotes the target values
and y−axis represents the predictions). The predictions, shown in terms of blue
colored points, are close to the perfect prediction diagonal line.
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Fig. 1. RW median REC curve with Wilcoxon 95% confidence intervals (left), example
of Gluon predictions for an Administrative building (middle) and Gluon RW regression
scatter plot results (right).

Additionally, we performed an explainable AI (XAI) analysis by applying
the SHapley Additive exPlanation (SHAP) method [10] (as implemented in the
shap Python package) on the best ML model obtained by Gluon in the last RW
iteration, which was a Weighted Ensemble (see Section 3.2). Fig. 2 presents the
top 5 features in terms of their importance (left) and the SHAP values (right).
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Regarding the feature importance, the consumption from the previous hour is
the predominant attribute, with a relative importance of 55%, followed by the
consumption in the previous day and same hour (8%), the hour of consumption
(8%), the consumption in the previous weekday and same hour (7%) and the
building useful area (2%). These results prove the relevance of newly lagged engi-
neered features, since they correspond to 3 of the top 5 predominant attributes,
demonstrating the relevance of an autoregressive modeling. The right of Fig. 2
shows the overall impact of each input in the predicted result. As an example, a
decrease on the first input (consumption of the previous hour) reflects a decrease
on the predicted consumption (denoted by the blue dots).
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Fig. 2. Input importance for Gluon model (for iteration U = 20, left) and the impact
of its inputs in the predicted responses (right).

5 Conclusions

Set within the context of Smart Cities, this paper presents an AutoML com-
parison study for predicting the hourly energy consumption of public buildings.
Using a single regression modeling approach (for all buildings), we explore three
recently proposed AutoML tools: AutoGluon, H2O and Oracle AutoMLx. The
analyzed data was related with a one year collection period, related with 29
buildings from a Portuguese city. Several computational experiments were held,
assuming a realistic rolling window evaluation, two input sets (with and with-
out lagged attributes) and both predictive and computational effort measures.
Furthermore, we also tested a univariate TSF approach that generates a pre-
dictive model for each building, using the FEDOT AutoTSF tool. The best
overall results were obtained by the single regression AutoGluon lagged predic-
tive method, returning a median MAE value of 3.38 kilowatts and requiring a
reasonable computational effort. In future work, we intend to incorporate more
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building specific attributes, aiming to further improve the predictive results. We
also plan to explore other AutoML tools (e.g., TPOT, TransmogrifAI) [8].
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