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Abstract 8 

Fabric Reinforced Cementitious Matrix (FRCM) composites are currently considered a very 9 

effective solution for strengthening masonry constructions. However, the mechanical interactions 10 

governing the response and the strength of FRCM reinforced masonry structures are very complex, 11 

especially in the case of curved structures. Moreover, these interactions involve several interfaces 12 

between different materials. Thus, the development of accurate numerical models for curved FRCM 13 

reinforced masonry structures comes up against several difficulties, and models too complex for 14 

practical applications can be obtained. In addition, several mechanical parameters needed for the 15 

calculations are generally inaccessible by conventional experimental tests.  16 

Here, a suitable numerical modelling strategy for FRCM strengthened curved masonry structures 17 

is proposed to combine the accuracy in simulating the actual behaviour in terms of stiffness, strength 18 

and collapse mechanisms with a reasonable simplicity, making the proposed approach usable also by 19 

practitioners, by adopting commercial codes and at a moderate computational effort. The relatively 20 

small number of mechanical parameters characterizing the model can be determined by ordinary 21 

experimental tests on materials or by literature formulations.  22 

The proposed modelling strategy is validated with respect to experimental data found in literature 23 

concerning a FRCM reinforced masonry barrel vault, and then is employed for studying the seismic 24 

capacity of the vault through a pushover analysis. A broad sensitivity analysis sheds light on the effect 25 

of variations of the mechanical parameters on the predicted overall behaviour, showing the robustness 26 

of the results obtainable through the proposed approach concerning inaccuracies in the determination 27 

of the parameters often very difficult to determine by ordinary experimental tests on masonry 28 

structures. 29 

 30 

Keywords 31 

Masonry, vault, FRCM, numerical modelling. 32 

 33 

34 

mailto:anna.castellano@poliba
mailto:aguinaldo.fraddosio@poliba
mailto:mariodaniele.piccioni@poliba
mailto:eleonora.ricci@poliba
mailto:elio.sacco@unina


This paper can be found at: https://doi.org/10.1016/j.engstruct.2022.115116 

2 

1. Introduction 35 

Fiber reinforced composites have been widely used in the last decades for strengthening masonry 36 

structures because of their high strength-to-weight ratio, low invasiveness and relatively easy 37 

installation procedure. Recently, composites made of an inorganic matrix generally reinforced with 38 

short fibers and embedding continuous fibers (glass, carbon, PBO fibers and steel cords) in form of 39 

fabric gained relevance as strengthening materials, especially for historic constructions [1,2], in 40 

addition to other conventional techniques [3]. These composites are known as Fabric Reinforced 41 

Cementitious Matrix (FRCM) or Textile Reinforced Matrix (TRM) composites; in what follows, the 42 

denomination “FRCM” will be adopted.  43 

The mechanical behaviour and the failure modes of FRCMs significantly differ from that of the 44 

most established Fiber Reinforced Polymers (FRP) composites due to a different kind of matrix. First, 45 

the stress-strain response of FRCM composites under uniaxial tension is mainly trilinear, with each 46 

branch corresponding to a different damage level (undamaged, cracking of the matrix and final 47 

damage of the fiber net) [4–6], whilst the FRP behaviour is mainly linear up to failure. Second, the 48 

fabric-matrix bond strongly depends on the inorganic matrix penetration between the filaments of the 49 

fabric, hindered by the presence of binder grains with a large diameter. Ineffective penetration might 50 

lead to the so-called “telescopic failure” of the composite in tension, not observed for FRP composites 51 

[7,8]. Finally, it has been experimentally observed that the friction among grains provides the matrix-52 

substrate interface of residual strength, also not observed for FRP composites [9,10]. For the above, 53 

models developed for FRP composites cannot be used to properly describe the mechanical behaviour 54 

of FRCM composites.  55 

Experimental and numerical study on the application of FRCM composites for strengthening 56 

masonry structures, especially for arches and vaults, is still the object of ongoing research. In 57 

particular, different numerical procedures for representing FRCMs mechanical behaviour have been 58 

proposed in the literature to date, based either on macro- or micro-modelling approaches. A feature 59 

generally common to both approaches is the modelling of the FRCM-substrate interaction using non-60 

linear interface elements. 61 

In some recent research works on FRCM reinforced masonry, a macro-modelling approach is 62 

adopted both for the masonry substrate and the composite.  For example, in [11] a glass FRCM system 63 

is modelled with shell elements using the Total Strain Crack model and assuming experimental curves 64 

(multilinear in tension and parabolic in compression). In [12] a similar approach is used, and plane 65 

stress elements were employed for the composite, bonded to a panel by inelastic interface elements 66 

to represent the possible debonding of the FRCM. 67 

A micro-modelling description has been proposed in [13] and [14]; the fiber net and the mortar 68 

layers constituting the matrix are modelled separately. The mechanical behaviour of the matrix is 69 

described by a smeared cracking approach, namely the Concrete Damage Plasticity model in [13] and 70 

the Total Strain Crack model in [14]. A relevant difference is that in [13] fibers and matrix are 71 

separately modelled, whereas in [14] a special shell element formulated for reinforced concrete and 72 

embedding bar elements is used. Moreover, in [13] an elastic-perfect plastic behaviour is assumed for 73 

the fibers while in [14] the behaviour of the bars is considered linear elastic up to the failure. Notice 74 

that both in [13] and [14] no interfaces are considered between the composite and the masonry 75 

substrate. 76 

The complexity of the non-linear phenomena to be described, often strictly interconnected, yields 77 

the risk of developing models too complex for practical applications, useable only by the research 78 
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community. Indeed, for the needs of practitioners, numerical models should depend on a reasonable 79 

number of mechanical parameters to be evaluated by conventional experimental tests and/or deduced 80 

by acknowledged values or empirical laws in literature. Furthermore, it is very important to know in 81 

advance how inaccuracies in the determination of these parameters can affect the final results in terms 82 

of the overall response of the structure. In this vein, the purpose of this research is to develop a 83 

modelling strategy for FRCM reinforced curved masonry structures able to combine the suitability of 84 

use by practitioners with a sufficiently accurate description of the mechanical behaviour in terms of 85 

stiffness, peak loads, failure modes and post-peak behavior, generally strongly dependent from the 86 

interactions between reinforcement and masonry support in terms of stress transfer and of bond 87 

integrity. To this aim, it is relevant not only the ease of the model, but also the use of constitutive 88 

laws characterized by a relatively small number of mechanical parameters, consistent with that 89 

evaluable by conventional experimental tests, or by new experimental approaches, still under 90 

investigation [15,16]. 91 

The paper contains a review of the modelling approaches for masonry strengthened with FRCMs 92 

and a brief discussion on the mechanical behaviour of masonry arches and barrel vaults reinforced 93 

with FRCM composites (Section 2), being the main features of the developed modelling strategy 94 

described in Section 3. Then, a representative case study is considered from the literature and used as 95 

the reference for validating the modelling approach and for discussing its effectiveness (Section 4-5). 96 

The results obtained by the numerical simulation are presented and discussed in Section 6, including 97 

a comparison with the experimental results. A broad sensitivity analysis is performed in Section 7 to 98 

study the overall response of the reinforced structure. Indeed, a numerical model for a complex 99 

structural system like a FRCM-reinforced masonry requires inevitably several mechanical 100 

parameters. In principle, in practical applications, it is needed to experimentally determine all of these 101 

parameters with the greatest possible accuracy. Anyway, for some parameters, this can be challenging 102 

if not unfeasible. On the other hand, not all the material parameters have the same influence on the 103 

predicted structural response: therefore, the sensitivity analysis is useful for understanding which of 104 

the mechanical parameters needs to be carefully determined to have representative numerical results; 105 

while a rough estimate starting from literature values or formulations can be adopted for the remaining 106 

without significantly affecting the accuracy of the results. Finally, in Section 8 the proposed 107 

modelling strategy has been applied to the evaluation of the seismic capacity of the examined 108 

reinforced masonry vault through a pushover analysis. 109 

 110 

2. Modelling FRCM-reinforced curved masonry structures: an overview  111 

Experimental campaigns on FRCM retrofitted masonry arches and vaults [17–23] show that due 112 

to the presence of the reinforcement, high compressive stresses may develop in curved masonry 113 

structures, leading to the crushing of masonry, very uncommon for unreinforced structures and, at 114 

high load levels, sliding of masonry blocks along mortar joints might occur since FRCM 115 

reinforcements also allow for the development of substantially higher shear stresses.  116 

The bond at the composite-substrate interface plays a crucial role in the collapse mechanism. 117 

Debonding is here understood as a partial damage process that weakens the bond between different 118 

materials (like, e.g., the masonry substrate and the reinforcement layer), while detachment means the 119 

complete loss of bond, involving the separation between the materials. The failure of arches and barrel 120 

vaults strengthened at the extrados or intrados can be due to the debonding at the matrix-substrate 121 

interface, associated with the cracking of the matrix where the reinforcement prevents the formation 122 
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of hinges typical of the collapse mechanism of unstrengthened arches. As the load increases, 123 

transversal cracks appear and propagate from the external matrix layer to the inner layer up to the 124 

masonry substrate; then, tangential stresses, nt, develop at the matrix-substrate interface. In addition, 125 

stresses normal to the reinforced masonry surface, n, develop to radially equilibrate the shear stresses 126 

nt (see Fig. 1). In particular, for reinforcements at the intrados, these normal stresses negatively affect 127 

the composite-support bond capacity, thus facilitating the debonding, which can lead to the composite 128 

detachment. This phenomenon doesn’t occur for reinforcements applied at the extrados, where the 129 

effect of the curvature is beneficial to the overall strength. 130 

In particular, [24] reports experimental and analytical studies about the influence of the masonry 131 

substrate curvature on the bond capacity of carbon FRCM and Steel Reinforced Grout (SRG). The 132 

study is conducted on suitable specimens having curvatures simulating intrados reinforcements. It is 133 

shown that, as the curvature increases, both the bond strength and the ultimate displacement decrease 134 

because of the normal stresses developing at the matrix-substrate interface (the reduction is more 135 

marked for SRG). 136 

In general, the failure of arches strengthened at the extrados is due to the sliding along joints and 137 

the detachment of the reinforcement at one of the abutments [18,19,25]. The failure is also associated 138 

with the cracking of the matrix and the debonding at the matrix-substrate interface where the 139 

reinforcement prevents the formation of hinges. The breaking of the reinforcement fiber grid has been 140 

reported for a structure where steel anchor plates were used [26] to fix the strengthening system at 141 

the masonry support. On the other hand, the failure of arches and barrel vaults strengthened at the 142 

intrados is generally characterized by the debonding of the reinforcement near the load application 143 

point [27]. The use of spike anchors or steel anchors prevents the reinforcement detachment but might 144 

result in the fracture of the matrix and the rupture of the fibers  [19] . 145 

Although arches and vaults represent fundamental structural elements in masonry construction, 146 

the development of simple and effective numerical models of these elements reinforced with FRCM 147 

composites appears limited in the literature. Among them, [28] proposes a numerical model for 148 

FRCM reinforced masonry arches, represented by a set of rigid plates interacting through 149 

unidirectional links and connected to the substrate employing interface elements. In [29], a SRG 150 

strengthening layer for a masonry arch was modelled by equivalent two-node truss elements perfectly 151 

bonded at the extrados of the arch. Although the above numerical models succeed in describing the 152 

contribution of the reinforcement in terms of increased load carrying capacity and ductility and in 153 

reproducing the debonding of the reinforcement, they were not able to model the cracking of the 154 

matrix observed near the collapse. In [30] the mechanical behaviour of an arch externally 155 

strengthened with PBO-FRCM composites, experimentally studied in [25], was numerically 156 

simulated by modelling the composite as a system of two layers of mortar matrix held together by an 157 

inelastic interface and connected to the arch through another interface. This way, both the matrix-158 

fibers delamination and debonding at the composite-substrate can be described. Moreover, for the 159 

matrix, a smeared cracking model was employed to consider the occurrence of cracks. Schemes of 160 

the aforementioned numerical approaches for FRCM reinforced masonry arches and vaults are 161 

reported in Fig. 2. Moreover, in [31] the influence of the values of mechanical parameters on the limit 162 

horizontal load for masonry arch bridges reinforced at the intrados by FRCM composites is discussed. 163 

Finally, in [32] also the influence of settlements is studied. 164 

For a model to be sufficiently representative of the mechanical behaviour, it should consider the 165 

following key aspects: debonding of the composite at the composite-substrate interface; cracking of 166 
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the matrix; sliding of the fiber at the matrix-fiber interface; sliding and crushing of the blocks; 167 

influence of the substrate curvature on the overall behaviour. Also, the presence of anchors increasing 168 

the bond between FRCM reinforcements and masonry, or of the infill are aspects to be conveniently 169 

represented in simulations. 170 

 171 

3. Proposed modelling strategy  172 

Based on the analysis of the literature, here an effective modelling strategy is proposed for curved 173 

masonry structures strengthened with FRCM composites, aimed at representing the relevant 174 

mechanical aspects at a relatively low computational cost. This strategy is formulated in a way 175 

suitable for being adopted in commercial codes, and thus to make the model available for practical 176 

applications. To this aim, modelling choices have been oriented towards the limitation of the number 177 

of the required mechanical parameters. The proposed modelling strategy has the advantage to be 178 

suitable for the implementation in some commercial codes, like DIANA FEA, here considered, and 179 

therefore can bring immediate advantages for improving the accuracy of calculations in practical 180 

applications concerning FRCM-reinforced masonry structures. Moreover, it allows determining the 181 

main mechanisms inducing the failure of a reinforced arch and the material models to adopt for 182 

simulating its response. 183 

 184 

3.1. Modelling approach 185 

The idea is to adopt a simplified micro-modelling approach for the substrate to describe also the 186 

sliding of the blocks, and of considering the composite as a continuum (representing the matrix) 187 

reinforced with bars representing the textile, and having the same cross-section and elastic modulus 188 

of the textile. No relative displacements are considered between the textile and the matrix. The bond 189 

of the FRCM strip to the curved structure (from now on termed as “vault”) is reproduced by interface 190 

elements.  191 

Although the FRCM components (matrix and textile) are modelled separately, the assumption of 192 

coupling between the matrix and the embedded bar prevents one of the most complex ingredients of 193 

micro-modelling approaches, the representation of the matrix-fiber interfaces. Therefore, the adopted 194 

approach for the composite cannot be strictly defined as a micro-model. Indeed, even though the 195 

slippage of the fibers inside the matrix cannot be directly reproduced, the effects of debonding 196 

phenomena occurring at the matrix-fiber interface on the overall structural behaviour can be still 197 

indirectly taken into account. As an example, consider the FRCM composite beam element shown in 198 

Fig. 3 subjected to axial tensile load. In the configuration adopted for determining the tensile capacity 199 

of the FRCM, evaluated as described in [23], a test set-up with clamping-grip configuration is 200 

employed [33,34]. Assuming the presence of initial localized damage, as depicted in Fig. 3a, the 201 

fracture propagates towards the reinforcement bar and localizes around it when the beam is axially 202 

elongated. Cracks appear in the matrix generally where the reinforcement hinders the opening of 203 

hinges. The cracks progressively propagate towards the reinforcing fiber net and localize around it. 204 

Therefore, debonding phenomena at the matrix-fiber net interface can take place. Indeed, this kind of 205 

mechanism happens in FRCM composites applied on vaults. 206 

From the numerical point of view, if the FRCM composite is modelled as a continuum embedding 207 

a bar, using a smeared cracking model for the matrix, it can be shown that assuming a perfect bond 208 

between the bar and the matrix, or introducing matrix-fiber grid interfaces, should provide 209 

comparable results in terms of stresses, displacements and failure mode. To this aim, a sample of 210 
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FRCM composite 60 mm × 30 mm × 10 mm made of a lime mortar with a glass fiber mesh embedded 211 

is considered. To reproduce the presence of localized fracture, the cross-section labelled S2 (Fig. 3d) 212 

is characterized by a reduced area (150 mm2) with respect to any other typical cross-section located 213 

at the distance z from the reference cross-section, like S1 in Fig. 3c, having the area 300 mm2. The 214 

fractures are positioned symmetrically with respect to the z axis and are 2.5 mm in length (along the 215 

y axis). They run through the whole cross-section parallel to the x axis, as reported in Fig. 3d. The S2 216 

cross-section was located at the center of the sample; anyway, numerical experiments performed 217 

show that moving the position of S2 provided that there is sufficient distance from the basis does not 218 

influence the results. 219 

A 2D plane stress model is adopted to investigate the propagation process of the damage in the 220 

cementitious matrix and the effect of the fiber mesh presence inside the composite under axial tension. 221 

The sample is supposed to be fixed at one end and a prescribed displacement is imposed at the 222 

opposite end to force the composite to stretch up to 0.02 mm. Two modelling approaches are used 223 

and compared: a macro-modelling approach (Fig. 3a), with the fiber mesh modelled as a bar 224 

embedded in a continuum characterized by the mechanical properties of the composite, and a micro-225 

modelling approach (Fig. 3b), with the composite modelled as two layers of matrix bonded through 226 

interfaces to the reinforcement bars, which represent the fiber mesh. Indeed, here the goal is not that 227 

of validating the modeling strategy concerning the results of an experimental tensile test, but that of 228 

comparing the two numerical strategies. 229 

In both the macro-model and the micro-model, the matrix is modelled with the Total Strain 230 

Rotating Crack model assuming the mechanical properties listed in Table 6 (see Section 3.2 for more 231 

details). The bar is linear elastic with a Young modulus equal to 78900 MPa. In the macro-model no 232 

bond-slip relation is considered to model the contact at the matrix-bar interface, while in the micro-233 

model the matrix is connected to the reinforcement bar using two non-linear interfaces modelled using 234 

the Discrete Cracking model. The mechanical parameters assumed for the matrix-bar (MB) interfaces 235 

are listed in Table 1. 236 

Fig. 4 shows the Cauchy total stresses recorded in the simulations for a point of the matrix (P1) 237 

and a point of the reinforcement bar (P2) for both models. It is easily seen that these results are 238 

practically superimposed. As the load gradually increases, the stresses in the matrix and the bar also 239 

increase and cracks appear in the matrix in the proximity of the ending tip of the fracture on both 240 

sides of the sample. When the axial displacement reaches the value of 0.01 mm, the cracks have 241 

already developed in the matrix up to the reinforcement bar, where the stresses suddenly increase, 242 

while the stresses in the matrix slightly decrease and then remain almost constant, due to the stress 243 

transfer from the matrix to the bar. Fig. 5a and 5b show the distribution of cracks at the final step of 244 

the calculations, for the prescribed displacement equal to 0.019 mm. 245 

It is worth noting that some cracks in the macro-model run parallel to the bar (see the zoom of Fig. 246 

5a), revealing that, as a consequence of the propagation of the fracture from the external layer of the 247 

composite toward the bar, cracks can occur at the bar-matrix contact surface and debonding 248 

phenomena can take place. A similar result is obtained for the micro-model (see Fig. 5b), where 249 

rotated cracks appear near the reinforcement bar and shear relative displacements increase at the bar-250 

matrix interface. Thus, it is possible to claim that the results provided by the two models are well 251 

comparable and that the assumption of a perfect bond between the bar and the matrix does not fail in 252 

indirectly reproducing also the debonding phenomena, which may occur in FRCM composites at the 253 

fiber mesh-matrix interface, possible especially when the reinforcement is applied at the extrados. 254 

In conclusion, this modelling choice combines the use of mechanical parameters that can be 255 

reasonably determined by practitioners in real applications with the capability of taking into account 256 
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both the loss of bond at the composite-substrate (directly) and the loss of bond at the matrix-textile 257 

(indirectly). 258 

 259 

3.2. Simplified micro-modelling for the masonry substrate 260 

In the framework of simplified micro-modelling approaches, the mortar joint is not represented 261 

with its actual thickness (see Fig. 6), but it is considered as a zero thickness interface where cracks 262 

can potentially occur and open [35]. The benefit of this simplification in terms of computational costs 263 

is high since the number of interfaces needed is halved.  264 

For unreinforced masonry structures, bricks are often modelled as linear elastic blocks since the 265 

stresses hardly ever overcome the compressive nor the tensile strength, and the collapse of the 266 

structure is mainly due to the opening of fractures at the joints. Since the reinforcement can yield 267 

substantially higher stresses, here bricks are modelled by using a smeared cracking damage model, 268 

suitable to describe distributed crack patterns, when the specific location of fractures cannot be 269 

predicted, as for the case of crushing or tensile failure of bricks. In particular, the Total Strain Rotating 270 

Crack model [36] is adopted.  271 

Following [37], the response in compression is represented by a parabolic constitutive law, 272 

governed by the compressive strength fc and by the compressive fracture energy Gfc. The response in 273 

traction is assumed linear elastic up to the tensile strength ft; by further increasing the tensile strains, 274 

an exponential softening phase follows [38], ruled by the following expression: 275 

 276 

( )
,

exp

cr cr cr
nm nm nm

cr

t nm ultf

  



 
= −  

 
 (1) 

 277 

where ( )cr cr

nm nm   is the crack stress, 
cr

nm  is the crack strain and ,

cr

nm ult  is the ultimate crack strain (see 278 

Fig. 7a).  279 

Eight-node square plane stress elements (CQ16M) are used (Fig. 7b) for the masonry units. 280 

The Discrete Cracking model is adopted to describe the brick-brick (BB) interface mechanical 281 

behaviour. This interface model is based on the total deformation theory where initiation, Mode-I 282 

behaviour and Mode-II behaviour are independently specified (uncoupled modes). [44]An 283 

exponential stress-strain law is assumed for modelling the decreasing of the stress as the cracks 284 

opening grows when the material is subjected to tractions. This stress-strain law is well suited also 285 

for masonry-like materials since an exponential behaviour is reported in [39] for the cracks opening 286 

in mortar joints of masonry panels in traction.  287 

The Discrete Cracking model is ruled, in the elastic phase, by the normal stiffness (kn) and tangent 288 

stiffness (kt) with respect to the interface plane according to the following relation: 289 

 290 

0
,

0

n

t

k

k

 
=  

 
t u  (2) 

 291 

where t={, }T is the traction vector and ∆u is the vector collecting the relative interface 292 

displacement. The tensile softening of the interface response (see Fig. 8a) is described by an 293 

exponential function depending on the interface tensile strength and the tensile fracture energy [40]: 294 

 295 
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𝜎

𝑓𝑡
= 𝑓(𝛿) −

𝛿

𝛿0
𝑓(𝛿0), (3) 

 296 

where 297 

 298 

𝑓(𝛿) = [1 + (3
𝛿

𝛿0
)
3

] 𝑒𝑥𝑝 (−6.93
𝛿

𝛿0
) − (28

𝛿

𝛿0
) 𝑒𝑥𝑝(−6.93), (4) 

 299 

σ is the stress at the interface, ft is the interface tensile strength, δ is the crack opening, obtained by 300 

subtracting from the total deformation the sum of the elastic deformation and of a contribution which 301 

takes into account non-elastic effects during unloading of the material adjacent to the crack surfaces, 302 

and δ0 is the crack opening for which stress can no longer be transferred. The crack opening δ0 is 303 

determined starting from the interface tensile strength ft and the mode I fracture energy 
I

ftG .  304 

The shear stress  is supposed to reduce after cracking. Denoting by w the crack width and s the 305 

crack slip, it is assumed that 306 

 307 

,

t

n

t

n

k s     for w
k

k s     for w
k





 


= 



 = 


 (5) 

 308 

with  the shear retention factor varying between 0 and 1. In particular, for =1 the shear response 309 

after cracking is still described by (5.1), without any reduction of the shear stresses. On the contrary, 310 

for =0, no shear stresses are transmitted after cracking, as for the case of smooth crack surfaces. 311 

When  assumes a value between 0 and 1, a reduced shear modulus is assumed after cracking, and 312 

the shear stresses never go to zero describing the effect of the sliding friction between the crack 313 

surfaces that ensures stress transferring residual capacity to the interface. 314 

Six-node interface elements, labelled CL12I, are used in the adopted mesh for describing BB 315 

interfaces (see Fig. 8b-c). 316 

 317 

3.2. FRCM modelling  318 

The strengthening FRCM composite, made of a cementitious mortar reinforced by short fibers and 319 

embedding a fiber net, is described as a continuum reinforced by suitable bar elements representing 320 

the fiber net. The primary goal is to reproduce the overall effects of the cracking of the matrix and 321 

the tensile strength provided by the combination of the matrix and the fiber net. Therefore, the same 322 

smeared cracking damage model employed for the brick, the Total Strain Rotating Crack model, is 323 

considered here for reproducing the nucleation and evolution of cracks in the continuum (the matrix). 324 

The tensile softening behaviour is described by the JSCE model [41], considering a stress plateau 325 

after cracking, followed by a softening phase ruled by the equation 326 

,

c

tu
tf






 
=  

 
 (6) 

with  the tensile stress,  the total tensile strain, ft the tensile strength, tu the tensile strain 327 
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corresponding to the end of the plateau, and c an exponent, usually set as 0.4 for unreinforced concrete 328 

and as 0.2 for reinforced concrete elements. It has been shown in [14] that the JSCE model is capable 329 

to simulate the response of FRCM composites in traction; in fact, the plateau before the softening 330 

phase reproduces the tension stiffening effect observed in the matrix of FRCM composites during the 331 

crack propagation phase, when cracks develop in the matrix and the load is progressively transferred 332 

from the matrix to the fiber mesh. Indeed, eq. (6) represents a residual tensile strength and a smoother 333 

reduction of the tensile stresses, typical of FRCM composites, if compared to other softening models 334 

like eq. (1), more suitable for unreinforced masonry. For the applications of interest of the present 335 

paper, the description of the FRCM matrix behaviour in compression has no practical interest: 336 

therefore, a simple linear elastic response can be considered. 337 

To model the mechanical response of the FRCM, a special element implemented into DIANA 338 

FEA is adopted. It is an eight-node plane stress element with reinforcement bars embedded inside. 339 

Since the displacements and the strains of the bars and the continuum elements are fully coupled, it 340 

results in a contribution of the bars in terms of stiffness, tensile strength and ductility of the 341 

continuum. Moreover, the bar elements play a leading role in withstanding the tensile stresses 342 

transmitted by the vault to the composite when the matrix cracks. 343 

The input data for reinforcement bars comprise the Young modulus (Ef), the stress-strain law under 344 

uniaxial traction and the geometrical properties, i.e., the cross-section area. 345 

 346 

3.3. Brick-FRCM interface modelling 347 

The interaction between the FRCM composite and the substrate is described by an interface, 348 

labelled CS (composite-substrate), using again the Discrete Cracking model described in Section 3.1, 349 

also suitable for reproducing the detachment of the composite from the substrate, which might occur 350 

due to the debonding at the composite-substrate interface. 351 

 352 

4. Case study and determination of the mechanical parameters 353 

 354 

4.1. Reference case-study 355 

The proposed numerical approach is applied for simulating the experimental behaviour observed 356 

in an in-situ test of a masonry barrel vault retrofitted at the extrados with glass FRCM composites. 357 

The results of the experimental tests are presented in [23], where the load-carrying capacity of the 358 

reinforced vault is compared to that of an unstrengthened vault having the same geometrical and 359 

mechanical features. For convenience of the reader, the main experimental results in [23] are briefly 360 

summarized. 361 

The examined structure is a barrel vault characterized by the geometrical data reported in Table 2 362 

and subjected to a concentrated load at a distance of 556mm from the left abutment (approximately 363 

one fourth of the span). 364 

In Fig. 9a and b, the geometry of the model is reported along with the position of the hinges opened 365 

during the in-situ test of the FRCM reinforced vault. Notice that the hinges corresponding to angles 366 

1 and 4 are not located at the impost of the vault, as one would expect. This discrepancy can be 367 

explained by Fig. 1(c) of [23]. This figure shows that the cuts made on the existing vault for obtaining 368 

the part to be reinforced by FRCM, and then to be tested, do not reach the two timber beams 369 

constituting the imposts. Therefore, the actual span of the tested FRCM reinforced vault is reduced 370 

with respect to the internal span of 2555 mm between the two timber beams (see also Fig. 2(b) of 371 
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[23]). In particular, by considering the actual position of the hinges at the extremity of the vault, an 372 

actual span of 1934 mm has to be considered for calculations (see Fig. 9c). 373 

Due to the small thickness of the vaults, the test on the unstrengthened structure (from here on 374 

indicated as “UV”) was performed under load control by sequentially putting sandbags on the 375 

extrados of the vault that weighed 4-7 kg each, up to the collapse. The reinforced vault (from here on 376 

indicated as “RV”) was tested in displacement control by means of a hydraulic jack connected to a 377 

load cell with a maximum capacity of 100 kN. Four loading and unloading cycles were performed on 378 

the FRCM retrofitted vault, the first two useful for the settling of the experimental setup and the 379 

further two for investigating the beginning of the non-linear phase of the vault response. In Fig. 10 380 

the load-displacement experimental curves for UV and RV are reported. 381 

The above described experimental provision concerning the load application and the execution of 382 

load cycles have not been reproduced in numerical simulations because of the complexity in 383 

accounting for the contact surface imperfections in the numerical model. Therefore, numerical 384 

analyses for both UV and RV are numerically performed under displacement control according to a 385 

monotonically increasing displacement history.  386 

The unstrengthened vault (UV) collapsed as a four-hinge mechanism. According to [23], the first 387 

hinge (H1) appeared at the extrados, under the load application point. The second hinge (H2) opened 388 

at the intrados at a symmetric position with respect to the first hinge; the third and the fourth hinges 389 

(H3, H4) occurred at the left and right abutments, respectively (see the scheme in Fig. 10). No 390 

information is provided about the load levels corresponding to the opening of the hinges. 391 

The collapse mechanism of the reinforced vault (RV) was characterized by the formation of one 392 

hinge (H1) under the load application area for about 1800 N, while the second hinge (H2) occurred at 393 

about 3/4 of the vault span, at a load of 2100 N and at a symmetric position concerning H1. The 394 

occurrence of H2 was revealed by the cracking of the composite that prevented the complete opening 395 

of the hinge. When the third and the fourth hinges formed at the abutments, the vault collapsed due 396 

to slippage phenomena at the fiber-matrix interface and the debonding of the reinforcement at the left 397 

support (see schemes in Fig. 10). The third and the fourth hinges formed after the peak load.  398 

 399 

5. Case study and determination of the mechanical parameters 400 

 401 

5.1. Reference mechanical parameters 402 

The mechanical characterization of the masonry and the glass FRCM reinforcement was carried 403 

out by means of experimental tests on the bricks, the mortar, the cementitious matrix, the fibers and 404 

the whole reinforcement system. The main experimental data are listed in Table 3, where the 405 

subscripts have the following meanings: “b” stands for “brick”, “mj” for “mortar joint”, “f” for 406 

“fiber”, “lm” for “lime mortar”; moreover, “c” stands for “compressive”, “t” for “tensile”, “s for 407 

“shear”, “d” for “debonding”, and are used for the characterization of the mechanical parameters 408 

governing the numerical model, as specified below.  409 

It is worth noting that the test reported in [23] was performed on a masonry specimen cut from the 410 

unreinforced vault; thus, it is reasonable to assume that the cutting processing of the specimen from 411 

the structure may have induced a disturbance in the material. 412 

The composite tensile properties plotted in Figure 10 are the schematization of the results of tensile 413 

tests performed by [23] using the clamping-grip configuration reported in [33,34]. In the following 414 

Subsections, the results of the experimental tests are employed for characterizing the constitutive laws 415 
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used in the proposed model strategy. When experimental results are not available, suitable literature 416 

values or formulations are considered. 417 

 418 

5.2. BB interface 419 

According to the Discrete Cracking model, the mechanical parameters required to define the 420 

behaviour of the BB interface are the normal stiffness kBBn, the tangent stiffness kBBt, the tensile 421 

strength fmjt, the tensile fracture energy Gmjft and the reduced shear modulus GBB.  422 

The normal and tangent stiffness cannot be determined from the experimental tests usually 423 

performed for the mechanical characterization of materials. In [42] a relation is proposed for the 424 

definition of the normal stiffness of BB interfaces as a function of the Young’s moduli of the bricks 425 

and the mortar of the joints, Eb and Emj respectively, and of the thickness hmj of the mortar joint: 426 

 427 

𝑘𝐵𝐵𝑛 =
𝐸𝑏𝐸𝑚𝑗

ℎ𝑚𝑗(𝐸𝑏 − 𝐸𝑚𝑗)
 (7) 

 428 

Notice that according to [43] eq. (7) gives accurate results only if the Young’s modulus of the 429 

brick is sufficiently higher than that of the mortar, otherwise an unrealistically high normal stiffness 430 

is obtained. A similar formula is also proposed in [42] for the determination of the tangent stiffness 431 

kBBt as a function of the shear modulus of the bricks and mortar, Gb and Gmj, respectively. When the 432 

latter data are not available, kBBt can be assumed equal to about 40% of the normal stiffness kBBn, as 433 

suggested in the literature [44,45].  434 

In the present case, the reference paper [23] reports (see Table 3) the average Young’s modulus of 435 

the bricks Eb=2016 MPa, the average Young’s modulus of the mortar obtained from a test on a 436 

masonry specimen cut from the unreinforced vault Emj=321.5 MPa, and the average thickness of the 437 

joint hmj=10 mm. Therefore, eq. (7) yields a normal stiffness of the BB interface kBBn=38.25 N/mm3. 438 

Assuming the tangent stiffness kBBt of the BB interface to be 40% of kBBn, one obtains kBBt=15.3 439 

N/mm3.  440 

Notice that the pictures reported in [23] show that the thickness of the joints is very variable along 441 

the vault; this could affect somewhat the reliability of the obtained values of kBBn and kBBt. 442 

Nevertheless, in absence of direct experimental results on the stiffness of the joints, the value 443 

determined by eq. (7) is considered.  444 

To verify the reliability of the above reported values of kBBn and kBBt, a numerical simulation of the 445 

load-displacement behaviour of the unreinforced vault is performed (see the blue continuous curve in 446 

Fig. 12, labelled UV). In the same figure, the experimental load-displacement curve is the red 447 

continuous line. The upper bound for the collapse load obtained by the kinematic theorem of Limit 448 

Analysis with reference to the actual hinges position at the collapse, see Fig. 9, is also reported 449 

(dashed black line, corresponding to 254 N). The considered values of kBBn and kBBt give a response 450 

comparable with the experimental results[23], and compatible with Limit Analysis results, since the 451 

latter are obtained neglecting the tensile strength of joints [46]. 452 

The interface tensile strength, ft, which rules the onset of the interface opening, does not correspond 453 

to the tensile strength of the mortar and depends on the bond between the bricks and the mortar joint, 454 

which is generally lower. In absence of experimental results, in [47] the tensile strength fmjt=0.02 MPa 455 

for the BB interface has been determined for the same UV under investigation through a large number 456 

of numerical calibration experiments. Therefore, the above value was adopted for the interface tensile 457 
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strength. 458 

Experimental data for the tensile fracture energy Gmjft are not available. It is experimentally 459 

observable that the tensile fracture energy tends to increase when the tensile strength increases. 460 

Therefore, the tensile fracture energy Gmjft=0.012 Nmm/mm2 suggested in [48] is considered.  461 

Finally, as explained in Section 2.1, assigning a value of the reduced shear modulus corresponds 462 

to providing a value of the shear retention factor  and therefore assuming that the shear stress 463 

between the blocks never vanishes. In absence of specific experimental results, it was deemed 464 

appropriate not relying on the residual capacity of transmitting shear stresses after cracking, thus 465 

adopting a very low value of the reduced shear modulus GBB=0.01 MPa. This value is close to zero, 466 

but not zero for avoiding numerical problems. In summary, the values of the BB interface mechanical 467 

parameters considered for the computations are reported in Table 4. 468 

 469 

5.3. CS interface 470 

The CS interface describes the contact interactions between the substrate bricks and the 471 

cementitious matrix. The mechanical parameters required for characterizing the Discrete Cracking 472 

model for CS interface are the normal stiffness kCSn, the tangent stiffness kCSt, the tensile strength fit, 473 

the tensile fracture energy Gift and the reduced shear modulus GCS. 474 

For what concerns the normal stiffness kCSn, no experimental data are available. Anyway, since the 475 

matrix is characterized by a higher Young’s modulus with respect to the mortar used for the joints 476 

and to the bricks (see Table 3), the CS normal stiffness is expected to be higher than the BB normal 477 

stiffness. Applying eq. (7) to the matrix-substrate system and considering the average Young’s moduli 478 

of the bricks Eb=2016 MPa, the Young’s modulus of the lime mortar Elm=6080 MPa, and a thickness 479 

hi=10 mm for the composite layer, a rounded value kCSn=300 N/mm3 is obtained. Again, the tangent 480 

stiffness is conventionally fixed in the 40% of kCSn, resulting kCSt=120 N/mm3. 481 

Regarding the tensile strength of the CS interface fit, in [23] the bond strength σbd between the 482 

reinforcement and the substrate has been experimentally evaluated by means of pull-off tests on 3 483 

masonry specimens extracted from the vault after the collapse of the structure, with reference to two 484 

different configurations. In the first configuration, providing σbd=0.17 MPa, the reinforcement was 485 

applied only on the brick, while in the second configuration the reinforcement was applied both on 486 

the brick and the mortar joint. In the latter case, which provides a much more realistic situation, a far 487 

lower bond strength σbd=0.05 MPa has been obtained (see Table 3), being here assumed for the tensile 488 

strength of the CS interface. 489 

The tensile fracture energy Gift of the CS influences the global behaviour of the composite with 490 

respect to debonding phenomena and, thus, the post-peak behaviour of the structure. In particular, a 491 

low value of Gift compared to the value assumed for fit leads to a brittle behaviour of the interface and, 492 

consequently, to a sudden increase in the relative displacements of the interface. Here Gift is evaluated 493 

for a value of the ductility index diu=Gift/fit=0.145 mm, determined according to the indication for 494 

composite-masonry interfaces reported in [49]. This way, the value Gift=0.0072 N/mm is obtained.  495 

Finally, for the same arguments reported in Section 5.2 for BB interface, a very low value of the 496 

reduced shear modulus GCS=0.01 MPa is considered. In summary, the values of the CS interface 497 

mechanical parameters reported in Table 5 are considered. 498 

 499 

5.4. FRCM composite 500 

The FRCM matrix is modelled as a continuum and the embedded fiber net is represented by bar 501 

elements with no degree of freedom on their own. Therefore, even if the FRCM components are 502 
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distinctly represented, the fibers and the matrix behave as a single element having mechanical 503 

properties representative of the whole composite. Therefore, the behaviour of the embedded bars 504 

corresponds to that experimentally observed for the composite regarding the third phase of the 505 

trilinear stress-strain relation in [23] (see also Fig. 11). In particular, the bar is modelled as linear up 506 

to failure, having the stress-strain relation shown by the blue dashed curve in Fig. 11, with Young 507 

modulus equal to that of the composite in the third phase of the average trilinear stress-strain curve 508 

(blue continuous curve in Fig. 11; Ef=78900 MPa). The ultimate tensile stress is identified with the 509 

average ultimate stress reached by the composite in tension (f=595 MPa). Notice that in Table 4 of 510 

[23] both data on the Young modulus and the tensile strength are referred to the cross-section of the 511 

fiber grid. 512 

In Table 6 the mechanical properties considered for the Total Strain Rotating Crack model 513 

describing the behaviour of the FRCM composite are listed. In particular, the Young’s modulus Ec 514 

was experimentally determined in [23]. For the Poisson’s ratio c, a typical value for the employed 515 

FRCM is assumed, while the mass density of the composite c is determined starting from the mass 516 

density of the fibers and the matrix and taking into account the mass percentage of each component 517 

in the composite. 518 

The tensile strength of the composite fct does not coincide with that of the mortar constituting the 519 

cementitious matrix since it accounts for the mutual collaboration between the matrix and the fiber 520 

net. Anyway, these two values are quite similar. Notice that also the Young’s modulus of the FRCM 521 

composite Ec=6500 MPa is slightly different from that of the matrix Ematrix=6080 MPa. In Table 4 of 522 

[23] are reported data related to the tensile behaviour of the FRCM system under consideration, 523 

represented in Fig. 11. In particular, the stress over the whole section of the reinforcement (matrix 524 

and fiber net) at the end of the so-called phase I is indicated. Starting from this value, the tensile 525 

strength of the composite fct=2.08 MPa has been determined in [23].  526 

The JSCE tension stiffening model requires the definition of the tensile strain corresponding to the 527 

end of the plateau, cu, and the power parameter c. For the latter, experimental results for FRCM 528 

composites are well represented choosing c in the range 0.4÷0.8. In particular, the former value is 529 

suggested in [14] for a fitting experimental response; therefore, c=0.4 is assumed. Since the 530 

experimental behaviour shown in Fig. 11 indicates the absence of an appreciable stress plateau, the 531 

value cu=0.00032 representing the deformation at the end of the elastic range is considered.  532 

No data are available regarding the compressive strength of the FRCM; therefore, the compressive 533 

strength of the lime mortar used for the matrix fcc=7.48 MPa is considered. Similarly, no experimental 534 

values are available for the compressive fracture energy Gcc. Thus, Gcc is estimated by following the 535 

Model Code 90 indications for concrete [50]. In particular, if fcc < 12 MPa, Gcc can be determined 536 

assuming a ductility factor dcc=Gcc/fcc=1.6 mm, thus obtaining Gcc=11.97 N/mm. In conclusion, the 537 

mechanical parameters considered for characterizing the Total Strain Rotating Crack model adopted 538 

for the FRCM composite are summarized in Table 6. 539 

 540 

5.5. Masonry bricks 541 

The mechanical tests on the masonry carried out in [23] provide most of the parameters required 542 

for the numerical model (see Table 3). In particular for the bricks, the Young’s modulus Eb=2016 543 

MPa and the compressive strength fbc=10.7 MPa, along with the tensile strength obtained by Brazilian 544 

tests fbt=0.8 MPa, are considered. The Poisson’s ratio is set m=0.2, a typical value for clay bricks 545 

[51]. The mass density of the clay bricks is considered 1800 kg/m3. 546 
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For the determination of the compressive fracture energy, the Model Code 90 recommendations 547 

can be used; in particular, for fbc<12 N/mm2 a compressive fracture energy Gbc=17.12 N/mm is 548 

obtained. For what concerns the tensile fracture energy Gbft, as reported in [52] in case of clay bricks 549 

and the absence of specific information, the average value 0.029 mm can be assumed for the ductility 550 

index dbu=Gbft/fbt. Therefore, the value Gbft=0.0232 N/mm is assumed. All the mechanical parameters 551 

considered for the masonry bricks are listed in  552 

 553 

Table 7. 554 

 555 

6. Main case study results 556 

Fig. 13 shows the main results in terms of the load-displacement curves; the experimental results 557 

are plotted with a dashed line and the numerical results obtained by the proposed model strategy are 558 

represented with a continuous line (blue lines for UV and red lines for RV). The numerical 559 

simulations of the strengthened vault (RV) yields results consistent to the experimental ones both in 560 

terms of collapse load and displacement at the collapse, intended as the displacements at the peak 561 

load, see also Table 8. Moreover, the proposed modelling strategy gives representative results also 562 

for the case of the unreinforced vault (UV), although the displacement at the collapse is quite 563 

different.  564 

As recalled in Section 3, the numerical model is composed of 928 8-node plane stress elements of 565 

15x10 mm2 and 276 6-node interface elements of 15x15 mm2 (termed as mesh 1). Further refinements 566 

of the mesh yield a very limited variation of the numerical results despite higher computational costs. 567 

As a representative example of the sensitivity analyses performed, Fig. 13 shows also the results 568 

obtained by considering 8-node 7.5 mm x 3.3 mm plane stress elements for the matrix and 8-node 7.5 569 

mm x 7.5 mm plane stress elements for the bricks for a total number of 4096 8-node plane stress 570 

elements and 552 6-node interface elements (termed as mesh 2). It is seen that the curves 571 

corresponding to “mesh 1” and “mesh 2” are practically superimposed up to the peak load and 572 

modestly differ in the post-peak phase. However, “mesh 2” required more than twice the time for the 573 

analysis. 574 

It is worth recalling that the approach followed here is that of identifying the values of the 575 

mechanical parameters by a “blind” processing of the available data; only values directly estimated 576 

by experimental tests on the materials or determined according to literature formulations were 577 

considered for the calculations. No calibrations of the parameters in view of reproducing the (known) 578 

experimental response of the structure have been made. 579 

 580 

 581 

6.1. Reinforced vault (RV) 582 

The numerical behaviour of the reinforced vault is practically linear up to a load of about 1300 N, 583 

slightly lower than the value at which the formation of the first hinge has been experimentally 584 

detected. Then, as the load increases, a slight loss of stiffness occurs because of the gradual opening 585 

of the first hinge located under the loading application point (H1 in Fig. 14), and of the appearance of 586 

the first crack at the abutments. After the peak (2204 N), the load suddenly decreases to 2060 N, 587 

corresponding to a 3.4 mm displacement of the load application point. At the same time, a sudden 588 

increase in the tangential relative displacement for the CS interface at the left abutment is observed. 589 

Then, the load gradually decreases as a progressive debonding of the reinforcement from the left 590 

abutment occurs (H3 in Fig. 14), and more cracks appear in the matrix in the centre-right of the vault, 591 

where the reinforcement hinders the opening of the hinge H2 (see Fig. 14). This behaviour is 592 
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comparable to that observed in the experiments. Also, the softening branch of the load-displacement 593 

curve obtained from the numerical analyses follows with a good approximation of the experimental 594 

curve. 595 

In the sequence, the reinforcement in correspondence of H2 completely cracked and the debonding 596 

at the left abutment extended to all the abutment length, causing the detachment of the FRCM strip 597 

from the left abutment. In this phase, a displacement of about 7.5 mm is obtained, and the load tends 598 

to remain almost constant as the displacement increases.  599 

At the end, the reinforcement starts to detach also from the right abutment (hinge H4 in Fig. 14) 600 

because of the debonding at the CS interface. In this last phase, the numerical curve is slightly more 601 

sustained than the experimental one, but differences are not relevant.  602 

Table 8 reports the numerically and experimentally collapse load (peak load) for the reinforced 603 

vault along with the corresponding displacement of the load application point. It is seen that the 604 

numerically estimated collapse load is practically coincident with the experimental one (the 605 

difference is of about 0.2%). 606 

 607 

For what concerns the displacement of the load application point at the collapse, it is worth 608 

recalling that the experimental testing considered four loading-unloading cycles, two in the elastic 609 

range and two out of the elastic range. In particular, the last cycle has been performed until the 610 

appearance of the first hinge, and produced a residual displacement of 0.65 mm. These loading-611 

unloading cycles are not numerically reproduced for the reasons explained in Section 5.  612 

In Table 8, the difference between the experimental and numerical displacement of the load 613 

application point at the collapse for the RV is 0.66 mm. This difference corresponds almost exactly 614 

with the above reported residual displacement experimentally observed in the last loading-unloading 615 

cycle. Therefore, it is reasonable to think that the difference is only because numerical simulations 616 

do not reproduce the cyclic part. 617 

A good agreement between the numerical and the experimental response curves of the RV in Fig. 618 

13 can be noted, also considering that the loading and unloading cycles performed in the experimental 619 

tests have not been reproduced in numerical simulations. The lower initial stiffness of the simulated 620 

response with respect to the experimental response can be explained since, as recalled in Section 5.1, 621 

the elastic parameters of the masonry measured in the experiments and then assumed in the numerical 622 

model correspond to that of a damaged material, because of the way the samples were extracted.  623 

For the CS and the BB interfaces described by the Discrete Cracking model, the distribution of 624 

relative displacements in the direction normal to the interface cracks are represented in Fig. 14a. The 625 

figure clearly shows that the highest displacement values are concentrated in correspondence of the 626 

first hinge H1 and at the left abutment, where the debonding of the composite takes place (H3). The 627 

distribution of the (smeared) cracks in the materials described by the Total Strain Rotating Crack 628 

model, i.e., the bricks and the matrix, can be represented by the normal stresses in the local direction 629 

across the crack, see Fig. 14b. This figure reveals that the deformation of the vault before the collapse 630 

caused the cracking of the composite at a position symmetric with respect to H1; moreover, FRCM 631 

cracks also at the right support and in the proximity of the area near H3 and H4. This was also observed 632 

during the in-situ tests in the position H2 in Fig. 10. Some cracks formed also in the masonry blocks 633 

at the abutments.  634 

In Fig. 15a the load is related to the number of the (smeared) cracks in the bricks and the 635 

reinforcement matrix obtained in the numerical simulations (red line). The curve is compared to that 636 

obtained by plotting the tensile stress in the cross-section of the bar elements, representing the fibers 637 
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embedded in the composite, versus the above-defined number of cracks (blue line). The tensile stress 638 

is obtained by dividing the textile forces by the textile cross-section area. In particular, the tensile 639 

stress is evaluated in correspondence to a point near the joints where the hinge H2 in Fig. 14 is 640 

supposed to open. In fact, as the matrix progressively cracks in that area, the opening of the hinge H2 641 

is hindered by the reinforcement, and tangential stresses developing at the CS interface are transferred 642 

to the bar elements through the matrix. Consequently, the tensile stress developing in the bars 643 

increases mostly in this range. Indeed, the tensile stress in the bar elements abruptly increases from 644 

25 MPa to 135 MPa at point A, corresponding to a vertical load of 1776 N, and then up to 252 MPa 645 

at point B, corresponding to a vertical load of 1787 N. Subsequently, when the load transfer process 646 

between matrix and fiber net is completed, the axial forces in the bars progressively increase with the 647 

number of cracks, towards the final point C. Notice that here the tensile stress reach the value of 347 648 

MPa, consistent with the debonding stress experimentally determined in [23]. 649 

On the red line in Fig. 15a, red dots mark the load values at which each hinge opens. In particular, 650 

the opening of hinges H1 and H3 is associated with a relative displacement in the direction normal to 651 

the interface cracks of 0.1 mm for the BB and CS interface. For detecting the opening of the hinge 652 

H2, the load corresponding to the sudden increase of the axial forces in the reinforcing bar elements 653 

is considered. Finally, the formation of the hinge H4 is identified by the cracking of the matrix and 654 

by a slight debonding of the reinforcement at the right abutment, which occurred practically 655 

simultaneously with the formation of H2. 656 

Comparing the diagram with the cracked configurations in Fig. 15b, it is easily seen that the 657 

progressive cracking of the composite corresponds to an increase in the axial forces developing in the 658 

bar elements. After the maximum load is reached, the number of cracks increases under a constant 659 

value of axial force in the reinforcement (before the sudden increase leading to point A in the blue 660 

curve in Fig. 15a). This means that the bond between the composite and the substrate is lost at the left 661 

abutment, and that the residual strength of the structure is substantially due to the fact that the 662 

reinforcement prevented the opening of hinge H2 holding the bricks together. Notice that the cracking 663 

of the matrix starts before reaching the peak load, and evolves up to the collapse of the vault; 664 

therefore, it does not correspond to a particular point of the curves in Fig. 15a. 665 

The above considerations allow showing that the proposed model is capable of successfully 666 

reproducing the stress-transfer mechanisms between the different components of the reinforced 667 

structure and its collapse mechanism. 668 

 669 

6.2. Unreinforced vault (UV) 670 

Table 8 shows that for UV there is a small difference between the numerically estimated and 671 

experimentally evaluated collapse load (intended as the peak load). On the other hand, a quite large 672 

difference between experimental and numerical displacements of the loaded point at the peak load is 673 

observed. This discrepancy can be likely ascribed to the adopted experimental setup. In fact, 674 

experimental tests have been performed in load control that probably motivates the quite irregular 675 

trend of the experimental response characterized by the lack of the softening phase. Thus, the 676 

experimental peak load is coincident with the last recorded load value (correspondingly for the 677 

displacement). On the other hand, the numerical analysis allowed to capture the evolution of the 678 

softening phase. 679 

About the numerical collapse mechanism for the UV, the typical four-hinge mechanism, also 680 

observed during the experiment, has been obtained. In particular, the first hinge H1 appeared under 681 

the load application point, followed by the second hinge H2 at the right abutment and the third hinge 682 
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H3 at the left abutment. The collapse is reached when the fourth hinge H4 opened at a symmetrical 683 

position with respect to H1. The position of the hinges is visible in Fig. 16, where the relative 684 

displacements in the direction normal to the interface cracks are displayed in correspondence to the 685 

collapse load.  686 

If the numerical collapse mechanism of the UV (see Fig. 16) is compared to the experimentally 687 

determined one (see Fig. 10), it can be noticed that the position of the hinges perfectly corresponds. 688 

However, it should be pointed out that the order of opening is slightly different; the hinge symmetrical 689 

to the load application point opens as the last in the numerical simulations, while it is the second to 690 

open in the experiments. 691 

 692 

7. Sensitivity analysis  693 

Parametric analyses are now performed to investigate the influence of each mechanical parameter 694 

required to describe the mechanical behaviour of the structure (masonry vault and FRCM composite) 695 

on the global response of the reinforced structure. For each analysis, only one of the mechanical 696 

parameters has been increased or decreased five times, while all the other parameters are kept 697 

constant.  698 

The results of sensitivity analyses are discussed by grouping the investigated parameters. The 699 

discussion is eased using figures reporting the experimental data (dotted curve) the response obtained 700 

with the choice of the considered mechanical parameters reported in Section 5 (red curve), the 701 

response corresponding to the 5 times increased parameter (light blue curve), and the response 702 

corresponding to the 5 times decreased parameter (green curve). Possible relevant differences in the 703 

stress distribution or the collapse mechanism due to the variation of one of the mechanical parameters 704 

are highlighted. 705 

 706 

7.1. BB interface 707 

Fig. 17 and Fig. 18a show the results in terms of load-displacement curves obtained from 708 

parametric analyses of the influence of the BB interface mechanical parameters on the global 709 

behaviour of the reinforced vault. Recall that the reference values are collected in Table 4. 710 

The numerical results are mostly affected by the interface normal stiffness kBBn (Fig. 17a) and, 711 

secondarily, by the interface tensile strength fmjt (Fig. 18a). Indeed, 5 times increasing or decreasing 712 

of the interface tangent stiffness kBBt (Fig. 17b), the interface tensile fracture energy Gmjft (Fig. 17c), 713 

or of the interface reduced shear modulus GBB (Fig. 17d) yield only negligible variations of the post-714 

peak behaviour for higher displacements. In particular, lowering the interface normal stiffness kBBn 715 

corresponds to a significantly reduced stiffness of the vault and a considerably lower load carrying 716 

capacity, whereas increasing kBBn entails a small increase in the stiffness and the maximum load. This 717 

means that an error in excess in the evaluation of kBBn brings almost negligible effects, but too low 718 

kBBn values may lead to non-representative results.  719 

The interface tensile strength fmjt could significantly influence the capacity of sustaining the load 720 

after the peak, see Fig. 18c. Indeed, whereas by lowering fmjt concerning the nominal value of 0.02 721 

MPa small variations in the response (only in the immediately post-peak phase) are observed, whereas 722 

an error in excess for fmjt could yield a non-reasonable high post-peak load carrying capacity. 723 

For explaining this large influence of the interface tensile strength fmjt, notice that by assuming a 724 

5 times higher value of fmjt=0.1 MPa, the crack stresses configuration at the collapse in Fig. 18b 725 

reveals that the reinforcement does not completely debond from the substrate. On the contrary, 726 
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debonding happens for the nominal value of fmjt (see Fig. 14b) and also for the 5 times lower value 727 

of fmjt=0.004 MPa (Fig. 18c). 728 

 729 

7.2. CS interface 730 

The efficiency of the reinforcement in improving the performance of the structure in terms of 731 

strength and ductility strongly depends on the bonding between the reinforcement FRCM composite 732 

and the substrate. This aspect is here investigated by parametric analyses by varying the mechanical 733 

properties of the CS interface. 734 

The obtained load-displacement curves are shown in Fig. 19a - Fig. 20. It is seen that variations of 735 

the CS mechanical parameters mostly influence the post-peak behaviour, related to the debonding of 736 

the composite from the substrate at the left abutment. 737 

Fig. 19a shows that the interface normal stiffness kCSn has a small influence on the response before 738 

the load peak, and also on the value of the load peak. After the peak, significant reductions of kCSn do 739 

not seem to influence the response, whereas too high values of kCSn might lead to a post-peak phase 740 

much more sustained than that experimentally observed. Moreover, for kCSn=1500 N/mm3, 5 times 741 

higher than the reference value, not only the reinforcement prevents the opening of a hinge near the 742 

left support, but also no debonding takes place from the substrate at the left end of the vault. Indeed, 743 

as shown in Fig. 19b, where the relative displacements in the direction normal to the interface cracks 744 

at the collapse are depicted, the debonding of the composite anchored on the left of the vault is 745 

observed. The above justifies the fact that for kCSn=1500 N/mm3 the vault deformations increase at 746 

an approximately constant load. 747 

On the other hand, the interface tangential stiffness kCSt might influence more the first part of the 748 

response curve than the post-peak behaviour (see Fig. 20a). Specifically, a very low value of kCSt 749 

doesn’t introduce substantial variations in the response, whereas an error in excess in the evaluation 750 

of kCSt leads to a stiffer response (the global stiffness of the reinforced vault raises from 747 N/mm 751 

to 1437 N/mm), although with no noticeable difference in the peak load and the post-peak phase. This 752 

behaviour is likely related to the fact that kCSt=600 N/mm3, 5 times the nominal value, reaches the 753 

same value of the normal stiffness kCSn. 754 

Moreover, even large variations of the interface tensile strength fit (Fig. 20c) result in a small 755 

variation of the peak load. In the post-peak phase, too low values of fit affect the response but in a 756 

limited and scarcely predictable way, whereas too high values of fit might yield to a sustained post-757 

peak phase, due to the hindering of the debonding of the composite at the left abutment, and 758 

consequently to the induced delay in the collapse of the structure. 759 

Errors in the determination of the interface tensile fracture energy Gift yield variations only in the 760 

post-peak behaviour (Fig. 20d), inducing a less or more fragile failure of the CS interface at the left 761 

abutment. 762 

Finally, no appreciable changes are observed by varying 5 times the interface reduced shear 763 

modulus GCS (Fig. 20b), since the reference value is very low. It is necessary to introduce substantially 764 

higher values of GCS (yellow curve) to notice some variation of the response curve in the post-peak 765 

phase. 766 

 767 

7.3. FRCM composite 768 

Here, the results obtained from the sensitivity analyses on the parameters ruling the mechanical 769 

behaviour of the FRCM composite are presented. The reference values of these parameters are 770 

collected in Table 6. 771 
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The load-displacement curves obtained by assuming the Young’s modulus of the composite matrix 772 

Ec equal to 32500 MPa and 1300 MPa, respectively, are compared in Fig. 21a to the curve obtained 773 

for nominal value Ec=6500 MPa. Recall that the latter is obtained by averaging the results of uniaxial 774 

tensile tests performed, referred to the first phase of the tests, when both the matrix and the textile are 775 

subjected to the load. It is easily seen that Ec significantly affects the stiffness of the reinforced 776 

structure and, secondarily, the peak load and the post-peak behaviour. In particular, for Ec=1300 MPa 777 

the global stiffness is 40% reduced and the peak load decreases from 2204 N to 1995 N, whereas for 778 

Ec=32500 MPa the global stiffness is 30% increased, but the peak load undergoes a small increment, 779 

from 2204 N to 2224 N. Furthermore, it is possible to observe that higher FRCM Young’s modulus 780 

yields a more sustained response after the peak, whereas lower values of Ec result in a steeper drop 781 

of the load after the maximum. 782 

Fig. 21b shows the response curves related to different values of the FRCM matrix tensile strength 783 

fct. This parameter significantly affects the numerical results. In particular, for fct=10.4 MPa (5 times 784 

the nominal value), after reaching a load of 2314 N, the composite partially detaches from the left 785 

abutment causing the load to decrease up to 2080 N. After that, the load starts increasing again and 786 

no cracks occurred in the matrix. On the contrary, for fct=0.4 MPa (20% of the nominal value), the 787 

structure reaches a much lower maximum load of 1830 N, and over 600 N the global stiffness is 788 

reduced due to the opening of the first hinge under the load application point. The collapse is due to 789 

the development of cracks all over the matrix and to the partial debonding of the composite from the 790 

left abutment. For the sake of completeness, it has to be noted that for fct=10.4 MPa, the deformation 791 

at the end of the elastic range cu considered in the JSCE model is 0.0016, greater than that considered 792 

in the calculations; therefore, the effects of tensile strength variations on the structural response of 793 

the reinforced vault could not be distinguished from that of the deformation cu. 794 

The JSCE model employed for the matrix in traction is characterized by a stress plateau after the 795 

appearance of the first cracks, followed by the exponential softening governed by the exponent c and 796 

by the deformation at the end of the stress plateau cu. Possibly, the latter can be assumed equal to the 797 

deformation at the end of the elastic range; in this case, no stress plateau is obtained. In particular, 798 

Fig. 22b shows the curves corresponding to the JSCE tension model (6) for different values of cu and 799 

fixed exponent c; these curves tend to approach zero stress only for very high values of strain, 800 

providing for the residual tensile strength characterizing FRCM composites. The effects of variations 801 

in the exponent c on the constitutive response of FRCM in tension are outlined in Fig. 22d for fixed 802 

cu=0.00032. The parameter c affects the area under the response curve; in particular, higher values 803 

of c reduce this area and consequently the tensile fracture energy, leading to a more fragile behaviour. 804 

Fig. 22a shows the numerical response curves obtained for different values of cu. In this case, no 805 

lower values than the nominal one (cu=fcc/Ec=0.00032) are considered, to avoid inconsistency with 806 

the value of the Young’s modulus Ec and/or of the compressive strength fcc. Changes in cu result in 807 

appreciable variations in the response for high deformations; in particular, for cu=0.0016, 5 times the 808 

nominal value, a much more sustained post-peak behaviour is obtained.  809 

The effects of variations of the exponent c on the global behaviour of the reinforced vault are 810 

shown in Fig. 22c. For c equal to 0.2 (light blue curve), a value usually considered for reinforced 811 

concrete, after the peak the load remains almost constant, while for c=0.8 (green curve) the load-812 

displacement curve is only marginally different from that corresponding to the nominal value c=0.4. 813 

Anyway, it is worth noting that the curve obtained for c=0.8 better approximates the experimental 814 

curve in the post-peak phase.   815 
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As for variations of the compressive strength of the cementitious matrix fcc (see Fig. 23a), for 816 

fcc=37.4 MPa, five times higher than the nominal value, the maximum load remains the same, but the 817 

global stiffness is almost doubled, while assuming fcc=1.496 MPa (20% of the nominal value), the 818 

peak load and the stiffness are slightly lowered. Assuming too low values of the compressive fracture 819 

energy Gcc does not seem to hold a significant influence on the mechanical behaviour of the reinforced 820 

vault. In fact, if Gcc is decreased five times, the load-displacement curve (green curve in Fig. 23b) is 821 

practically superimposed to that obtained for the nominal value Gcc=11.97 N/mm. On the other hand, 822 

if Gcc is increased five times, the obtained peak load is higher than the experimental value, and 823 

convergence problems occurred (light blue curve in Fig. 23b). 824 

Finally, parametric analyses are performed on the elastic properties and the tensile strength of the 825 

fibers. It is worth recalling that the average tensile stress-strain response experimentally determined 826 

in [23] and corresponding to the average curve in Fig. 11 (in blue) is implemented for the bars, with 827 

the following reference values: Young’s modulus Ef=78.9 GPa and tensile strength fft=529.16 MPa. 828 

Fig. 24a shows the effect of variations of the Young’s modulus Ef of the fibers, resulting in 829 

relatively small changes in the peak load and the post-peak behaviour. Variations of the tensile 830 

strength of the fibers fft (see Fig. 24b) yields even smaller variations of load carrying capacity and of 831 

the softening branch of the load-displacement curve. 832 

 833 

7.4. Masonry bricks 834 

For reinforced masonry arches and vaults, the mechanical properties defining the substrate 835 

inelastic behaviour in tension (tensile strength and tensile fracture energy) and in compression 836 

(compressive strength and compressive fracture energy) can play an important role in describing the 837 

load capacity of the whole structure. Indeed, the reinforcement prevents hinge openings at some of 838 

the block-joint interfaces and the rotation of the blocks; this yields much higher tensile and 839 

compressive stresses in the blocks with respect to what happens for unreinforced structures. This is 840 

illustrated in Fig. 25, where the maximum principal stresses are plotted for the unreinforced and 841 

reinforced vaults. In particular, the figure displays the detail of the part of the vault where the hinge 842 

labelled H2 opens; the same colour scale for stresses is employed (from 0 to 0.8 MPa). In the case of 843 

the reinforced vault, results for fbt=0.8 MPa (the nominal value) and for fbt=4 MPa are reported (see 844 

Fig. 25b and c). It is evident that the reinforcement system prevents the opening of joints, and this 845 

leads to the development of higher tensile stresses in the bricks. 846 

As a consequence, by varying fbt while all the other mechanical parameters being fixed, very 847 

different load-displacement curves are obtained, see Fig. 27a. In particular, when the bricks tensile 848 

strength is increased five times (fbt=4 MPa) the load-displacement curve does not show any softening 849 

phase, and the collapse is obtained for a much higher load, due to the cracking of the matrix, no longer 850 

able to transfer the stresses from the substrate to the fiber mesh (see also Fig. 26). If the reference fbt 851 

is reduced five times, a sudden decrease of the stiffness is noted after a load value of 1088 N, with a 852 

slight change in the peak load and no appreciable variations in the post-peak phase. 853 

Fig. 27c shows that also changes in the brick tensile fracture energy Gbft could lead to evident 854 

variations in the response curve. Indeed, an increase or decrease of the load carrying capacity of the 855 

structure of about 30% when Gbft is respectively increased or decreased five times is obtained. Thus, 856 

it emerges that numerical results are strongly affected by the tensile strength and the tensile fracture 857 

energy of the substrate material. On the contrary, the compressive fracture energy Gbc does not 858 

influence at all the mechanical behaviour of the strengthened structure since the three curves obtained 859 

for the different considered values of Gbc are completely superimposed; thus, for the sake of brevity, 860 
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these load-displacement curves have not been reported. 861 

Furthermore, it is interesting to observe that an increase in the brick’s compressive strength fbc 862 

affects the global stiffness of the vault. In fact, the blue curve in Fig. 27b, corresponding to fbc=53.5 863 

MPa (five times the reference value fbc=10.7 MPa), is characterized by a higher stiffness than the 864 

reference curve. The latter is very close to the curve obtained for the lower value of fbc. No noticeable 865 

changes in the peak load or the post-peak behaviour are observed by changing fbc. 866 

Finally, Fig. 27d describes the effect of variations of bricks Young’s modulus Eb. It is seen that 867 

this parameter greatly influences the overall stiffness, the peak load and also the post-peak behaviour. 868 

Thus, for the numerical model to be representative, the Young’s modulus of the bricks has to be 869 

carefully characterized [53]. 870 

 871 

7.5. Concluding remarks 872 

The performed sensitivity analyses suggest that stiffness parameters (interface stiffness and elastic 873 

moduli) can be even more influential than strength parameters. This is likely because large variations 874 

in the stiffness of one of the components of the structural model could radically vary the stress transfer 875 

arrangements, thus activating or completely deactivating some collapse mechanisms. On the other 876 

hand, large variations in strength parameters are influent only if the related failure is active, and to 877 

the extent to which that failure contributes to the overall behaviour and to which that parameter has 878 

been varied. The highly non-linear behaviour of reinforced masonry arches and vaults and the 879 

possibility of several different stress transfer and internal failure mechanisms render rather 880 

unpredictable the effects of variations of more than one mechanical parameter, with possible 881 

unrealistic numerically simulated results. 882 

The above considerations, however, should not obscure the most important result of Section 7, 883 

namely that the proposed numerical modelling strategy is capable of giving representative results, 884 

satisfactorily close to the actual structural response, provided that mechanical parameters are 885 

reasonably estimated. In particular, the model is quite robust concerning small errors in the 886 

determination of mechanical parameters, apart from some of them that can be easily and suitably 887 

evaluated by standard mechanical tests. Moreover, the sensitivity analyses indicate those parameters 888 

that can be determined by a rough estimate, and those needing to be carefully determined for the 889 

accuracy of the simulated behaviour. 890 

In particular, for the BB interface, a correct estimation of the normal stiffness is required. Since 891 

this parameter is difficult to be experimentally characterized, it is possible to determine it by eq. (7). 892 

Thus, an accurate experimental determination of the Young’s moduli of the bricks, the mortar, and 893 

the average thickness of masonry joints is needed. For the tensile strength of the BB interface, only a 894 

large overestimating error could secondarily affect the results in the post-peak phase. Other BB 895 

interface parameters scarcely influence the overall response of the reinforced vault. 896 

A correct determination of the parameters characterizing the CS interface appears to be a little 897 

more influential on the overall response reconstruction. In particular, a large overestimation of the 898 

normal stiffness or the tangent stiffness could lead to unrealistic stiffness and post-peak behaviour. 899 

These stiffnesses are very difficult to identify by experimental tests; thus, the suggestion is to use eq. 900 

(7) and carefully evaluating by experimental tests the Young’s moduli of the bricks and the 901 

reinforcing mortar. The tensile strength of the CS interface can be experimentally determined, but 902 

large errors influence practically only the post-peak behaviour. The same occurs for the CS tensile 903 

fracture energy. 904 

Some mechanical parameters of the FRCM composite show a pronounced influence on the 905 
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numerical results. However, the most influential parameters can be accurately determined by standard 906 

mechanical tests. In particular, this is true for the Young’s modulus of the matrix, the composite 907 

tensile strength, the composite tensile strain at the end of the stress plateau, and the FRCM 908 

compressive strength. For what concerns the exponent c, also influent on the post-peak response, the 909 

value suggested by the literature allows for reasonable results.  910 

Finally, the numerically predicted response could be markedly influenced by large variations of 911 

masonry bricks mechanical parameters, with special reference to the Young’s modulus Eb, the tensile 912 

strength fbt and the tensile fracture energy Gbft. However, Eb and fbt can be directly determined 913 

employing ordinary mechanical tests, whereas the determination of the tensile fracture energy can be 914 

based on the literature. Also the masonry bricks compressive strength, affecting the initial stiffness, 915 

can be easily evaluated by standard mechanical tests. 916 

 917 

 918 

8. Pushover curves  919 

As discussed in Section 6, the numerical model presented in Sections 3-5 gives results quite similar 920 

to the experimental ones reported in [23] in terms of load-displacement curve, peak load and 921 

displacement of the application point of the load in correspondence of the peak load. This is obtained 922 

by using mechanical parameters experimentally determined or evaluated according to the literature, 923 

without any calibration based on the (unknown in advance for practical applications) experimental 924 

response. 925 

Thus, this numerical model can be considered representative of the actual structural behaviour and 926 

can be used to perform other kinds of structural analyses. In particular, here a pushover analysis aimed 927 

at determining the maximum seismic capacity in terms of horizontal ground acceleration for the 928 

examined vaults is performed, studying the influence of the FRCM strengthening system [54].  929 

The pushover analysis is carried out by applying first the self-weight and then a system of 930 

horizontal forces proportional to the self-weight monotonically increased from zero in steps of 931 

suitable amplitude. One node at the centre of the keystone is assumed as the control point for 932 

determining the capacity curve.  933 

In particular, Fig. 28 shows the capacity curves for the unstrengthened (UV) and the reinforced 934 

vault (RV) in terms of the base shear force normalized to the self-weight of the structure λ versus 935 

displacement of the selected control point. Notice that λ can be interpreted as the base horizontal 936 

acceleration in g. Moreover, the deformed configuration of the reinforced vault at collapse is shown 937 

and the interface relative displacements DUNy are plotted.  938 

Since for the examined load conditions no experimental results are available, for the validation of 939 

the numerical results the maximum horizontal load numerically determined for the unstrengthened 940 

vault (UV) is compared to that evaluated by applying the kinematic theorem of Limit Analysis. In 941 

particular, the latter provided a collapse horizontal load multiplier λk=1.03, which can be considered 942 

consistent with the collapse horizontal load multiplier λ=1.031 numerically evaluated through the 943 

pushover analysis.  944 

The pushover analysis performed for the reinforced vault (RV) yields a horizontal loads multiplier 945 

at the collapse λ=4.11, about 4 times higher than that obtained for the unstrengthened vault. As the 946 

capacity curves in Fig. 28 show, the reinforcement strongly reduces the lateral displacements of the 947 

structure, while increasing the load carrying capacity under horizontal loads. On the other hand, the 948 

unreinforced vault is capable of quite larger horizontal displacements under an almost constant load. 949 



This paper can be found at: https://doi.org/10.1016/j.engstruct.2022.115116 

23 

In Fig. 29 the stresses developing in the reinforcement bar during the pushover analysis are plotted 950 

and related to the position where each mesh element of the bar is positioned along the span; the plotted 951 

curves correspond to different values of λ: 1.03, which is the collapse multiplier of the unreinforced 952 

vault, 2.00, when the first hinge opens, 2.80, when the first cracks occur, 4.11 and 3.60 which 953 

correspond to the maximum value and the last recorded value, respectively. In the same picture the 954 

crack pattern at collapse (λ=3.60) has been reported and scaled to approximately fit the span length.  955 

Starting from a value of λ=2.00, at almost a quarter of the span, one of the bricks started to slightly 956 

separate from the contiguous blocks, as shown in Fig. 28 in the part of the vault marked with a red 957 

circle, and the interface relative displacements at the intrados grew from 0.11 mm up to 0.35 mm, 958 

when the maximum value of λ (4.11) was reached.  959 

At λ=2.8 the first cracks occurred at the left abutment, spreading through the block towards the 960 

reinforcement. As the load was increasing, the relative displacements at the CS interface started to 961 

grow both normally to the interfaces and, with less intensity, tangent to the interfaces. From the curves 962 

plotted in Fig. 29 it can be observed that in some parts of the composite, the stresses developing in 963 

the reinforcement bar are very low, while the stresses increase, as the load grow, near the abutment 964 

and in proximity to the part where the first hinge occurred, that is in those parts of the vaults where 965 

the bond at the composite-substrate interface weakened. At collapse, the stresses in the textile reach 966 

their peak and, contextually, the reinforcement detached almost completely from the left abutment, 967 

causing the failure of the vault.   968 

 969 

 970 

9. Conclusions 971 

The present paper proposes a new modelling strategy for masonry curved structures reinforced 972 

with FRCM composites, suitable for its use by practitioners in advanced commercial codes, like the 973 

finite element code DIANA FEA here used.  974 

The modelling strategy here proposed combines the advantages of both macro- and micro-975 

modelling approaches. In particular, in the frame of a macro-modelling approach, the reinforcement 976 

is described as a continuum whose mechanical properties are the ones of the whole composite itself; 977 

a smeared cracking constitutive model is considered to reproduce the occurrence of cracks in the 978 

matrix in the areas where the reinforcement prevents the opening of the hinges in the structure. The 979 

presence of the fibers net is represented by means of bars embedded in the continuum without 980 

interfaces ruling the contact between the two. All the other interactions between materials are 981 

described by a suitable interface model, as it is typical of micro-models. The above approach brings 982 

the advantage of reducing the number of mechanical parameters to be determined, along with the 983 

number of interfaces elements involved in the model, with benefit in terms of computational costs. 984 

Each of the analyses performed required less than 1 hour to be performed on a standard notebook. 985 

For the validation of the proposed approach, a case study taken from the recent literature has been 986 

considered. Particular attention has been devoted to a suitable choice of the mechanical parameters 987 

that could not be determined by experimental tests, and have to be evaluated indirectly by employing 988 

literature formulations. 989 

The comparison between the results obtained from the numerical model and the available 990 

experimental response showed the accuracy of the proposed approach in reproducing the load 991 

carrying capacity of the examined curved structure also in the post-peak branch of the load-992 

displacement curve. In addition, the mechanisms ruling the collapse have been correctly represented, 993 
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especially with reference to the cracking of the composite and the stress transfer mechanisms. It can 994 

be inferred that the effects of the curvature on the complex phenomena involved in the structural 995 

behaviour of the FRCM reinforced vault has been correctly represented. Notice that if at first glance 996 

it might emerge a small inconsistency with the initial stiffness, the latter is likely due to the structure 997 

settling in the reference experiment, and therefore it is possible to say that the proposed model is 998 

capable of recovering the more relevant aspects of the observed structural behavior. Moreover, it 999 

should be remarked that the material parameters have not been selected fitting the results of the 1000 

experimental curve, but based on available data of the materials. 1001 

The large sensitivity analysis shows the influence of variations of the mechanical parameters on 1002 

the predicted overall response of the reinforced structure. It emerges that for some parameters even 1003 

large inaccuracies in their determination marginally affect the result, whereas other parameters need 1004 

to be accurately identified to generate representative results. These considerations might be very 1005 

useful in practical applications to guide choices on the experimental analyses to be performed and the 1006 

criteria to be followed for accurately reproducing the actual structural behaviour. 1007 

Once the proposed numerical model has been validated with respect to the experimental data, the 1008 

influence of the FRCM reinforcement on the seismic capacity of the structure has been investigated 1009 

by performing pushover analyses both on the unstrengthened and strengthened vault.  1010 

The obtained results suggest that the proposed modelling approach could represent a useful 1011 

compromise between the accuracy of the results and the feasibility for use in practical applications. 1012 

This is very interesting for the still open research field of the mechanics of FRCM reinforced masonry 1013 

arches and vaults. A further appealing aspect is that the proposed modelling strategy requires for the 1014 

mechanical parameters of the masonry and the reinforcement a knowledge level readily achievable 1015 

with standard experimental approaches.  1016 
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10.       List of tables 

 
Table 1. Matrix-bar (MB) interface mechanical parameters. 

MB Normal 

Stiffness 

Shear 

stiffness 

Tensile 

strength 

Tensile 

fracture energy 

Reduced 

shear modulus 

kn 

[N/mm3] 

ks 

[N/mm3] 

ft 

[N/mm2] 

Gft 

[N/mm] 

GMB 

[N/mm2] 

5000.0 2000.0 3 1.5 1 

 

 
Table 2. Geometrical data for the vault. 

Center 
Thickness 

[mm] 

Width 

[mm] 

Span 

[mm] 

Rise 

[mm] 

Mid-line radius 

[mm] 

C(0, -1164.98) 60 300  2555 461 2025 

 

 
 Table 3. Experimental data on the mechanical properties of materials [23]. 

Test n. sample Data 

Compressive test on bricks 8 
Young’s modulus Eb 2016 MPa 

Compressive strength fbc 10.7 MPa 

Brazilian test on bricks n.a. Tensile strength fbt 0.8 MPa 

Compressive test on 

masonry 
1 

Mortar Young’s modulus Emj 306/337 MPa 

Compressive strength fmjc 3.5 MPa 

Tensile test on dry glass 

fibers 
5 

Weight per unit area ρf 223.4 kg/m2 

Young’s modulus Ef 75.43 GPa 

Tensile strength fft 1.442 GPa  

Three-point bending test on 

lime mortar for FRCM 

composite 

n.a. 

Young’s modulus Elm 6080 MPa 

Compressive strength flmc 7.48 MPa 

Flexural strength flmt,b 3.16 MPa 

Pull-off test on FRCM 

composite 

 

3 

Maximum bond stress 

 

σbd 

 

σbd 

 

0.17 MPa 

 

0.05 MPa 

Reinforcement applied to 

the brick 

Reinforcement applied to 

both brick and mortar 

joint 

Shear test on FRCM 

composite 
5 Debonding stress σsd 335 MPa 

Tensile test on FRCM 

composite 
n.a. 

Trilinear stress-strain 

curve 
(see Fig. 11) 
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Table 4. BB interface mechanical parameters. 

BB Normal 

Stiffness 

Tangent 

stiffness 

Tensile 

strength 

Tensile fracture 

energy 

Reduced shear 

modulus 

kBBn 

[N/mm3] 

kBBt 

[N/mm3] 

fmjt 

[MPa] 

Gmjft 

[N/mm] 

GBB 

[MPa] 

38.25 15.3 0.02 0.012 0.01 

 

 

 
Table 5. CS interface mechanical parameters. 

CS Normal 

Stiffness 

Tangent 

stiffness 

Tensile 

strength 

Tensile fracture 

energy 

Reduced shear 

modulus 

kCSn 

[N/mm3] 

kCSt 

[N/mm3] 

fit 

[MPa] 

Gift 

[N/mm] 

GCS 

[MPa] 

300.0 120.0 0.05 0.0072 0.01 

 

 

 

 
Table 6. FRCM composite mechanical parameters (Total Strain Rotating Crack model). 

Young’s 

modulus 

Poisson’s 

ratio 

Mass 

density 

Tensile 

strength 

Tensile 

strain 

at the 

end of 

the 

plateau 

Power 

exponent 

Compressive 

strength 

Compressive 

fracture 

energy 

Ec 

[GPa] 

c 

[-] 

c 

[kg/m3] 

fct 

[MPa] 

cu 

[-] 

c 

[-] 

fcc 

[MPa] 

Gcc 

[N/mm] 

6500 0.2 1900 2.08 0.00032 0.4 7.48 11.97 

 

 
 

 

Table 7. Masonry bricks mechanical parameters. 

Young’s 

modulus 

Poisson’s 

ratio 

Mass 

density 

Compressive 

strength 

Compressive 

fracture 

energy 

Tensile 

strength 

Tensile 

fracture 

energy 

Eb 

[MPa] 

b 

[-] 

b 

[kg/m3] 

fbc 

[MPa] 

Gbc 

[N/mm] 

fbt 

[MPa] 

Gbft 

[N/mm] 

2016 0.2 1800 10.7  17.12 0.8 0.0232 
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Table 8. Comparison between the numerical and experimental results. 

 UVEXP UVNUM RVEXP RVNUM_1 RVNUM_2 

Collapse load 

𝐹𝑚𝑎𝑥 [N] 
390 380 2170 2204 2212 

Displacement of the loaded 

point at the collapse load 

𝛿𝑚𝑎𝑥 [mm] 

6.41 1.54 4.08 3.43 3.74 
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11.     List of figures 

 

 

 

 
Fig. 1. Stress transfer between the arch/vault and reinforcements applied at the intrados (a) or extrados (b). 

 

 

 
Fig. 2. Numerical approaches in literature for FRCM reinforced arches: (a) [31], (b) [36], (c) [32].  
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Fig. 3. a) Macro-modelling approach; b) micro-modelling approach; c) transversal section S1 of the undamaged solid; d) 

damaged transversal section of the solid S2. Units: mm. 

 

  

 

 
Fig. 4_Cauchy total stresses vs displacement of the reinforcement bar and the matrix for both models. 

 

 

 
Fig. 5. Cracks distribution for the macro- model (a) and the micro-model (b). 
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Fig. 6. Modelling of the reinforced vault. 

 

  

 

 
Fig. 7. Total Strain Rotating Crack model constitutive law: exponential softening in traction and parabolic response in 

compression (a) and CQ16M element (c). 

 

 

 
Fig. 8. Tensile behaviour for interface elements according to [44] (a). 3+3 nodes interface element: displacements (b) and 

stresses (c). 
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Fig. 9. a) Tested vault. b) Hinges position for the in-situ tested FRCM reinforced vault. c) Numerical model of the tested 

FRCM reinforced vault. 

 

 
Fig. 10. Load-displacement curves of the unstrengthened (UV) and strengthened (RV) vault. Schemes of the collapse 

mechanisms [23]. 
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Fig. 11. Tensile test on FRCM composite [23]. 

 

 
Fig. 12. Experimental and numerical load-displacement curves for the unreinforced vault, compared to the limit load 

evaluated by kinematic theorem of Limit Analysis. 
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Fig. 13. Load-displacement curves for the unreinforced (UV) and reinforced vault (RV). 

 

 
Fig. 14. Reinforced vault (RV): relative displacements in the direction normal to the interface cracks at the collapse (a); local 

stresses in the direction normal to the crack (b). 

 

 

 
Fig. 15. a) Load (red curve) and stress in the fibers (blue curve) vs number of the (smeared) cracks in the bricks and in the 

reinforcement matrix. b) Distribution of the (smeared) cracks in the bricks and in the reinforcement matrix in the three 

different conditions, A, B and C, marked on the blue curve in the diagram on the left. 
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Fig. 16. Unreinforced vault (UV): relative displacements in the direction normal to the interface cracks at the collapse. 

 

 

 

 

 
Fig. 17. Influence of variations of BB interface normal stiffness kBBn (a), tangential stiffness kBBt (b), tensile fracture energy 

Gmjft (c), shear modulus GBB (d). 
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Fig. 18. Influence of variations of BB interface tensile strength fmjt (a). Distribution of the local stresses in the direction 

normal to the crack Sknn at the collapse for fmjt=0.1 MPa (b) and fmjt=0.004 MPa (c). 

 

 
Fig. 19. a) Influence of variations of CS interface normal stiffness kCSn b) Relative displacements in the direction normal to 

the interface cracks DUNy at the collapse. 
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Fig. 20. Influence of variations of CS interface tangent stiffness kCSt (a), reduced shear modulus GCS (b), tensile strength fit (c) 

and tensile fracture energy Gift (d). 
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Fig. 21. Influence of variations of FRCM matrix Young’s modulus Ec (a) and FRCM matrix tensile strength fct (b). 

 

 
Fig. 22. Influence of variations of plateau end strain cu. (a) and of the exponent c (c); JSCE model for different values of cu 

(b); JSCE model for different values of the power parameter c for a fixed value of cu=0.00032. 
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Fig. 23. Influence of variations of the matrix compressive strength fcc and compressive fracture energy Gcc. 

 

Fig. 24. Influence of variations of the fiber mesh Young’s modulus Ef and the tensile strength fft. 
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Fig. 25. Maximum principal stresses in the bricks of the unreinforced vault (a) and reinforced vault (b/c) corresponding to 

hinge H2 position (d/e). 

 
Fig. 26. Local stresses in the direction normal to the crack at the collapse for fbt=4 MPa. 
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Fig. 27. Influence of variations of bricks tensile strength fbt (a), compressive strength fbc (b), tensile fracture energy Gbft (c), 

and Young’s modulus Eb (d). 
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Fig. 28. Capacity curves for the strengthened and unstrengthened vault under horizontal loads; interface relative 

displacement DUNy at collapse. 

 
Fig. 29_Reinforcement cross section stresses vs position of the reinforcement bar mesh element; cracks normal stresses Sknn 

at collapse. 

 
 

 


