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Abstract

This study aims at solving a harvesting scheduling optimization problem with constraints on the clearcut
area with additional constraints on clearcut proximity. The objective function is defined as the net present
value generated by harvesting discounted by a penalty for each clearcut. This problem arises to reduce the
negative environmental impact of excessive harvesting. We propose the connected-bucket model, the so-called
bucket model with additional constraints on bucket connectivity and two definitions of stand adjacency, and
a Dantzig–Wolfe decomposition. The decomposed model is solved by branch-and-price and the connected-
bucket model by a general-purpose mixed integer programming solver (CPLEX). We compare the quality of
the solutions obtained with both approaches for real instances. The branch-and-price approach found better
solutions for the majority of the instances.

Keywords: integer programming; Dantzig–Wolfe decomposition; branch-and-price; bucket formulation; connectivity

1. Introduction

One of the most studied harvest scheduling problems by the operations research community aims
at optimizing the net present value generated by harvesting subject to nonspatial constraints, for
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example, on volume or ending age, and spatial constraints. Volume constraints ensure a regular pro-
duction of timber, mainly to guarantee that the industry is able to continue operating with similar
levels of machine and labor utilization. The ending age constraint helps to prevent the model from
overharvesting the forest. The most common spatial constraints are on the area of each clearcut.
A clearcut is a continuous area of forestland from which all merchantable trees have recently been
harvested, and it is surrounded by nonharvested areas, or in other words, a harvested cutblock
that is not contained in other harvested cutblock (in mathematics, a maximal harvested cutblock
with respect to set inclusion). Clearcut constraints preclude a clearcut from exceeding a maximum
threshold area in any given time period or over a green-up time. Generally, green-up standards are
applied when a proposed cutblock with an even-aged silvicultural system, such as clearcut or seed
tree, is located adjacent to a previously harvested cutblock or cutblocks that are also under an even-
aged management system, and these areas together will exceed the maximum threshold area. The
green-up time usually refers to the amount of time it takes for a harvested cutblock to regenerate
(e.g., for the trees to reach a specific height or age). These constraints have been used to decrease the
environmental damage caused by harvesting, for example, on soil, water, biodiversity, and wildlife.
See McDermott et al. (2010) for a detailed and systematic comparison of environmental forest
policies and enforcement in 20 countries worldwide.

The most common type of harvesting/regeneration in the Czech Republic are clearcuts with re-
planting of new trees. According to the report produced by Fern in March 2008 (Fenton et al.,
2008), about 15,000 ha of clearcuts are created in the country every year. Almost 84% of regener-
ation is planting or seeding. Law limits the maximum size of clearcuts to 1 ha (2 ha in floodplain
and pine forests and on inaccessible mountain slopes). This practice has been repeatedly criticized
for soil degradation and biodiversity impacts. Natural conditions are radically different in Central
Europe: for example, average size of gaps created by fallen trees in natural beech forests in Slovakia
is 250 m2 and the gaps never exceed 0.4 ha. Concerning the situation of Czech forests, scientists
stated in May 2006 that “consequences of clearcutting are serious,” including soil damage, erosion,
and radical impact on biodiversity, and “trees planted in the clearing tend to be more vulnerable
to pests and wind,” “legislation must significantly reduce or eliminate clearcutting. Small area shel-
terwood felling and selective harvesting methods should be preferred.” Since then, two measures
that have been progressively implemented in the Czech Republic to reduce the clearcutting impact
are to reduce the size of the clearcuts and to prevent the creation of clearcuts within a given thresh-
old distance from each other. Management systems addressing restrictions on the distance between
clearcuts is most common in the case of Picea abies (spruce) and Pinus sylvestris (pine). The main
goal of these restrictions is to make good stand borders of the exposed clearcuts to the wind. The
aim of this work is to solve the harvest scheduling problem with constraints on the clearcut area
and the additional restrictions on the clearcut proximity. To help reduce the number of clearcuts,
the net present value generated by harvesting is discounted by a penalty for each clearcut. As far as
we know, this problem has not yet had the attention of the operations research community.

Operation researchers have been discussing the so-called area restriction model, ARM (Mur-
ray, 1999), to model constraints on clearcut area. This approach enables one to harvest two or
more adjacent stands in the same period unless the combined area is greater than the limit. Several
definitions of adjacency have been used. The most common are the weak and strong adjacency
(Goycoolea et al., 2005). Two stands are weak adjacent if they share at least a single point. Two
stands are strong adjacent if they share a boundary with positive length. A harvested cutblock is a
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Table 1
Models used to mostly solve the single-harvest ARM

Model References

Path formulation Martins et al. (1999); McDill et al. (2002); Murray and
Weintraub (2002); Crowe et al. (2003)

Cluster formulation Martins et al. (1999); McDill et al. (2002); Martins et al.
(2005); Goycoolea et al. (2005); Vielma et al. (2007)

Bucket formulation Constantino et al. (2008)
Full adjacent unit formulation Gharbi et al. (2019)

Table 2
Exact approaches and heuristics based on mathematical programming enabling the user to overcome the size of the ARM
models

Approach
Model on which the
approach is based References

Column generation and variable fixing
heuristic

Cluster formulation Martins et al. (2005)

Branch-and-price Cluster formulation Epstein et al. (2003); Martins et al. (2012)
Branch-and-cut Path formulation Tóth et al. (2013); Constantino and

Martins (2018)
Dantzig–Wolfe decompositions and

matheursitic
Bucket formulation Martins et al. (2015)

set of harvested stands such that, between each pair of stands, there is a sequence of stands, each
one adjacent to the next. Different adjacency definitions might be adopted in other spatial contexts
as wildlife and habitat conservation. For example, two stands can be considered adjacent if they
are within a certain distance from each other or if they share a boundary longer than a threshold
value (Walters, 1996). See Kaya et al. (2016) and Yoshimoto and Asante (2018) for a broader view
on exact integer programming approaches and heuristics for the ARM. A bibliography revision on
ARM with green-up can be read in Borges et al. (2015).

In this study, we are interested in methods that are able to provide an optimal solution, at least
in theory (exact methods), or in general, approaches that are able to provide a measure of the
solution’s quality. Exact approaches mostly consider a single harvest over the planning horizon for
individual stands, that is, the minimum rotation in a stand is longer than the planning horizon.
Table 1 summarizes some of the main models for the single-harvest ARM found in the literature.

Constraints on maximum clearcut size are modeled in the path formulation as cover constraints
(also called path constraints). In the cluster and full adjacent unit formulations, those constraints
are related directly with the variables. The linear programming relaxation of the cluster formulation
is tighter than those of the bucket formulation (Martins et al., 2012) and the path formulation (Goy-
coolea et al., 2005), and there is no dominance relationship between the path and bucket formula-
tions (Goycoolea et al., 2005). Solving these formulations via a general mixed integer programming
solver (implementing branch-and-bound based approaches), with all variables and constraints, has
limitations in terms of size. Table 2 summarizes some of the approaches found in the literature,
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which provide a measure of the solution’s quality, enabling the user to overcome the size of the
ARM models.

Borges et al. (2015), John and Tóth (2015), McDill et al. (2016), Yoshimoto and Konoshima
(2016), and Yoshimoto and Asante (2018, 2021) addressed the ARM with multiple harvests. In
these third initial studies, constraints on the maximum clearcut size are modeled as cover con-
straints. In the last three references, the authors proposed optimization models that use common
matrix algebra (Yoshimoto and Konoshima, 2016) and flow network constraints in maximum
flow problems.

When a problem becomes too large or complicated to handle, a decomposition approach can
be applied if the problem structure is suitable. The basic mechanism in all decomposition prin-
ciples is to decompose the original problem into smaller subproblems, which are coordinated
by a master problem. One of these techniques is the Dantzig–Wolfe decomposition. In Martins
et al. (2015), the authors proposed four Dantzig–Wolfe decompositions for the bucket formula-
tion: the S-knapsack and the S-knapsack-and-clique decompositions, and two similar decompo-
sitions of the bucket formulation with additional constraints on the connectivity of the buckets,
the R-knapsack and the R-knapsack-and-clique decompositions. They establish theoretically that
the linear programming bounds of the knapsack-and-clique decompositions are better than or
equal to those of the knapsack decompositions, and that the linear programming bound of the S-
knapsack-and-clique decomposition is equal to that of the R-knapsack-and-clique decomposition.
According to these results and since the subproblem of the S-knapsack-and-clique decomposition
may be less difficult to solve than that of the R-knapsack-and-clique decomposition, they pro-
posed a solution approach based on the first decomposition. For solving the decomposed model,
a matheuristic, a heuristic based on mathematical programming, was developed. In this work,
neither the bucket connectivity constraints nor the R-knapsack-and-clique decomposition was
formulated.

We propose for the problem of this study the bucket formulation with additional constraints
on bucket connectivity and two definitions of stand adjacency. One of these definitions is used to
address bucket connectivity and the other to address constraints on bucket (clearcut) proximity.
Then, we formulate the R-knapsack-and-clique decomposition of the model. A branch-and-price
is implemented to solve this decomposition. We compare both approaches, the Dantzig–Wolfe
decomposition/branch-and-price and the connected-bucket formulation solved by a general mixed
integer programming solver (CPLEX).

This paper is outlined as follows. In Sections 2 and 3, we describe the forest planning problem and
the formulation, and in Section 4, the branch-and-price and the decomposition. In Section 5, we
report computational experience as to the efficiency of the decomposition/branch-and-price. Our
tests involved real instances. We compare the quality of the solutions obtained for these instances
with the formulation/general MIP solver for the same time limit. In the last section, we present
our conclusions.

2. The problem

In this study, we consider forests classified into stands. A stand is a grouping of vegetation suffi-
ciently uniform in species composition, age, and condition to be managed as a single unit.

© 2022 The Authors.
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Table 3
Parameters and sets of the harvest scheduling problem

Parameter/set Notation

I Set of stands indexed by i = 1, . . . , |I |
T Planning horizon indexed by t = 1, . . . , |T |
pt

i Net present value of removed timber from stand i in period t
vt

i Volume of removed timber from stand i in period t
ai Area of stand i
cost Penalty assigned to a clearcut
Deviation allowed from target volume �

Upper bound on the area of a clearcut Amax

The harvest scheduling problem (referred to as problem P) deals with determining which stands
should be harvested in each period during a given planning horizon in order to maximize the
difference between the net present value generated by harvesting and the sum of costs assigned
to clearcuts. Stand selection is subject to volume constraints (nonspatial constraints) and spatial
constraints as follows.

1. Volume constraints: Lower and upper bounds on the volume of timber harvested in each period.
These constraints ensure a regular production of timber.

2. Clearcut size constraints: An upper bound on the area of each clearcut in each period. These
constraints limit the area of a clearcut in the period of intervention.

3. Clearcut proximity constraints: Stands that are within a certain distance of a clearcut cannot
be harvested in the same period of intervention. These constraints prevent the creation of
clearcuts within a threshold distance from each other. The green-up time is considered to be one
period.

The spatial constraints together with the clearcut penalties in the objective function aim at re-
ducing the negative environmental impact of excessive harvesting.

In this study, the following are assumed:

• The cost assigned to each clearcut is equal for all clearcuts.
• Each stand is harvested at the most once.
• A minimum age is required for harvesting.
• Harvesting occurs at the beginning of the periods, and all the periods are of the same length.

Table 3 displays the parameters and sets of the problem.

3. The connected-bucket formulation

The model that we propose for P is based on the bucket formulation. Two different definitions of
adjacency are considered. The weak adjacency and what we will refer to very weak adjacency. Two
stands are very weak adjacent if they are within a certain distance from each other.

© 2022 The Authors.
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Table 4
Graphs for the model

Graph Description

G = (I, E ) The endpoints of each edge in E correspond to two adjacent stands according to
the weak adjacency

G = (I, A) The arc set A is obtained from E by setting two opposite directions associated
with each edge in E

Gk = (Ik, Ak) Subgraph of G = (I, A) induced by set Ik = {i ∈ I : i ≥ k} (thus,
Ak = {(i, j) ∈ A : i, j ∈ Ik})

GN = (I, EN ) The endpoints of each edge in EN correspond to two adjacent stands according
to the very-weak adjacency

The bucket formulation for the single-harvest ARM “fills” buckets, one at the most for each
stand, in such a way that nonspatial constraints and constraints on clearcut area are satisfied. A
nonempty bucket is a region that might be disconnected since there are no constraints to enforce its
connectivity. Thus, each nonempty bucket represents a feasible clearcut or a set of feasible clearcuts.
As for the problem of this study, flow constraints involving the weak adjacency are added to force
buckets to be connected. The very weak adjacency is used to ensure at least a threshold distance
between buckets.

Next, we will describe the model that we propose for P, the bucket model with additional con-
straints on bucket connectivity and two definitions of stand adjacency. We will refer to this model as
a connected-bucket model. For the sake of simplicity, we will describe the model without addressing
the minimum required age for harvesting. At the end, we will consider this aspect.

Four graphs are defined (Table 4).
Let Q be the set of maximal cliques of GN indexed by P ∈ Q. A clique is the set of nodes of a

complete subgraph of the graph, which has an edge between each pair of vertices, and it is maximal
if it is not contained in any other clique. Cliques are used to prevent the stands adjacent to clearcuts,
according to the very weak adjacency, from being harvested. Constraints on bucket connectivity
guarantee that each nonempty bucket represents a single clearcut. We will refer to the stand with
the smallest index in a nonempty bucket as a bucket label.

As each stand is harvested once at the most over the planning horizon, we can represent the set
of buckets in the forest as C = {C1, . . . ,C|I |}.

For i ∈ Ik, I−
k (i) = {( j, i) ∈ Ak} and I+

k (i) = {(i, j) ∈ Ak} represent the set of arcs that end at i and
the set of arcs that start at i, respectively, in Gk.

The decision variables of the connected-bucket model are the following:

1. F it
l j ≥ 0 is the flow that goes through arc (l, j) in direction to node i in period t; (l, j) ∈ A; i ∈

I \ {l}; t ∈ T

2. xkt
i =

{
1 if stand i is selected to belong to bucket Ck in period t
0 otherwise; k ∈ I; t ∈ T ; i = k, . . . , |I |

3. wkt
P =

{
1 if at least one stand from clique P is selected to belong to bucket Ck in period t
0 otherwise; k ∈ I; t ∈ T ; P ∈ Q : maxi∈P{i} ≥ k.

© 2022 The Authors.
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The model is as follows.

Connected-bucket formulation

max
∑
t∈T

∑
k∈I

|I |∑
i=k

pt
ix

kt
i −

∑
t∈T

∑
k∈I

costxkt
k (1)

subject to

∑
t∈T

i∑
k=1

xkt
i ≤ 1; i ∈ I (2)

∑
i∈I

vt
i

i∑
k=1

xkt
i ≥ (1 − �)

∑
i∈I

vt−1
i

i∑
k=1

xk,t−1
i ; t = 2, . . . , |T | (3)

∑
i∈I

vt
i

i∑
k=1

xkt
i ≤ (1 + �)

∑
i∈I

vt−1
i

i∑
k=1

xk,t−1
i ; t = 2, . . . , |T | (4)

xkt
i ≤ wkt

P ; k ∈ I; t ∈ T ; i ≥ k; P ∈ Q : i ∈ P (5)
∑

k≤ max
i∈P

{i}
wkt

P ≤ 1; t ∈ T ; P ∈ Q (6)

|I |∑
i=k+1

aixkt
i ≤ (Amax − ak)xkt

k ; k ∈ I; t ∈ T (7)

Connectivity constraints on bucket Ck; k = 1, . . . , |I | − 1; t ∈ T (8)–(12)

xkt
i ∈ {0, 1}; k ∈ I; t ∈ T ; i = k, . . . , |I | (13)

wkt
P ≥ 0; k ∈ I; t ∈ T ; P ∈ Q : max

i∈P
{i} ≥ k. (14)

Connectivity constraints on bucket Ck; k = 1, . . . , |I | − 1; t ∈ T
∑

j∈I+
k (k)

F it
k j ≥ xkt

i ; k = 1, . . . , |I | − 1; i ∈ Ik \ {k}; t ∈ T (8)

∑
j∈I+(l )

F it
l j =

∑
j∈I− (l )

j �=i

F it
jl + xlt

i ; i ∈ Ik \ {k}; l ∈ Ik \ {i, k}; t ∈ T (9)

∑
j∈I−(i)

F it
ji =

i−1∑
l=1

xlt
i ; i ∈ Ik \ {k}; t ∈ T (10)

© 2022 The Authors.
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F it
l j ≤ F jt

l j ; (l, j) ∈ Ak; i ∈ Ik \ {l, j, k}; t ∈ T (11)

F it
l j ≥ 0; (l, j) ∈ Ak; i ∈ I \ {k, l}; t ∈ T (12)

Function (1) states the management objective of maximizing the net present value of timber
harvested discounting the cost of each clearcut. Constraints (2) state that each stand is harvested at
the most once in the planning horizon. Constraints (3) and (4) allow the volume of timber harvested
in each period to range from 1 − � to 1 + � times the volume of timber harvested in the previous
period. Constraints (5) define the relationship between variables x and w: if stand i is assigned to
bucket Ck (xkt

i = 1), every clique P with node i is labeled with node k (wkt
P = 1). Constraints (5)

and (6) ensure that in each period every two adjacent stands (by the very weak adjacency) are in
one bucket at the most (each clique cannot be labeled with two nodes). Constraints (7) guarantee
that each bucket does not exceed the maximum allowed size. Constraints (7) also state that if Ck
is nonempty then Ck contains stand k, the bucket label. Constraints (13) and (14) state binary and
nonnegativity requirements on variables. The integrality of variables x, together with constraints
(5), implies the integrality of variables w in at least one optimal solution.

Constraints (8)–(12) guarantee the connectivity of each nonempty bucket (with more than a sin-
gle node) by identifying the bucket with a multicommodity network flow. For a single-commodity
network flow: (i) the source is the bucket label (constraints (8)); (ii) there is flow conservation (con-
straints (9)); (iii) the sink is a selected stand (constraints (10)). Constraints (11) reduce the number
of alternative solutions by ensuring that if a node receives flow in direction to other node then that
node is also the sink of a single-commodity network flow.

We can also add the following constraints in order to eliminate alternative solutions:

F it
l j ≤

i−1∑
k=1

xkt
i ; i ∈ Ik \ {k}; (l, j) ∈ Ak; t ∈ T. (15)

These constraints ensure that there is no flow in direction to a node if this node is not assigned
to a bucket.

The number of variables and constraints is O(|I | × |Q| × |T |. Variables that have the value 0 in
any feasible solution may not be included in the model. Observe that if a stand is too “far” from
stand k then it is not worth assigning it to bucket Ck, because the area of any connected region
with both stands would exceed the maximum. Thus, xkt

i is defined when the shortest path between
i and k is not greater than Amax, using graph G (Table 4) with weights assigned to nodes, where
the weights are the areas of the respective stands. F lt

i j is defined when the shortest path between i
and l with arc (i, j) is not greater than Amax. wkt

p is not defined when there is no xkt
i for all i ∈ P.

The elimination of these variables implies the reduction of the number of constraints (5), (7), and
(8)–(11).

Addressing the minimum required age for harvesting forces the following variables to be 0 or, in
other words, it is useless consider them: xkt

i if stands i or k are not old enough to be harvested in
period t; wkt

p if there is no xkt
i for all i ∈ P; F lt

i j if stands i, j or l are not old enough to be harvested

© 2022 The Authors.
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in period t. Again, the elimination of these variables implies the elimination of some constraints
(5), (7), and (8)–(11).

4. Dantzig–Wolfe decomposition

In this section, we present a Dantzig–Wolfe decomposition of the connected-bucket model by re-
formulating the set C defined by constraints (5), (7), (13), (14), and the connectivity constraints
(8)–(12). For the sake of simplicity, we will describe the decomposition without considering vari-
able and constraint reductions and the minimum required age for harvesting. At the end, we will
consider these aspects.

The representation of the convex hull of C by extreme points is used to strengthen the formu-
lation. Each extreme point is represented by a variable in the master problem. As the convex hull
has an exponential number of extreme points in general, the master problem is solved by branch-
and-price, where each linear program throughout the enumeration tree of the branch-and-bound is
solved by column generation. The pricing subproblems consider an objective function of reduced
costs over set C.

In this section, we first detail the master problem and the subproblem(s), then discuss the ap-
plication of column generation and branch-and-price to solve the decomposed model. At last, we
mention how branch-and-price can be combined with a general MIP solver to reduce the time to
obtain high quality solutions.

4.1. The master problem

Let e be the number of variables wkt
P in the connected-bucket model, e = ∑

k,t e(k, t), where
e(k, t) = |{P ∈ Q : P ∩ {k, . . . , |I |} �= ∅}|, and f (k, t) the number of variables F it

l j for (l, j) ∈ Ak; i =
k + 1, . . . , |I |. For each period t, the set of cutblocks with stands i ≥ k, containing k and with area
not greater than Amax, will be called Rkt. For each stand k, sets Rkt are identical.

C can be decomposed into |I | × |T | sets:
Ckt = {(x, w, F ) ∈ {0, 1}(|I |−k+1)[0, +∞[e(k,t)+ f (k,t) :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑|I |
i=k+1 aixkt

i ≤ (Amax − ak)xkt
k

xkt
i ≤ wkt

P ; i ≥ k; P ∈ Q : i ∈ P∑
j∈I+

k (k) F it
k j = xkt

i ; i = k + 1, . . . , |I |∑
j∈I+

k (l ) F it
l j = ∑

j∈I−k (l )
j �=i

F it
jl ; i, l = k + 1, . . . , |I |; l �= i∑

j∈I−
k (i) F it

ji = xkt
i ; i = k + 1, . . . , |I |

F it
l j ≤ F jt

l j ; (l, j) ∈ Ak; i = k + 1, . . . , |I |; i �= l, j
F it

l j ≥ 0; (l, j) ∈ Ak; i = k + 1, . . . , |I |; i �= l
xkt

i ∈ {0, 1}; i = k, . . . , |I |
wkt

P ≥ 0; P ∈ Q : max
i∈P

{i} ≥ k

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
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For each stand k and period t, an element (x, w, F ) of set Ckt is either the null vector or a vector
(x̄kt

S , w̄kt
S , F ) where S ∈ Rkt, and x̄kt

S , w̄kt
S are defined as

• x̄kt
iS =

{
1 if stand i ≥ k belongs to region S in period t
0 otherwise;

• w̄kt
PS =

{
1 if clique P ∈ Q is such that P ∩ S �= ∅ in period t
0 otherwise.

The decision variables of the master problem are the following:

• ykt
S =

{
1 if region S ∈ Rkt is selected to be harvested in period t
0 otherwise; k ∈ I; t ∈ T ; S ∈ Rkt.

The master problem is as follows.

Master problem

max
∑
t∈T

∑
k∈I

∑
S∈Rkt

(
|I |∑

i=k

pt
i x̄

k
iS − costykt

S ) (16)

subject to∑
S∈Rkt

ykt
S ≤ 1; k ∈ I; t ∈ T (17)

∑
k≤max{i:i∈P}

∑
S∈Rkt

w̄kt
PSykt

S ≤ 1; P ∈ Q; t ∈ T (18)

∑
t∈T

i∑
k=1

∑
S∈Rkt

x̄kt
iSykt

S ≤ 1; i ∈ I (19)

∑
i∈I

vt
i

i∑
k=1

∑
S∈Rkt

x̄kt
iSykt

S ≥ (1 − �)
∑
i∈I

vt−1
i

i∑
k=1

∑
S∈Rkt

x̄k,t−1
iS yk,t−1

S ; t = 2, · · · , |T | (20)

∑
i∈I

vt
i

i∑
k=1

∑
S∈Rkt

x̄kt
iSykt

S ≤ (1 + �)
∑
i∈I

vt−1
i

i∑
k=1

∑
S∈Rkt

x̄k,t−1
iS yk,t−1

S ; t = 2, . . . , |T | (21)

ykt
S ∈ {0, 1}; k ∈ I; t ∈ T ; S ∈ Rkt. (22)

4.2. The pricing subproblems

For the linear relaxation of the master problem, constraints (22) are simply replaced by ykt
S ≥ 0.

© 2022 The Authors.
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Let �kt, βt
P, θi, μt, and νt denote the dual variables associated with constraints (17)–(21) of the

linear relaxation of the master problem and �kt∗, βt∗
P , θ∗

i , μt∗, and νt∗ assume an optimal dual
solution of the linear relaxation of a restricted master problem. By definition of reduced cost, the
objective function of the pricing subproblem kt is given by

max
S∈Rkt

⎧⎨
⎩

∑
i∈S

εt∗
i +

∑
P:S∩P �=∅

βt∗
P

⎫⎬
⎭ + �kt∗,

where for all i = k + 1, . . . , |I |, ε1∗
i = p1

i + θ∗
i − μ2∗(1 − �)v1

i − ν2∗(1 + �)v1
i

εt∗
i = pt

i + θ∗
i + μt∗vt

i + νt∗vt
i − μt+1∗(1 − �)vt

i − νt+1∗(1 + �)vt
i , t = 2, . . . , |T | − 1

ε
|T |∗
i = p|T |

i + θ∗
i + μ|T |∗v|T |

i + ν |T |∗v|T |
i (with θ∗

i ≤ 0, μt∗ ≥ 0 and νt∗ ≤ 0), and for i = k, we have
to discount the cost value in each expression.

The decision variables of the subproblem kt are the following:

• F i
lj ≥ 0 is the flow that goes through the arc (l, j) in direction to node i; i ∈ Ik \ {k}; (l, j) ∈ Ak;

• xi =
{

1 if stand i is selected to belong to region S ∈ Rkt

0 otherwise; i = k, · · · , |I |;

• wP =
{

1 if at least one stand from clique P ∈ Q is selected to belong to region S ∈ Rkt

0 otherwise; P ∈ Q : maxi∈P{i} ≥ k.

The subproblem kt can be formulated by the following integer program.

Pricing subproblem kt

max
|I |∑

i=k

εt∗
i xi +

∑
P:maxi∈P{i}≥k

βt∗
P wP + �kt∗ (23)

subject to

xk = 1 (24)

xi ≤ wP; i ≥ k; P ∈ Q : i ∈ P (25)

|I |∑
i=k+1

aixi ≤ Amax − ak (26)

∑
j∈I+

k (k)

F i
k j = xi; i = k + 1, . . . , |I | (27)

∑
j∈I+

k (l )

F i
l j =

∑
j∈I−k (l )

j �=i

F i
jl ; i, l = k + 1, . . . , |I |; l �= i (28)

© 2022 The Authors.
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∑
j∈I−

k (i)

F i
ji = xi; i = k + 1, . . . , |I | (29)

F i
l j ≤ F j

l j; (l, j) ∈ Ak; i = k + 1, . . . , |I |; i �= l, j (30)

F i
l j ≥ 0; (l, j) ∈ Ak; i = k + 1, . . . , |I |; i �= l (31)

xi ∈ {0, 1}; i = k + 1, . . . , |I | (32)

wP ≥ 0; P ∈ Q : max
i∈P

{i} ≥ k. (33)

Objective function (23) is to maximize the sum of the node weights εt∗
i and the clique weights βt∗

P
over the selected nodes and to add the value �kt∗ to the optimal sum. Constraint (24) guarantees
that region S contains stand k. Constraints (25) ensure that if a node is selected, then any maxi-
mal clique with this node is also selected. Constraints (26) ensure that the area of region S does
not exceed Amax. Constraints (27)–(29) are the multicommodity flow constraints that guarantee
the connectivity of region S. For each selected node, these constraints establish the flow network
involving the nodes where the flow passes between node k and that node: (i) constraints (27) ensure
that node k is the source; (ii) constraints (29) state the selected node as the sink; (iii) constraints (28)
ensure the flow propagation. Constraints (30) eliminate alternative solutions. Constraints (31)–(33)
state the variable types.

For each subproblem kt, stands that are too “far” from stand k do not belong to any region
S ∈ Rkt. Thus, the following variables may not be included in the model: xi if the shortest path
between i and k is greater than Amax; F i

l j if the shortest path between l and i with arc (l, j) is
greater than Amax; wp when there is no xi for all i ∈ P. The elimination of these variables implies
the elimination of constraints (25) and (27)–(30).

Addressing the minimum required age for harvesting eliminates all subproblems kt such that
stand k is not old enough to be harvested in period t. Furthermore, for each noneliminated sub-
problem, the following variables are set to 0: F i

l j if stands i, l , or j are not old enough to be har-
vested in period t; xi if stand i is not old enough to be harvested in period t; wP if xi = 0 for all i in
clique P.

4.3. Column generation and branch-and-price

Column generation allows solving the linear relaxation of the master problem. Iteratively, a re-
stricted master problem, where a small portion of variables is present, is enlarged by variables
identified by the subproblems as having the most positive reduced costs. In this way, an optimal
solution of the linear relaxation of the master problem is obtained without explicitly taking into
account all variables.

© 2022 The Authors.
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Branch-and-price is required when the linear relaxation of the master problem has fractional
variables. Branching on the master variables is usually avoid because it leads to unbalanced trees.
The common branch strategy is based on the Dantzig–Wolfe core idea: to represent the decision
variables of the initial formulation as convex combinations of the extreme points of the feasible
region (in the limited case). Therefore,

xkt
i =

∑
S∈Rkt

x̄kt
iSykt

S ; k ∈ I; t ∈ T ; i = k, . . . , |I | (34)

wkt
P =

∑
S∈Rkt

w̄kt
PSykt

S ; k ∈ I; t ∈ T ; P ∈ Q : max
i∈P

{i} ≥ k. (35)

If all the y variables are integer in the linear relaxation, the x and w are also integers and the
problem is solved. Otherwise, through (34) and (35), fixing the y variables in their optimal values,
the optimal solution of the linear relaxation in the x and w is obtained. Two cases can occur, all
variable x and w have integer values, or, at least one of them has a fractional value. In the former
case, although some y variables are fractional, an optimal integer solution in the x and w was
found. In the latter case, we branch on the x variables but as represented in the master problem
(in the same manner as the initial model was transformed into the decomposed model). Given the
example of a fractional variable x̄k̄t

ī
, representing the set of extreme points present in the restricted

master problem by R̄k̄t, the branching constraints are

∑
S∈R̄k̄t

x̄k̄t
īSyk̄t

S = 0 (36)

and

∑
S∈R̄k̄t

x̄k̄t
īSyk̄t

S = 1. (37)

The presence of branching constraints of this type in the restricted master problem of any node of
the search tree is taken care by column generation by including terms relative to their dual variables
in the objective function of the subproblem(s).

It is well known that branch-and-price (and branch-and-bound) may not find an optimal solu-
tion in a reasonable amount of time. In order to reduce the time needed to obtain a (hopefully)
good solution, we embedded a heuristic in branch-and-price that consists in using the general MIP
solver not only to solve the linear relaxation of the restricted master problem but also the integer re-
stricted master problem in some nodes of the search tree. After testing different settings, we decided
to apply this heuristic after the linear relaxation is solved and in every node where new columns
are generated.

© 2022 The Authors.
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Table 5
Characterization of the five datasets

Dataset n Feature Min Mean Max SD

R1 302 area (ha) 0.03 0.25 0.42 0.04
age (year) 70 89.47 140 12.84
vol (m3/ha) 541 613.2 778 45.13

R2 69 area (ha) 0.07 0.24 0.38 0.04
age (year) 61 93.71 127 18.01
vol (m3/ha) 478 620.35 734 81.48

R3 290 area (ha) 0.01 0.24 0.45 0.06
age (year) 61 83.49 140 13.98
vol (m3/ha) 478 582.02 778 59.46

R4 134 area (ha) 0.02 0.23 0.42 0.06
age (year) 60 86.49 153 21.53
vol (m3/ha) 478 593.32 796 78.21

R5 133 area (ha) 0.02 0.24 0.48 0.07
age (year) 65 99.2 162 21.54
vol (m3/ha) 478 641.95 813 75.25

n, number of stands; area, stand area (ha); age, stand age (years); vol , stand volume (m3/ha). Min, Mean, and Max are the
minimum, average, and maximum values of each feature, respectively; SD is the standard deviation of the values of each feature.

5. Computational experience

5.1. Implementation

A straightforward implementation of the compact model was run with CPLEX 12.1. The branch-
and-price used for solving the decomposed was implemented in the SearchCol++ framework
(Alvelos et al., 2013). This C++ framework provides all the generic components of branch-and-
price, being the user responsible to implement the problem specific part (through C++ derived
classes)—essentially the subproblem solver. Within this framework, CPLEX 12.1 was used to solve
the restricted master problems and the subproblems. All tests were conducted in a laptop equipped
with a processor intel i7 at 2.4 GHz and with 12 GB of RAM.

5.2. Test instances

The test instances are relative to five datasets: R1, R2, R3, R4, and R5. The most relevant informa-
tion about each dataset is displayed in Table 5. There are four features: n is the number of stands,
area is the stand area (ha), age is the stand age (years), and vol is the stand volume (m3/ha). For
each of the last three features, there are four columns: Min, the minimum value; Mean, the average
value; Max, the maximum value; and SD, the standard deviation. The discount rate used for the
net present value calculation was 3%. The minimum age required for harvesting was set to 80 years
and the threshold distance for the very weak adjacency to 25 m.

© 2022 The Authors.
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Table 6
Connected-bucket model, size, and performance

Model size Model performance

Dataset #Q / w(GN ) Amax (ha) #constr. #var. � Time (seconds) Gap (%) IP (€)

R1 276/5 0.5 457,738 8013 0.15 53 0.01 558,092
0.20 27 0.01 559,259

1.0 567,379 54,366 0.15 7200 * *

0.20 7201 * *

R2 77/4 0.5 32,645 1859 0.15 1 0.01 112,756
0.20 1 0.00 112,756

1.0 55,161 11,540 0.15 7200 1.96 145,468
0.20 7200 2.19 145,575

R3 272/5 0.5 443,595 6404 0.15 8 0.01 404,943
0.20 9 0.00 406,464

1.0 545,618 48,225 0.15 7200 11.60 508,134
0.20 7200 10.65 513,125

R4 117/5 0.5 92,154 2386 0.15 0 0.01 189,929
0.20 0 0.00 190,064

1.0 117,215 12,642 0.15 7200 1.86 243,971
0.20 7200 2.11 244,459

R5 103/5 0.5 69,573 2012 0.15 1 0.01 252,165
0.20 2 0.01 254,937

1.0 85,126 8764 0.15 7206 0.16 293,681
0.20 7202 0.15 296,693

#Q and w(GN ), number of cliques and clique number of graph GNa, respectively; Amax, maximum clearcut area (ha); #constr.,
number of constraints; #var., number of variables; �, parameter for harvested volume range; Time, total time (seconds); Gap,
final relative gap (%); IP, optimal objective value or best feasible value (€).
aw(GN ) is the number of nodes of a largest clique of GN.
∗No feasible solution was found.

5.3. Results

In Table 6, size and performance of models (1)–(14) are presented. Table 7 displays branch-and-
price performance. In Table 8, we compare both approaches.

Dantzig–Wolfe decomposition/branch-and-price outperforms the connected-bucket model/
branch-and-bound when the maximum clearcut area is 1.0 ha. When this limit is 0.5 ha, although
the connected-bucket model runs much faster, Dantzig–Wolfe decomposition/branch-and-price
obtained better solutions in the majority of the cases.

Although Amax equal to 1.5 ha is beyond the threshold used in practice, we also tested our
approaches for that value. Branch-and-price was not able to find a feasible solution within two
hours and “out-of-memory” error occurred during the process of solving the connected-bucket
model.

For illustrative proposes, the solution obtained with branch-and-price for each dataset, where
Amax = 1.0 ha and � = 0.15, is shown in Fig. 1.

© 2022 The Authors.
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Table 7
Branch-and-price performance

Amax Total Inc. Feas. Gap < 5% Gap <1% Final
Dataset (ha) � time (seconds) time (seconds) value (€) time (seconds) time (seconds) gap (%)

R1 0.5 0.15 7203 6618 558,093 110 110 0.37
0.20 7202 1157 559,265 68 68 0.36

1.0 0.15 7275 7275 660,976 7275 - 2.41
0.20 7226 7226 668,160 7226 - 2.31

R2 0.5 0.15 464 5 112,756 5 117 0.01
0.20 507 4 112,756 4 120 0.01

1.0 0.15 7204 1089 145,676 89 - 1.38
0.20 7205 263 145,566 85 - 2.10

R3 0.5 0.15 7202 1320 404,966 34 34 0.16
0.20 7202 163 406,468 29 29 0.10

1.0 0.15 7243 7243 532,608 7243 - 4.01
0.20 7256 7256 536,405 7256 - 3.48

R4 0.5 0.15 19 6 189,929 6 6 0.01
0.20 24 7 190,064 7 7 0.01

1.0 0.15 7205 3779 244,748 73 665 0.62
0.20 7200 2812 245,089 71 959 0.73

R5 0.5 0.15 55 53 252,174 8 8 0.00
0.20 30 5 254,948 5 5 0.00

1.0 0.15 7202 1572 293,685 56 56 0.27
0.20 7202 3683 296,697 57 57 0.35

Amax, maximum clearcut area (ha); �, parameter for harvested volume range; Total time, total time (seconds); Inc. time,
time to find an incumbent solution (seconds); Feas. value, the objective value of the incumbent solution found (€); Gap < 5%
time, time to get a relative gap < 5% (seconds); Gap < 1%, time to get a relative gap < 1% (seconds); Final gap, final relative
gap (%).

Table 8
Comparing connected-bucket model/general MIP and Dantzig–Wolfe decomposition/branch-and-price

Amax Connected-bucket model/general MIP and Dantzig–Wolfe decomposition/branch-and-price

0.5 ha The connected-bucket model runs much faster (within the default CPLEX gap).
Branch-and-price gets solutions within 1% of the optimum in reasonable time.
The solution’s quality is similar for both approaches within the same optimality parameters.
In 6 of 10 instances, branch-and-price reached slightly better solutions.
In the remaining instances, the solutions’ value were the same.

1.0 ha Both approaches reached the time limit for all instances.
Branch-and-price obtained feasible solutions for all instances with gaps less than or equal to 4% and

for four instances with gaps less than 1%.
The connected-bucket model failed to find a feasible solution beyond the trivial solution (null

solution) for two instances.
Branch-and-price obtained better solutions than the connected-bucket model except for one instance.

© 2022 The Authors.
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Fig. 1. Solutions obtained with branch-and-price for R1–R5 (top to bottom), where Amax = 1.0 ha and � = 0.15.
Stands harvested are in gray.

6. Conclusion

This work studies a harvest scheduling optimization problem with constraints on the clearcut size
with additional constraints on the clearcut proximity. The objective function is defined as the net
present value generated by harvesting discounted by a penalty for each clearcut. This problem
arises to reduce the excessive clear-cutting and to improve the quality of the stand borders of the
exposed clearcuts.

We propose the connected-bucket model, the so-called bucket model with additional constraints
on the connectivity of the buckets and two types of adjacency between stands. This model is

© 2022 The Authors.
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solved by a commercial general MIP solver (based on branch-and-bound but with significant addi-
tional features, as cuts and primal heuristics). We also propose a Dantzig–Wolfe decomposition to
strengthen the model. This decomposed model is solved by branch-and-price. The latter approach
found better solutions for the majority of the instances than the connected-bucket model/branch-
and-bound.

This study indicates that the Dantzig–Wolfe decomposition and branch-and-price might offer
an interesting option for harvest scheduling optimization problems that prove to be difficult to
solve with general mixed integer programming solvers. These solvers, typically more efficient for
small instances, are more sensitive to the size of the problems, running out of memory quicker for
large-scale cases.
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