
https://doi.org/10.1007/s10664-023-10391-y

A large-scale empirical study onmobile performance: energy,
run-time andmemory

Rui Rua1,2 · João Saraiva1,2

© The Author(s) 2023

Abstract
Software performance concerns have been attracting research interest at an increasing rate,
especially regarding energy performance in non-wired computing devices. In the context
of mobile devices, several research works have been devoted to assessing the performance
of software and its underlying code. One important contribution of such research efforts is
sets of programming guidelines aiming at identifying efficient and inefficient programming
practices, and consequently to steer software developers to write performance-friendly code.
Despite recent efforts in this direction, it is still almost unfeasible to obtain universal and
up-to-date knowledge regarding software and respective source code performance. Namely
regarding energy performance, where there has been growing interest in optimizing soft-
ware energy consumption due to the power restrictions of such devices. There are still many
difficulties reported by the community in measuring performance, namely in large-scale
validation and replication. The Android ecosystem is a particular example, where the great
fragmentation of the platform, the constant evolution of the hardware, the software platform,
the development libraries themselves, and the fact that most of the platform tools are inte-
grated into the IDE’s GUI, makes it extremely difficult to perform performance studies based
on large sets of data/applications. In this paper, we analyze the execution of a diversified
corpus of applications of significant magnitude. We analyze the source-code performance
of 1322 versions of 215 different Android applications, dynamically executed with over
than 27900 tested scenarios, using state-of-the-art black-box testing frameworks with dif-
ferent combinations of GUI inputs. Our empirical analysis allowed to observe that semantic
program changes such as adding functionality and repairing bugfixes are the changes more
associated with relevant impact on energy performance. Furthermore, we also demonstrate
that several coding practices previously identified as energy-greedy do not replicate such
behavior in our execution context and can have distinct impacts across several performance
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indicators: runtime, memory and energy consumption. Some of these practices include some
performance issues reported by the Android Lint and Android SDK APIs. We also pro-
vide evidence that the evaluated performance indicators have little to no correlation with
the performance issues’ priority detected by Android Lint. Finally, our results allowed us to
demonstrate that there are significant differences in terms of performance between the most
used libraries suited for implementing common programming tasks, such as HTTP com-
munication, JSON manipulation, image loading/rendering, among others, providing a set of
recommendations to select the most efficient library for each performance indicator. Based
on the conclusions drawn and in the extension of the developed work, we also synthesized a
set of guidelines that can be used by practitioners to replicate energy studies and build more
efficient mobile software.

Keywords Performance · Empirical ·Mobile · Testing

1 Introduction

In this century, the focus on computer performance is changing: a program’s execution time
and memory usage are no longer the sole concerns when discussing performance. The fast
adoption of non-wired computer devices and the construction of big data centers in recent
years is making energy consumption one of the main bottlenecks when building powerful
computers (Theis and Wong 2017; Schlachter 2013) and software (Pinto and Castor 2017).

Battery life is known to be one of the major factors influencing the satisfaction of mobile
device users (Thorwart and O’Neill 2017). A survey with 1,894 smartphone users in the
US placed battery life as the most important factor impacting smartphone purchasing deci-
sions (Richter 2019), with 9 out of 10 users suffering from low battery anxiety (Mickle 2018).
Users of mobile devices have also been showing concerns regarding performance, reporting
energy-related issues, and avoiding applications (apps for short) that they identify as energy-
greedy (Pinto and Castor 2017) in order to increase the device’s uptime. Also, a research
study (Ma et al. 2013) reported that most of the energy issues detected in mobile devices
are caused by apps (more than 47%) rather than by the system itself. Very often, software
developers are not aware of possible performance issues (Li et al. 2020) or do not have the
knowledge to correct them (Pang et al. 2016; Pinto et al. 2014; Manotas et al. 2016). Fur-
thermore, bad performance results in User eXperience (UX) degradation and consequently
less app usage. Such degradation can also indirectly harm developers, especially those who
monetize their apps. Thus, mobile software developers have shown a growing interest in
optimizing their applications, while also being energy conscious (Pinto and Castor 2017).

As far as mobile platforms are concerned, several studies have emerged, from both
academia and industry, with the objective of analyzing different aspects of the energy con-
sumption of software, such as architectural components (Linares-Vásquez et al. 2014; Ortiz
et al. 2019; Bangash et al. 2021), programming languages (Couto et al. 2017; Pereira et al.
2017, 2021; Lima et al. 2016), or libraries (Linares-Vásquez et al. 2014; Pathak et al. 2011).
In fact, these works allowed developers to evaluate the impact of common programming
practices on the energy consumption of the devices. The reported studies, however, have an
evident limitation: each study is validated in one specific combination of hardware/software
that can limit the generality of the reported results (Vilkomir et al. 2014) and do not consider
(at least) several performance indicators. A recent survey (Hort et al. 2022) analyzed 156
publications published between 2008 and 2020 focused onmobile applications’ performance
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and identified several gaps in the literature that are still unexplored. For instance, this study
evidences the need for an evaluation of whether anti-patterns that exist for several perfor-
mance indicators such as responsiveness, memory or energy usage, exist for other indicators,
such as application launch time.

Moreover, each study involving dynamic analysis was conducted over its own (reduced)
set of mobile applications, where the median number of apps is around 8 and not more than
100 (Kong et al. 2019). As a consequence, this makes it impossible to properly compare
the energy impact of the reported programming practices. Indeed, a large-scale study on the
energy consumption of such programming practices, when executed in the same setting, is
needed to help both software and compiler developers write/generate energy-efficient code.

In this paper, we present a large-scale study aiming at understanding the real-world energy
performance impact of several programming practices reported in the literature. In order to
define guidelines to help both software and compiler developers write/generate efficient code,
we discuss the following performance indicators: memory, execution time, and energy con-
sumption, with a special emphasis on the latter. In this way, we intend to validate assumptions
on the performance impact of several known programming practices, while also presenting
new conclusions on practices not yet analyzed until now in terms of all performance compo-
nents considered in this study. For instance, we evaluate the resultant performance impact of
several development/maintenance-related activities performed at source-code level. Despite
the fact that these types of changes might not be intrinsically and directly associated with
performance, these can affect source code resources and components that have a significant
performance impact. Our conclusions suggest that many of the analyzed coding practices
previously labeled as inefficient have distinct performance impacts across the considered
performance indicators and its classification in terms of performance is not evident. We also
concluded that different statically detected project source modifications such as fixing bugs,
adding layouts or strings and performing refactors are the changes most associated with
relevant changes in app performance.

In order to gather data to synthesize our conclusions, we used model-based GUI testing
frameworks in a black box-testing setup in order to evaluate if it is possible to identify
relevant changes in an application’s energy performance throughout its various releases.
After confirming the validity of this approach, and in order to identify the main causes
of such performance changes, each change was cataloged and matched with the project
source’s modifications performed since the last release. Furthermore, we used the data from
this analysis to classify and evaluate the performance of statically detected issues by widely-
used tools like Android Lint (Google 2021), as well as energetically inefficient programming
practices (also known as Red APIs) presented in a previous study (Linares-Vásquez et al.
2014). In addition, we carried out an analysis on similarly competing libraries that perform
typical programming tasks, in order to assess which libraries might be most efficient or
inefficient for certain programming purposes.

In summary, the results of our study will answer the following questions:

– RQ1: Which program changes have more impact on an Android’s applications’ energy
consumption?

– RQ2:Dopreviously identified inefficient programming practices exhibit the same behav-
ior on larger datasets and different contexts?

– RQ3: Are there significant performance differences between apps that use different
competing libraries implementing typical programming tasks?

Moreover, our work also presents additional contributions that we consider extremely
relevant for the research community:
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– A set of performance-oriented guidelines on how to improve source-code performance,
which was defined from the observation and analysis of our results.

– a publicly available online appendix (Rua 2022), where all the analyzed results from the
study are available in both graphical and visual form. There were some results that are not
covered here due to space restrictions and because we believe they should be analyzed
in a dedicated study.

– a dataset: resulting from this large-scale analysis, in order to provide the community
with data from which more relevant conclusions can be drawn regarding performance
and Android code programming practices. This dataset contains both dynamic and static
metrics, obtained from our automatic source code analysis and the execution of the
applications in physical devices.

To the best of the authors’ knowledge, we present the largest empirical study on mobile
software and source-code performance known to date. As far as we acknowledge, there is no
equivalent empirical study, in terms ofmagnitude, that involved real-world app execution built
from source in physical Android devices. This study analyzed 1322 versions of 215 different
apps, which implies that 1322 different APKs have been installed and executed, through dif-
ferent tests with different inputs, totaling 27900 executed test scenarios. These were gathered
after filtering 708 apps across 6071 versions based on certain criteria (Section 3.3), such as
if they could be automatically compiled in our workstation with our automatic procedure
or executed in the target devices. All analyzed versions were both present in the Google
Play Store and have their respective source code available in open-source repositories. The
process of gathering and filtering such a number of compilable and executable apps, through
dynamic execution, lasted for several weeks, with a total processing time of approximately
28 days just to execute all tests on the final set of filtered apps.

As a result of our analysis, we present answers for the presented research questions
and a set of guidelines that emerged from the analysis of the millions of measurements
gathered in our context of execution. For instance, our study allowed us to reach the following
conclusions/findings:

– Adding functionalities, fixing bugs, adding layouts or strings and performing refactors
are the changes most associated with relevant changes in app performance;

– Many coding practices/patterns previously identified as inefficient did not evidence such
behavior in our tests. For instance, a relevant part (40%) of the APIs identified as energy-
greedy in Linares et al. (2014) was even more correlated with energy-efficient tests.

– The levels of Severity with which Lint issues are cataloged have little correlation with
the correspondent performance impact.

– The evaluationof the performanceof apps usingdifferent competing libraries that perform
similar commonprogramming tasks allowedus to classify the efficiency of each library on
each performance indicator. This evaluation suggests that there are libraries that favor one
ormore performance indicators but end up being themost inefficient in other components.
For example, for web communication via HTTP, Volley was the library used in the tests
with the best memory and energy efficiency, being the one present in the tests with the
worst execution time.

The remainder of the document is as follows: Section 2 introduces several of the most
relevant contributions regarding performance in mobile platforms. Section 3 describes the
building blocks used to design the processing procedure followed for gathering the collected
apps and automatically analyzing their performance. Afterward, we present and discuss
the main results from our study in Section 4. In Section 5, we answer the three research
questions and present several guidelines for developers building performance-friendly apps
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and the resulting dataset. Section 6 presents some of the threats to the validity of our work.
Finally, Section 7 presents the conclusions and future research directions that this work can
provide.

2 Performance Awareness in Mobile Platforms

This section presents work and results in software performance analysis throughout recent
years. As specified in Section 1, the focus is on mobile platforms and run-time, memory,
and energy performance, with a greater focus on the latter. Thus, this section presents some
of the most important contributions in this area in terms of tools, methodologies, data and
knowledge.

The execution of one app depends mainly on 4 major aspects (Pinto and Castor 2017):
1) a given software system under execution; 2) a given hardware combination; 3) a given
context; and 4) a given time. In a mobile setup, the number of possible execution scenarios
is even larger. According to Android, there are 24 000 different types of devices from nearly
1,300 different brands running Android, and this number continues to grow. Also, Android
offers over 30 different platform versions (API levels) for mobile devices and suffers from
fragmentation (Park et al. 2013), which is the biggest challenge in testing Android apps
according to a recent study (Lin et al. 2020). Context also plays a key role, since the way
software is built andused as a critical influenceon energy consumption (Ortiz et al. 2019; Pinto
and Castor 2017), which also depends on the static and dynamic features of not only the user
(personal features), but also the device, and environment (network conditions, temperature,
among others) (Pereira et al. 2020). This tremendous number of possible execution scenarios
makes it almost impossible to achieve meaningful and universal conclusions, as well as
gather representative data regarding the apps and platform development paradigm. A large-
scale empirical study performed in multiple devices, platform versions, apps and contexts
can be a key factor to better understand the software performance behavior (Pereira et al.
2020).

In order to produce results with relevance and statistical significance about the energy
consumption of software, the scientific community tends to use diversified sets of pieces of
software that allowobtaining aminimally representative sample of the development paradigm
of the platform under study. When it comes to mobile platforms, researchers tend to use open
software repositories to collect the corpus of applications to be used in their studies. When
the objective is to analyze the application code, typically the community uses open-source
repositories (Ribeiro et al. 2021; Couto et al. 2015; Rua, Couto, and Saraiva 2019; Rua et al.
2020; Das et al. 2020; Cruz et al. 2017). With regard to studies that involve dynamic analysis
of automatically executed applications, the sets of applications used tend not to be large, with
a median size of 8 apps and no more than 100 (Kong et al. 2019).

Most studies from the state-of-the-art that analyze Android coding practices only cover
JVM source code or bytecode code (Couto et al. 2015; Linares-Vásquez et al. 2014; Cruz
et al. 2017; Ribeiro et al. 2021; Couto et al. 2020; Maia et al. 2020), since Java was for many
years the reference approach for Android development. With the growing popularity of other
programming languages, frameworks and librarieswere created for development that allowed
not only to develop code using other programming languages, but also to do it cross-platform.
Since recent studies show that different languages have different energy footprints (Couto
et al. 2017; Pereira et al. 2021), other studies have emerged in the last years aiming to
analyze the energy consumption of applications built with different languages or development
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frameworks (Biørn-Hansen et al. 2020; Oliveira et al. 2017). These studies showed that
although the use of these approaches may lead to decreased performance compared to the
native development approach, there are several cases where their use even substantially
benefits energy consumption. Peters et al. (2021) also evaluated the run-time performance
impact of migrating from Java to Kotlin, by dynamically analyzing 10 open-source apps that
conducted such migration. The authors concluded that migrating to Kotlin has a statistically
significant impact on CPU and memory usage, while not significantly impacting energy
consumption. This study also confirmed that most open-source Android apps migrated to
Kotlin.

In terms of tools and techniques to estimate ormeasure energy consumption, several efforts
offer powerful alternatives. For developers to inspect and evaluate performance consumption
on individual apps, Android Profiler (Google 2021) offers a set of tools that can be used to
evaluate performance in terms of CPU usage, energy, or memory performance. However, this
tool is embedded in the Android Studio IDE, aiming to help developers to perform single
app analysis with a GUI view. This embedding makes it difficult to port the tools outside this
environment and perform bulk app analysis. For this purpose, other tools have emerged that
measure, analyze, and compare performance among sets of apps.

Besides hardware-based solutions, such as Monsoon (2021), which are physical external
apparatus, require device/battery disassembly, and are usually costly, there are several alterna-
tives (Chowdhury et al. 2019; Hu et al. 2017; Nucci et al. 2017) that also offer accurate results.
For instance, GreenScaler (Chowdhury et al. 2019) can be used to estimate energy consump-
tion during app execution, using a model-based approach to estimating energy consumption
based on invoked system calls. Its energy model was calibrated using data from previous
work by the same authors (Hindle 2013). Having access to the source code, PETrA (Nucci
et al. 2017) is an alternative to consider to measure and locate inefficient energy consumption
of applications. PETrA approaches this by using APIs available since version 5 of Android.1

The authors claim that this tool can estimate the energy consumption of an Android applica-
tion’s source code with a low granularity, i.e. method level, providing accurate results (Nucci
et al. 2017).

Regarding performance evaluation on mobile devices, several studies and efforts have
appeared with a view of assessing the impact of programming practices on both app and
operating system performance. From the Android platform, a list of statically detectable
source-code performance issues has been compiled. These issues can be automatically
detected in an app’s source code using Android Lint and were widely studied by the research
community (Goaër 2020; Couto et al. 2020; Das et al. 2020; Cruz et al. 2017; Goaër 2020).
Android Lint allows the detection of various possible Android issues of different categories,
namely performance issues. Although the listed Lint performance issues are accompanied
by a categorization of severity, a brief description, and the impact of the issue, their gain in
terms of performance is not clear nor in what performance indicators do they affect (run-time,
energy consumption, ormemory).Many recent studies have assessed the performance impact
of software practices at different levels of granularity. From languages (Couto et al. 2017;
Pereira et al. 2017, 2021; Lima et al. 2016), development tools or software standards (Pereira
et al. 2018; Couto et al. 2015, 2017), to methods and libraries (Pereira et al. 2020, 2016;
Linares-Vásquez et al. 2014), several community efforts have proven that it is possible to
optimize software at every software development granularity level.

1 https://developer.android.com/about/versions/android-5.0.html#Power
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Source code metrics and other static metrics have been frequently used to assess code
performance (Hindle et al. 2012; McCabe 1976; Rua, Couto, and Saraiva 2019; Keong
et al. 2015). In regards to performance, several indicators may be extracted from application
source code that helps predict their impact on consumption of resources of the host machine.
Focusing specifically on mobile platforms, Hindle (2013) evaluated the impact of object-
oriented metrics have on energy consumption, concluding that there is some promise in
looking at these metrics. Nevertheless, they also concluded that more data and analysis are
needed.More recently, a study (Keong et al. 2015) showed that static metrics such asMcCabe
CyclomaticComplexity (McCabe 1976), number of parameters, nested block depth,weighted
methods per class, number of overridden methods, number of methods, total lines of code
and method lines all have a significant relationship with the power consumption of mobile
applications.

A recent research effort conducted by Das et al. (2020) performed a large-scale study of
a large set of Android applications, aiming at analyzing the evolution of statically detectable
performance issues. This study analyzed 724 open-source repositories written solely in Java
(projects containing NDK or Kotlin code were excluded) of Android apps in order to detect
and study the evolution of 9 performance patterns. The goal of the study was to evaluate how
much time the energy patterns remained unsolved on these apps, as well as how this kind of
patterns tend to appear in the development lifecycle of Android apps. From the analyzed set
of apps, 316 had performance issues, while 45% of these didn’t solve such issues.

Mazuera-Rozo et al. (2020) conducted a large-scale study that aimed at categorizing per-
formance bugs on mobile platforms. From an analysis of the commit history of 47 Android
apps and 31 IOS apps, the authors synthesised a taxonomy of performance bugs by aggregat-
ing them into different categories. The authors also analyzed the survivability of these bugs,
concluding that on average, performance bugs tend to persist on mobile software for longer
than non-performance bugs. Another study (Habchi et al. 2021) that manually analyzed 561
smell-removing commits of 324 apps concluded that the high diffuseness of mobile-specific
code smells is not a result of releasing pressure and that app developers do not refactor smelly
instances even when they are aware of them.

Several literature studies been also targeted end users alongside developers with their
studies focusing on energy consumption. These studies aimed at comparing competing apps
for the Android platform and prove that these have different energy footprints and many of
them have room for performance improvements. A recent study (Rua et al. 2020) evaluated
the performance of several of the most widely used keyboards on the Android platform and
concluded that it is possible to save a significant amount of energy just by changing to a
more energy-saving keyboard or keyboard configuration. Also, another study (Gonçalves
et al. 2022) focused on the most widely used Android browsers also concluded that there
are significant differences in terms of energy consumption among these browsers. This study
evaluated the efficiency of each browser for different use cases and concluded that Chrome
was themost energy-friendly browser for tasks such as playing videos onVimeo and browsing
Facebook.

Linares-Vásquez et al. (2014) empirically measured the energy consumption of method
calls in a small set of 55 Android apps to identify energy-greedy APIs (or Red APIs) and
usage patterns. This study identified a total of 131 energy-greedy APIs and several guidelines
targeting appdevelopers aiming to save energy on their apps, such as avoiding certain software
design principles such as Information Hiding. More recently, Li et al. (2020) used 2 different
testing frameworks to execute apps in different execution contexts andwith different inputs to
detect energy-issues in 27 real-world apps. Both Lint issues and these Red APIs will be under
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analysis, in terms of their performance impact, with their respective results and conclusions
presented in the following sections.

A recent study (Li et al. 2022) proposed a new testing tool to detect energy issues in real-
world applications. This study dynamically analyzed the consumption of 36 widely-used
applications, using Monsoon (2021) for power monitoring and the Dynodroid testing tool to
exercise applications. This study concluded that 62% of the energy issues detected need to be
executed with specific inputs or in special contexts to be detected and only less than 20% can
bemanifestedwith simple inputs. Finally, they also concluded that almost 90%of the detected
issues in their experiment were previously unknown to developers and that energy issues are
generally harder to fix than non-energy related issues. 2 different studies also tried to assess
the impact of logging on Android applications (Chowdhury et al. 2018; Zeng et al. 2019),
having concluded that performing intensive logging has a significant impact on application
performance. Chowdhury et al. (2018) also conclude that logging at a limited rate (less than
1 message per second) has no significant impact on performance and that factors such as
logging rate, disk flush and message size have a significant impact on energy consumption.

Efforts by the research community have also shown that it is possible to improve the energy
performance of applications without making changes to their original source code. Bangash
et al. (2022) proposed a technique based on the Redex tool,2 which aims to change the
bytecode of applications in order to improve run-time performance and reduce application
size. A preliminary evaluation of this tool carried out over 22 applications allowed to improve
the performance of 12 applications. However, this experiment allowed the authors to conclude
that the proposed optimizations do not present universal results, since they did not always
lead to consumption improvements in some of the analyzed applications.

There are also several efforts in the literature that aim to reuse knowledge previously
obtained in other studies of the literature to help and encourage developers to correct energy
issues in their applications. Cruz et al. (2017) proposed a tool for the automatic detection
and repair of 5 energy issues cataloged in a previous study (Cruz and Abreu 2017). Another
study conducted by Ribeiro et al. (2021) proposes an Android studio plugin to help develop
more efficient Java code, having the ability to do automatic detection and refactoring of 5
well-known energy smells. In order to evaluate the tool’s effectiveness, it was used to analyze
100 different applications, having been able to perform 42 refactorings in 35 of the analyzed
applications.

The present work differs from what exists in the state of the art in several ways: in terms
of magnitude and in terms of the procedure and conclusions it aims to draw. Firstly, it is the
study of the literature by far that dynamically and automatically analyzes more applications.
Taking advantage of its magnitude and the nature of the corpus of applications on which
the analysis was based, this study’s aim was to analyze and validate on a large-scale and
in a different context the impact of practices previously identified as inefficient in terms of
performance (Linares-Vásquez et al. 2014; Google 2021). In addition to these differences,
the present study also aims to evaluate aspects not yet addressed by other studies in the
literature. Namely, aspects such as the impact of certain changes in the energy consumption
of applications (for instance, changes at project building/resources level) and to evaluate
differences in the impact in terms of performance of competing libraries not yet analyzed in
terms of the considered performance indicators that are widely-used in Android.

2 Redex: https://github.com/facebook/redex
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3 Methodology

This section describes the method followed to collect and process the large corpus of apps
used in our empirical study. We start by describing the methodology designed for processing
a large corpus of variable size of applications, by describing the auxiliary tools used to
perform the automatic app testing procedure. Afterward, we describe the respective testing
workflow to dynamically execute each app. Finally, we describe the methodology followed
for obtaining and filtering the collected corpus.

3.1 Performance Analysis Tooling

To execute and monitor the performance of such a large app corpus, an automated test-
ing framework was adapted using state-of-the-art tools that have been used in the Android
ecosystem to automatically execute apps. This section describes each used analysis tool to
build our execution pipeline, justifying the reasons for its use.

Themost common technique to trace the execution of an app is to perform code instrumen-
tation. Several techniques have been used in various researchworks, from the instrumentation
of source code (Couto et al. 2015), bytecode (Liu et al. 2017), and the Android framework
itself (Machiry et al. 2013). However, many of these approaches do not support the Kotlin
language, which is present in 23,4% of the executed versions. The presence of this language
is still problematic for applying outdated static and dynamic analysis tools in studies with
significant size (Das et al. 2020). The alternative approach consists in using the jInst (Couto
et al. 2015) tool, which was recently updated to also support Kotlin instrumentation in addi-
tion to Java. JInst was used in previous works (Rua, Couto, Pinto et al. 2019; Couto et al.
2015; Rua, Couto, and Saraiva 2019) to instrument Android code, to insert calls to energy
profilers and consequently locate energy hotspots in the source code.

In order to monitor the energy consumption while the apps are running, there are several
alternatives used by the Android community (Couto et al. 2015; Nucci et al. 2017; Monsoon
2021; Chowdhury et al. 2019). One of the most accurate and used ones is the Trepn Pro-
filer (Google 2016): a software-based artifact developed by Qualcomm that works on any
Snapdragon chipset-based Android device. Trepn Profiler allows not only to measure power
consumption but also other system resources, such as GPU/CPU load and frequency, sen-
sors/stage usage, among many other hardware components. Furthermore, Trepn was already
used alongside source code instrumentation to estimate the energy consumption of Android
apps (Rua, Couto, and Saraiva 2019; Rua et al. 2020; Rua, Couto, Pinto et al. 2019).

Whilemanually testing each appwith end userswould be themost ideal solution to analyze
an app, it is impractical for such a large set of apps. In addition, in order to minimize manual
work and possible conflicts with app code, devices, or platform versions, we followed a
black-box testing approach. Indeed, the use of testing frameworks to evaluate Android apps’
performance is widely reported in the literature (Nucci et al. 2017; Chowdhury et al. 2019;
Jabbarvand andMalek 2017; Li et al. 2020; Hu et al. 2017). Thus, we chose the following two
frameworks: UI/Application Exerciser Monkey (Google 2021), and App Crawler (Google
2021). Both of these exercise and test apps through events performed over the GUI, following
a depth-first approach.

The former (Monkey for short) has been used in many previous works (Chowdhury et al.
2019; Rua, Couto, and Saraiva 2019; Hu et al. 2017) to detect energy/performance-related
issues, being the most widely used tool by the researching community to automatically test
applications (Choudhary et al. 2015). It allows the generation of pseudo-random streams of
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user events such as clicks, touches, or gestures, as well as several system-level events. It also
allows repeating tests and the respective sequence of events, which is essential to replicate the
same work over different apps to draw comparisons among them. The latter, App Crawler,
is a recent tool provided by Google that allows developers to crawl app GUIs. This tool
considers contextual behavior, being able to efficiently locate app UI widgets and properly
interact with them.

To combine all these systems, we reused the AnaDroid tool (Rua, Couto, and Saraiva
2019). This tool follows the typical automated testing benchmarking process (Kong et al.
2019), thus allowing the execution of any Android app while monitoring its energy perfor-
mance. This tool supports the Kotlin dialect, several energy profilers (Trepn and GreenScaler
(Chowdhury et al. 2019), and most Android testing frameworks (JUnit-based testing frame-
works, RERAN (Gomez et al. 2013), monkeyrunner, Monkey, App crawler). AnaDroid
computes both dynamic energy-aware performance metrics and static energy-related source
code metrics.

Finally, for our physical testing setup, we connected 2 workstations to 2 LG Nexus 5
running the same customized system image which removes unnecessary apps/services and
keeps only a minimal set of apps/processes needed to conduct our study. The main idea
is to reduce to the minimum the performance measurements’ noise. We chose to consider
2 devices of the same model with the same execution context, in order to parallelize the
execution and reduce the execution time of the test process in half. Since the measurements
that Trepn profiler estimates are obtained at the system level, through this method it is still
possible to establish comparisons between results obtained in both devices.

3.2 TestingWorkflow

This section describes the testing procedure to prepare, analyze and execute apps while
collecting performance metrics during their executions. This process is fully automated
and independent of the app’s domain. All developed and re-used tools to build the exe-
cution pipeline are publicly available. This pipeline is divided into two phases which will be
described next.

3.2.1 Instrumentation and Building

For the source code instrumentation task of the collected apps of our corpus, we used the
JInst tool (Couto et al. 2015; Rua, Couto, and Saraiva 2019). Source code written in Java
and Kotlin is parsed into an AST (Abstract Syntax Tree), which is then traversed to locate
tree nodes corresponding to method calls. At method call nodes we insert the code fragment
(subtree) needed to perform energy monitoring at run-time. Because in this study we rely on
Trepn to monitor energy consumption, the inserted code consists of calls to TrepnLib (Rua,
Couto, and Saraiva 2019; Rua, Couto, Pinto et al. 2019). A dependency to TrepnLib is
added to the building scripts which are also automatically adapted to the context of our
running platform. JInst performs method-level instrumentation and uses both JavaParser3

and Kastree4 to instrument Java and Kotlin code, respectively.
As a final step of this phase, the AnaDroid tool compiles and builds the apps’s APKs.

To guarantee the correct build of the instrumented applications (both their source code and

3 Java Parser: https://javaparser.org
4 Kastree: https://github.com/cretz/kastree
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Table 1 Auxiliary tools used for
Android projects’
instrumentation and compilation

Task Tools/Artifacts

Data gathering sources AndroZooOpen, GitHub, F-Droid

Code instrumentation JInst (JavaParser, Kastree, TrepnLib)

Building Anadroid, Gradle

API analysis Androguard

scripts), we follow a regression test-like approach that detects and corrects a set of typical
building errors such as API/dependencies conflicts (Scalabrino et al. 2020), Gradle and
Gradle-plugin version mismatching, etc. Finally, we used Androguard5 for detecting the
APIs present in the APK built. The set of tools used so far from the application gathering to
the compilation stage is presented in Table 1.

Figure 1 shows the flow of work performed in every app of our corpus.

3.2.2 Execution and Analysis

After instrumentation and compilation, the generated APK containing the apps’ Dalvik byte-
code is installed on the Device Under Test (DUT). This device is connected to a workstation
through the ADB interface, which allows the interaction between each device and the execu-
tion of remote actions. Upon installation, the device initially has all hardware sensors (Wi-Fi,
GPS, Bluetooth) turned off.

An app, however, may require the use of sensors to be fully functional and allow to fully
explore its core functionalities. In order to minimize external interference to the monitoring
processwhile not limiting apps’ execution, we designed a simple heuristic that enables certain
sensors according to the permissions specified by each app. Furthermore, for each app, we
inspect the Android Manifest file to infer the permissions required by the app and we enable
sensorswhose usage is frequently associatedwith some permissions before the test execution.
The list of permissions considered to activate sensors and the respective sensors are detailed
in Table 2.

Therefore, we guaranteed that at the beginning of each app’s execution, the required
sensors are turned on, according to the permissions specified by the the app developers in the
manifest file. Controlling the status of these sensors is programmatically done via adb. This
makes our process permission-aware (Sadeghi et al. 2017), while reducing testing effort and
increasing code coverage.

To automatically run each app, the testing frameworks App Crawler and Monkey were
used. Using App Crawler, we performed 3 tests per app, following a completely black-box
approach.With theMonkey tool, a set of 25 testswere replicated for each app.Thediscrepancy
between the number of tests considered for each testing framework is due to the fact that
tests executedwithAppCrawler producemore consistent results in terms ofmethod coverage
and performance, being its execution more deterministic, unlike what happens with Monkey
framework. TheMonkey tests were executed with the same seeds for each application, which
leads the tool to generate the same set of events for the apps, given its pseudo-random nature
to generate event streams. The system log is cleared before each test is executed, and is
collected at the end of the run. Log analysis allows the detection and exclusion of executions
with errors.

5 Androguard: https://github.com/androguard/androguard
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Fig. 1 Main workflow

Each test execution, independent of the testing framework, follows the same overall exe-
cution workflow, as presented in Algorithm 1.

In the initProfilerService step, the device cache is cleared, so that no data from previous
executions may cause biased results. Afterward, the Trepn service is started, and the app is
initialized. The device resource status is collected (number of running processes, CPU and
RAMusage, etc) just before starting themonitoring process (‘startProfiler ()’) and the system
log is cleaned. This step consists of using Trepn states to temporarily delimit the beginning of
the process. The next step consists of starting the testing framework and executing the tests.
Finally, the monitoring process is finished and the device status is recorded again. The app
is closed, the collected monitoring data is exported to a csv file, the system log is extracted,
the profiler is turned off, and the data is exported to the workstation.

3.3 Data Collection andValidation

This section describes the processed followed for collecting our corpus of executable applica-
tions and the conducted empirical procedure followed to collect the results that are analyzed
in the following section. Furthermore, we present the methodology followed to extract and
filter the applications used, providing also a taxonomy of the resultant set of selected appli-
cations. We also present details regarding the procedures followed to dynamically exercise
the applications using 2 different testing frameworks.

In order to obtain our final corpus of 215 apps and respective 1322 versions which were
analyzed in our empirical study, we resorted to using open-source software repositories.

Table 2 List of permissions that
activate sensors

Permission Sensor enabled

ACCESS_FINE_LOCATION GPS

ACCESS_COARSE_LOCATION GPS

BLUETOOTH Bluetooth

BLUETOOTH_* Bluetooth

INTERNET Wi-fi

NFC NFC

NFC_TRANSACTION_EVENT NFC
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Algorithm 1Workflow algorithm.

for app_project : {apps_projects} do
for app_project_version : app_project do

instrumentAppVersion(app_project_version)
app = buildApp(app_project_version)
installApp(app)
for testingFramework : {monkey,crawler} do

for test : testSet do
initProfilerService()
detectAndEnableRequiredAppSensors()
startApp(app)
recordDeviceState()
startProfiler()
executeTest(test,testingFramework)
stopProfiler()
stopApp(app)
recordDeviceState()
cleanDalvikArtCache(app)
exportResults()

generateResults()

Instead of crawling the most-common open-source repositories to search for every Android
project, we used the information present in AndroZoOpen (Liu et al. 2020). This repository
contains links, metrics, and metadata of Android apps which also have their source code
present in open-source repositories such as F-Droid, Github, Gitlab and Bitbucket. To down-
load the apps, we developed a custom crawler that allowed us to extract the URLs for the
remote repositories, all released versions, and their source code. Through this process, we
identified 1441 apps with 3 or more versions (average of 11 versions/releases per app), across
46 different Play Store categories.

One of the main objectives of this work was to focus on quality apps, avoiding projects
whichwere deprecated/sample, orwithminimal and unfinished functionalities. Thus,we only
selected apps that were present in the Google Play Store. This assured us a minimum level of
peer approval, as to be present in the Google Play Store an app must be approved and meet
certain quality and security standards. Although the application admission process is not as
rigorous as the Apple App Store process, all applications on the Google Play Store undergo
an analysis process that assesses their correctness, security, among others.6 Furthermore, as
we also wanted to track the evolution of app source code and have a minimum number of app
versions/releases to draw comparisons from, we selected those that had at least 3 versions
also present in the repositories.

After extracting the source code of each existing version, it was necessary to guarantee
that each app was compilable in our development environment and executable on the mobile
devices we had at our disposal. Often times developers customize their development envi-
ronment, some of the available software in open-source repositories only compile on the
machines they were originally developed. Since manually adapting the build scripts for each
app/version is impractical, to filter the apps that did not compile/execute on our devices, we
followed the automatic procedure described in Section 3.2. Thus, we used AnaDroid (Rua,
Couto, and Saraiva 2019) tool to automate the building process and to execute a simple test:
building the APK without any transformation performed, installing the app on the device,

6 Google Play Publishing Checklist: https://stuff.mit.edu/afs/sipb/project/android/docs/distribute/
googleplay/publish/preparing.html
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and testing whether it launched without errors on the device. After executing this automated
procedure, we obtained a set of 565 executable apps containing 2629 versions in total.

Our dynamic execution pipeline, shown in Fig. 1, involves an elaborated application
analysis process, whose complexity influences the accuracy of the automatic execution pro-
cess. The execution of the building process outside the typical application development
machine/environment can cause failures in the automatic building process. The applica-
tion instrumentation process changes source code and building scripts, which can cause
problems during project building. Including instrumentation libraries can cause incompati-
bilities between libraries andSDKversions, amongother errors.After replicating the previous
process of building and installing the APK, but now with the instrumentation process, the
percentage of applications fully capable of being processed by our pipeline drops to 270.
This reveals that AnaDroid’s automated application instrumentation process has a success
rate of 47.8%.

To execute the applications we rely on two black-box test frameworks, namely Crawler
and Monkey tools. The former was used to produce a set of 3 tests per version (making
a total of 3062 executions) and the latter an average of 17, 57 tests per version (with a
total of 23225 executions). After a preliminary experimental setup, we observed that tests
executed with Crawler resulted in longer testing sessions. Nevertheless, tests executed with
Crawler produced more deterministic results in terms of events generated during its tests
and respective method coverage obtained. Furthermore, we only executed this framework 3
times per version. Since the entropy generated by the interaction with Monkey was higher,
this framework was executed a more significant number of times, in order to increase the
coverage of invoked code.

The execution of the execution pipeline and respective tests allowed us to gather millions
of measurements of a large and diversified set of metrics (discussed later in Section 5.3),
obtained through both static and dynamic analysis of the application code and execution of
the respective executable/APK. In order to draw fair comparisons among the collected apps,
versions and respective tests, for the analysis present in this section we only considered tests
performed with Monkey, since the number of events and test duration obtained using App
Crawler strongly depends on the app UI complexity, being considerably divergent among
apps. Although the tests performed with Crawler are not analyzed in this section and consid-
ered to answer the research questions we intend to answer, their inclusion in this study and
the corresponding dataset is still relevant, as we will illustrate in Section 5.

Each testing frameworkwas invoked via command-line,with a defined set of arguments for
each executed application. For Monkey, the seeds used to generate the pseudo-random tests
can be found in the online appendix. For each test, 1000 events were generated with a delay
of 100ms between them, avoiding system keys that generate events that can interfere with the
test process, invoking functions outside the application (volume buttons, return, home, etc).
Also, these commands were executed with the –ignore-security-exceptions switch, to avoid
stopping the tests when run-time permissions are asked by the apps under test. Executions of
both frameworks were limited by a timeout of 5 minutes (300 seconds), in order to prevent
errors that occurred during execution from blocking the execution process. After the defined
time, if an error occurred during the execution, the test was discarded. Next, we present both
commands:

$ timeout -s 9 300 adb shell monkey -s <monkey_seed> -p <package_name>
--pct-syskeys 0 --ignore-security-exceptions --throttle 100 1000

$ timeout -s 9 300 <path_to_jar>/crawl_launcher.jar --apk-file
<path_to_installed_APK> --app-package-name <package>
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Many of the tests revealed run-time errors or returned corrupted results during test execu-
tion. Thus, we needed to analyze such execution in order to discard apps with a 0% method
coverage, and tests with invalid values given by the profiler. As a result of this analysis, the
set of 270 applications was reduced to 215, containing 1322 different versions.

In order to select a set of results representative of the typical behavior of an Android appli-
cation, it was necessary to perform filtering to put aside abnormal results that did not reflect
such behavior. For this purpose, it was necessary to detect and remove executions in which
there were fatal errors in either the execution of the application or the monitoring process.
During the execution of the applications, several errors occurred that needed to be filtered
so as not to bias our results. Among the criteria used to exclude anomalous executions are
App Not Responding(ANR) bugs, test runs that obtained 0%method coverage or null/invalid
energy consumption values, which indicates that something problematic occurred during the
startup or installation of the application, with the energy profiler or on the device itself. In
order to avoid analyzing these problematic executions, we only considered runs where the
list of traced methods is not empty, the device logs recorded during the execution did not
contain any ANR bugs, and whose exported results from the profiler did not contain invalid
measurements.

The distribution of the number of apps/releases per year presented in Fig. 2 aims to
illustrate the diversity of our dataset in terms of the analyzed versions’ age, in order to
classify the novelty of our dataset and respective applications. According to this analysis, the
most common release years are 2018 and 2019, with 70 and 46 applications, respectively.
Our dataset has also at least 20 and 40 app versions from 2020 and 2017, having only 1
version from 2015 and 17 from 2017. This data demonstrate the diversity of our dataset and
that our dataset is not composed of legacy or deprecated software.

Figure 3 presents an histogram that illustrates the distribution of the number of versions
per app. As can be observed, the most common number of versions per app is 3, with 35
apps having such number of versions. Nearly 85% of the apps executed have 10 or less
versions executed and 60.9% of the applications have 5 or less versions executed. This data
demonstrates that our global results are relative to a diverse set of apps, which helps to

Fig. 2 Distribution of number of app/versions per release year
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Fig. 3 Distribution of number of versions per app

mitigate the possibility of being influenced by specific apps with a high number of executed
versions, since there are very few of such cases.

In order to evaluate if our final set of applications is representative of the set of applications
present in the Play Store, we usedYamane sample sizemethod (Yamane 1973). As a reference
value, we considered the total number of apps present in the App Store in December of 2021
(the time of writing of this document), 2605000 apps. If we consider this value as the total
number of our population, the Yamane method tells us that we would need a sample of
approximately 400 applications to obtain a margin of error of 5%, at a confidence level
of 95%. Our set of 215 different applications gives a margin of error of approximately
6.68%. However, if we consider the number of versions as distinct applications, assuming
that each application corresponds to a unique software artifact and distinct from the rest of
the population, according to Yamane’s method our sample would already be representative
(see Table 3).

Nonetheless, this (still) large set of apps requires an execution time ofmore than 28 days to
just execute every app with the considered Monkey tests. This excludes the time of building
and the installation time, setup, warm-up and cool-down times, exporting results, among
others inherent to the proper execution of the automatic procedure described in Section 3.2.

Table 3 Analyzed app categories Category #Apps Category #Apps

TOOLS 63 SOCIAL 6

PRODUCTIVITY 23 MUSIC 6

LIBRARIES 20 HEALTH 5

UNKNOWN 20 COMMUNICATION 5

ENTERTAINMENT 9 WEATHER 4

EDUCATION 9 VIDEO 3

GAME 8 OTHERS 34

PERSONALIZATION 7 TOTAL 215
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Fig. 4 Average Energy consumption across apps versions’ release years

4 Large-Scale Android Performance Analysis

This section presents the results and analysis of the execution pipeline presented in
Section 3.2. We performed an empirical study using real devices, in which 2 testing frame-
works were executed on a large set of applications. We present the results of executing a set
of 215 different apps from the original set of 708, whose filtering process was described in
Section 3.3.

Figures 4 and 5 illustrate the distribution of the average test values for the evaluated
performance indicators across the app versions’ creation year. The date presented in these
Figures allows to observe that there is no clear trend in the energy consumption of the executed
apps. When using as reference the median values of the boxplots, as well as the lower/upper
quartiles and whisker values, our results suggest that the release year does not hint that the
performance has been changing throughout the years. Although there is a noticeable increase

Fig. 5 Memory and run-time across apps versions’ release years
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since 2017 when comparing the medians, the values from the quartiles and whiskers values
do not follow the same trend. In terms of memory and run-time, we also observed the same
behavior.

As shown in Fig. 16 there is a clear decrease in energy consumption when using theKotlin
coroutines mechanism. GreenRobot also shows gains when compared to both Executor and
RxJava. The most inefficient energy consumption to come from RxJava. Executor has a
substantial gain over RxJava, obtaining similar results to GreenRobot.

After filtering all the invalid data, they were grouped in order to answer the research
questions presented in Section 1. The next sections present the results and analyze the data
gathered in order to answer the research questions, which answer is later presented in Sec-
tion 5.

4.1 Performance Behavior Results

In this section, we present the results and analysis performed to answerRQ1:Which program
changes have more impact on an Android’s applications energy consumption?. In order to
detect and categorize significant changes in the energy behavior of the applications as required
to answer this question, we have executed Monkey tests across the different versions of the
applications. To select applications where the impact on energymay be significant we defined
the following set of criteria:

– 1) Tests executed with Monkey framework. Tests performed with this tool allow the
establishment of fairer comparisons between versions since it ran the same set of tests
and events for each version and app.

– 2) Apps with average energy consumption above 5.2 Joules. We considered apps with
consumption above the lower percentile of app average consumption;

– 3) Apps with average method coverage above 5%. In order to ensure that the tests exer-
cised a minimum amount of code from the application.

– 4) Apps with a variation of at least 20% between consecutive versions concerning the
application’s maximum consumption. For this purpose, the versions were sorted accord-
ing to their version number according to the semantic versioning format.7 This criterion
helps to ensure that a certain version has an abnormal performance behavior compared
to the adjacent versions and compared to the expected app behavior;

– 5) Versions with more than 20 app method invocations, in order to avoid considering
simple demo apps or tests with little interaction that are not representative of real-world
apps or real user interaction.

These criteria were not chosen in order to reduce the domain of analysis but to ensure
that only comparisons are made in versions of applications whose consumption is relevant
and in which there was a guarantee that the tests mostly capture the performance of the
applications and not of the device’s system. Since the performance measurements obtained
are captured at the system level, in order to impute the measurements with app execution we
imposed the criteria to assure that the executions that were considered in our analysis are
relevant. Thus, we consider only executions with relevant consumption (2) whose metrics
were less susceptible to being affected by system events, that executed a relevant portion of
the application (3,5). Furthermore, we also ensure that we only draw comparisons between
versions with very significant divergence in terms of consumption andwith irregular behavior
as expected in the application itself(4).

7 Semantic Versioning: https://semver.org
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Fig. 6 Filtering process for answering RQ1

By considering these criteria, we obtain a set of 31 applications and 46 versions where
we detect suspicious energy variations. In fact, we detect such suspicious behavior in 14.2%
of the executed applications. When we exclude the applications with minimal energy and
coverage, which is observed in 52 apps (24.9%), then we observe that 1 in 4 applications
has one of its versions with an abnormal energy performance (when compared to the other
versions). Figure 6 illustrates the filtering process performed by the previous sequence. Filters
1) and 5) from the previous criteria are not illustrated, as they did not remove any application
from the set to which they were applied.

Having identified 46 applications’ versions with suspicious energy consumption, we need
now to understand the cause of such performance changes. To better understand the changes
that are affecting the energy consumption of such app versions, we manually analyze the
source code of each of the 46 versions and their predecessor versions.

To perform this manual inspection we analyzed the information available in the open-
source repositories of those applications. We discarded two app versions since they are not
available on GitHub anymore, leaving us with a final set of 44 transitions between versions
to analyze. All other applications were analyzed via the GitHub website GUI that reports
the changes made between project commits and releases. Thus, we classified every change
occurring in the version with anomalous consumption in relation to the predecessor version.
We structured the changes between versions in four types, namely performance, semantic
changes, project code/resources, and project building, as presented in Table 4.

Performance We collected the energy, run-time, and memory consumption of the 44 appli-
cations and their predecessor versions. Since we wish to understand which changes influence
performance positively/negatively, for our comparisons, we only evaluate if the performance
indicator was improved or degraded and we do not consider the magnitude of the change.

Semantic Changes We consider three categories of code changes that may impact the app’s
performance, namely,Bugfix,Refactoring, orFunctionality.Bugfix and Refactorswereman-
ually identified by looking at changes made to the code of the current and previous versions
of the application. Functionalities were identified looking at commit messages between ver-
sions, and the introduction of new methods/classes which implement new behavior to the
application. If such new code does not introduce new functionality, then we classify it as a
Refactoring.

Project Code/Resources We considered changes to Activities, Fragments and Permissions.
The first two are the most used classes to build the various "pages"/"screens" that each
application can assume during its execution. Thus, a change in activities/fragments may
impact the app’s performance. Besides changes at the source code level, we also considered
changes that affect view components at resource levels, namely layouts/menus and drawables
and mipmaps, colors, values and strings. In terms of data to be consumed by the applica-
tion, we also looked for changes in .db, JSON or text files. Furthermore, we considered
the permissions requested by the new versions, so that we could analyze the impact on app
performance of these changes. Finally, in a more macroscopic view, we also looked for the
number of files changed and commits performed between versions, to correlate such changes
with performance measurements. It is important to notice that for these kinds of changes we
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Table 4 Criteria considered for the manual analysis

Type Criteria Description

Energy whether energy went up or down and in what proportion

Performance Time whether elapsed time went up or down and in what pro-
portion

Memory whether memorywent up or down and in what proportion

Bugfix Whether the new version fixes a bug introduced in the
previous version

Semantic changes Refactor Whether the new version refactors code introduced in the
previous version

Functionalities Whether the new version introduced new functionalities

Activities/Fragments If new Activities/Fragments were introduced/removed in
app code

Drawables/Mipmaps If graphics with bitmaps or XML were intro-
duced/removed

Layouts / Menus Whether application UIs or menus were intro-
duced/removed

Project Strings whether string resources were introduced/removed

Code/resources Colors/Values If color or styles were introduced/removed

DB/Data Whether resources containing application data such as
sqlite databases or JSON files were changed

Permissions Whether the app introduced/removed permissions to
operate

#Commits Number of commits since previous version

#Files Changed Number of files changed since last version

Dependencies If new dependencies were added or updated in the project

Project building Gradle dependencies If Gradle tools were added or updated in the project

Android SDK If Android SDK was updated

analyzed when the project suffered relevant changes, namely, by adding or removing files or
by updating existing ones. We did not consider minor changes such as renaming elements,
changes in indentation, or fixing typos in strings.

Project Building For this criteria we considered code dependencies, since they have an
impact on the performance of programs, and, thus, we evaluate upgrades/downgrades of
dependencies of third-party libraries. We also considered changes to the Android SDK since
it includes the standard libraries which are frequently updated in such an evolving mobile
ecosystem. Finally, we also consider changes in the default building system itself (Gradle
and Gradle-plugin versions), since they may affect the generated bytecode.

Having manually extracted this information for every application, we wish now to under-
stand which criteria are affecting the performance of the mobile apps. Because we need to
compare two data samples with dichotomous/categorical values, the comparison is presented
in tables containing the proportion of agreement between criteria as a contingency table.
The tables show the total number and the percentage of times that a criterion simultaneously
occurred when a significant change in the application’s performance is detected. In these
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Table 5 Relation between raises and drops of the 3 performance indicators

Energy raise Time raise Memory raise Energy drop Time drop Memory drop
Total % Total % Total % Total % Total % Total %

Energy
raise

X X 19 79,2 15 68,2 X X 5 20,8 9 37,5

Time
raise

19 79,2 X X 15 68,2 5 25,5 X X 7 31,8

Memory
raise

15 62,5 15 62,5 X X 7 31,8 7 31,8 X X

Energy
drop

X X 5 20,8 7 31,8 X X 15 75,0 13 65,0

Time
drop

5 20,8 X X 7 31,8 20 100 X X 13 59,09

Memory
drop

9 37,5 9 37,5 X X 13 65,0 13 65,0 X X

Total 24 24 22 20 20 22

tables, a bolded value in raise columns,8 signifies that the performance value raised in at least
50% of the app versions (implying a potential degradation of performance), while a bold
value in drop columns (TODO) that the performance value was improved in at least 50%
(implying a potential performance improvement) of the analyzed app versions.

In Table 5 we present a comparison between the up/down pairs of performance indicators
detected in our 44 applications. Each cell in the table shows the total and percentage of times
that a rise or fall in the value of a performance indicator occurred simultaneously with a
rise/fall of another performance indicator.

As we can see in Table 5 the greatest relationship between changes occurs between energy
and time, either between rises in consumption of both components (79.16%) and between
reductions (75% and 100%). This correlation between time and energy was already observed
in several studies (Pereira et al. 2021, 2017; Chowdhury et al. 2019). Although these two
performance indicators tend to be highly correlated,we observe that a rise or drop in one of the
components does not mean a change of the same magnitude in the other. It is also possible to
see that it is muchmore common to observe a decrease/increase of all performance indicators
at the same time, rather than in a disjoint way. However, a rise in one performance indicator
does not always lead to the rise of another component. In fact, they are not perfectly correlated.
Regarding energy consumption, its rise was only accompanied by a decrease in run-time or
memory in 20.84% and 37.5% of the time, respectively.

Table 6 compares the occurrence of the Project Resources, Project Source and Building
Code type criteria with the occurrence of energy rises/drops. The percentage (%) reported
for each change leading to a rise and drop is relative to the total of energy rise and drops
presented in Table 5 (24 and 20, respectively).

As Table 6 shows the criterion that has the strongest impact on the rise of energy con-
sumption is the addition of functionalities. Indeed, in 70.8% of the apps’ versions where
new functionality was added the energy consumption increased (at least 20%), while in only
30% of them the consumption decreased. On the positive side, the fixing of bugs shows a

8 We assume the reader has access to an electronic or colored version of this document.
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Table 6 Impact of changes in
energy consumption

Change Energy raise Energy drop
Total % Total %

Add functionalities 17 70,8 6 30,0

Add layout 14 58,3 5 25,0

Add strings 3 54,2 8 40,0

Refactor 13 54,2 10 50,0

Gradle update 12 50,0 5 25,0

Update dependencies 8 33,3 6 30,0

BugFix 7 29,2 12 60,0

New dependencies 7 29,2 7 35,0

Add colors/values 7 29,2 7 35,0

Add drawables 7 29,2 7 35,0

SDK update 6 25,0 4 20,0

New activities 4 16,6 3 15,0

Add mipmap 3 12,5 4 20,0

Update permissions 2 8,3 5 25,0

reduction of energy consumption in 60% of the applications, and only in 29.2% the energy
raised.

To better understand why the addition of functionalities and bugfixes have a strong impact
on energy consumption, let us analyze in detail which other changes occur simultaneously
with these two criteria. We start by analyzing the impact on the energy, time, and mem-
ory consumption in all apps where new functionality has been added. This is shown in
Table 7.

As we can see in Table 7 the changes that more often occur when adding new functionality
are Layout and String, Refactor andUpdate to Gradle Dependencies. Layout does contribute
to the rise in energy in 66.7% of the apps. This change also shows an impact on run-time and
memory consumption. Such impact, however, is in opposite directions since it is (almost)
equally divided between time/memory rises and drops.

String and Gradle dependency updates end up having a little distinct impact when accom-
panied by features, occurring with a frequency equal to or greater than 50% in drops and
rises of all components of the analyzed app versions. As for refactorings, they are associated
with both rises and falls in energy and time. However, the impact is more accentuated in
the descents of all components, and all such descents in energy and memory with refactors
happened when accompanied by the addition of functionalities.

Let us analyze now the occurrence of bugfixing changes as shown in Table 8.
There are a few criteria that occurred concurrently with a significant performance impact.

This can be justified by the fact that most bugfixes are quick changes that do not involvemajor
changes to Android code and building resources. All occurrences with a significant impact
had a negative impact on performance, with the Layout changes having a negative impact on
all performance indicators and the addition of functionalities with a negative impact only on
energy consumption. These changes were already the changes with the most negative impact
on energy consumption, as presented in Table 6.
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4.2 Android Programming Practices

This section presents the procedure and results obtained to answer RQ2: Do the previously
identified inefficient programming practices behave the same with larger data sets and differ-
ent contexts?. To answer this question, we analyzed 2 programming practices widely studied
as energy inefficient in the literature: The energy greedy API (Linares-Vásquez et al. 2014)
and then Android performance problems Lint (Google 2021). An analysis of these practices
is presented in Sections 4.2.1 and 4.2.2, respectively.

4.2.1 Energy Greedy APIs

In the context of green software, one of the most relevant studies was presented in 2014
by Linares-Vásquez et al. (2014) where several energetically greedy APIs were identified in
the Android platform. The Android ecosystem, however, has drastically evolved since this
study was performed. Consequently, those results may not report the current performance
of Android APIs. Moreover, it is also important to study those APIs within a large set of
applications representing the the current state-of-the-art of software development in Android.

In this section, we analyze in detail Linares et al. energy-greedy APIs, the so-called red
APIs. Although the original study reported a set of 129 APIs, in our repository we detected
the use of 60 different red APIs only. The APIs that each method invokes are collected with
Androguard from the Dalvik bytecode contained in the apps’ APK. In order to determine if
a certain test invoked a certain red API, we verify if each app method invoked during a test
contains the red API in its code. Table 9 summarizes the 60 red APIs found in the analyzed

Table 9 Red APIs invoked in Monkey tests

Red API #Apps #Versions #Tests #Methods

Global 161 852 27674 35802

android.widget.TextView.setText 117 589 4239 15414

android.widget.Toast.show 74 250 1996 3414

android.widget.Toast.makeText 72 262 2071 3492

android.util.Log.e 54 260 2455 14404

android.database.sqlite.SQLiteDatabase.execSQL 27 123 846 1973

android.util.Log.i 24 85 471 1804

android.widget.ImageView.setImageResource 22 93 524 1878

android.content.Intent.getIntExtra 20 104 375 767

android.database.sqlite.SQLiteDatabase.rawQuery 19 76 442 1226

android.database.sqlite.SQLiteDatabase.query 18 68 388 447

android.view.ViewGroup.addView 17 62 416 424

android.app.Activity.findViewById 14 69 419 734

android.graphics.Bitmap.createBitmap 14 85 277 309

android.database.sqlite.SQLiteDatabase.insert 10 47 503 845

android.view.View.setEnabled 10 26 216 426

android.content.res.Resources.openRawResource 9 50 323 326

android.graphics.Canvas.drawText 7 51 470 974

android.widget.EditText.setSelection 7 15 53 53
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Table 9 continued

Red API #Apps #Versions #Tests #Methods

android.webkit.WebView.loadUrl 7 23 68 87

android.view.View.startAnimation 6 20 191 409

android.database.sqlite.SQLiteDatabase.delete 6 39 306 462

android.view.View.setLayoutParams 6 14 209 1080

android.content.ContentResolver.query 6 20 231 475

android.database.sqlite.SQLiteQueryBuilder.query 6 20 231 251

android.widget.ArrayAdapter.notifyDataSetChanged 5 11 30 30

android.webkit.WebView.loadData 4 8 0 0

android.widget.ProgressBar.setMax 4 35 182 211

android.database.sqlite.SQLiteDatabase.update 4 27 195 196

android.webkit.WebView.loadDataWithBaseURL 4 8 57 57

android.app.NotificationManager.cancelAll 3 10 24 24

android.view.ViewGroup.removeAllViews 3 8 7 7

android.app.Dialog.show 3 6 26 26

android.database.sqlite.SQLiteDatabase.openDatabase 3 4 3 3

android.app.Activity.finish 3 18 271 481

android.util.Log.getStackTraceString 3 15 201 358

android.app.Dialog.dismiss 3 8 4 4

android.view.View.setClickable 2 4 1 4

android.database.sqlite.SQLiteDatabase.insertOrThrow 2 2 26 26

android.text.format.DateFormat.getDateFormat 2 3 1 1

android.text.format.DateFormat.getTimeFormat 2 11 112 114

android.database.sqlite.SQLiteDatabase.endTransaction 2 15 133 236

android.widget.ArrayAdapter.clear 2 8 150 150

android.app.Service.onStartCommand 2 22 214 214

android.database.sqlite.SQLiteOpenHelper.getWritableDatabase 1 8 0 0

android.app.Activity.startActivityForResult 1 12 207 216

android.view.Window.findViewById 1 4 7 14

android.location.LocationManager.getGpsStatus 1 2 2 2

android.view.View.performClick 1 2 23 23

android.database.sqlite.SQLiteDatabase.openOrCreateDatabase 1 1 1 1

android.os.Handler.dispatchMessage 1 12 12 12

android.graphics.Bitmap.getPixel 1 6 71 71

android.graphics.BitmapFactory.decodeStream 1 2 2 2

android.content.ContentResolver.update 1 2 20 23

android.app.Activity.setContentView 1 4 4 4

android.database.sqlite.SQLiteStatement.executeInsert 1 2 50 50

android.database.sqlite.SQLiteOpenHelper.getReadableDatabase 1 8 0 0

android.database.sqlite.SQLiteDatabase.getVersion 1 1 1 1

android.telephony.TelephonyManager.getPhoneType 1 1 1 1

android.graphics.Paint.getTextBounds 1 4 4 5

android.view.ViewConfiguration.getLongPressTimeout 1 8 69 69
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apps. For each API we associate the number of unique apps, versions, tests and methods
where it is called.

Next, we present results regarding energy, memory, and run-time associated with the
invocation of several red APIs. Our results include the APIs that were executed by more than
100 test cases, across at least 25 different versions of 10 or more different apps. Figure 7
shows a comparison in terms of energy consumption (in Joules, Y axis) of such red APIs.
As we can immediately see, several APIs appear to have a strong negative impact on energy
consumption, such as findViewById and addView.

In order to assess the impact of directly invoking these red APIs on app energy consump-
tion, we present in Fig. 8 the energy consumption of the tests (of the same apps) that did not
exercise those APIs. As we can see, the most notable energy footprint is shown by the same
findViewById and addView APIs. By looking at the medians, the value of findViewById for
example more than doubles most of the medians of all APIs illustrated in the figure, except
for addView and Log.e. Comparing findViewById with the API with lower consumption,
drawText, its consumption in terms of median is 2.58 times higher.

If we look in more detail at Figs. 7 and 8, we see that there are red APIs whose impact on
energy consumption is negligible, ormore surprisingly the energy consumptiondecreases. For
instance, just by looking at themedians, tests now not containing drawText, createBitmap and
rawQuery have increased their energy consumption. More particularly, tests not containing
drawText increased their energy consumption by nearly 96.5%when comparing themedians.
To clarify these issues, we perform a statistical test on all pairs with and without red APIs to
verify if there are statistically significant differences in our results. We begin by evaluating
whether the values of the tests for eachAPI followed a parametric distribution. After rejecting

Fig. 7 Energy consumption of tests with Red APIs
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Fig. 8 Energy consumption of tests without Red APIs

this hypothesis for all theAPIs, throughbothShapiro andWilk (1965) andD’Agostino (1971),
we apply the Mann and Whitney (1947) U test to compare pairs with/without the invoca-
tion of each Red API. In order to evaluate if there are significant and statistically supported
differences between the pairs, we evaluate the following hypothesis for each performance
indicator under analysis: H0 : The values obtained for tests with or without Red APIs invo-
cations follow the same distribution; H1: The values obtained for tests with or without Red
APIs invocations do not follow the same distribution.

The results of these hypothesis tests are shown in Table 10 (left columns), as well as a
classification of each API as Red or not, obtained by comparing the medians of the pairs
with and without Red API. If the tests using the API were less efficient than the ones not
using it, it was classified as Red (marked by ✓). Otherwise, the APIs are marked with ✗

and didn’t evidence performance-greedy behavior in our context. In regards to energy, the
Mann-Whitney U test rejected H0 in practically all pairs, except for the rawQuery and
createBitmap methods. This represents the case where we could not draw any conclusions
regarding its performance (marked by=). This shows, with statistical support, that there are
indeed differences in energy consumption when using, or not using, these APIs. However,
based on the median and average values, the tests using the drawText and Log.i APIs show
that such differences might sometimes even be positive within apps. In fact, we see that
calling these two APIs does reduce energy consumption, thus, making their classification as
red API invalid in our context.

In Fig. 9 we present results of the memory consumption of the same APIs. Once again,
we see considerable differences in memory consumption in these APIs. The API methods
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Fig. 9 Memory used by tests with Red APIs

findViewById and addView, which were the most energetically inefficient ones, have shown a
memory consumption consistently above most of the others. Moreover, the Log.i, Log.e and
setImageResource APIs are also the most memory demanding ones, placing their median
and 1st/3rd quartile values significantly above the others. Similarly to energy consumption,
we have also compared tests that invoked red APIs with tests that did not invoke such APIs
(plot available in the online appendix). Memory consumption does not follow a parametric
distribution when using the previously defined tests. After evaluating the hypotheses, only
the setText API does not show significant statistical differences between the invocation and
non-invocation of the Red APIs. We conclude that the invocation of these red APIs does in
fact have a large impact on memory usage.

Figure 10 presents the results of our third performance indicator: run-time. The find-
ViewById and addView APIs stand out negatively from the other red APIs considered. The
former presents tests with median values twice above that of many other red APIs (15.3
Joules), with the latter standing out from the others, but not in the same magnitude (values
between 30 to 40% higher in terms of median). Execution time is the measured performance
indicator in which the Red APIs demonstrate less impact during our performed tests. The
results in Table 10 (rightmost columns), for the evaluation of H0 and H1, show that there
are 5 Red APIs that do not show statistical differences in terms of execution time with their
invocation.
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Fig. 10 Elapsed time of tests with Red APIs

4.2.2 Android Lint Issues

Android Lint is a static code analysis tool that checks your Android project source files for
potential bugs and performance issues. Such performance issues have been used in several
research studies which mainly focus on memory/run-time performance. In this section, we
analyze and compare Lint performance issues in terms of run-time, memory and energy
consumption. As of this date, there are 36 performance issues reported by Lint. In the context
of our application repository, we identify 18 of such issues which are present in at least 25
versions of more than 10 different applications.

Figures 11, 12, 13 present boxplots for the three performance indicators for each one of
the 18 evaluated issue. The presented values are in Joules,MBytes, and seconds, respectively.
In the middle of each boxplot, we show the median value. In cases where no performance
issues were detected in an app under test, it is shown as None.

In terms of energy consumption, as we can see in Fig. 11, the DisableBaselineAlign-
ment, ObsoleteLayoutParam, and UselessLeaf Lint issues stand out negatively, with higher
whiskers, 1st quartile and median values. On the other side, the VectorPath and Recycle
issues are more energy efficient, but do not have consistently lower consumption values
when compared to the others.

In terms of memory usage, tested apps with no Lint issues (None) have the most dispersed
values.OverDraw andUseSparseArray also have more dispersed memory usage values than
the others, but consistently are higher than None. MergeRootFrame is the Lint issue least
associated with high memory usage. On the other hand,WakeLock and InneficientWeight are
the most memory-greedy.

Finally, when it comes to execution time, the DisableBaselineAlignment andUselessLeaf
Lint issues stand out in the negative, just as they did in terms of energy. Both display higher
whiskers, 1st quartile, and median values over all others. UseValueOf and Recycle have a
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Fig. 11 Lint issues energy consumption

consistently lower run-time than the others. Additionally, most of the issues also have a lower
run-time thanNone. Thismeans that in our study, these issues did not have a noticeable impact
on app run-time performance.

To assess whether there are statistically significant differences in behavior, in terms of
performance across the 3 analyzed components, we evaluated the following hypothesis for
each performance indicator: H0 : The values obtained for apps with Lint issues follow the
same distribution;H1 : The values obtained for apps with Lint issues do not follow the same
distribution.

Having first assessed the data distribution using both Shapiro and Wilk (1965) and
D’Agostino (1971), we applied the Kruskal and Wallis (1952) method. This allowed the
comparison of three or more groups of independent samples. Using Kruskall-Wallis, our H0

was rejected, concluding that there are in fact statistically significant differences, across all
performance indicators, between the issues.

Fig. 12 Lint issues memory consumption
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Fig. 13 Lint Issues run-time

Since the Lint issues are accompanied by different levels of Severity and Priority, we
conceived the possibility of measuring the correlation between these levels and each of
the performance indicators under analysis. As all the issues we evaluated in this section
are of Severity: Warning, we assessed the correlation between Priority levels (scale from
1 to 10) and each of the components. For this purpose, the Spearman’s Rank Correlation
Coefficient (Spearman 1904) of each pair was calculated (Component,Priority). Using the
obtained ρ, we applied the Rea et al. (2016) rule to obtain a classification of the level of
correlation between the pairs. The results of this analysis are shown in Table 11, showing
that the performance indicators have little correlation with the Priority of these issues.

4.3 Alternative Libraries

One key aspect of the success of a programming language is the set of powerful libraries
it offers: they do not only improve developers’ productivity but also influence software’s
performance. The Android ecosystem is no exception, and the Android offers under its SDK
a large set of libraries for networking, data structures, web data transfer, parallel processing,
etc. Moreover, there are several third-party libraries offering alternatives and improvements
to the already provided by the Android SDK.

Given the diversity of the analyzed apps in this study, we present a comparative study of
alternative libraries for common Android programming tasks. In order to answer RQ3: Are
there significant performance differences between apps that use different competing libraries
implementing typical programming tasks?, we selected a set of 7 programming tasks typically

Table 11 Correlation results
between performance indicators
and Lint issues priority

Component Spearman ρ Parker class.

Energy 0.034388 Negligible

Memory 0.104777 Weak

Time -0.044851 Negligible
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performed by Android apps. These libraries are listed in Table 12, organized in networking
over HTTP, Collections, Image rendering/loading, JSON manipulation, I/O, Logging and
Threading.

Taking into account the extent of the analysis carried out,weneeded to select a limited set of
tasks to be considered. Furthermore, we considered tasks with at least 2 alternatives/libraries,

Table 12 Evaluated libraries Library #Apps Versions Tests

HTTP

Volley 6 25 79

OkHttp 16 87 447

HttpURLConnection 7 57 232

Retrofit 16 85 399

Picasso 9 34 164

Collections

Sparse*Array 9 38 20

List 159 865 244

Set 129 692 147

*Map 71 325 127

Apache Collections 1 1 1

JSON

Logan 0 0 0

Moshi 1 5 22

GSON 22 133 133

Jackson 1 3 3

org.JSON 22 96 405

I/0

java.IO 89 400 1771

java.NIO 6 34 96

Okio 0 0 0

Apache IO 1 3 3

Logging

util.Log 90 489 1807

Slf4j 1 3 3

Timber 6 21 158

Threading

GreenRobot 6 14 86

RxJava 3 13 102

Executor 5 13 152

Kotin Coroutines 9 29 223

Image rendering/loading

Volley 6 25 25

Glide 3 23 16

Picasso 9 34 164

123

31   Page 34 of 56 Empirical Software Engineering (2024) 29:31



which have methods to be invoked in at least 5 different apps, across 10 different versions,
and with 25 tests different test scenarios. The libraries under analysis are some of the most
used libraries for Android for each category, according to AppBrain (2020).

In the following sections, we present results of evaluating the performance ofHTTP, JSON
and Threading libraries. We selected these three tasks because they were the tasks with the
largest number of alternative libraries to meet our selection criteria when excluding Image
rendering/loading and Collections. We did not present a deep analysis of the Image render-
ing/loading task since its libraries are also contained in the set of the HTTP libraries and we
also didn’t consider Collections since these were already analyzed in terms of energy effi-
ciency on the Android platform (Oliveira et al. 2019). The results obtained for the remaining
libraries present are available in the online appendix.

4.3.1 HTTP Libraries

HTTP requests are the main technique for transferring data in web apps, a key aspect of a
software ecosystem targeting mobile devices. In this section we analyse the most widely-
used HTTP libraries to perform communication via HTTP: HTTPURLConnection, Volley,
Okhttp,Retrofit, andPicasso.HTTPURLConnectionwas thefirst of these libraries to appear in
Android development. Volley was released in 2013 as an alternative to Okhttp, offering more
options such as multiple connections, request scheduling and cancellation APIs, working
over HTTPURLConnection. Retrofit is a type-safe HTTP Client, more oriented to REST
API access offering conversion to many common formats, while Picasso is optimized for
downloading and caching media formats. Figures 14, and 15 show a comparison of the
performance values for 5 different libraries:

As shown in Fig. 14, Volley is the most energy-efficient library, while Picasso is the most
inefficient library in our study. The median values show that Okhttp consumes 43% more
energy than Volley. HTTPURLConnection also has significant energy gains over the 3 most
ineffective ones, resulting in an 18% energy reduction when compared toOkhttp. By looking
at the medians of the boxplots, Volley is the most energy-efficient alternative with 7.5 Joules,
with Picasso being the most inefficient with a consumption 12% higher.

Fig. 14 HTTP Libraries energy consumption
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Fig. 15 HTTP Libraries memory consumption (left) and run-time (right)

In terms of memory usage, Okhttp again presents the worst median, 1st quartile and top
whisker, followed by Retrofit. Volley obtained the best median values, indicating it is the
most efficient choice. Finally, in terms of run-time performance, Okhttp yet again obtained
theworst median value, showing that it does not performwell across any of the 3 performance
indicators. However, Volley remains in second place in the highest performance overhead but
is superior in the top whisker and 1st quartile. Picasso is the most consistent, with the least
variability and the lowest median, top whisker and upper quartile.

Testing the hypothesis that the distributions of the test results of each API are significantly
and statistically different, we used the Kruskal-Wallis method with an α=0.05, after verify-
ing the data as non-parametric. The conclusions support that there are significant statistical
differences in the performance of the evaluated HTTP libraries.

4.3.2 Threading Libraries

Android developers are strongly encouraged to use threading/background processing to per-
form operations of storage access, networking, bitmap decoding, among others, to avoid
main thread overloading. The main thread is responsible for updating the app’s GUI and
using it for processing heavy operations has an immediate impact on responsiveness and
UX. In order to implement such a mechanism, several alternative libraries are included in
the Android SDK. The three libraries we consider are GreenRobot, a third-party library that
offers communication between components and threads via a publish-subscribe even bus,
RxJava, a library aiming to abstract tasks such as low-level threading, synchronization, and
thread-safety, through the use of the Observer pattern, and, Executor, which is typically used
to manage a startup thread pool.

The recent emergence ofKotlin, however, is also influencing how developers use threading
mechanisms. In fact, Kotlin has an asynchronous coroutine mechanism, which is lighter
than traditional Java mechanisms for performing background and parallel processing. This
mechanism does not require scheduling, and it makes use of suspension, which does not
block the thread where the coroutine is running. The goal is to reduce memory usage and
run-time by conveniently using such a mechanism.

In Figs. 16 and 17 we show results of three threading libraries and the (re)use of Kotlin
coroutines.

As shown in Fig. 16 there is a clear decrease in energy consumption when using theKotlin
coroutines mechanism. GreenRobot also shows gains when compared to both Executor and
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Fig. 16 Threading Libraries energy consumption

RxJava. The most inefficient energy consumption behavior comes from RxJava. Executor
has a substantial gain over RxJava, obtaining similar results to GreenRobot.

With regards to memory usage, the scenarios invoking Kotlin coroutines do not show
significant gains when compared to the alternatives. In fact, it ranks as the second-worst
position, only behind RxJava. GreenRobot and Executor have similar median values, how-
ever, the former is consistently more memory-efficient than the latter.

When we consider run-time, the results are similar to those from the energy consumption
analysis. Kotlin coroutines presents a significant gain in relation to the other libraries, pre-
senting a run-time efficiency gain of approximately 32% when compared to RxJava, which
is the worst evaluated alternative. Just below Kotlin coroutines, GreenRobot is once again
distinguished from Executor, as the second most efficient library in terms of execution time.

We once again tested the hypothesis that the distributions of the test results of each API
are significantly and statistically different, using the Kruskal-Wallis method with an α = 0.05,
after verifying the data as non-parametric. The conclusions support that there are significant
statistical differences in the performance of the evaluated threading libraries.

Fig. 17 Threading Libraries memory and run-time
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Fig. 18 JSON Libraries energy consumption

4.3.3 JSON Libraries

Android provides several libraries to parse, manipulate and serialize JSON data: a widely
used lightweight data-interchange format. In our study, we considered two libraries: the Java
standard library org.JSON and GSON a JSON library developed by Google as a reliable,
fast, and efficient extension to org.JSON.

The results of our study are presented in Figs. 18 and 19.
Figure 18 shows that GSON has a marginal gain of 2.6% in terms of energy efficiency

(considering the medians for comparison) when compared to org.JSON. GSON is also the
fastest library: it is 12.6% faster than org.JSON as shown in Fig. 19. In terms of memory
consumption, however, GSON shows a slightly higher memory usage (0.94% considering
the medians).

Testing our ongoing hypothesis that there are statistically proven differences between
these 2 libraries, we used the Mann and Whitney (1947) method (α = 0.05) after confirming
the data as non-parametric. The data concluded that while there were differences for run-time
and energy consumption (values of p = 0 and p = 0.007, respectively), the same did not stand
for memory usage (p = 0.112).

Fig. 19 JSON Libraries memory and run-time
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5 Contributions

In this section, we discuss the results whose analysis allowed us to answer the research
questions presented in Section 1. We provide answers to these questions and also elaborate
on the reasons for some of the observed results. Moreover, we define a set of programming
guidelines based on the results extracted from the process of conducting this study. Finally,
as a result of our study we compiled a resume of some of the information contained in our
dataset, which contains all the data produced when conducting the study. This large dataset
is also presented as a contribution and it is openly available to the scientific community for
further analysis.

5.1 Research Answers and Related Findings

5.1.1 Research Question 1

In Section 4.1 a set of changes of various types that could occur in the behavior and in the
source code of the applications were presented. These changes were evaluated in a set of 44
application version changes with relevant energetic behavior change (greater or greater than
20%). After analyzing the 44 application version changes, we synthesized the conclusions
that allow us to answer the first research question (ARQ1). We concluded that changes more
associated with relevant impact on the app’s energy performance are changes that add func-
tionality and bugfixes in applications, followed by adding layout and/or strings and refactors.
Furthermore, we can conclude that semantic changes are the type of changes (according to the
criteria presented in Table 4) more associated with a significant impact on energy consump-
tion, while changes such as Project Building reveal an unclear impact. A negative impact on
performance was expected for changes such as the addition of functionalities, as it typically
results in an increase in computation and resources to the application which translates into
an expected loss of performance. Also, since the testing procedure with the Monkey frame-
work only interacted with the application for a few seconds, the tests mostly capture the app
startup and initial setup workflow. Thus, since these changes are translated into more class
variables to be loaded, they have a negative impact on app performance. Since a greater use
of resources and code to be loaded by the virtual machine incurs additional effort, even if the
code of the new functionality was not directly executed, additional functionality can impact
negatively the apps’ performance. An evaluation of which types of bugfixes or addition of
functionalities have more (evident) impact on performance was not evaluated. This was due
to the fact that we concluded that the amount of data that we collected to categorize different
types of functionalities or bugfixeswas not sufficient the derive general conclusions regarding
its impact.
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The impact of bugfixes can also be explained by the fact that its prevention avoids unnec-
essary computations to report the exception (e.g. logging the exception) and any system
interruptions to stop and kill the application process, among others. The performance loss
could be expected when it comes to significant changes in layout and strings since the emer-
gence of new entities of this type results in static fields generated in the Android R.class Java
class. This is an auto-generated class by AAPT (Android Asset Packaging Tool) that contains
resource IDs for all the resources of the res/ directory. When a component is declared in the
XML file, aid for the corresponding component is automatically created in this class. How-
ever, this generation occurs during the compilation process and to translate into a significant
loss of performance, it would have to be due to the creation of a large number of components
of this type. In the case of adding new layout components (often associated with increased
functionality), their creation and use translate into an expected loss of performance, since it
is necessary at run-time to inflate an XML file in a View class, which is a heavy operation
and has to be performed on single-thread.9 The impact of including new views on energy
consumption was also pointed out in Linares-Vásquez et al. (2014).

For changes at Project Building level (according to Table 4), the impact is unclear and
lacks a deeper analysis with a more extensive dataset. For example, the observed behavior
for the impact of updating dependencies on the project is inconsistent, since it was observed
that changes at this level have a significant positive impact on energy in 30% of cases and
negative in 33% of cases. The addition of new dependencies reveals a similar behavior, with
updates at the Android SDK level being associated with a negligible energy impact in 55%
of the time (F1).

5.1.2 Research Question 2

In Section 4.2, we present results for two distinct types of widely-studied practices in the
literature labeled inefficient ones: Linares et al. Red APIs and Android Lint Issues. These
practiceswere evaluated in our execution context, with different applications and interactions.
Based on these results, both the analysis of the Red APIs and the Android Lint Issues, we
were able to provide our answer to RQ2 (ARQ2).

In our executed apps and environment, some of the mentioned programming practices
did not show abnormal performance behavior. In the case of Red APIs, some of the methods
classified as energetically inefficient showed little difference in terms of energy consumption.
The Man-Whitney test was used to assess whether the performance of apps invoking these
APIs was different from the same apps that did not invoke such APIs. This test revealed

9 Layout Inflater: https://developer.android.com/reference/android/view/LayoutInflater.html

123

31   Page 40 of 56 Empirical Software Engineering (2024) 29:31

https://developer.android.com/reference/android/view/LayoutInflater.html


statistically significant differences between these pairs but does not indicate whether such
differences translate into a gain or loss in performance. Looking at the boxplots and respective
Red classifications inTable 10, it is clear that these practices have obvious impacts, of different
magnitude, on performance, and that several APIs (40%) are more often associated with
energy efficient executions in these apps, such as setMax or Log.i. In the case of the evaluated
Lint issues, while their presence does impact performance, it is not always a clear gain or
loss in performance. Additionally, the Priority levels have very little correlation with actual
performance measurement values (F2). For example, in terms of energy consumption and
run-time, the vast majority of the tested apps, with identified Android Lint issues, have lower
measurements than apps that do not have any of these issues. The performance indicator with
the most apparent impact on these practices is memory usage, which displayed much higher
median values when compared with tested apps with no identified issues. The reason for
obtaining different results than expected regarding these practices seen as energy inefficient
is probably because they were evaluated in a context of execution different from the context
in which theywere initially identified. As described by Pinto andCastor (2017), the execution
of an application depends on 4 different factors, where 3 of them (software system under
execution, hardware combination, and given time) in our execution context are different from
the previous ones. In the particular case of APIs identified by Linares-Vásquez et al. (2014),
some of these APIs have already been analyzed from a performance point of view, having
shown that their consumption depends on several factors inherent to the way they are used.
For instance, in the case of logging APIs, prior studies concluded that Chowdhury et al.
(2018); Zeng et al. (2019) logging frequency is a factor with a significant impact on the
performance of these APIs. These studies allowed us to conclude that logging at a limited
rate has no significant impact on performance and factors such as logging rate, disk flush and
message size have a significant impact on energy consumption.

Our results also allowed us to conclude that programming practices previously labeled as
inefficient can have a positive impact on other performance indicators (F3). We compared
several red APIs and Lint issues across 3 performance indicators and we observed that
there are many cases of these practices that seem to be very inefficient in terms of one
of the performance indicators while being among the most efficient on other performance
indicators. Examples of such cases are the Inefficient Weight Lint Issue or the Log.i API.
InefficientWeight is the secondmost memory-greedy performance Lint issue evaluatedwhen
compared to the remaining in terms of median values while being one of the less energy-
greedy. Log.i was the red API with more energy usage (on median) on our tests, but when
compared to other red APIs, its energy consumption in median terms is one of the least
energy-greedy ones. This evidences the fact that many programming strategies imply trade-
offs in terms of performance indicators and the need to evaluate the impact of previously
identified performance smells or APIS in several performance indicators. Such evaluation
can help practitioners select the practice more suitable to their requirements and execution
contexts.
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5.1.3 Research Question 3

Section 4.3 presents the performance comparison between apps that used competing, widely-
used libraries that are used to implement three typical programming tasks in mobile
applications: JSON, HTTP and Threading libraries. The analysis of the results of these
libraries allows us to answer RQ3 ((ARQ3)).

In the case of libraries for HTTP, apps that use Volley tend to have more energy-efficient
tests, suggesting that this API might be the most energy-efficient API, despite being the worst
in terms of run-time when considering the median and top whisker of the box plots of the
Figs. 14, and 15. In our experiment, Picasso seems to be the most memory and run-time
efficient, being the worst in terms of energy. These results are different from the ones from
another research study (Lachgar et al. 2018) that analyzed the run-time performance of Volley
and Retrofit, having concluded that Volley is faster and offers more features than Retrofit. This
divergence can be again justified by the fact that our setup consists of a different execution
context, considering different real-world applications andmany execution contexts, while the
experimental setup used in Lachgar et al. (2018) considered only one application connected
to a custom server, aiming at analyzing and measuring only specific methods of these APIs.
However, in Fig. 15, we can see that despite Volley obtained a higher median, tests using
Retrofit obtained less consistent results, where many tests had high-consuming tests above
the upper percentile when comparing to the values of the tests that used the Volley library.

Other results fromour experiment evidence trade-offs in terms of performance,where apps
that favor one component might end up being harmed across other performance indicators.
Apps that used threading libraries also showed distinguishable results, in which the Kotlin
coroutines stood out for its efficiency in terms of run-time and energy and RXJava exhibited
the worst behavior in all the performance indicators evaluated. Finally, regarding JSON
libraries, apps using GSON seem to be the most energy and run-time efficient, while losing
in terms of memory usage in relation to apps using org.JSON.
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5.2 Programming Guidelines and Other Findings

This section presents several guidelines that were defined based on the collected results and
their analysis. Such guidelines aim to steer software developers and the scientific community
in developing greener Android software. This section also presents several findings that were
derived from the analysis of the data presented in Section 4.

The data analyzed the Section 4, which allowed us to answer the second and third research
questions, aims to advise developers to always test their apps and evaluate their app
performance individually (G1), especially on devices and environments similar to where
they will be executed. For instance, As can be observed by the Figs. 7 and 9, there are
many outliers in the indicators measured in the tests that invoke these APIs. This suggests
that the classification of these APIs as energy-greedy or energy-efficient hardly depends
on the context (Pinto and Castor 2017; Li et al. 2020). For instance, some of these APIs
are Logging APIs, whose energy performance was analyzed in prior publications (Zeng
et al. 2019; Chowdhury et al. 2018). For instance, Chowdhury et al. (2018) demonstrated
that factors such as logging rate, disk flush and message size have a significant impact
on energy consumption. Nevertheless, the Android ecosystem, its APIs and its development
environment are constantly changing andmost of the contributions and performance analyses
made by the community relate to specific execution contexts and scenarios that may be out of
date and far frommore realistic and updated ones. In the case of APIs or patterns identified as
inefficient, they can present such behavior only in certain contexts (size and type of arguments,
system load, signal quality), sometimes exhibiting behaviors with negligible impact on the
app’s performance in most of the cases.

In addition to developers having to evaluate the resource consumption of their apps individ-
ually, theymust also identify themain bottlenecks of their apps and target devices(G2). In
the case of the evaluated libraries, they showed different behaviors in terms of performance,
with no single one being considered the overall best for all the evaluated components. Thus,
there are APIs that, for example, are recommended whenever energy consumption is a con-
cern, while they should be avoided when memory usage is a concern. In this sense, based
on the analysis performed to evaluate the performance footprint of the considered Android
libraries, we defined Table 13 (G3). This table represents a guideline in order to select the
most efficient/inefficient libraries for each evaluated programming task, based on the median
values of the app tests of our large-scale analysis. Using this information, practitioners can
have a better understanding of which libraries they should choose or avoid, considering each
performance indicator. For example, for HTTP libraries, Volley seems the best choice if both
energy consumption and memory usage is of concern, but was the worst performing in terms
of run-time efficiency.
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Table 13 Most efficient/inefficient libraries [G3]

Energy Memory Time
Task Best Worst Best Worst Best Worst

HTTP Volley Picasso Volley OKhttp Picasso Volley

JSON GSON org.JSON org.JSON GSON GSON org.JSON

Threading Kotlin cor. RxJava GreenRobot RxJava Kotlin cor. RxJava

Collections List Sparse Set Sparse List Sparse

Image Volley Picasso Volley Picasso Picasso Volley

I/O java.io java.nio java.io java.nio java.io java.nio

Logging Timber util.Log util.Log Timber Timber util.Log

Another recommendation that we can provide to the community based on our findings is
the incentive tomigrate to Kotlin(G3), even partially, since Kotlin is a JVM language fully-
interoperable with Java. Kotlin has mechanisms such as coroutines that are a lightweight
alternative in terms of energy consumption and run-time to perform background processing.
In our analysis, apps that used Kotlin vs non-Kotlin were compared regarding each perfor-
mance indicator using boxplots (available in the online appendix). By comparing the values
of the 2 groups it is possible to observe the benefits of using Kotlin. In the case of mem-
ory consumption, apps with Kotlin showed a substantially lower consumption value, when
comparing the medians (3.57% less), whiskers, and lower quartile.

The long process of extracting and executing the applications, as well as the process of
analyzing the results, also allowed us to understand what can be improved in our execution
process andwhat we can recommend to researchers who intend to replicate or conduct similar
studies. The first recommendation is that they use the AnaDroid execution pipeline(G4),
used by us to conduct this study. Besides the features referred to in Section 3, such as source
code instrumentation, automatic building, and run-time error detection, among others, during
the writing and publication of this document, this execution pipeline is being redesigned10

and continuously improved and extended to support new energy profilers and testing tools.
Furthermore, it is completely open-source and extensible, also allowing the easy replication
and validation of later studies to be elaborated with this tool. It can be used to benchmark
Android applications’ performance, from its source code or even from an already-built APK.
Furthermore, it supports a new energy profiler (Rua et al. 2022), which can be used on most
of the latest Android devices to analyze the energy consumption of your software.

10 Redesigned version of AnaDroid: https://github.com/greensoftwarelab/PyAnaDroid
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Our application execution analysis process also led us to conclude that it is important
to make measurements in isolated environments, as in customized Android images(G5)
without vendor, manufacturer or 3rd party-apps and services that can interfere with the
monitoring process. Besides our efforts to reduce external interference in the monitoring
process, we still observed several outliers and filtered several executions where we detected
errors caused by other system services and apps.

The execution of this software during the monitoring process introduces overhead to the
system and also can raise errors which handling can also directly impact the app under test
functioning and also in the performance measurements. For instance, the execution of such
services can trigger a CPU frequency scaling event, which can impact energy consumption,
as CPU frequency is highly correlated with energy consumption (Chowdhury et al. 2019).

The results presented in Section 4 aiming to present a taxonomy of the considered appli-
cations in our study also allowed us to observe other interesting findings that characterize the
current Android software development paradigm. One of the observations that the analysis
performed allowed us to provide is thatApp’s age does not hint expected performance(F4).
We analyzed the data in Fig. 4, which shows the relation between the energy consumption
of the apps and their release year. Our analysis suggests that besides a noticeable rise since
2017, there is no clear tendency for to apps increase energy consumption over time, even
when the energy is being measured in the same device. We also observed the same in terms
of memory and run-time.

5.3 Dataset

This section presents a summary of the data contained in the results dataset. In addition
to the analysis of the previous sections and the automatic execution procedure, this work
also presents the gathered dataset as a contribution. This dataset is openly available to the
community in the online appendix and the Greensource (Rua, Couto, and Saraiva 2019)
infrastructure. Since the execution procedure is open source and has been designed to be
independent of the device and testing framework, the dataset can also be expanded to consider
newexecution scenarios, such as executionswith different interaction and testing frameworks.

The data contained in this dataset presents results frommore than onemonth of continuous
test execution. Given the extent of the work presented, from the process of extracting and
filtering applications to the agglomeration and obtaining of its results, it is pertinent to share it
with the community so it can be used in further studies aimed at analyzing the performance of
applications or devices, comparisons of Android testing frameworks, evaluation of software
evaluation aspects, between others. In this way, it is intended to contribute to the increase
of knowledge regarding the factors that influence the performance of Android applications
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and their respective weight. Some examples of other research questions that are examples of
further research directions (RD) that might be answered by analyzing the data contained in
this dataset or possible expansions of it are:

– RD1: How do different testing frameworks explore application performance?
– RD2:What is the most suitable testing framework to detect functional errors in applica-
tions?

– RD3: How does applications’ performance evolve throughout their versions?
– RD4: What is the relation between semantic version changes and performance?
– RD5:Which types of functionality and bugfixes have more impact on Androids applica-
tions energy consumption?

Given the extent of this work, we believe that the answer to these questions is worthy
of work dedicated to exploring these questions. The first and second questions could be
answered by considering the data regarding the execution of the 2 testing frameworks used
in our study or by adding additional testing frameworks or test cases to the dataset. The third
could be answered with the already gathered data, by sorting the applications according to
the semantic version or chronologically and exploring conclusions from the data. Finally, the
fourth questionmight be answered by relating the different types of semantic version changes
with the performance indicators obtained for the tests executed over the applications.

These data contain a large set of information regarding open-source applications and
respective code, as well as static and dynamic metrics regarding their execution and execu-
tion environment. These metrics were collected at different levels of granularity, and their
value/result can be attributed to an application, a test performed on an application, or a block
of code belonging to the application. In Table 14 are the metrics collected during the entire
application execution process. Each metric collected is presented in the table accompanied
by a description and the level at which it was obtained:

– Application Level: Metric whose value is inherent and dependent on the executed appli-
cation. Example: Number of files for an application

– Test Level: Metric whose value is inherent and dependent on the test performed on an
application executed in a given context. In addition to the application and the type of
test/interaction performed, it also depends on factors related to the device and respective
system. Example: memory consumed during the execution of a test.

– Method/Class Level: Metric whose value is associated with a block of Kotlin or Java
code. Example: Number of methods.

Static and dynamic metrics about the device were also collected before and after the
execution of the tests, to verify that the execution of the framework and the application did
not change the state of the device, which could make comparisons with other applications
impossible or bias the results of the next tests. The online appendix contains Tables presenting
examples of such metrics, such as the Used CPU, battery level, PSS Memory Usage, among
others.

The collection of all these metrics has led to it being possible to collect more than
1,200,000 measurements of dynamic metrics related to executions on real devices and more
than 420, 000 measurements of static metrics related to applications and their source code
(see Table 15).

All these metrics result from the analysis of the files obtained from the execution of tests
on applications with instrumented source code. These were derived from the analysis of the
Trepn Profiler log files collected during the monitoring process and from the method traces
collected during the application’s execution. In addition to these files also being available in
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Table 14 Metrics gathered during tests/apps execution

Metric Description Level Metric Description Level

Android APIs APIs used from the
Android SDK

M/T/A Total Energy Total energy con-
sumed

T/A

JAVA APIs APIs used from the
Java SDK

M/T/A Battery
Charging

If Battery was charg-
ing

T/A

External APIs Other APIs M/T/A Memory main memory con-
sumed

T/A

Wifi State If Wifi was used T/A Nr of running
processes

Number of other pro-
cesses running simul-
taneously

T/A

Screen State If Mobile data
was used

T/A LoC Lines of code A/C/M

Battery Status Percentage of
battery

T/A Elapsed Time Elapsed Time T/A

Battery voltage Battery Voltage T/A CC Cyclomatic complex-
ity

A/M

Battery Tem-
perature

Battery tempera-
ture in degrees

T/A #Args Nr of arguments M

Battery Charging If Battery was
charging

T/A #Declared Vars Number of declared
variables

M

Wifi RSSI Level Level of RSSI T/A #Methods Number of Methods A/C

Bluetooth State If Bluetooth
was used

T/A #Class Vars Number of Class Vars C

GPU Frequency GPU frequency T/A #Classes Number of classes A

CPU Load
Frequency

CPU load
frequency
(per core)

T/A #Files Number of files A

GPS State If GPS was used T/A Languages Languages present in
App sources

A

Table 15 Resume of the different metrics obtained

Total Description Example

Tests 26289 Tests performed over apps monkey test

Apps 214 Different apps executed com.niesens.morsetrainer

Versions 1280 Different versions executed com.niesens.morsetrainer version
1.1

Dynamic
metrics

47 dynamic metric obtained for
tests performed over a certain
app/version

average cpu frequency of a mon-
key test performed over an app

App metrics 14 Static metrics globally related to
apps

number of files, languages

Method metrics 7 Static metrics related to app meth-
ods

number of arguments

Class metrics 5 Static metrics related to app
classes

number of methods
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the dataset, the system logs (through the logcat tool) generated during themonitoring process
were also collected. These logs contain dumps of system and app messages, including stack
traces of exceptions occurred,whichmay also be useful for further studies aimed at evaluating
the relationship between system events and application or device performance.

In addition to all this information that was collected for all running applications, data
relating to the manual analysis of versions with anomalous energy performance (as described
in Section 4.1) is also available in the online appendix. The analysis presents tables with the
changes registered between each version change, which can be reused by the community to
deepen the impact of the evaluated changes, either on performance or on other functional
and non-functional aspects of the application’s operation.

6 Threats to Validity

Profiling the impact of specific coding practices such as patterns, APIs, and refactorings, has
been already measured in previous works. In order to quantify the impact of such practices, it
is a common procedure to isolate the aspects under analysis to avoid invalid conclusions. For
instance, in Sahin et al. (2014) coding practices were implemented in Android apps, and the
energy consumption was profiled before and after individual changes. However, this article
aims to identify the impact of these practices in real use cases (real applications) and on the
overall app performance and does not aim to focus on specific practices, but rather on some
that have already been studied and were invoked by the execution of the tests. The events
generated by the selected testing tools generate a lot of entropy in the test results, as they
are not intended to focus on the specific points of the applications that contain the practices
under analysis, generating events with a redundant effect for this purpose. However, given
the magnitude of the set of applications considered, using white-box testing techniques under
this dataset size was impractical.

Using test frameworks to test and estimate app consumption is a typical procedure used by
the scientific community (Linares-Vásquez et al. 2014; Chowdhury et al. 2019; Rua, Couto,
Pinto et al. 2019; Couto et al. 2015; Nucci et al. 2017; Rua et al. 2020; Li et al. 2020; Hu
et al. 2017). When it comes to running a large number of tests on a set of variable size apps,
using user input is impractical. In addition, collecting or replicating real user inputs often
means providing private personal information.

The testing frameworks used, Monkey and App Crawler, can be used independently of
the app they intend to test, using a black-box testing approach and performing tests on the
app’s UI. The first is typically used to evaluate performance (Nucci et al. 2017; Linares-
Vásquez et al. 2014; Li et al. 2020; Hu et al. 2017), and it can be similar to several system
events (touches, swipes, clicks) on the test device and adjust the event rate. The second is
used by Google to validate the apps submitted for evaluation in the Play Store, simulating
events on the app’s UI elements to explore the app’s code execution. Both frameworks can be
configured, and a specific set of instructions can be filtered or carried out to help frameworks
increase the coverage of the tested UI elements and, consequently, the app code.

The set of collected apps has software pieces developed in a relatively diverse range, which
varies between 2015 and 2020 (between 2010 and 2020 if we consider the first release year
of each application). The fact that many of them presented APIS and recent languages like
Kotlin, shows that theymay be apps that represent the state of the art of Android development
and can help to characterize the state in which the development is. The apps are of different
categories and the versions collected are diversified and from different development stages.
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However, the data we collect regarding the downloads of these in the Play Store reveals that,
except for some executions, the open-source apps collected are not very popular with Play
Store users, according to the download count reported by them. Nevertheless, many of these
apps are not downloaded from the Play Store, but rather downloaded from 3rd party stores
such as F-Droid or Aptoid, or their official page or repository, encouraging the movement of
open-source software.

Our corpus of applications contained only open-source applications extracted from open-
source repositories. Despite studying open-source apps being a widely-used procedure by
the scientific community (Couto et al. 2015; Rua, Couto, and Saraiva 2019; Das et al. 2020;
Li et al. 2020; Ribeiro et al. 2021), considering closed-source apps could help to obtain more
universal and representative conclusions from the Android platform. However, analyzing
source code from closed-open-source apps is a technically more elaborate process, since it
involves the tasks of decompile or unobfuscate code. The automatic execution process used
in this work already involved an application processing pipeline that caused a significant
number of applications to be excluded from the study due to problems encountered during
the building process, instrumentation or automatic execution. Adding even more complex
steps to the process to consider (eventually more popular or even robust) closed-source apps
would likely result in a reduced set of applications to analyze.

All applications of our dataset have Java and/or Kotlin code present in their source code.
Some applications also have HTML and/or JS source code, and it was not possible to auto-
matically infer whether these files were actual source code files used by the application or just
auxiliary projects scripts/files. Therefore, we chose not to reject possible hybrid applications
or applications implemented using WebView. Considering this fact, in the author’s opinion,
the performance metrics obtained at the test level can still be attributed to the consumption
of the application, although the metrics of coverage and instrumentation process might not
cover all the executed application code, since they only cover Java/Kotlin source.

Vilkomir et al. (2014) evidenced that studies from the state-of-the-art have an evident
limitation: these are validated in one specific combination of hardware/software that can limit
the generality of the reported results.With this study,we do not intend to evaluate performance
on different hardware combinations. We aim to evaluate and validate performance-related
programming practices in a different execution context and evaluate if we can draw the
same conclusions in our own distinct context. The executed apps were tested on 2 different
Nexus 5 devices, running the same customized version of the platform. These devices have
already been used in several energy-related studies (Cañete et al. 2020; Rua, Couto, and
Saraiva 2019; Couto et al. 2015; Oliveira et al. 2017). The selected platform version is the
last official version supported by the device and was modified using root privileges in order
to remove services and apps that ran in the background and were not necessary for the
apps to run. Among these apps are essentially Google services and apps that periodically
perform background work and use sensors such asWi-Fi and GPS to update system apps and
widgets. We considered 2 devices of the same model in order to establish fair comparisons
between results obtained in both devices, since the performance measurements that Trepn
Profiler estimates are obtained at the system level. Otherwise, it would not be possible to
establish fair comparisons between results obtained on the 2 devices, since the magnitude
of the performance measures and factors that influence them would not be similar, as the 2
devices would have different hardware and execution contexts. However, such a setup would
bring other advantages, since considering more and different execution contexts increases
the possibility of obtaining more universal and representative conclusions from the Android
platform.
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Finding an adequate tool for energy profiling for the Android environment was also a
challenge. Trepn is an accurate tool (Hoque et al. 2015), capable of profiling hardware and
resources usage, aswell as power consumptionof the systemor even standaloneAndroid apps,
being able to provide fine-grained sub-component specific power consumption. For obtaining
data for measuring power, it depends on a special Fuel Gauge chip with the integrated power
management IC which controls the distribution of power from the battery. For the usage
statistics of different hardware components, Trepn depends on the /proc pseudo-filesystem
and other system files. The main limitations of this profiler are that only gets accurate battery
power readings from Qualcomm SoC’s(System On Chip), the sampling rate, which cannnot
be adjusted to less than 100 milliseconds and its availability on new devices and platform
versions. However, the selected Trepn version (6.2) reports accurate system power consump-
tion for the Nexus 5 (Qualcomm 2014). There is a set of configurations to enable/disable
profiling data points to ensure that the profiler records only the information required for this
study and reduces its impact on system power consumption and causes noise in the system
and the monitoring process. Furthermore, for this study, we configured Trepn to only profile
the data points under analysis in this document.

The results presented in this study do not address measurements of the impact of the
instrumentation on the consumption of the tests performed over the applications. Obtaining a
reliable estimate for its overhead is complex, since it depends on many factors intrinsic to the
source code of the measured app, the type of interactions performed on the application and
also the OS itself. However, taking into account that the comparative results presented always
involve a significant and diverse set of applications and executions, the authors consider that
the impact of this overhead will eventually have a negligible impact on the conclusions
obtained.

7 Conclusions and FutureWork

In this paper, we presented an extensive static and dynamic performance analysis of Android
applications. Our execution process involved the extraction of real apps and the respective
code from open-source repositories, their compilation and execution on physical devices to
confirm their full execution, and the execution of a set of tests with 2 frameworks that totaled
an execution time of over 28 days. This processing was done completely automatically, from
the filtering of apps, to their execution and generation of results. The automatic execution
process was designed to be independent of the execution method, since it can be replicated
with other test frameworks, energy profilers, apps and devices under test. The collected
and analyzed data in this study allowed both a macro and microscopic analysis in terms
of mobile apps’ performance and their respective source code. The results analyzed in this
article (fully available in the online appendix) validated results from several previous studies
but also presented some divergent results. This observation serves to prove once again that
it is difficult to obtain universal knowledge regarding the expected performance of code,
APIs or software patterns/smells. The behavior of code and software depends directly on the
context and the execution environment and can be influenced by many external factors.

In our execution context, we manually analyzed a set of 31 apps and 44 versions with
anomalous energy variations to identify software changes with a significant impact on app
performance. From our results, we concluded that from the 15 software changes considered
in our analysis, only the addition of functionalities, bug fixes, refactors, adding layouts, and
strings have a noticeable impact on app performance. By re-evaluating the applicability of

123

31   Page 50 of 56 Empirical Software Engineering (2024) 29:31



conclusions gathered in previous performance studies, such as Linares et al.and the Android
Lint Issues, we concluded that there are significant differences in the performance of practices
already identified as harmful in this sense. Regarding the study of Linares et al., we observed
that only 40% of the evaluated energy-greedy APIs had a noticeable impact on app perfor-
mance, with the remaining having negligible impact. Furthermore, regarding Lint Issues, we
observed that many of these issues did not reflect their supposed negative impact on app per-
formance. Additionally, we concluded that the severity level that accompanied issues, labeled
as performance issues, has very little correlation with the correspondent performance.

Finally, it has been shown that alternative libraries used to perform common programming
tasks in Android apps had different impacts on the apps’ energy consumption and that there
might be significant gains in performance just by migrating to a more efficient library. This
contribution was made in a macroscopic way, being able to distinguish versions of these
libraries in future works, as well as the respective methods they provide. In this sense, in
Section 5 we present a table containing the most efficient and inefficient libraries for each
task and performance indicator evaluated in our study. Also in Section 5 we present other
guidelines that result from the analysis of our data.

All the collected data is available for the community to analyze and reuse. There are already
ongoing works that aim to use this data to carry out analysis regarding the evolution of apps
and their code from a semantic point of view, since the results contain code and respective
executions of a large set of versions of the same apps. This study aims to understand how
Android apps and their consumption evolve throughout their development cycle, since they
tend to extend core functionalities and improve UI over time (Jha et al. 2019).

The collected and analyzed apps were not chosen specifically for the presented research
questions in mind. The results are just an example of the type of analysis that can be done
with the collected data and through dynamic performance analysis. There are still many
other possibilities to increase knowledge in this area from this collected data, or from new
data that can be obtained with this same procedure, i.e. the evaluation of different testing
frameworks for different objectives, exploring code coverage, predicting and evaluating app
performance, detecting and identifying errors and patterns, exploring GUI’s, etc., among
others. Thus, since this work considered several versions of each app, the collected data is
also suitable for carrying out studies related to the evolution of mobile software.
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