
  

  

Abstract— Chronic Venous Disorders (CVD) of lower limbs 
are one of the most prevalent medical conditions, affecting 35% 
of adults in Europe and North America. The early diagnosis of 
CVD is critical, however, the diagnosis relies on a visual 
recognition of the various venous disorders which is time-
consuming and dependent on the physician's expertise. Thus, 
automatic strategies for the classification of the CVD severity are 
claimed. This paper proposed an automatic ensemble-based 
strategy of Deep Convolutional Neural Networks (DCNN) for 
the classification of CVDs severity from medical images. First, a 
clinical dataset containing 1376 images of patients’ legs with 
CVD of 5 different levels of severity was constructed. Then, the 
constructed dataset was randomly split into training, testing, 
and validation datasets. Subsequently, a set of DCNN were 
individually applied to the images for classification. Finally, 
instead of a traditional voting ensemble strategy, extracted 
feature vectors from each DCNN were concatenated and fed into 
a new ensemble optimization network. Experiments showed that 
the proposed strategy achieved a classification with 93.8%, 
93.4%, 92.4% of accuracy, precision, and recall, respectively. 
Moreover, compared to the traditional ensemble strategy, 
improvement in the accuracy of ~2% was registered. The 
proposed strategy showed to be accurate and robust for the 
diagnosis of CVD severity from medical images. Nevertheless, 
further research using an extensive clinical database is required 
to validate the potential of this strategy. 
 

Clinical Relevance— An automatic classification of CVD to 
reduce the probability of underdiagnoses and promote the 
treatment of CVD in the early stages. 

I. INTRODUCTION 

Chronic venous disorders (CVD) are one of the most 
common medical conditions in the world adult population, 
with prevalence among adults around 50% [1]. Due to the 
variety of signs and symptoms associated with CVD severity, 
correct diagnosis is essential to provide accurate treatment to 
the patients [2]. The signs of CVD are typically evaluated in 
terms of a structured clinical classification protocol named 
CEAP (Clinical, Etiologic, Anatomic, Pathophysiologic), 
which incorporates a wide range of signs and symptoms of 
CVD to describe its severity, ranging from C0 (no visible signs 
of venous disease) to C6 (active venous ulcer) [2]. 
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To help the diagnosis and monitoring treatment evolution 
of CVD, digital photographs are regularly captured and stored 
by healthcare professionals [3]. These photographs allow an 
easier evaluation of the patient's condition by comparing the 
CEAP classification in different time periods [4]. Still, the 
diagnosis of CVD lesions relies on a visual inspection which 
is time-consuming and dependent on the physician’s expertise.  

To overcome similar medical problems, automated skin 
lesion classification methods have been proposed in the 
literature. For skin images in general, Deep Convolutional 
Neural Networks (DCNN) , such as EfficientNet, or Resnet 
architectures, proved to be effective in the diagnostic of skin 
lesions and reach prediction levels on par with dermatologists 
[5]. Recently, ensemble-based approaches have been 
demonstrated to perform better than individual 2D models for 
skin lesion classification [6], [7]. Specifically for CVD, 
DCNN focused on varicose veins [8] and skin ulcers 
classification and segmentation [4], [9] were proposed with 
promising results. Still, the performance of a DCNN for the 
classification of CVD severity has not been reported to date. 
Moreover, current ensemble strategies are based on an average 
of individual classification results, which neglects the 
performance of individual networks on the final result. 

In this work, we proposed a fully automatic strategy based 
on an ensemble of DCNN for the classification of CVD 
severity levels according to the CEAP protocol. Instead of 
traditional ensemble strategies, the CVD classification result 
was obtained using an optimization-based ensemble strategy 
of all the network classification results. This strategy has the 
potential to improve the current performance of DCNN for 
skin lesion classification by learning the optimal combination 
of the classification results per image. To quantify the added-
value of this strategy, a validation of the proposed pipeline 
against state-of-the-art classification methods was performed. 
Such tool can then be used to promote self-monitoring and aid 
the diagnosis and treatment follow-up of CVDs.  

II. METHODS 

A. General Overview 
The proposed framework relies on a DCNN methodology 

for CVD severity classification. Figure 1 shows an overview 
of the proposed methodology divided into three conceptual 
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blocks. In the first (section B), the dataset pre-processing and 
data augmentation techniques used to uniformize and increase 
the dataset size, respectively, are explored. This data is then 
fed to the classification blocks, whose DCNN architectures are 
fully explained in the second block (section C). Here, an RGB 
image is fed into a set of convolutional networks to extract 
representative high-level features. Lastly, the final ensemble 
optimization strategy that combines the results from different 
networks is explained in the third block (section D). The loss 
function developed to allow ensemble optimization strategy to 
learn the classification task is also described (section E). In the 
end, a severity probability vector of the patient condition 
according to 5 levels of severity are obtained: level 0 - no 
visible signs of venous disease; level 1 - telangiectasias and 
reticular veins; level 2 - varicose veins; level 3 - edema and 
skin changes including pigmentation and eczema; and level 4 
- healed/active venous ulcers (Figure 2). 

B. Dataset preparation 
1) Pre-processing 
The first step of the proposed methodology corresponds to 

the pre-processing of the data. Since the images were captured 
with different camera sensors, acquisition settings, and light 
conditions, they present different sizes. Thus, the images were 
initially resized to have the same minimum side. Then, a center 
crop for a fixed image size and a normalization of intensities 
are also applied.  

2) Data augmentation 
 To deal with CVD variability, DCNN-based approaches 

require a large amount of data to correctly perform a specific 
task [4], [10]. Thus, to improve the generalization capacity and 
overcome overfitting, data augmentation was performed. 
Here, spatial-based (i.e. random flip, rotation, scaling, grid, 
distortion, and elastic transformations) were used to give 
robustness to the variability of digital cameras and lesion 
shapes. Moreover, pixel-based augmentation techniques (i.e. 
random Gaussian noise, brightness, contrast, and gamma 
transformations) were used to potentiate the robustness to 
lighting variability and lesions’ appearance. The proposed 
augmentation is performed on the fly during DCNN training 
stage.   

C. Classification of CVD severity 
For image classification tasks, state-of-the-art results are 

obtained using DCNN for high-level feature extraction 
followed by a classification head constituted with fully 
connected layers to get the final classification vector [11]. 

Recently, for skin images classification, an ensemble of  
DCNN has shown to improve the classification performance 
of individual DCNN [6]. Inspired by these methodologies, we 
propose to use an ensemble of DCNN to address CVD severity 
classification. In detail, to introduce variability in the final 
ensemble, a set of different networks already used for skin 
lesion classification tasks, were selected [6], [11], namely 
EfficientNeB3/B4 [12], ResNext [13], Resnet101/50 [14], 
DenseNet161 [15], InceptionV3 [16], SeNet50/101 [17], and 
WideResNet50 [18]. Each DCNN was individually optimized 
for the CVD classification task. Then, a set of high-level 
features for CVD classification extracted from each network 
was created.  

D. Ensemble strategy 
From the extracted vector of features, an deep ensemble 

strategy was implemented [19]. Traditionally, the final 
ensemble of DCNN for skin classification rely on an voting 
strategy (i.e. average of classification results), which is 
suboptimal since gives the same weight to all the networks [6], 
[7], [20]. In opposition, we propose to concatenate all the 
feature vectors and further train a simple neural network to 
learn the best ensemble of the feature vectors. In detail, the 
output features of the different DCNNs are concatenated and 
fed into a deep ensemble block composed of a ReLU layer, an 
adaptive average pooling layer, a fully connected layer, and a 
softmax layer to get the diagnostic probability of each CVD 
severity level. 

E. Loss function 
The proposed architecture is an end-to-end DCNN where a 

classification task must be learned. Similar to other 
classification frameworks [14], [15], we use the multi-class 
cross-entropy (CE) for the classification loss for training  each 
DCNN and the final ensemble network. Thus, with 
𝑐	𝜖	(1,2	… , 𝐶) being the class index, and C representing the 
number of CVD severity classes, the classification loss, 𝐿,-.// 
is given by: 

where 𝑦, represents the ground truth label for each class 𝑐, and 
𝑦1, is the network softmax output of the classification head for 
the same class 𝑐.  

 
𝐿,-.//(𝒚, 𝒚3) = 	− 6 𝑦, ∗ log(𝑦1,)

;

,	<	=

, (1) 

 
Figure 1 – Overview of the proposed CVD classification methodology. 
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III. IMPLEMENTATION DETAILS 

All the images were initially resized to have a minimal side 
equal to 384 pixels, followed by a center crop to have the final 
size of [384 x 384]. Such size was chosen as a trade-off 
between computational cost and DCNN requirements.  After, 
an intensity normalization to the range [0, 1] was performed. 
All the augmentations were performed using the 
Albumentations framework [21]. The training of each 
classification network was performed in 500 epochs with a 
mini-batch size of 4 and using the Adam optimizer with an 
initial learning rate of 0.001 and a learning rate decay 
following the “poly” learning rate policy with the power of 0.9. 
To deal with feature vectors from DCNN with different sizes, 
an average pooling layer was used to pre-process each feature 
vector to a common vector size of 1500. For the ensemble 
optimization network, the training was performed with a mini-
batch size of 8 and using the Adam optimizer with an initial 
learning rate of 0.01.  

IV. EXPERIMENTS 

A. Data description 
A new clinical database containing 1376 photographs of 

patients with CVD in lower limbs was constructed. The 
database was constructed from the normal clinical practice, 
where 502 images were collected from two public datasets, 
namely the 217 images from ULCER [22] and 305 from the 
SD-198 [23] datasets. From SD-198 dataset, 305 images of 
patients’ legs with level 3 severity lesions were selected. These 
images correspond to lesions from the 5 different levels of 
CVD severity: level 0 – 223; level 1 – 237; level 2 – 127; level 
3- 546; level 4 – 243 images. Figure 2 illustrates examples of 
the different images.  

B. Evaluation strategies 
To evaluate the accuracy and robustness of the proposed 

ensemble strategy (henceforward called EnsembleOPT), a 
comparison against individual DCNN and the traditional 
voting ensemble strategy, i.e. majority voting (henceforward 
called EnsembleMV) was performed. First, the dataset was 
randomly divided into training, testing, and validation 
datasets, respectively 80%, 10%, and 10% of the initial 
dataset. Then, all the networks evaluated were trained using 
the training dataset with the parameters defined in section 3. 
For each network, the convergence was assessed according to 

the network performance on the validation dataset. Finally, all 
the final results were computed on the testing dataset. The 
results obtained were computed using Python code running on 
an Intel (R) i7 CPU at 2-8 GHz with 16 GB of RAM and an 
NVIDIA GXT 1070 GPU with 8 GB of memory and cuDNN 
10.1 libraries. The proposed strategy and all the other 
conventional neural network architectures were implemented 
using the Pytorch library. 

V. RESULTS 

Table 1 shows the comparison between the performance of 
the proposed strategy and other conventional DCNN 
architectures for the classification task. Generally, 
EnsembleOPT presents the best average results against all the 
other networks, with an accuracy, precision, and recall of 
93.8%, 93.4%,  and 92.4% respectively. Looking for the 
confusion matrix in Figure 3, it is perceptible the improvement 
on the diagnosis using the proposed methodology for all 
severity levels against EfficientNetB4 (i.e. the DCNN with the 
best individual score) and EnsembleMV. Moreover, it can also 
be visualized that, both ensemble strategies considerably 
reduced the errors of mislabelled images from the highest 
CVD severity level in comparison with the EfficientNetB4.   

VI. DISCUSSION 

In this work, we proposed an ensemble optimization 
strategy of DCNN for the robust classification of CVD 
severity on medical images. Overall, the proposed strategy 
showed competitive results in comparison with conventional 
DCNN and robust results for CVD severity classification.   

 
Figure 2 – Example of images from patients with different levels of CVD lesions, ranging from no visible or palpable lesions (level 0) to 
healed or active venous ulcers (level 4). 

Level 1 
Telangiectasias and 

Reticular veins

Level 2 
Varicose Veins

Level 4 
Venous Ulcers

Level 3
Edema, pigmentations 

and skin changes
Level 0

No visible lesions

Table 1 – Comparison of the proposed EnsembleOPT against DCNN 
and conventional EnsembleMV for CVD classification (mean±S.D.) 

Model Precision Recall Accuracy AUC 
EfficientNetB4 91.2±9.3 88.8±6.9 90.1 98.2±1.1 
EfficientNetB3 89.8±11.9 89.1±11.9 89.4 98.4±2.9 

Resnet50 86.1±12.5 83.6±6.7 85.1 96±1.9 
Resnet101 84.1±13.0 84.4±6.2 84.5 95±3.1 

Resnext 83.4±11.3 83.2±6.6 83.9 97±1.5 
SENet50 89.1±10.9 88.5±6.8 88.8 96.6±2.5 

SENet101 83.1±6.2 82.9±5.9 83.9 96.8±2.0 
WideResNet50 82.3±19.5 76.5±13.1 78.3 94.1±3.6 

DenseNet 87.8±11.4 85.9±7.8 87.6 97.1±1.9 
InceptionV3 87.2±14 84.6±11.5 85.1 93.4±9.0 
EnsenbleMV 92.4±11.8 91.6±7.4 91.9 99±0.9 

EnsembleOPT 93.4±5.5 92.4±7.6 93.8 98.7±1.3 
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Table 1 validates the performance of proposed strategy for 
the classification of CVD severity. Specifically, the 
performance of both ensemble strategies shows that the 
ensemble of multiple DCNN performed better than the  
individual strategies. When comparing specifically against 
EnsembleMV, better results were achieved by the proposed 
strategy, with an improvement of around 2% on the overall 
accuracy. Interestingly, narrow S.D, were also obtained for the 
ensemble strategy. These results proves that our optimization-
based strategy better complemented the information extracted 
by each DCNN than the traditional ensemble strategy. 

In Figure 3, it is possible to see that the best individual 
DCNN (EfficientNetB4) had difficulty on the classification of 
images from the highest CVD severity level. Contrarily, both 
ensemble strategies outperformed this strategy, mainly on the 
classification of such high severity images (i.e. venous ulcers). 
In computer-aided diagnosis tools, underdiagnoses have a 
superior cost for the patient, which highlights the importance 
of this result. These results corroborate the high accuracy of 
the method, demonstrating the advantage of the described 
strategy for the normal clinical practise.  

VII. CONCLUSION 

In this work, a novel pipeline for the automatic 
classification of CVD lesions according to the levels of 
severity described in CEAP is presented. The accuracy and 
robustness of this technique were initially validated in a new 
clinical database, demonstrating its potential for the current 
clinical practice. Overall, this strategy has the potential to aid 
the diagnosis, reducing the probability of underdiagnoses and 
promoting the treatment of CVD in the early stages. 

REFERENCES 
[1] E. Rabe, J. J. Guex, A. Puskas, A. Scuderi, F. Fernandez Quesada, and 

VCP Coordinators, “Epidemiology of chronic venous disorders in 
geographically diverse populations: results from the Vein Consult 
Program,” Int Angiol, vol. 31, no. 2, pp. 105–115, Apr. 2012. 

[2] V. Vitalelewis, “Aesthetic Treatment of Leg Veins,” Aesthetic Surgery 
Journal, vol. 28, no. 5, pp. 573–583, Sep. 2008. 

[3] A. A. Meesters, L. H. U. Pitassi, V. Campos, A. Wolkerstorfer, and C. 
C. Dierickx, “Transcutaneous laser treatment of leg veins,” Lasers in 
Medical Science, vol. 29, no. 2, pp. 481–492, Mar. 2014. 

[4] D. Y. T. Chino, L. C. Scabora, M. T. Cazzolato, A. E. S. Jorge, C. Traina-
Jr., and A. J. M. Traina, “Segmenting skin ulcers and measuring the 
wound area using deep convolutional networks,” Computer Methods and 
Programs in Biomedicine, vol. 191, p. 105376, Jul. 2020. 

[5] M. A. Al-masni, M. A. Al-antari, M.-T. Choi, S.-M. Han, and T.-S. Kim, 
“Skin lesion segmentation in dermoscopy images via deep full resolution 
convolutional networks,” Computer Methods and Programs in 
Biomedicine, vol. 162, pp. 221–231, Aug. 2018. 

[6] N. Gessert, M. Nielsen, M. Shaikh, R. Werner, and A. Schlaefer, “Skin 
lesion classification using ensembles of multi-resolution EfficientNets 
with meta data,” MethodsX, vol. 7, p. 100864, 2020. 

[7] B. Harangi, A. Baran, and A. Hajdu, “Classification Of Skin Lesions 
Using An Ensemble Of Deep Neural Networks,” in 2018 40th Annual 
International Conference of the IEEE Engineering in Medicine and 
Biology Society (EMBC), Honolulu, HI, Jul. 2018, pp. 2575–2578. 

[8] R. Zhu, H. Niu, N. Yin, T. Wu, and Y. Zhao, “Analysis of Varicose Veins 
of Lower Extremities Based on Vascular Endothelial Cell Inflammation 
Images and Multi-Scale Deep Learning,” IEEE Access, vol. 7, pp. 
174345–174358, 2019. 

[9] G. Blanco et al., “A superpixel-driven deep learning approach for the 
analysis of dermatological wounds,” Computer Methods and Programs 
in Biomedicine, vol. 183, p. 105079, Jan. 2020. 

[10] E. Pérez, O. Reyes, and S. Ventura, “Convolutional neural networks for 
the automatic diagnosis of melanoma: An extensive experimental 
study,” Medical Image Analysis, vol. 67, p. 101858, Jan. 2021. 

[11] C. Barata, M. E. Celebi, and J. S. Marques, “A Survey of Feature 
Extraction in Dermoscopy Image Analysis of Skin Cancer,” IEEE 
JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, vol. 23, 
no. 3, p. 14, 2019. 

[12] M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for 
Convolutional Neural Networks,” arXiv:1905.11946, Sep. 2020. 

[13] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated Residual 
Transformations for Deep Neural Networks,” arXiv:1611.05431 [cs], 
Apr. 2017. 

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for 
Image Recognition,” arXiv:1512.03385 [cs], Dec. 2015. 

[15] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely 
Connected Convolutional Networks,” arXiv:1608.06993 [cs], Jan. 
2018. 

[16] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, 
“Rethinking the Inception Architecture for Computer Vision,” 
arXiv:1512.00567 [cs], Dec. 2015. 

[17] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-Excitation 
Networks,” arXiv:1709.01507 [cs], May 2019. 

[18] S. Zagoruyko and N. Komodakis, “Wide Residual Networks,” 
arXiv:1605.07146 [cs], Jun. 2017. 

[19] M. A. Ganaie, M. Hu, A. K. Malik, M. Tanveer, and P. N. Suganthan, 
“Ensemble deep learning: A review,” arXiv:2104.02395, Mar. 2022. 

[20] A. A. Milton, “Automated Skin Lesion Classification Using Ensemble 
of Deep Neural Networks in ISIC 2018: Skin Lesion Analysis Towards 
Melanoma Detection Challenge,” p. 4. 

[21] A. Buslaev, A. Parinov, E. Khvedchenya, V. I. Iglovikov, and A. A. 
Kalinin, “Albumentations: fast and flexible image augmentations,” 
Information, vol. 11, no. 2, p. 125, Feb. 2020. 

[22] Ederson. A. G. Dorileo, M. A. C. Frade, A. M. F. Roselino, R. M. 
Rangayyan, and P. M. Azevedo-Marques, “Color image processing and 
content-based image retrieval techniques for the analysis of 
dermatological lesions,” in 2008 30th Annual International Conference 
of the IEEE Engineering in Medicine and Biology Society, Vancouver, 
BC, Aug. 2008, pp. 1230–1233. 

[23] X. Sun, J. Yang, M. Sun, and K. Wang, “A Benchmark for Automatic 
Visual Classification of Clinical Skin Disease Images,” in Computer 
Vision – ECCV 2016, vol. 9910, B. Leibe, J. Matas, N. Sebe, and M. 
Welling, Eds. Cham: Springer International Publishing, 2016, pp. 206–
222.  

 
Figure 3 – Confusion matrix of the EfficientNetB4 (A), EnsembleMV (B), and proposed EnsembleOPT (C) for the classification of CVD 
images from the testing dataset. Confusion matrix in each row represent the true label, while the column represents the predicted classification. 
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