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Abstract

This work addresses a new approach to the Pollution-Routing Problem (PRP), a variant of the Vehicle Routing
Problem (VRP) under environmental concerns, which includes costs associated with fuel, drivers, and green-
house gas emissions. The many factors impacting the environment and, simultaneously, the real cost of the
routes are usually ignored in the approaches defined to solve routing problems since the total distance traveled
remains the standard objective. However, in pollution-routing problems, these elements play an essential role
and each one is significantly influenced by the vehicle load and/or speed over the pathways which are followed.
To contribute with methods that can provide solutions within an acceptable computational time, we explore
local search and meta-heuristic based approaches, with emphasis on a Smart and Parallel General Variable
Neighborhood Search algorithm for the PRP. Innovative neighborhood structures allowing continuous speed
values in the arcs were a implemented. Additionally, we incorporate parallel programming strategies. To eval-
uate the effectiveness of these strategies, we report on the computational experiments conducted on benchmark
instances, and we compare the results obtained with other studies from the literature.
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1. INTRODUCTION

In recent decades, global warming and climate change have led to a growing awareness of environmental
issues and the consequent need to modify existing procedures while becoming increasingly sustainable. In
industry, and more precisely in transportation through heavy-duty vehicles, greenhouse gas emissions are one
of the main impact factors with high amounts emitted [1, 2, 3].

However, in most cases, changes in supply chain processes to reduce emissions imply that strategies with
environmental concerns are chosen in detriment of financial and profit aspects, which presents itself as an
obstacle to their implementation in the companies. Therefore, the different world organisations define specific
guidelines and regulations for companies, where they must commit to meeting the objectives to avoid sanctions.
For instance, in 2011, the European Commission outlined cutting carbon emissions by 20% in the transport
sector by 2030 and up to 60% by 2050 [4]. Some alternatives can be sought to reduce emissions in transport,
such as having fleets with cleaner or more efficient fuels, trying to avoid congested and sloped roads, having
drivers trained with skills to control the vehicle in all its extensions (as speed, acceleration rate, brake usage,
shifting technique), seeking to ideally combine vehicle capacity with the loads to be transported, among others
[5, 6].

In this context, the problem addressed in this work tried to reduce environmental impact in transportation
and was initially introduced in 2011 in Bektaş and Laporte [7]. Until there, the common approaches to routing
problems tend to consider the single objective of minimizing costs or the distance traveled (usually a linear
function). However, in Bektaş and Laporte [7], the authors proposed Pollution-Routing Problem (PRP) as an
extension of the Vehicle Routing Problem (VRP), which encloses greenhouse emissions, fuel, and driver wages.
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The main problem features presented are as follows: only one depot is available (where routes should begin
and finish); time windows in nodes (customers); a homogeneous fleet; customers with different demands and
service times; and limited speeds on the arcs. Its objective is to minimize CO2 emissions, fuel consumption, and
driver costs. In PRP, each element of the objective function significantly relies on the vehicle load and speed in
each arc it travels, taking into account several factors studied in Barth et al. [8] and Barth and Boriboonsomsin
[9] that influence the energy needed to move the heavy-duty diesel truck on a path. Among these factors, which
remain constant in all arcs for practical reasons, other characteristics are considered, such as the road (road
angle, air density), the characteristics of the vehicle itself (engine module, vehicle accessories, the mass of
the empty vehicle, front surface area, coefficients of aerodynamic drag and rolling resistance), and the skills
of the driver (vehicle drive train efficiency parameter). The amount of fuel consumption and emitted gases is
proportionally obtained based on the approximation of the energy consumed in each arc traveled, with a specific
load and an average speed. All these components conduct the objective function to a non-linear behavior. There
are several counter-intuitive situations. Fewer load trips lead to fewer gas emissions, but less load in the vehicle
conduct to more distance to travel (due to the need for more routes to transport all the demand, therefore more
trips to perform) and, consequently, more emissions. A considerably lower speed, which at the outset could be
seen as a good decision to reduce emissions, may also imply more distance to be covered (in this case, due to
the high time to cover the routes and to arrive before the end of the customer time window, and then routes with
few customers would be required). On the other hand, high speed leads to more fuel consumption. However, it
also means less cost for drivers if time-dependent wages are considered.

According to the 2022 report from the European Environment Agency [10], there has been a reduction in
emissions in the transport sector due to recent restrictions on the manufacture of new vehicles so that they are
more efficient in fuel combustion (complying with Europe CO2 emission targets). This overall reduction is also
due to the increase in registrations of zero- and low-emission vehicles (battery electric vehicles). The principles
of the problem described in this work remain valid even when having an electric fleet. There is no concern with
fuel consumption, but minimizing the energy needed to move the vehicle is still relevant, thus increasing the
vehicle’s autonomy (in this case, thus reducing energy consumption).

The Pollution-Routing Problem is an NP-hard problem. Exact methods are used to tackle the PRP [11,
12]. However, achieving solutions in most instances is challenging, even with few customers. For large-
scale instances, exact methods are computationally intractable. Not surprisingly, some approaches rely on
heuristic-based methods. In Demir et al. [13], the authors proposed a heuristic divided into two phases solved
sequentially. First, through an Adaptive Large Neighborhood Search (ALNS) heuristic, with successive removal
and insertion operators in the solution, a solution for a VRP with Time Windows is obtained by determining
the order of visit of the nodes in each route and assuming a fixed initial speed in the arcs. Then, using the
solution of the first stage and through a Speed Optimization Algorithm (SOA), the optimal speed of each
arc traversed is determined for each route to minimize the objective of the PRP. This post-processed speed
optimization, to occur only after the decision of the routes to be taken, is pointed out in Kramer et al. [14]
as a problem that leads to lower-quality solutions. Consequently, to overcome this weakness, Kramer et al.
[14] presents a hybrid algorithm that integrates an Iterated Local Search with improvement procedures based
on integer programming over a Set Partitioning formulation and a Speed Optimization Algorithm applied only
after each local search iteration (ILS-SP-SOA). The obtained results demonstrated that good-quality solutions
are reached. The authors pointed out the incorporation of speed decisions in the local search process as a line
of future research. However, to the best of our knowledge, no approaches in the literature address the insertion
and speed simultaneously, which strongly motivates this work.

In this work, different Variable Neighborhood Search approaches are explored to solve the PRP. This paper
is organized as follows. The definition of the problem is presented in Section 2. Section 3 details the variable
neighborhood variants and their features. More precisely, we present the method to derive the initial solution
and the neighborhood structures. The results and discussion of the computational experiments conducted on
benchmark instances are exposed in Section 4. Finally, the main conclusions are drawn in Section 5.
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2. PROBLEM DEFINITION

The Pollution-Routing Problem aims to minimize a total cost encompassing fuel, greenhouse gas emissions,
and driver costs. This problem consists of determining the routes that allow delivering all the demand of
all customers in their time windows, following the speed limits and the maximum capacity of each vehicle,
considering that all vehicles used depart from and return to the depot and that each customer is visited exactly
once.

The PRP is described as follows. The complete and directed graph G =(N ,A) represents the set of nodes
N and the set of link arcs between them A. The set of nodes is composed of the warehouse (node 0) and the
n customers, so N={0,1,. . . ,n}. The set A={(i, j): i, j ∈ N and i , j} represents the arcs that link each of the
different nodes, with the distance between them defined by di j. There is a homogeneous fleet of m vehicles,
each with Q capacity.

Let N0 = N\{0} be the set of customers. Each customer i ∈ N0 has a demand qi, a service time required
for unloading ti, and can only be served within its time window [ai, bi]. In the case of an early arrival at the
customer, the driver, and necessarily the vehicle, will have to wait until the moment ai, while late arrivals (after
bi) are not allowed.

In the PRP, the average speed to traverse each arc (i, j) of the route, i, j ∈ N0, is a decision variable vi j that
must be within the interval [vl, vu]. The speed and the total weight of the vehicles strongly influence all the
cost components of the problem. Note that the vehicle’s weight is the sum of the empty vehicle weight and
load to be delivered in a given moment. The first model presented in the literature Bektaş and Laporte [7] uses
discretized speed values defined by R speed levels, vr (with r=1,. . . ,R). Thus, a binary decision variable zr

i j
represents traversing the arc (i, j) ∈ A at a default speed at the level r. Binary decision variables xi j indicates
whether the arc (i, j) ∈ A is traversed (in case xi j=1). There are three sets of continuous variables in the model:
fi j refer to the total load existing in the vehicle to traverse the arc (i, j) ∈ A; yi indicate the instant when node
i ∈ N0 starts to be served; finally, si for any node i ∈ N0 represents the last customer to be served before
returning to the depot. Note that the variable corresponds to the total route time (which assumes the instant at
which node i ∈ N0 is served by adding its service ti, plus the time required to travel the distance di0 at a given
speed).

Table 1 presents the parameters used in the objective function of the PRP model.

Table 1: Parameters used in the PRP model.
Notation Description Value
fc Fuel and CO2 emissions cost per liter (£) 1.4
k Engine friction factor (kJ/rev/liter) 0.2
N Engine speed (rev/second) 33
V Engine displacement (liters) 5
λ Expression related to vehicle conditions 0.00003084
fd Driver wage per (£/second) 0.0022
γ Expression related to drive efficiency 0.00277778
α Expression for vehicle-arc constant 0.0981
β Expression for vehicle-specific constant 1.64865372
Source: Adapted from Demir et al. [13]

The objective function of the PRP proposed in Demir et al. [13] is as follows:

min fc

 ∑
(i, j)∈A

kNVλdi j

R∑
r=1

zr
i j/v

r +
∑

(i, j)∈A

wγλαdi jxi j +
∑

(i, j)∈A

γλαdi j fi j +
∑

(i, j)∈A

βγλdi j

R∑
r=1
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i j(v

r)2

 + ∑
j∈N0

fd s j.

(1)
The first and fourth terms are costs related to the specificities of the engine module and the type of road

(varying according to the speed value). The second and third terms are related to the vehicle load on each

3



CIE50 Proceedings, October 30-November 2, 2023
American University of Sharjah, UAE

arc traveled, considering the vehicle curb weight and payload. The latter term refers to the cost involved with
drivers’ wages.

3. VARIABLE NEIGHBORHOOD SEARCH APPROACHES

To solve the PRP efficiently, we develop a set of optimization algorithms based on different variants of
the Variable Neighborhood Search (VNS) algorithm with innovative neighborhood structures that rely on the
particularities of the problem, and we perform parallel and sequential strategies seeking improved solutions in
less time. In the sequel, we detail the constructive method of the initial solution (with the particularities and
conditions of insertion of a node in an existing route), as well as the neighborhood structures and the different
VNS variants.

3.1. Computing an Initial Solution
The initial solution was obtained by the nearest neighbor (customer) algorithm. The constructive method

was based on successive insertions of nodes at the end of the routes, in which the average speed of vehicles on
the arcs (before and after the inserted node) is equal to v∗FD. The speed value v∗FD is the speed that minimizes
fuel and driver wages costs between any arc (i, j) ∈ A (Equation 2, Kramer et al. [14]).

v∗FD =


fc
fd
+ λkNV

2λβγ


1/3

(2)

Let node j ∈ N0 be the node to insert at a given position within a route. Let i ∈ N0 be the new predecessor
of j and k ∈ N0 be the following node. Thus, two new arcs will be added: (i, j) and ( j, k), and will be traversed
at a speed vi j and v jk, respectively. Additionally, the following conditions are assumed:

• the sum of total load on the vehicle (before the insertion position) with the demand q j does not exceed
the capacity Q of the vehicle;

• when inserting new customers in the routes, the default speeds through the added arcs are equal to v∗FD
(vi j=v jk=v∗FD). In an insertion, all customers visited before j keep the same instant they are served. Since
the insertion within a route impacts the service time of all subsequent nodes and in the inserted one.
Therefore, the new arrival times of customer j and all following customers are recursively verified to
ensure they meet their time windows. For instance, let y j be the minimum time to serve customer j ∈ N0
(y j = yi + ti + di j/v∗FD):

– if the client j is reached within its time window, a j ≤ y j ≤ b j, then it is possible to insert node j in
the route;

– if the vehicle arrives late at the customer j (y j > b j), traveling the route at a speed vi j will lead to
an invalid solution. To tackle this issue, the speed must necessarily be increased. Thus, the speed
limit is set at v∗i j = di j / (b j – yi - ti) so that the arrival time at node j is exactly b j;

– if the vehicle arrives early at the customer j, before its time window (y j < a j), the driver will have
to wait until a j. In this circumstance, although it does not lead to an infeasible solution, the speed
could be reduced without compromising the total travel time (the driver will always have to wait
until a j). Therefore, the speed in the arc (i, j) is reduced to the maximum value of the following
two expressions:

* v∗i j = di j / (a j – yi - ti) to arrive at the customer precisely at a j;

* v∗F which minimizes only fuel costs between any arc (i, j) ∈ A in this problem (Equation 3,
Demir et al. [13]), as follows:
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v∗F =
(
λkNV
2λβγ

)1/3

(3)

• in all situations, speed changes in the arcs must comply with the minimum and maximum speed limits
defined by the problem parameters

Solutions that violate time window constraints when inserting a customer could be immediately discarded.
However, promising solutions may be lost if the speed over the arcs is not adjusted when inserting a given
customer. This approach is particularly innovative: to the best of our knowledge, this is the first work that
combines the insertion of a new customer and the speeds on the new arcs. In this way, we aim to incorporate
the ability to find other speeds in the arcs as the routes are being formed and not leave this analysis to a post-
processing procedure as in Demir et al. [13], which may be important to find good-quality solutions.

3.2. Neighborhood Structures

In all proposed variants, we considered nine different neighborhood structures, which are presented in the
sequel and they can be divided into two sets. The set of five structures that exchange the order of visiting
customers is as follows:

N1 – Insert one customer in another route;
N2 – Exchange between two customers within the same route;
N3 – Exchange between two customers from different routes;
N4 – Reverse route;
N5 – Change one customer in the same route.

Furthermore, another set with four structures that change the speeds on the arcs, where the χ value corre-
sponds to a parameter:

N6 – Speed down (χ%) all arcs that belong to the one route;
N7 – Speed up (χ%) all arcs that belong to the one route;
N8 – Speed down (χ%) one arc of one route;
N9 – Speed up (χ%) one arc of one route.

All neighborhood structures were used in both phases (shaking and local search) of the VNS algorithms,
and only feasible solutions are explored. Typical structures for VRP problems are combined with innovative
structures to help with arc speed decisions.

The insertion/removal conditions presented in Section 3.1 were widely applied, mainly in the first set of
neighborhood structures that requires customer exchanges.

3.3. Variable Neighborhood Search Algorithms

The addressed VNS algorithms start with an initial feasible solution, built by the greedy heuristic described
in Section 3.1. The solution goes through a perturbation phase and, from this, progresses to better solutions
through the local search until some stopping condition is reached [15].

The proposed methods are embedded in each other in the sequence that is presented here.

3.3.1. General Variable Neighborhood Search
The General Variable Neighborhood Search (GVNS) is a variant of basic VNS, with a standard shaking

phase and its distinguished local search performed through the Variable Neighborhood Descent (VND) method
[15]. All nine presented neighborhood structures were considered in the VND phase in their lexicographical
order (Ni∈{1,2,3,4,5,6,7,8,9}).
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3.3.2. Smart General Variable Neighborhood Search
The Smart General Variable Neighborhood Search (Smart GVNS) is a more recent method, presented for

the first time in Rego and Souza [16].
It specifies that if a better solution is not found in a certain number of iterations, the perturbations in the

shaking phase are intensified by applying consecutive perturbations within the neighborhood structure already
defined for the shaking phase. If there is any improvement, this intensification stops allowing again to explore
solutions less far from the incumbent one.

In Bezerra et al. [17], the authors compared the GVNS approach and the version with “smart” procedures,
verifying better solutions in the latter approach, despite the more computational time needed to obtain the
results. This adaptability of the algorithm to reach solutions is essential to avoid traps and, at the same time,
not lead to significant disturbances that arise from very distant solutions (taking more time to converge to the
new local optimum) [18].

3.3.3. Smart and Parallel General Variable Neighborhood Search
The application of parallelization strategies is a promising line of research for large-size problems. Compu-

tational capabilities are increasing and reaching better results in the same computational time spent in a sequen-
tial approach or, in other words, to obtain the same results in a shorter computational time [19]. Parallelization
strategies were associated with VNS for the first time in Garcı́a-López et al. [20], presenting approaches that
sought to achieve more efficiency by increasing the exploration of the solution space compared to a sequential
approach.

The implementation of the Smart and Parallel General Variable Neighborhood Search approach (Smart
and Parallel GVNS) followed the principles of the smart version referred to in the previous subsection with
the parallelization strategy Replicated Shaking VNS: starting from the incumbent solution, shaking and local
search (VND) are executed in parallel.

For the sake of clarity, the Smart and Parallel GVNS algorithm to solve the PRP is summarized in Figure 1.
Starting from an initial solution, until the stopping criterion is not reached and for each neighborhood structure
(k), nmax blocks are executed in parallel. Each block comprises the perturbation phase (with an intensity of
p consecutive perturbations) and VND phase. At the end of the parallel blocks, if the best solution found is
worse than the incumbent, the value of p is increased. It is assumed that it is enough not to improve in 1
iteration to intensify the shaking phase. Otherwise, a new iteration is initialized with a new incumbent solution,
neighborhood structure k=1, and p returning to a value of 1, allowing again to explore solutions less distant from
the incumbent solution. The neighborhood structure to be explored is modified only when pmax is exceeded
(value of k is incremented).

The Smart GVNS approach can be derived by setting the maximum number of blocks as nmax=1 (i.e., no
processes are running simultaneously). The GVNS can also be derived, assuming nmax=1 and pmax=0.

4. COMPUTATIONAL EXPERIMENTS

All the proposed approaches were evaluated through extensive computational experiments on benchmark
instances proposed in the literature (real instances from the United Kingdom (UK) case study). In Demir et al.
[13], different sets of instances based on real geographic distances between cities from the UK were compiled
into a library of PRP (PRPLIB). Each instance is represented by Kn o, where o is the ordinal number of the
instance for n customers.

All the algorithms were coded in Java version 8, and all experiments were conducted on a PC with an Intel
8th Gen Core i7-8565 processor, 16 GB of RAM.

As referred to above, nine neighborhood structures were used (kmax=9). The percentage variation of speeds
in the neighborhood structures Ni∈{6,7,8,9} were set at χ=0.10. The maximum number of parallel blocks was
nmax=10, and the maximum number of consecutive movements in the same neighborhood structure was pmax=5.
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Figure 1: Flowchart of Smart and Parallel GVNS algorithm

The stopping criterion for all approaches was set at tmax=5 seconds, but without forcing its end (i.e., if better
solutions are obtained in the internal cycles of the algorithm, its execution continues). Therefore, solutions can
be obtained well after 5 seconds.

Given the stochastic component of the proposed algorithms, ten runs were conducted for each instance
and approach. We compare the best results obtained by GVNS, Smart GVNS (S GVNS), and Smart and
Parallel GVNS (SP GVNS) approaches between them and with the results obtained in Demir et al. [13] (ALNS)
and Kramer et al. [14] (ILS-SP-SOA) for instances with 10, 50, and 100 customers. We compare our best
global results with those existing in the literature (comparing the gap with other approaches). The results are
summarized in Tables 2-4, and the meaning of each column is the following:

• time: average time to obtain the best solution;
• cost: value of the minimum cost solution;
• gapALNS : average gap (in %) among our lower cost solution with the one obtained in Demir et al. [13],

as follows: ((our best cost - ALNS cost) / ALNS cost);
• gapILS−S P−S OA: average gap (in %) among our lower cost solution with the one obtained in Kramer et al.

[14], as follows: ((our best cost - ILS-SP-SOA cost) / ILS-SP-SOA cost).

The best solution from the three VNS approaches appears in bold. As can be seen, the SP GVNS approach
outperforms the others for any of the sets of instances. Between GVNS and S GVNS, the latter presents better
results, except for the small-size instances in which GVNS reaches almost the same results in less computational
time.

In general, and comparing the best solutions with those in the literature, the VNS approaches tend to achieve
better solutions than in Demir et al. [13] for all sets of instances. The gapALNS values indicate that our best
solutions have, on average, less -0.41%, -0.05%, and -0.57% of the costs than those obtained through ALNS,
for the set of instances with 10, 50, and 100 customers, respectively. Furthermore, our solutions were obtained
in less or a similar computational time.

Compared to the ILS-SP-SOA approach Kramer et al. [14], gapILS−S P−S OA suggests that our approaches
obtained a lower cost of -0.39% (on average) in the smallest-size instances (10 customers). For 50- and 100-
customer instances, the cost increased 0.46% and 1.26%, respectively. The proposed VNS approaches tend
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Table 2: Computational results for PRP instances with 10 customers.
Instance GVNS S GVNS SP GVNS ALNS ILS-SP-SOA OUR BEST

time cost time cost time cost time cost time cost gapALNS gapILS−S P−S OA

UK10 01 0.08 169.96 0.02 169.96 0.02 169.96 2.1 170.64 0.04 170.64 -0.40% -0.40%
UK10 02 0.10 204.12 0.03 204.12 0.17 204.12 2.3 204.88 0.05 204.88 -0.37% -0.37%
UK10 03 0.06 199.54 0.09 199.54 0.02 199.54 2 200.42 0.03 200.4 -0.44% -0.43%
UK10 04 0.06 189.14 0.02 189.14 0.05 189.14 2.2 189.99 0.04 189.88 -0.45% -0.39%
UK10 05 0.10 174.91 0.09 174.91 0.09 174.91 2.3 175.59 0.04 175.59 -0.39% -0.39%
UK10 06 0.05 220.91 0.07 220.91 0.30 213.77 2.2 214.48 0.05 214.48 -0.33% -0.33%
UK10 07 0.01 189.44 0.01 189.44 0.01 189.44 2.9 190.14 0.04 190.14 -0.37% -0.37%
UK10 08 0.05 221.33 0.04 221.33 0.03 221.33 2.1 222.17 0.03 222.17 -0.38% -0.38%
UK10 09 0.02 173.89 0.04 173.89 0.01 173.89 2.2 174.54 0.04 174.54 -0.37% -0.37%
UK10 10 0.12 189.12 0.12 189.12 0.17 189.12 2.6 190.04 0.04 189.82 -0.49% -0.37%
UK10 11 0.06 261.14 0.06 261.14 0.06 261.14 2.2 262.08 0.03 262.08 -0.36% -0.36%
UK10 12 0.02 182.47 0.01 182.47 0.02 182.47 2.2 183.19 0.04 183.19 -0.39% -0.39%
UK10 13 0.01 195.26 0.03 195.26 0.00 195.26 2.2 195.97 0.04 195.97 -0.36% -0.36%
UK10 14 0.05 162.50 0.30 162.50 0.09 162.50 2.4 163.28 0.04 163.17 -0.48% -0.41%
UK10 15 0.03 126.65 0.04 126.65 1.06 126.55 2.4 127.24 0.05 127.1 -0.54% -0.43%
UK10 16 0.03 185.86 0.02 185.86 0.03 185.86 1.9 186.73 0.04 186.63 -0.47% -0.41%
UK10 17 0.06 158.39 0.05 158.39 0.03 158.39 2.3 159.03 0.04 159.03 -0.40% -0.40%
UK10 18 0.04 161.46 0.02 161.46 0.21 161.46 2.2 162.09 0.04 162.09 -0.39% -0.39%
UK10 19 0.04 168.82 0.08 168.79 0.13 168.79 4.1 169.59 0.04 169.46 -0.47% -0.40%
UK10 20 0.03 168.12 0.05 168.12 0.01 168.12 2 168.8 0.03 168.8 -0.40% -0.40%

avg. 0.05 185.15 0.06 185.15 0.13 184.79 2.34 185.5445 0.04 185.503 -0.41% -0.39%

Table 3: Computational results for PRP instances with 50 customers.
Instance GVNS S GVNS SP GVNS ALNS ILS-SP-SOA OUR BEST

time cost time cost time cost time cost time cost gapALNS gapILS−S P−S OA

UK50 01 4.87 638.56 4.26 594.29 11.03 590.64 29.7 593.77 2.58 593.14 -0.53% -0.42%
UK50 02 4.12 615.14 3.94 609.62 8.68 599.49 60.3 599.43 2.61 599.66 0.01% -0.03%
UK50 03 2.81 629.32 4.09 640.11 12.04 619.74 53.4 626.21 2.77 621.66 -1.03% -0.31%
UK50 04 1.45 768.12 3.64 765.87 4.80 735.18 35.8 740.92 2.97 738.18 -0.77% -0.41%
UK50 05 3.94 692.21 4.49 656.21 14.06 643.83 35.3 636 2.41 632.77 1.23% 1.75%
UK50 06 4.68 625.71 5.31 584.84 12.27 581.86 54.6 584.61 2.92 584.47 -0.47% -0.45%
UK50 07 4.97 554.93 4.17 544.22 16.14 539.28 25.7 541.07 3.43 536.98 -0.33% 0.43%
UK50 08 2.19 635.16 4.12 567.81 17.45 561.27 39.5 560.27 2.79 558.66 0.18% 0.47%
UK50 09 4.26 708.24 4.43 686.11 8.99 681.57 21.4 687.79 2.8 683.38 -0.90% -0.26%
UK50 10 4.99 726.64 4.69 706.70 13.81 681.72 25.6 670.92 5.03 664.58 1.61% 2.58%
UK50 11 4.39 647.40 2.94 642.47 4.98 620.68 25.1 618.94 3.21 618.29 0.28% 0.39%
UK50 12 4.17 572.88 3.79 571.64 16.02 569.72 40.7 571.42 2.37 570.72 -0.30% -0.17%
UK50 13 4.84 643.05 3.92 587.11 10.63 584.08 52.1 589.11 2.32 586.68 -0.85% -0.44%
UK50 14 5.02 711.82 4.23 683.50 6.79 672.38 35 660.17 3.62 655.9 1.85% 2.51%
UK50 15 4.70 614.56 4.40 598.76 8.43 601.94 26.2 584.13 2.74 584.24 2.50% 2.49%
UK50 16 5.02 600.46 4.24 585.50 9.90 577.38 51 585.16 2.9 574.63 -1.33% 0.48%
UK50 17 4.95 480.42 4.69 467.79 15.86 455.71 20 456.56 2.45 456.61 -0.19% -0.20%
UK50 18 4.30 714.42 4.07 697.47 5.88 683.79 26.4 681.72 3.4 679.95 0.30% 0.56%
UK50 19 4.00 624.43 3.78 598.84 6.56 591.01 21.2 597.95 3.45 588.17 -1.16% 0.48%
UK50 20 5.14 681.26 4.53 683.62 9.21 670.61 28.9 678.56 2.8 672.21 -1.17% -0.24%

avg. 4.24 644.24 4.19 623.62 10.67 613.09 35.395 613.2355 2.98 610.044 -0.05% 0.46%

to spend more computational time than the ILS-SP-SOA approach. However, it is important to emphasize
that competitive and good-quality solutions are obtained in less time than the ILS-SP-SOA approach for the
smallest-size instances. The higher computational time shown in Table 2 is due to the fact that any subsequent
improvement dictates a new VNS iteration and thus an increasing the average computational time to obtain
final solutions.

5. CONCLUSIONS

In this paper, we propose a set of new optimization approaches to the Pollution-Routing Problem. More
precisely, we developed algorithms based on different variants of the Variable Neighborhood Search algorithm
(VNS). Furthermore, parallel and sequential strategies were applied and tested in benchmark instances. Our
approaches were compared between them and with state-of-the-art solutions.

Among the proposed approaches (GVNS, Smart GVNS and Smart and Parallel GVNS), Smart and Parallel
variant presents better results, but it can take more time to reach the final solution. Due to innovative neigh-
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Table 4: Computational results for PRP instances with 100 customers.
Instance GVNS S GVNS SP GVNS ALNS ILS-SP-SOA OUR BEST

time cost time cost time cost time cost time cost gapALNS gapILS−S P−S OA

UK100 01 4.69 1293.46 7.90 1270.59 122.35 1227.14 92.1 1240.79 34.65 1210.63 -1.10% 1.36%
UK100 02 4.92 1236.58 10.85 1190.19 137.58 1147.91 98.2 1168.17 33.2 1149.07 -1.73% -0.10%
UK100 03 4.82 1144.70 13.25 1117.85 212.56 1089.46 207.9 1092.73 33.28 1079.53 -0.30% 0.92%
UK100 04 4.68 1143.51 8.72 1116.08 141.79 1091.60 149.7 1106.48 35.79 1076.46 -1.34% 1.41%
UK100 05 4.92 1094.08 7.80 1092.57 175.65 1053.25 159 1043.41 33.63 1032.64 0.94% 2.00%
UK100 06 4.66 1303.94 8.22 1284.20 107.01 1202.50 133.8 1213.61 29.37 1193.86 -0.92% 0.72%
UK100 07 4.73 1172.24 7.19 1141.95 193.83 1056.40 102.6 1060.08 28.63 1046.92 -0.35% 0.91%
UK100 08 4.76 1182.45 6.54 1170.97 124.93 1109.24 209.5 1106.78 26.63 1091.27 0.22% 1.65%
UK100 09 4.79 1080.42 8.69 1066.36 191.45 1004.15 154 1015.46 30.47 989.66 -1.11% 1.46%
UK100 10 4.50 1161.49 8.63 1132.75 157.92 1078.33 199 1076.56 29.73 1061.42 0.16% 1.59%
UK100 11 4.63 1346.85 14.03 1238.64 209.09 1218.34 107.1 1210.25 36.26 1198.08 0.67% 1.69%
UK100 12 4.81 1095.24 10.12 1065.43 144.15 1039.20 206.4 1053.02 31.91 1028.95 -1.31% 1.00%
UK100 13 4.60 1227.33 7.24 1193.77 110.91 1147.75 87.9 1154.83 27.46 1132.72 -0.61% 1.33%
UK100 14 4.81 1343.49 7.57 1358.03 98.57 1276.56 91.8 1264.5 31.45 1242.68 0.95% 2.73%
UK100 15 4.59 1386.91 9.15 1344.03 142.16 1300.10 110.9 1315.5 36.24 1302.19 -1.17% -0.16%
UK100 16 4.57 1062.27 10.61 1047.29 173.87 994.94 254.7 1005.03 28.14 982.77 -1.00% 1.24%
UK100 17 5.05 1363.89 14.72 1316.34 184.70 1271.99 152.8 1284.81 38.88 1259.07 -1.00% 1.03%
UK100 18 4.48 1177.21 8.49 1135.40 151.53 1099.48 92.6 1106 33.15 1079.79 -0.59% 1.82%
UK100 19 4.37 1093.34 13.19 1068.20 221.21 1032.37 91 1044.71 30.67 1017.22 -1.18% 1.49%
UK100 20 4.79 1374.15 10.58 1314.92 151.16 1255.05 204.4 1263.06 30.05 1241.72 -0.63% 1.07%

avg. 4.71 1214.18 9.68 1183.28 157.62 1134.79 145.27 1141.289 31.98 1120.833 -0.57% 1.26%

borhood structures that rely on the particularities of this PRP, in which the vehicle load and speed significantly
influence the total cost in each arc, one was able to search for new solution spaces that led to better solutions
than those existing in the literature (particularly for the small-size instances). These better solutions were due to
the ability to adjust the speed values in the arcs in an integrated and direct way in the existing routes, allowing
new promising solutions.
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from MCTES – Ministério da Ciência, Tecnologia e Ensino Superior, and by European Social Fund through
NORTE2020 – Programa Operacional Regional Norte, within the research grant SFRH/BD/146217/2019. This
work has been supported by FCT – Fundação para a Ciência e a Tecnologia within the R&D Units Project
Scope: UIDB/00319/2020.

References

[1] Y. Suzuki, A dual-objective metaheuristic approach to solve practical pollution routing problem, Interna-
tional Journal of Production Economics 176 (2016) 143–153. doi:10.1016/J.IJPE.2016.03.008.

[2] E. Ericsson, H. Larsson, K. Brundell-Freij, Optimizing route choice for lowest fuel consumption - Po-
tential effects of a new driver support tool, Transportation Research Part C: Emerging Technologies 14
(2006) 369–383. doi:10.1016/j.trc.2006.10.001.

[3] A. Tiwari, P. C. Chang, A block recombination approach to solve green vehicle routing problem, Inter-
national Journal of Production Economics 164 (2015) 379–387. doi:10.1016/J.IJPE.2014.11.003.
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