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Abstract— Due to the recent pandemic and a general boom 
in technology, we are facing more and more threats of isolation, 
depression, fear, overload of information, between others. In 
turn, these affect our Self, psychologically and physically. 
Therefore, new tools are required to assist the regulation of this 
unregulated Self to a more personalized, optimal and healthy 
Self. As such, we developed a Pythonic open-source human-
computer framework for assisted priming of subjects to 
“optimally” self-regulate their Neurofeedback (NF) with 
external stimulation, like guided mindfulness. For this, we did a 
three-part study in which: 1) we defined the foundations of the 
framework and its design for priming subjects to self-regulate 
their NF, 2) developed an open-source version of the framework 
in Python, NeuroPrime, for utility, expandability and 
reusability, and 3) we tested the framework in neurofeedback 
priming versus no-priming conditions. NeuroPrime is a 
research toolbox developed for the simple and fast integration 
of advanced online closed-loop applications. More specifically, 
it was validated and tuned for the research of priming brain 
states in an EEG neurofeedback setup. In this paper, we will 
explain the key aspects of the priming framework, the 
NeuroPrime software developed, the design decisions and 
demonstrate/validate the use of our toolbox by presenting use 
cases of priming brain states during a neurofeedback setup.  

 

Keywords— Self-regulation, assisted neurofeedback, 
neurostimulation, mindfulness, open-source BCI, machine 
learning. 

I. INTRODUCTION  

Self-regulatory (SR) techniques of mental states are 
widely used in the clinical, professional, athletic and gaming 
fields, whether for therapeutic, performance or entertainment 
reasons. They include imagery training, music regulation, 
breathing, meditation, amongst others [1]–[3]. With the 
advancement of technologies, mechanistic approaches are 
increasing, such as the case of brain-machine interfaces (BCI) 
that utilize our ability to learn how to self-regulate brain states 

when provided with corrective feedback training [4]–[6]. This 
type of training is defined as neurofeedback training (NFT).  

It has been previously hypothesized that an “optimal” self-
regulation state is necessary to achieve greater performance in 
voluntary modulating Neurofeedback. In this state, the learner 
should be more: engaged; focused (mental focus); 
undistracted; mindful of the experiment. Reversely, the 
learner should avoid: self-related thinking (self-monitoring); 
ruminating; distracting and task-unrelated thoughts; irrelevant 
associations between internal states and external reward 
(doubts, questioning, evaluation of progress); mind wandering 
[7]–[9]. Additionally, current electrophysiological (EEG) 
literature relates the previous states with electrophysiological 
up-regulation of alpha rhythm or/and sensory-motor rhythm 
(SMR), but also with desynchronization of surrounding bands 
[1], [3], [10]–[13]. Based on these studies, we hypothesized 
that it would be possible to develop a “Neurofeedback assisted 
self-regulation BCI” that combined the technical, behavioral, 
psychological, emotional, and electrophysiological 
components of EEG BCIs, NFT and SR in a single framework. 
For this, we performed a three-part study, that will be further 
developed in this paper, in which: 1) we defined the 
foundations of the framework and its design for priming 
subjects to self-regulate their NF, 2) developed NeuroPrime, 
an open-source version of the framework in Python for utility, 
expandability and reusability, and 3) we tested and validated 
the framework in different designs.  

A. Related work 

In the last decade, Python has gained big traction in the 
scientific community, providing a multi-purpose language 
that is powerful, versatile, open-source and is easily 
programmable, competing directly with Matlab. NeuroPrime 
is a research toolbox developed for the simple and fast 
integration of advanced online closed-loop applications. As 
such, simplicity and reusability are the foundation of the 
NeuroPrime package, as is intended to be an open-source 
project to be used by the neuroscience community. It is also 
intended to be a BCI hub that evolves with a synthesis of the 
best packages the python community has to offer in terms of 
signal processing, signal presentation and signal acquisition. 
Therefore, one of the requirements is an easy and simple 
structure to update and connect new packages within the same 
simple design. 

The author was supported by Fundação Para a Ciência e Tecnologia 
(FCT) grant number PD/BD/114033/2015 (in the scope of the MIT PhD 
Program in Bioengineering Systems). This work has been partially supported 
by COMPETE: POCI-01-0145-FEDER-007043 and by FCT – Fundação 
para a Ciência e Tecnologia within the R&D Units Project Scope: 
UIDB/00319/2020. 
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NeuroPrime provides a complete BCI structure in Python. 
Currently, a great BCI Python toolbox exists like the 
combination of wyrm[14], mushu[15] and pyff[16] (that will 
be further discussed), NeuroPype (Intheon, San Diego, CA) 
and Neurodecode [17]. However, these tools have their 
structure and design complexities, demanding a learning 
curve. To meet the framework requirements and develop a 
research-friendly toolbox, the packages should be 
wrapped/encapsulated in a single BCI design and tuned to 
research the priming of brain states. 

B. Paper structure 

The paper is structured into four parts. The NeuroPrime 
overview, a brief description of the toolbox. The Framework 
foundations section, where we define the theoretical 
foundations of the priming framework propelling the 
development of NeuroPrime. The Framework design section, 
that builds upon the theoretical foundations to establish our 
framework. Finally, the Framework & toolbox validation, 
where we tested the framework in two different temporal 
experiment designs. 

II. NEUROPRIME OVERVIEW 

NeuroPrime was built from the ground up on Python and 
is free- and open-source software licensed under the terms of 
the GNU General Public License. This was achieved by 
synthesizing and using the best parts, we extensively tested, 
from specific BCI and EEG modules, for signal acquisition, 
signal processing/classification and signal presentation 
(diagram in Fig. 1). Signal Acquisition: pycorder (Brain 
Products, Gilching, Germany), pylsl/lab streaming layer [18], 
and mushu [15]. Signal processing/classification: wyrm [14] 
and mne [19]. Signal presentation: pyff [16] and psychopy 
[20]. Additionally, some other important scientific packages, 
pandas for managing data, matplotlib for graphs, numpy for 
arrays, scipy for specific algorithms, pygatt for bluetooth 
connectivity with GSR and HR sensors, and also pyqtgraph 
for real-time graphical interfaces. This framework was built, 
following the necessity for further expandability, utility, and 
reusability from the neuroscience community. Python has 
great modules in machine learning that could help optimize 
and automate the paradigm of priming subjects in future 
experiments. Also, the code is ready to use with any EEG 

amplifier that can connect with the lab streaming layer (LSL) 
[18]. The name chosen for the package was NeuroPrime, a 
combination of neuromodulation and priming.  

An in-depth toolbox overview is located online at the 
NeuroPrime repository [21]. In the 
“TOOLBOX_ARCHITECTURE.pdf” file we included the 
design of the NeuroPrime toolbox: the packages, the data 
structure, an overview of the functions, how to perform online 
and simulated online experiments, offline signal analysis and 
some means of quality assurance we have undertaken. Also, 
we go deeper into the Pythonic structure of each of the parts 
that constitute the software and how to use them (signal 
acquisition; signal presentation; signal processing & 
classification).  

In the next sections, we will go deeper into the framework 
supporting NeuroPrime: its theory, its contributions and its 
value for NF applications. 

III. FRAMEWORK FOUNDATIONS 

There are different attempts to explain how technical, 
psychological, and physiological mechanisms interact to 
produce self-regulation of NF. From crossing NF learning 
with theories, like control theory, dynamical system theory, 
multi-stage learning theory, instructions design theories [4], 
[7], [8], [22]–[25], to theories explaining the phenomenon of 
BCI/NFT illiteracy [26]–[28], the learning ability assessment 
and measuring learning of self-regulation [29]–[31] and 
theories that try to demystify self-control of brain ability [7], 
[8], [28]. We selected some of those theories to be the building 
blocks of our framework model: (1) Control-theory, (2) Multi-
stage NF learning theory, (3) dynamical-systems theory [4], 
[24], [25], (4) dual-process theory [8], (5) epistemology [32] 
and instruction design [23]. From these, we get a good 
foothold of what our NF learning framework can entail. In Fig. 
2 we put all the building blocks together, so the reader gets a 
full picture.  

The Learner can be considered a dynamic system with an 
uncertain number of free parameters, a gray box model, a 
highly complex system. This system internal “optimal” set 
point is when the target is reached after several runs. Our 
research aims at supporting the user to get into this optimal 
state, by trying to find what can be gained by forming a 
human-computer hybrid for control of brain activity. 

Our framework intends to reset “for a few moments” some 
self-related thinking (trying states), by focusing the attention 
to present sensations (sensing states) and trying to: 1) lower 
the switching cost of state transitions throughout NFT, this 
initially minimizes the cognitive demand on the users during 
training, and hence the risk to frustrate and demotivate them; 
2) drive a specific trajectory of brain states, that is closer to the 
NF target state. 

If the NF system essentially augments the sensory 
repertoire, allowing the brain to ‘‘sense” the neuroelectrical 
patterns and thus make them amenable to control in a 
homeostatic manner. This approach supports the NF to 
enlarge the cerebral sensorium, through implicitly 
“outsource” sensory-feedback processing to extrinsic 
neurostimulation, using the computer as a virtual machine 
controller of the system, capitalizing in its superior sensing 
accuracy and temporal resolution. Thus, the hypothesis that 
external stimuli can prime & scaffold self-regulation of NF 
can be assessed  [4], [24], [25]. 

 
Fig. 1 – NeuroPrime. Online closed loop BCI Python framework. It is 
comprised of 3 main parts: signal acquisition, signal processing and signal 
presentation. 
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From a multi-stage point of view, we will try to lower the 
transition cost to reach the internal set point. Trying to start 
from an optimal variability state, where the user has more 
fortuitous events above the threshold [4], [24]. 

Literature uses dynamical systems theory to argue that NF 
functions to bring a disordered brain into a regime where there 
is maximal information transfer (near criticality), which in 
turn explains the benefits on cognitive and creative abilities of 
NFT [1], [3], [4], [24], [25]. We hypothesize that the 
framework can support these transitions (automation and 
personalization) and facilitate the transition between 
automatic to controlled mental processes of attention, 
enabling the user to reach a state in which self-regulation of 
brain activity is facilitated. In this way, trying to facilitate the 
brain control state transitions with the help of external eliciting 
state transitions using non-invasive neurostimulation.  

The hypothesis that stems from this interpretation is that 
NF-assisted control could prove more effective compared to 
an unassisted human operator. 

IV. FRAMEWORK DESIGN 

NF as a closed-loop system (i.e., brain activity is 
continuously fed back to the neural system) can be applied as 
an experimental method to investigate the causal character of 

specific neural events (such as brain oscillations) within 
cognition and behavior. This procedure is defined as brain-
state dependent stimulation (BSDS) [6], [33], [34]. NFT 
closed-loop design can be divided into three parts, as depicted 
in Fig. 3: signal presentation (SP), signal acquisition (SA), 
signal processing and classification (SPC). SP deals with the 
GUI used to present the NF (stimuli and feedback modality, 
feedback presentation and timing). SA deals with the 
acquisition of the signal from the learner, the data structure 
and storage. While SPC uses the data acquired for online data 
preprocessing, online feature extraction and online feedback 
generation.  

Our priming framework training design follows the BSDS 
experimental method to investigate the functional role of 
certain target oscillations (brain states). It is envisioned as a 
closed-loop stimulator, meaning that the stimulus is updated 
by the brain states of the participants, as can be found in Fig. 
4. 

A. Signal presentation 

The signal presentation will support explicit NFT with 
stimuli targeting implicit neural responses. Temporally, the 
stimuli can be presented before, after, or during NFT. In this 
paper, the research concerns the before, the priming. 

  

  
Fig. 2 - Neurofeedback Learning Model. Control-theory (1), Multi-stage Neurofeedback learning theory (2), dynamical-systems theory (3) based on [25], 
dual-process theory (4), epistemology (5). 
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B. Signal acquisition 

NF plus the neurophenomenological target (described in 
the next section signal processing), offer a new way to relate 
the phenomenological structure of subjective experience with 
a real-time objective characterization of large-scale neural 
operations continuously throughout the experiment. Other 
biodevices can also be added for more precise signal 
acquisition and classification, but also as complementary 
biofeedback [35]. The possibilities are endless, but for 
instance, body biomarkers like galvanic skin response (GSR), 
heart rate (HR), and facial expressions (through video 
recording and machine learning) can provide the big data 
needed to push this framework classification forward [36], 
[37]. 

C. Signal processing  

1) Neuroimaging targets 

As we already described, current EEG literature relates the 
“optimal” state with up-regulation of alpha rhythm or/and 
SMR (both linked to attentional processes), but also with 
desynchronization of surrounding bands. An example of this 
is shown by van Lutterveld et al. 2016 [13], who found that 
amplitude reduction in gamma-frequency range within the 
posterior cortex (posterior cingulate) associated with the 
experience of effortless awareness, and correlated effects were 
also observed within the alpha frequency range, among others.  

2) Phenomenological targets 

Exploring the phenomenological experience is an 
important complementary mechanism to understand the NF 
data. The challenge is how to transform the qualitative data 
into factual quantitative data. Davelaar et al. [9], [24] have 
experimented with guided reports through interviews, while 
others like Garrison et al. [38] used self-reports (e.g., “on a 
scale from zero to ten how did you feel during the task?”  0 = 
distracted; 10 = focused). 

Phenomenological analyses have established that different 
NF protocols are related to different subjective experiences 
[39], and that differences in learning success may in part be 
due to differences in subjective experiences [9], [24]. 

D. Signal classification & stimulus database 

We approached the problem through a framework that 
should learn how to guide the user to an attentive mental state 
using a sequence of stimuli (simple or/and complex). It is 
based on NF learning theories, intra-individual differences, 
system identification and machine learning. Additionally, our 
theoretical framework should follow an Adaptive Design 
Optimization approach (ADO) [40]. In the paper, Sanchez et 
al., show the benefits of adaptive real-time (online) 
approaches and the contrasts with classical (offline) 
approaches. In contrast with linear offline approaches 
(experimental design, followed by data analysis and 
hypothesis testing), the adaptive approach operates in real-
time and proceeds with design optimization, data acquisition 
and analysis at each experimental stage or trial. The online 
approach enables hypothesis testing to be optimized at the 
individual level by adapting the experimental design based on 
past observations. This is the general principle of ADO, which 
can be extended to advanced computational models of 
electrophysiological responses thanks to brain-computer 
interface (BCI) technology, to optimize experimental 
conclusions. 

Instead of a white-box system based on first principles 
(e.g. Newtonian principles) - such models are overly complex, 
and possibly even impossible at the moment, due to the 
complex nature of many mental systems and processes - a 
much more common approach is to start from measurements 
of the behavior of the system and the external influences 
(inputs to the system), and then try to determine a 
mathematical relation between them without going into the 
details of what is happening inside the system. This approach 
is called system identification. Systems theory identification 
and reinforcement learning (neural network approach) will try 
to emulate the learner mental controller (i.e. the subject that 
tries to learn to voluntary self-regulate brain activity through 
mental strategies) assisting and outsourcing the identification 
of mental strategies to the next best external stimulus (external 

 
Fig. 4 - Framework design diagram. The framework has a similar division 
to NFT: signal presentation, the feedback and stimulus presentation; signal 
acquisition, the data; signal processing, phenomenological and 
neuroimaging feature extraction; signal classification, the machine learning 
controller decoding and classify mental states; stimuli task database, the 
database with the stimulus categories to be presented to the user. 

 
Fig. 3 – Neurofeedback training design diagram. The NFT is divided in: 
signal presentation, the feedback delivery interface; signal acquisition, the 
data; signal processing and classification, the feedback feature extraction and 
classifier.  
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instructional strategies) for optimal NF self-regulation [4], 
[41], [42]. These interactions are represented in the diagram 
in Fig. 5.  

Due to the workload of implementing this theoretical 
framework (see Fig. 5), a “divide and conquer” strategy was 
followed. (1) Develop Open-source software (NeuroPrime) 
for simple and fast integration of advanced closed-loop 
applications. (2) Answer the question: Does priming with 
external stimulation affects the self-regulation of NF? This 
can be further divided into four main questions. Targets, 
which mental/brain states can be optimal for learning self-
regulation of brain activity? Stimulus, how can we non-
invasively stimulate the aforementioned states? 
Measurements, how can we measure the target performance 
(learning and behavioral outcomes) of each individual? 
Framework experimental temporal Design, what is the best 
temporal design to implement the framework? (3) Automate 
the framework and optimize priming personalization: adapt 
convolutional neural networks to learn (e.g., using transfer 
learning) the sequence of stimulus that leads momentarily the 
subject towards the desired “optimal” state. Particularly, the 
aims of this paper are task (1) and use task (2) as a means of 
framework validation. 

E. Framework simplification 

NeuroPrime architecture is prepared for the personalized 
machine learning priming with an ADO approach. However, 
following the “divide and conquer” strategy, we need to 
validate the framework by demonstrating that priming can 
affect the learning to voluntary self-regulate brain activity and 
by consequence NFT performance. The simplest way is to find 
a priming technique that leads the person closer to the 
previously defined “optimal” state. One of the techniques that 
have similar priming targets as NFT is mindfulness meditation 
(MM) of focused attention forms. Mindfulness effects involve 
general and large-scale brain networks [2], as does the NFT 
[12], because they involve multiple aspects of mental function 
that use multiple complex interactive networks in the brain, 
e.g. stroke patients get better accuracy in controlling BCIs 

[43]. Additionally, EEG reports show similar correlates of up-
regulation of alpha with mindfulness practice [44]–[48], and 
up-regulation of SMR with spiritual practice [12].  

Mindfulness training causes neuroplastic changes in the 
structure and function of brain regions involved in the 
regulation of attention, emotion, and self-awareness. In NFT, 
a hypothesized “optimal” mental/brain state should be reached 
for optimal self-regulation of brain activity. For that, 
irrelevant mental processes should be decreased, and relevant 
mental processes should be intensified, basically [2], [8]: 
evaluative self-referential processes should decrease; 
awareness of present-moment with non-judgmental attention 
(acceptance) should increase; a shift in self-referential 
processing (affective, subjective) towards a more self-
detached and objective analysis of interoceptive and 
exteroceptive sensory events (greater awareness, meta-
awareness) should also increase. 

V. EXPERIMENTAL DESIGN & VALIDATION 

The temporal design is also one of the key players of the 
framework and needs validation. As such, the theoretical 
framework was translated into an experimental session design 
and implemented. We implemented two experiments and the 
framework - theory, hardware and software - evolved along 
with these two experiments (Experiment 1 [49] and 
experiment 2 to be published elsewhere). In this section, we 
discuss the basis of their experimental design and the steps to 
follow to reproduce the framework. 

As already discussed, the experimental design is based on 
a closed-loop BSDS design and a simple NFT protocol [6] to 
test the question: does mindfulness, focused attention to 
stimuli, has a role in NF SR? The methodology of a BSDS is 
to substitute the NFT learner (explicit NF), who is actively 
engaged and adapting strategies to alter the brain activity in 
the intended direction, with a stimulator device (implicit NF), 
who is adapted online to present an experimental stimulus [6]. 
Hence, our framework for studying brain states and stimuli 
that complement the NFT for a better SR performance uses 
the two methodologies together for a loop of implicit and 
explicit training. The reason being that priming implicitly the 
target brain state can help explicitly control it. However, 
instead of adapting online the stimulus, we started by testing 
two MM stimuli (breathing and imagery of a calm place, 
please refer to [49]) to demonstrate that priming can indeed 
affect the learning to voluntary self-regulate brain activity and 
by consequence NFT performance and to verify the necessity 
of using a closed-loop machine learning BSDS framework. 

A single-session design is enough to investigate specific 
features of oscillations and their association with behavioral 
performance, between and within groups (e.g., comparison of 
behavioral effects when MM stimulus is presented versus a 
rest task) [6]. Whereas most intervention studies of the effects 
of MM and NFT involve multiple sessions taking place over 
several weeks, an emerging trend in literature has investigated 
the subjective (phenomenological) and neural effects of brief, 
single-session interventions [9], [12], [48]. Gruzelier states 
that while one cannot anticipate durability of outcome 
enhancement following a single session, and concluding a null 
outcome about learning potential would be premature, single-
session experiments have practical advantages in addressing 
some research questions and by recruiting larger groups of 
subjects which allows an increase in statistical power 
compared with the labor-intensive smaller-scale studies [1]. 

 
Fig. 5 - Framework Theoretical Design. Systems theory identification and 
reinforcement learning emulate the learner mental controller assisting and 
outsourcing the identification of mental strategies to the next best external 
stimulus for optimal Neurofeedback self-regulation. 
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The single session was divided into short intervention blocks 
instead of one continuous block. This decision was made 
based on the following contextual hypothesis: naïve subjects 
probably need short tasks for more focused attention; naïve 
subjects need rest intervals between tasks; test immediate 
effects of priming in NF; blocks are important to evaluate the 
mindset/subjective experience (with state self-reports) during 
the different tasks on the session; enable randomization of 
tasks and conditions like eyes open/eyes closed. Also, this 
type of short block design probably has some limitations in the 
level of priming (attention control, emotional regulation, and 
self-awareness states) achieved per block, yet it seems 
adequate for naïve populations. Of note, when using a 
paradigm with eyes open and eyes closed one has to include 
not only visual but also auditory cues that signal the end of the 
task. So, each task has an auditory bell at the end, and if NFT 
is with eyes closed, then the visual feedback needs to be 
translated to audio. 

Before the training session starts, the participant is 
verbally instructed with a GUI representation about how each 
task works (pre-Training instructions). They are essential to 
baseline all the subject knowledge, but also to prepare them 
for the experiment. Then, during the training session, the 
initial baseline threshold should be chosen, and one can make 
the threshold adaptive to the subject and change it accordingly 
(the change will depend on certain conditions). The last block 
serves as the outcome block for comparison with the first 
block. The differences between the CG and the experimental 
group (EG) reside in the use of priming tasks. While the CG 
is only primed with rest tasks (no-priming), the EG is primed 
with randomized mindfulness focused attention forms, 
breathing bodily sensations meditation, named “breathing 
mindfulness” (BM), and the imagery of calm place sensations 
meditation, named “imagery mindfulness” (IM). These 
external priming stimuli are pure instructional audio 
manipulations to lead the person from a subjective trying state 
to a more sensing state. These transitions can be referred to as 
belonging to the trying-sensing continuum discussed by 
Davelaar and colleagues [9].   

These design choices culminated in two different 
experimental designs (Experiment 1 and 2, one can check their 
designs in the file “TOOLBOX_ARCHITECTURE.pdf” at 
NeuroPrime Toolbox [21]). They diverge in the temporal 
design and other attributes, but the main goal was to have short 
sequences of prime-NFT-rest. For the justification of the 
choice of attributes in the Experiment 1 design, please refer to 
the following publication [49]. Experiment 2 results are still 
in submission elsewhere, however, as an example of a 
complete BCI, the Experiment 2 pipeline can be found in the 
folder “brain_interfaces” in the NeuroPrime Toolbox [21].  

VI. LIMITATIONS 

The NF online experiments were developed in house using 
NeuroPrime [21]. Various tests were performed and proved 
consistency. Nonetheless, the two experiments discussed in 
this paper are the initial case studies for the present 
framework. This is an open-source framework, future studies 
from our and other research groups will allow further 
improvements. We invite groups to use the framework and 
help us improve it. Working with real-time decoding of EEG 
signals has multiple limitations such as noise and movement-
related artifacts [50]. For example, small movements above 
the neck, such as eye blinks or muscle contractions can add 
artifacts to the signal. Attempts were made to prevent and 

detect such artifacts in real-time, however, a good calibration 
stage is recommended. 

VII. FUTURE WORK 

For a final product, this framework still lacks refinement 
and personalization. To optimize self-regulation learning, 
future work will address the use of neural networks to learn 
(e.g. using reinforcement learning, deep learning for time 
series forecasting with long short-term memory networks, 
multilayer perceptron’s, convolutional neural networks, 
between others) the sequence of stimuli that leads the subject 
towards the desired “optimal” state. The framework should 
adapt to the user own pace (even slow down user pace if 
needed) and regulate/control the user brain state according to 
the target.  

One of the requirements was software that runs on all 
major operating systems. As such, NeuroPrime was developed 
and tested on Mac OS and Windows OS and depending on the 
hardware requirements it can run in all major OS that runs all 
the Python packages. Currently, the NeuroPrime package has 
a to-do list: parse the package completely from Python 2.7 to 
Python 3; documentation needs to be reviewed and simplified; 
variable nomenclature needs to be reviewed for 
standardization (e.g standardization of uppercase and 
lowercase); deprecated code should be removed and 
implementation of machine learning algorithms. In retrospect, 
this package is stable in the current version but should be 
continuously simplified, tested and updated to meet the 
criteria of new experiments.  

VIII. CONCLUSION 

Translating theory into application, NeuroPrime meets the 
requirements of the theoretical framework defined in this 
paper, enabling the research of priming subjects with stimulus 
before NFT, by providing simple tools to design BCI 
experiments concerning the problem. Furthermore, we 
discussed the experimental designs used to test NeuroPrime 
and how they helped in enhancing the toolbox and the value it 
brings to NFT protocols. Although the two designs are 
described in this paper, there are other ways to design a session 
with the priming attributes of our framework. We invite 
groups to use NeuroPrime in experiments and help us improve 
it. 
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