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The clinical outcome of DENV and other Flaviviruses infections represents a

spectrum of severity that ranges from mild manifestations to severe disease,

which can ultimately lead to death. Nonetheless, most of these infections result

in an asymptomatic outcome that may play an important role in the persistent

circulation of these viruses. Also, although little is known about the mechanisms

that lead to these asymptomatic infections, they are likely the result of a complex

interplay between viral and host factors. Specific characteristics of the infecting

viral strain, such as its replicating efficiency, coupled with host factors, like gene

expression of key molecules involved in the immune response or in the

protection against disease, are among crucial factors to study. This review

revisits recent data on factors that may contribute to the asymptomatic

outcome of the world’s widespread DENV, highlighting the importance of

silent infections in the transmission of this pathogen and the immune status of

the host.
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1 Introduction

In the last few decades, flaviviral diseases have become progressively more common in

human populations, propelled by spread into previously absent regions, representing

nearly 30% of all emerging infectious diseases in humans in the early 2000s (Jones et al.,

2008). Examples include the introduction of dengue virus serotype 1 (DENV1) in Madeira

(Portugal) in 2012, resulting in an outbreak with 2,168 probable cases (European Centre

Disease Control, 2014), and Zika virus (ZIKV) in South America in 2015 (Campos et al.,

2015), causing an outbreak of 1.3 million suspected cases across at least 33 territories

(Hennessey et al., 2016; World Health Organization, 2016). The re-emergence of flaviviral

diseases in regions where they had previously been controlled or eradicated, namely DENV
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in Brazil in 1981 (Osanai et al., 1983) and yellow fever virus (YFV)

in Kenia in 1992 (Okello et al., 1993), also contributed to a global

increase of cases.

Clinical manifestations of flaviviral infections range from mild

to severe disease (Hollidge et al., 2010). Nevertheless, it is likely that

up to 95% of these infections in humans are asymptomatic

(Balmaseda et al., 2010; Johansson et al., 2014). Asymptomatic

infections are highly significant in epidemiology since their estimate

is crucial for determining the real burden of infection and the risk of

transmission in a population. Furthermore, little is known about the

underlying factors of asymptomatic outcome across flaviviral

infections. Here, we aim to review recent data on factors

contributing to the asymptomatic outcome of the widespread

flaviviral DENV infection, and the importance of silent infections

in transmission and the immune status of the host.
2 Classification and transmission
of Flaviviruses

Flavivirus is a genus of viruses of the Flaviviridae family, which

share common features such as the presence of an envelope, an

icosahedral nucleocapsid, and a +ssRNA genome. This genus

includes the DENV, YFV, ZIKV, West Nile Virus (WNV),

Japanese Encephalitis Virus (JEV), as well as several other viruses

causing encephalitis (Shi, 2012). Flaviviruses are transmitted from

infected hematophagous arthropods to different enzootic vertebrate

reservoir hosts, such as domestic animals and humans, henceforth

classified as arboviruses. When viremia is sufficiently high in these

amplifying hosts, permissive arthropods become infected during a

blood meal, transmitting it further on to a new host in a subsequent

meal, allowing the maintenance of the cycle. For WNV (Bowen and

Nemeth, 2007) and JEV (Weaver and Barrett, 2004), humans are

often dead-end hosts, given that their typical low viremia unlikely

allows reinfections by feeding arthropods and the chances of

reencountering a vector in areas of low population density are

scarce, therefore interrupting the viral lifecycle (Hollidge et al.,

2010). On the contrary, DENV, YFV, and ZIKV can establish active

transmission cycles in areas with high population density, using

humans as the primary amplifying host (Nimmannitya et al., 1969;

Padbidri and Gnaneswar, 1979; Weaver and Barrett, 2004; Barrett

and Higgs, 2007; Saiz et al., 2016), becoming highly relevant as

human pathogens (Figure 1).

Even though DENV is completely adapted to urban cycles, there

is ample evidence that DENV infects non-human primates (Gwee

et al., 2021), thought to act as amplification hosts for enzootic

transmission (Vasilakis et al., 2011; Valentine et al., 2019). Anti-

DENV antibodies have been largely detected in non-human

primates, including those living in urban and peri-urban areas,

namely zoos (Valentine et al., 2019; Gwee et al., 2021). However, the

range of human infections caused by sylvatic DENV strains are still

quite unknown (reviewed in Vasilakis et al., 2011). Nonetheless,

sylvatic cycles can potentially act as a reservoir for the virus,

contributing to DENV recurrence after an epidemic and following

the decline of human population herd immunity, or even to the
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development of new strains with increased (or decreased) virulence

for humans (Valentine et al., 2019).
3 The DENV journey in the
mammalian host

Following the bite of an infected arthropod, it is likely that the

inoculation of DENV into the dermis and epidermis of the

mammalian host results in infection (Guzman et al., 2016) since,

besides skin dendritic cells (DCs), other phagocytic cells such as

monocytes and macrophages, as well as keratinocytes, are all viable

targets for the virus (Wu et al., 2000; Marovitch et al., 2001;

Surasombatpattana et al., 2011). Infected cells can then migrate

from the initial site of infection to lymph nodes, where the adaptive

immune response is initiated. The resulting activation of effector T

cells (Silberberg-Sinakin et al., 1976; Macatonia et al., 1987)

prompts the recruitment of other monocytes and macrophages,

that become further targets for the virus (Guzman et al., 2016) (see

Box 1 for details on immune response against DENV). The

dissemination of the infection throughout the lymphatic system is

then facilitated by the subsequent infection of other cells of the

mononuclear lineage, including monocytes, myeloid DCs, and liver

and splenic macrophages (Marovitch et al., 2001).

Once inside the mammalian host, all flaviviruses follow similar

steps in their replication cycle [reviewed in Fernandez-Garcia et al.

(2009)]. The DENV replication cycle initiates with the binding of

the envelope (E) proteins of mature viral particles to the host target

cell receptors, followed by internalization through endocytosis. In

vitro, DENV showed the capacity to use a wide variety of cellular

receptors to attach and enter target cells, although the relevance to

natural human infection is not fully established [reviewed in Cruz-

Oliveira et al. (2015)]. For example, in vitro DENV infection has

been positively correlated with an increased expression of dendritic-

cell-specific intercellular adhesion molecule 3’-grabbing non-

integrin (DC-SIGN, CD209) in human monocytes-derived DCs

and of its homologue L-SIGN (CD209L) in the endothelial cells of

the liver and lymph nodes (Navarro-Sanchez et al., 2003;

Tassaneetrithep et al., 2003). The lipopolysaccharide-binding

protein (LPS) receptor (CD14) and the macrophage mannose

receptor (CD206) were shown to be involved in DENV binding

to monocytes/macrophages (Chen et al., 1999; Miller et al., 2008).

Other candidate receptors such as the heparan sulphate receptor,

expressed in hepatocytes, and the heat-shock proteins HSP70 and

HSP90 have also been described as targeted by DENV in vitro

(Germi et al., 2002; Reyes-Del Valle et al., 2005). Also,

apolipoprotein-A-I (ApoA-I) scavenger receptor class b type I

(SR-BI) seems to facilitate DENV entry into cells (Li et al., 2013),

and endocytosis via LDL receptor has been reported in several

flaviviruses (Agnello et al., 1999). After the humoral response has

been established, the virus may also form a complex with non-

neutralizing antibodies, facilitating its entrance into cells expressing

receptors for the Fc region of the antibodies, like monocytes. This

phenomenon is called antibody-dependent enhancement (ADE)

and it is likely implicated in the pathogenesis, especially during
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secondary heterologous DENV infections [reviewed in

Halstead (2003)].

Once inside the host cell, viral genomic (+)ssRNA is translated

into a long polyprotein, which is cleaved into individual E,

membrane (M), and capsid (C) structural proteins, and several

non-structural (NS) proteins. Viral RNA, together with C proteins,

will assemble into new nucleocapsids. The precursor forms of the

membrane (prM) and E proteins are embedded into the

endoplasmic reticulum membrane and will surround the newly

formed nucleocapsids, constituting immature viral particles. The

maturation of DENV particles will occur along the secretory

pathway and, eventually, the infective mature DENV exits the

host cells via exocytosis [reviewed in Guzman et al. (2016)].
4 The outcomes of DENV infections

The clinical outcome of DENV infections, for which 4

circulating serotypes are known (DENV1-4), results from the

interplay between host and pathogen factors. As for other
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flaviviral infections, the clinical manifestations may range from a

mild influenza-like illness to severe disease, possibly resulting in

long-term physical impairment or even death (Hollidge et al., 2010).

According to WHO guidelines until 2009, symptomatic dengue

was classified as dengue fever (DF), dengue hemorrhagic fever

(DHF), and dengue shock syndrome (DSS), the latter being the

most severe form. Following 2009, WHO classification system

divides DENV infection in non-severe dengue (with or without

warning signs) and severe dengue, depending on the severity of the

clinical manifestations. The non-severe form is characterized by

high fever, lasting 2 to 5 days, likely accompanied by nausea,

vomiting, rash, aches and pains, and/or leukopenia. The following

warning signs may be present: abdominal pain, persistent vomiting,

fluid retention, mucosal hemorrhage, malaise and drowsiness,

hepatomegaly, high hematocrit, and thrombocytopenia. Beyond

these symptoms and warning signs, severe dengue patients exhibit

serious hemorrhage, organ impairment, and plasma leakage, which

leads to fluid accumulation in the lungs and abdomen, causing

respiratory distress and hypovolemic shock (World Health

Organization, 2009). Nevertheless, the most common outcome of
FIGURE 1

Schematic representation of DENV transmission. DENV infection in humans is initiated after the virus is delivered into the host’s skin, during a blood
meal of an infected female Aedes sp. mosquito. One mosquito can infect several humans, as it can bite several times before completing oogenesis.
Some of the infected humans will develop dengue symptoms after 4-10 days of virus incubation, while others will remain asymptomatic or have an
inapparent infection (World Health Organization, 2009). Both symptomatic and asymptomatic humans may have sufficiently high viremia to infect
mosquitoes during their feeding. After a period of 8-12 days, mosquitoes are able to infect humans (World Health Organization, 2009). Diagram was
made using BioRender.com.
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DENV infections, including in primary infections, is the

asymptomatic infection, in which the virus and/or seroconversion

can be detected in the complete absence of symptoms (Endy et al.,

2011; Montoya et al., 2013; Grange et al., 2014; Duong et al., 2015).

The DENV infection may also result in a subclinical/unapparent

infection, with insufficient symptoms to be detected by existing

surveillance systems and healthcare providers, although verifiable

by viral and/or seroconversion detection methods (reviewed in

Grange et al. (2014)). Using cartographic approaches, a total of

390 million worldwide DENV infections per year have been

estimated, including almost 300 million that are clinically silent

or mildly symptomatic (Bhatt et al., 2013).
5 The asymptomatic outcome

The reported proportion of asymptomatic DENV infections is

highly variable, with different studies pointing to values that range from

15% to 98% of the infections (Burke et al., 1988; Potasman et al., 1999;

Endy et al., 2002; Porter et al., 2005; Balmaseda et al., 2006; Mammen

et al., 2008; Balmaseda et al., 2010; Baaten et al., 2011; Salje et al., 2018;

Tsang et al., 2019; Velandia-Romero et al., 2020; De Santis et al., 2023)

(summarized in Table 1 ), and as recently pointed out in a meta-

analysis (Asish et al., 2023). These differences can be due to several viral

and host factors, and combinations of both. As discussed below in

more detail, different DENV serotypes can produce distinct

proportions of asymptomatic cases, while the host’s genetic

background may also affect the outcome of the infection, given its

influence on cells’ permissiveness and immune response to the

infection. Additionally, the immune status of the population, built

over previous infections and vaccination plans, may also account for

differences in asymptomatic proportions. To illustrate this, in regions

with endemic dengue, secondary infections might result in a higher

frequency of asymptomatic cases, since the protection window given by

the presence of neutralizing antibodies lasts for approximately 2 years

in heterologous infections (Montoya et al., 2013; Anderson et al., 2014),
Frontiers in Cellular and Infection Microbiology 04
while in homologous infections it can be lifelong (Sabin, 1952). In this

context, the time elapsed between major dengue outbreaks can also

influence the infection outcome.

Study design may also affect the estimated proportion of

asymptomatic DENV infections. In line with the above-

mentioned, when studying non-naïve populations, this proportion

is expected to be higher, given the difficulty to differentiate between

true asymptomatics in primary infections and the lack of symptoms

in individuals within the partial immunity window, following

previous DENV infection. In fact, while both situations are

characterized by inapparent infections, the underlying mechanisms

are different. An overestimation of asymptomatic frequencies may

also result from unidentified symptomatic mild cases occurring

without febrile illness, as most studies track symptomatic cases

through surveillance of body temperatures (Burke et al., 1988;

Endy et al., 2002; Balmaseda et al., 2006). Moreover, studies

focusing on determining asymptomatic frequencies at a specific

time point or short period are more likely to overestimate this

proportion by failing to distinguish pre-symptomatic cases and true

asymptomatic cases, contrarily to studies encompassing a longer

follow-up of their participants (Ly et al., 2019). To minimize this

effect, some studies only considered as asymptomatics those

individuals who did not experience a documented febrile episode

linked to DENV infection but had a 4-fold or greater increase in total

DENV-specific antibody titers (Kuan et al., 2009; Balmaseda et al.,

2010; Montoya et al., 2013). Additionally, some studies in

hyperendemic regions with co-circulation of different flaviviral

infections are also thought to have a higher proportion of

asymptomatic DENV infections, likely due to induced cross-

protective immunity (Ribeiro et al., 2018). Therefore, estimating

the proportion of asymptomatic infections in previously naïve

populations, and studying the mechanisms underlying the absence

of symptoms in primary infections are, hence, wanted to a better

understanding of DENV infection. These mechanisms may also shed

light on the asymptomatic outcome of other flaviviral infections,

given their several common features.
BOX 1 The host immune response

Both innate and adaptive host immune responses are known to participate in the control of viral infections. In innate response, pattern recognition receptors such as
membrane toll-like receptor 3 (TLR3) and TLR7, and cytoplasmic retinoic-acid inducible gene I (RIG-I)-like receptors (RLRs) are expressed by the phagocytic cells,
representing one of the first lines of antiviral defense, through sensing viral nucleic acids [reviewed in Guo et al. (2018))] These sensor molecules trigger the activation of
two important families of transcription factors - interferon regulatory factors (IRFs) and NF-kB - that prompt the production of type I interferons (IFN)a/b and
inflammatory cytokines. A cellular antiviral status is therefore established in the infected and adjacent cells, that activates and recruits immune cells such as Natural Killer
(NK), critical in the antiviral response (Shresta et al., 2004; Navarro-Sánchez et al., 2005; Bourne et al., 2007).

Regarding adaptative immunity, cellular immune response mediated by T-helper 1 (Th1) and cytotoxic T lymphocytes (CTLs) is the most effective antiviral
mechanism once the virus enters the host cell. Induced by IL-12 secreted by DCs, Th1 lymphocytes produce inflammatory cytokines, namely IL-2, IFNg, and TNFa, while
CTLs produce IFNg, contributing to the clearance of the infection. IL-12 also induces differentiation of CD8+ T cells into cytotoxic cells, triggering apoptosis of the infected
cells. Humoral immunity, through neutralizing antibodies, is also thought to protect against DENV infections, by limiting infection dissemination and promoting viral
clearance (Henchal et al., 1988; Clapham et al., 2015). Following a primary symptomatic DENV infection, DENV-specific IgM antibodies are detectable in serum 4 to 5
days after the onset of symptoms, remaining measurable for up to 3 months. Anti-DENV-IgG antibodies appear later, at about one week after the onset of symptoms,
peaking several weeks after the infection, and then declining to lower levels that, nevertheless, remain detectable for decades (reviewed inWahala and De Silva (2011); Salje
et al., 2018). These antibodies are mainly from the IgG1 subclass (Koraka et al., 2001; Watanaveeradej et al., 2003; Hofmeister et al., 2011), indicating a Th1-based immune
response. A large fraction of anti-DENV-IgG cross-react with all DENV serotypes and eventually with other flaviviruses. Effective protection is long-term against the
homologous serotype from the primary DENV infection (Sabin, 1952), but only transient, up to 2 years, against heterologous serotypes (Montoya et al., 2013; Anderson
et al., 2014). After that period, there is also a higher risk of developing severe dengue in heterologous infections, likely facilitated by the ADE mechanism [reviewed in
Rothman (2011)].
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5.1 The importance of asymptomatic
DENV infections

Asymptomatic infections are recognized as an important

component of the overall burden of flaviviral infections. However,

their realistic epidemiological weight is still largely unknown

(Chastel, 2011). Given their generally high frequency, ignoring

asymptomatic infections can result in an underestimation of the

rate of infection and transmission in a community, inadequate

evaluation of individual risk of severity in future infections, and

improper implementation of control measures. Asymptomatics are

less likely to disrupt their daily routines and, therefore, have a

greater potential to contribute to the epidemic spread of the virus,

and to its persistent circulation during interepidemic periods.

Humans with DENV asymptomatic infection were, for long,

considered dead-end hosts, as it was assumed that they did not

reach sufficiently high viremia to infect feeding mosquitoes.

However, viremia of DENV asymptomatic infections is not easily

established, since it is highly dependent on the day of the infection

while, in symptomatics, the day of onset of symptoms is used as a

reference. Nevertheless, Duong et al. (2015) were able to show that

the average DENV viremia in asymptomatics is similar to that

observed in symptomatics during the early and late viremic periods

(2–3 days before or 5–8 days after symptoms onset, respectively).
Frontiers in Cellular and Infection Microbiology 05
Moreover, these authors showed that pre-symptomatic or

asymptomatic DENV-infected individuals are, at any given level

of viremia, more infectious to mosquitoes than symptomatic

individuals (Duong et al., 2015). Also, it was suggested that the

strong humoral immune response and high cytokine levels

developed during symptomatic infections likely reduce human

infectiousness to mosquitoes during this period (Lambrechts

et al., 2012). In fact, Nguyet et al. (2013) have previously

associated the increasing number of days of illness and the rise of

IgM and IgG titers with a reduced risk of human-to-mosquito

DENV transmission. Moreover, a slower decay of viremia observed

in asymptomatic infection (Matangkasombut et al., 2020) may lead

to longstanding infectious reservoirs. The predictive models of Ten

Bosch et al. (2018) estimated that only 1% of DENV transmissions

are attributable to individuals presenting symptoms at the time of

transmission. Subclinical DENV infections have, therefore, a

significantly greater potential to contribute to viral transmission

than previously recognized, including to the persistent circulation

of DENV during interepidemic periods. For example, Jamjoom

et al. (2016) hinted at the possible influence of asymptomatic

infections on the establishment of dengue in Saudi Arabia where,

until recently, reported clinical cases of dengue were sparse, but a

high seroprevalence was detected. Moreover, an index-case study by

Vazquez-Prokopec et al. (2023) suggested that transmission rates of
TABLE 1 Percentages of DENV infections that are asymptomatic, accessed by several studies.

Population Study design Year Serotype % asymptomatic References Observations

Thailand Prospective cohort

1987 nd 87% Burke et al., 1988 Pediatric

1998-2000 nd 53% Endy et al., 2002 Pediatric

1998-2003 nd 65% Salje et al., 2018 Pediatric

2004-2005 nd 75% Mammen et al., 2008

Indonesia Prospective cohort 2000-2002 nd 75% Porter et al., 2005

Israel Travellers survey - nd 43% Potasman et al., 1999

Reunion Island Prospective cohort 2019-2020 DENV-1, -2, -3 15% De Santis et al., 2023

Nicaragua Prospective cohort
2001 DENV-2 93%

Balmaseda et al., 2006 Pediatric
2002 DENV-1 85%

Nicaragua Prospective cohort

2004-2005 nd 95%

Balmaseda et al., 2010 Pediatric
2005-2006 nd 83%

2006-2007 nd 94%

2007-2008 nd 75%

Nicaragua Estimated probability 2004-2010

DENV-1 90%

Tsang et al., 2019 Pediatric
DENV-2 87%

DENV-3 76%

DENV-4 98%

Colombia Prospective cohort 2013-2015 nd 31% Velandia-Romero et al., 2020

China Retrospective cohort 2013-2015 nd 97% Liu et al., 2018

Netherlands Travellers survey 2006-2007 nd 64% Baaten et al., 2011
nd, not determined.
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DENV were higher in a scenario where inapparent infections are

more frequent.

Asymptomatic infections can also play an important role in

spreading the infection to new regions, where the arthropod vector

is present in sufficiently high density to allow transmission. In the

last few years, climate changes and the rise in temperature

contributed to the increase of DENV infections. Climate changes

stands as the major factor that could lead to a pandemic status of

DENV, as it might allow for the vector to spread into areas outside

its current niche. Predictive modelling, using prospective climate

parameters, pinpoint an increased risk of DENV across the globe,

including in Europe (Semanza and Shlomit Paz, 2021; Wang et al.,

2023). Beyond the increase in the number of infected people and

geographic range, the expansion to new areas will lead to new

scenarios (genetics, lifestyles, environmental conditions) where

status of the population in terms of asymptomatic or severe

disease is basically unknown. Moreover, as asymptomatics are

difficult to identify and control in terms of public health,

transmission of DENV serotypes between borders is not only

probable to increase, but also to seriously increase the number of

heterologous infections.

When returning from dengue endemic regions, asymptomatic

travelers are less likely to be detected than symptomatic and

represent a possible entryway for the virus. For instance, the

phylogenetic study of the DENV virus by Franco et al. (2015)

indicated Venezuela as the most probable origin of the DENV1

strain responsible for the 2012 outbreak in Madeira, where the

vector Aedes aegypti was present at considerable density. This origin

was previously suggested by Wilder-Smith et al. (2014), considering

the likelihood of introduction from dengue-endemic countries

based on their dengue incidence and travel volume to Madeira.

The large emigrant community from Madeira living in these

countries, particularly Venezuela, frequently travels back to the

island, so introduction via an asymptomatic traveler is a very

likely scenario.

The repercussion of asymptomatic infections on viral

transmission is not limited to the likelihood of infecting

mosquitoes, since there are also well-documented episodes of

passive human-human transmission through blood donations and

transplants (Wilder-Smith and Schwartz, 2005; Chuang et al., 2008;

Tambyah et al., 2008; Stramer et al., 2012). These are probably

underestimated routes of transmission, where asymptomatic

infections have an increased responsibility since infected

individuals are less likely to donate blood while sick.

Furthermore, the asymptomatic or misdiagnosed clinical illness in

a patient following a transfusion or a transplant, the pre-existent

homotypic or recent heterotypic immunity in the recipient, or an

infection incorrectly attributed to mosquito transmission, are

factors contributing to the sub-evaluation of human-human

transmission (Petersen et al., 2013).

Lastly, we would like to highlight that asymptomatic infections

are also thought to play a protective role against a symptomatic

secondary infection. In a prospective pediatric cohort study,

Montoya et al. (2013) showed that the time interval between an

inapparent DENV infection and a subsequent inapparent infection

was significantly shorter (2.2 years) than that for a secondary
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symptomatic infection (2.7 years), suggesting effective immune

protection during a window period of almost 3 years, induced by

the primary inapparent infection. Moreover, the mean time interval

between two consecutive symptomatic infections was estimated at 3

years, thus suggesting that the window of cross-protection induced

by inapparent, or symptomatic infections is similar (Montoya et al.,

2013). Once the period of cross-protection is over, antibodies

acquired during an asymptomatic infection might also contribute

to a higher risk of severe forms of dengue during secondary

heterologous infection. To our knowledge, it is not currently

known whether a primary asymptomatic infection influences the

severity of a subsequent heterotypic infection. The risk of

developing severe dengue is linked to pre-existent anti-DENV

antibodies (Morens and Halstead, 1987), being highest within a

specific range of antibody titers (Katzelnick et al., 2017). As such, if

the window of protection induced by a first asymptomatic infection

is due to the presence of cross-reactive antibodies, then the

likelihood of developing a severe symptomatic infection would be

similar, regardless of whether the first infection was symptomatic or

asymptomatic. However, antibody decay following an

asymptomatic infection was shown to be faster than after a

symptomatic infection (Luo et al., 2018). Therefore, the risk time

window for severe dengue may be different following a primary

asymptomatic infection. Although asymptomatic infections are

largely unidentified, they are nevertheless coupled with an

established antibody response, and a greater number of people

beyond the identified symptomatics are at risk of developing severe

forms of dengue following the protection window.
5.2 Factors influencing
asymptomatic outcome

The asymptomatic DENV infections, as well as the severity of

clinical manifestations in symptomatics, have been associated with

viral factors, such as DENV serotype and load (Gubler et al., 1978;

Vaughn et al., 2000; Balmaseda et al., 2006), and host factors, such

as age, lipid profiles, genetic background (Lan and Hirayama, 2011;

Xavier-Carvalho et al., 2013; Yeo et al., 2014), immune factors,

including previous immunological experience (Gubler et al., 1978;

Green et al., 1999; Vaughn et al., 2000; Navarro-Sánchez et al., 2005;

Mathew and Rothman, 2008; Endy et al., 2011; Shresta, 2012;

Tisoncik et al., 2012; Salje et al., 2018), and antibody-dependent

enhancement (Morens and Halstead, 1987), as further detailed

below. Also, factors associated with more severe outcomes, such

as the co-circulation of other microorganisms or the existence of

chronic diseases (Bravo et al., 1987; Kouri et al., 1989; Teixeira et al.,

2015; Pang et al., 2017), might also be implicated in the outcome of

the infection.

5.2.1 Viral serotype and titer
Viral serotypes refer to closely related but genetically distinct

viruses that, given their different surface antigens, trigger different

responses in the human host. In the case of DENV, the four known

circulating serotypes share approximately 65% of their genomes

and, even within the same serotype, genetic variation may exist
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1284651
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Henriques et al. 10.3389/fcimb.2023.1284651
(Anoop et al., 2012). Despite these variations, the different serotypes

result in the same disease and range of symptoms.

An association between DENV2 serotype and a higher

proportion of severe dengue has been described (Balmaseda et al.,

2006; Fried et al., 2010; Vicente et al., 2016). The efficient replication

of this serotype, leading to high viral load is suggested as the main

cause for more frequent severe manifestations (Vaughn et al., 2000;

Thomas et al., 2008). In contrast, Yung et al. (2015) observed a

significantly higher risk of severe dengue and higher viral load in

DENV1 infections. On the other side of the spectrum lies the

DENV4 serotype, which is typically associated with lower viral

titters than other serotypes (Thomas et al., 2008) and milder forms

of dengue fever (Nisalak et al., 2003; Thomas et al., 2014; Rocha

et al., 2017).

Interestingly, Salje et al. (2018) observed a much higher

proportion of asymptomatics in DENV4 infections compared to

the other 3 circulating serotypes, a result equally supported by

Tsang et al. (2019). These results suggest that the distribution and

proportion of serotypes found in most symptomatic surveillance-

based studies may not be representative of circulating DENV

serotypes in a given region, since the infections with some DENV

serotypes could be more frequently silent than others. It also

suggests that the viral load, known to influence disease severity,

might be partially responsible for asymptomatic infections, when at

low levels. In fact, Duong et al. (2015) were able to estimate that

DENV viremia in asymptomatics (4.75 ± 0.39 log10 cDNA copies/

mL) is similar to that observed in the early and late viremic periods

of symptomatic viremia, but significantly lower than during the

viremic peak, between days 1 to 4 of illness (6.12 ± 0.17 log10 cDNA

copies/mL). Also, a slower decay of viremia was observed in

asymptomatic DENV infections when compared to symptomatic

dengue, probably reflecting a slower rate of clearance

(Matangkasombut et al., 2020).

Concurrent infection with multiple serotypes is also believed to

affect dengue severity (Bharaj et al., 2008; Vinodkumar et al., 2013;

Lardo et al., 2016; Soo et al., 2016), although controversy exists on

this subject (Gubler et al., 1985; Loroño-Pino et al., 1999). To our

knowledge, no studies thus far have reported the effect of co-

infections with multiple DENV serotypes in the scenario of an

asymptomatic outcome. Nevertheless, if co-infections influence the

viral load, we could expect the outcome to be also affected. Other

features usually not addressed are the size of the viral inoculum and

the salivary contents introduced during the mosquito feeding,

which may locally trigger different immune responses and lead to

different adaptive immune response and/or viremias (Fain and

Dobrovolny, 2020; Best et al., 2021; Ciupe et al., 2021).

In fact, the mosquito salivary gland contents introduced during

the feeding process, in addition to promoting vasodilation and

preventing clotting and platelet aggregation to facilitate blood

intake (Manning and Cantaert, 2019), are also known to promote

viral replication and to affect the host immune response (Schneider

and Higgs, 2008; Pingen et al., 2017; Vogt et al., 2018). Components

of the saliva may differ according to the mosquito species (Volf

et al., 2000; Volf and Rohousová, 2001), geographical locations

(Lanzaro et al., 1999; Volf et al., 2000; Ramalho-Ortigão et al.,

2015), and whether the mosquito had previously fed on blood
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(Thangamani and Wikel, 2009; Bonizzoni et al., 2012). In addition,

microbiome present in the mosquito saliva may be inoculated into

the mammalian host, likely triggering innate receptors and

influencing the immune response (Accoti et al., 2023). Therefore,

small variations in the inoculum, in terms of saliva components

and/or viral load, may contribute to differences in the outcome

of infection.

Additionally, several studies have demonstrated that human

exposition to mosquito bites leads to the development of antibodies

against their salivary proteins, which are short-lived and,

apparently, mosquito genus-specific (Orlandi-Pradines et al.,

2007; Fontaine et al., 2011; Londono-Renteria et al., 2013). In

endemic regions, the population is regularly bitten by mosquito

vectors, particularly non-infected ones. Therefore, we can speculate

that the immune response induced by pre-expositions to salivary

proteins of non-infected mosquitos may influence the outcome of a

subsequent DENV infection. Interestingly, Manning et al. (2022)

found an increased risk of asymptomatic outcome to correlate with

higher levels of anti-Ae. aegypti saliva antibodies, in a DENV-naive

Cambodian children population. To clarify the possible role of pre-

existing anti-mosquito saliva antibodies in the development of

asymptomatic DENV infections, it would be interesting to

compare their levels in symptomatic versus asymptomatic

infected individuals.

5.2.2 Age
Host age seems to be associated with the likelihood of

asymptomatic or symptomatic outcome following a DENV

infection, particularly in children. Thai et al. (2011) estimated, in a

Vietnamese pediatric cohort, that the risk of developing symptoms

increases with age, during both primary and secondary infections,

being lower for children under 10 years old. Similar results were

obtained by Tsang et al. (2019) in a prospective pediatric cohort in

Nicaragua, with children over 8 years old being more than twice as

likely to develop symptoms upon infection. Also, Montoya et al.

(2013) found that the mean age at which symptomatic dengue occurs

is higher than for asymptomatic DENV infection (8.4 vs. 7.2 years

old, respectively), in Nicaraguan children. Thai children aged

between 10 to 15 years old were also more prone to develop

symptoms during primary infections than those aged 4 to 9 years

old (Burke et al., 1988). In opposition, Endy et al. (2011) found no

relationship between age and the ratio of asymptomatic: symptomatic

infections in Thai children. This difference might be due to the

limited number of studied children in the upper and lower age range,

and inconsistencies in the study design.

Differences in the immune system between children and

adults have been extensively described and may contribute to the

higher prevalence of asymptomatics in younger children compared

to older ones and adults. Variations in cytokine production

(explained partially by epigenetic mechanisms; Bermick and

Schaller, 2022), maturity of the cells of the adaptive system, and

balance between effector and regulatory cells, have been identified

between children and adults (reviewed in Chappell et al., 2021 and

Semmes et al., 2021). The adjustments towards an adult’s immune

system are progressive and, for most cellular components, occur up

to around the age of 7 years (reviewed in Semmes et al., 2021).
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Interestingly, in specific anatomic regions, the innate immune

system of children seems to respond differently and, in some

ways, stronger than in adults (Loske et al., 2022; Yoshida et al.,

2022). This may help to limit viral replication early on, resulting in

mild or asymptomatic infections. For instance, a higher level of IFN

on the steady state and a faster increase following SARS-CoV-2

infection were observed in the airways of children, who typically

underwent asymptomatic or very mild infections (Loske et al., 2022;

Pierangeli et al., 2022; Yoshida et al., 2022). This may be particularly

relevant for high interferon-sensitive viruses that developed

strategies to evade type I IFN-mediated antiviral activity. As a

matter of fact, DENV was shown to be able to evade the immune

response by blocking type I IFN (reviewed in Castillo Ramirez and

Urcuqui-Inchima, 2015). If children’s skin-resident immune cells

also display higher basal expression of genes associated with IFN

signaling or other innate pathways, then we should expect an earlier

in situ control of viral replication. This would lead to a lower

dissemination of the virus and, consequently, to a lower

inflammatory response. In addition, the more suppressed

systemic adaptative response, typically observed in children, may

also contribute to a higher resistance to disease, as discussed above.

Trained immunity (Netea et al., 2020) can also have a contribution

to the higher prevalence of asymptomatic infections in younger

children, since repeated exposure to either viral infection or

vaccination during childhood may lead to transient epigenetic

changes in innate cells, leading to a faster IFN-response to

DENV infection.

5.2.3 Role of lipids
Lipid levels and their receptors may play a role in asymptomatic

outcome as DENV infection and disease severity are believed to be

directly linked to factors affecting lipid metabolism, serum

lipoproteins, and their immunomodulatory effects. However, their

role is not clear (Cui et al., 2013; Biswas et al., 2015; Durán et al.,

2015; Voge et al., 2016; Marin-Palma et al., 2019). For instance, the

presence of cholesterol and intact lipid rafts seem to be required for

the activation of Jun NH(2)-terminal kinase and the p38 mitogen-

activated protein kinases (MAPK) pathways during DENV

infection of human macrophages (Ceballos-Olvera et al., 2010).

Furthermore, DENV entry into mammalian cells is associated with

the expression of receptors associated with lipid rafts (Reyes-Del

Valle et al., 2005). In fact, DENV infection promotes significant

changes in the cellular membranes of the host cells, providing

structures for the replication complex (Junjhon et al., 2014) and,

possibly, counteracting the host cellular innate immune response

(Uchida et al., 2014). DENV is also known to promote the

activation of autophagy in infected cells (Lee et al., 2008), which

is critical for viral replication in several viral infections, since

autophagosomes have been proposed to be sites of active viral

RNA replication (Wileman, 2006; Deretic and Levine, 2009), and

also because autophagy regulates lipid metabolism in infected cells.

Heaton and Randall (2010) showed that DENV infection not only

leads to the processing of cellular lipid droplets and triglycerides,

but also that the depletion of lipid droplets correlates to an increase

of autophagosomes and stimulation of b-oxidation in infected cells,
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providing energy for DENV virus replication. While some authors

have shown this reduction of lipid droplets in response to DENV

infection, acting as an “energy sink” that is tapped during viral

replication (Heaton and Randall, 2010; Tongluan et al., 2017),

others have reported an increase in lipid droplets (Samsa et al.,

2009; Soto-Acosta et al., 2014), that act as binding sites for the

DENV C protein during DENV assembly (Carvalho et al., 2012;

Martins et al., 2012).

Evidence supporting the role of lipoproteins in the

immunopathogenesis of dengue has been put forth by several

studies that reported lower levels of high-density lipoprotein

(HDL), low-density lipoprotein (LDL), and total cholesterol levels

in more severe dengue cases (van Gorp et al., 2002; Suvarna and

Rane, 2009; Biswas et al., 2015; Marin-Palma et al., 2019). In

contrast, there is evidence of a direct association of serum

apolipoprotein A-I (ApoA-I), the major protein component in

HDL, with increased infectivity by Flaviviruses, as ApoA-I seems

to facilitate their cell entry via scavenger receptor class B-type (SR-

BI) (Li et al., 2013). For other members of the Flaviviridae family,

there is also evidence that low-density lipoprotein receptors (LDL-

R) may be the main entrance into cells (Agnello et al., 1999).

Moreover, it was hypothesized that DENV may form

lipoviroparticles, which would constitute a novel step in DENV

life cycle (Faustino et al., 2014). For last, it is worth mentioning that,

besides the well-known cytokine-induced changes in lipoprotein

profile during infection (Grunfeld and Feingold, 1996), HDL also

has immunomodulatory properties, through the regulation of

inflammasomes and SR-BI expression in macrophages (Song

et al., 2015; Thacker et al., 2016).

Evidence highlighting the interaction between lipid metabolism

and protection against clinical dengue was reported by Sierra et al.

(2017), whose genome-wide association study (GWAS) has

identified two new genes – OSBPL10 and RXRA - playing a role

in infection resistance (more details in section Host genetics).

Nevertheless, no comprehensive studies of lipid and metabolic

profiles directed at asymptomatic individuals exist that could

elucidate the role of lipids on the asymptomatic outcome.

Nutritional factors are known to have a significant impact on

lipid profiles, as well as on the cellular components necessary for

virus replication and the immunological health of the individual.

Besides, some lipids have been demonstrated to have virucidal

activity (Hilmarsson et al., 2007). Although studies on nutritional

factors involving asymptomatic models or individuals are not

available, nutritional status has been investigated as a way of

predicting the severity of dengue infections (Ahmed et al., 2014;

Te et al., 2022). However, the results of several of these studies have

generated debate and some have been controversial. For instance,

micronutrient supplementation appears to function as a supportive

therapy that may lessen the probability of progressing from DENV

infection to severe forms of the disease (Ahmed et al., 2014). Thus,

nutrients may again play a role in asymptomatic dengue infection.

Indeed, nutrient abnormalities have been described in

asymptomatic human immunodeficiency virus (HIV-1) infection

(Beach et al., 1992). Nonetheless, the scope of research in this area is

still limited and wider population studies are needed, as they may
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help to understand the asymptomatic dengue infection and be

potentially important in prevention and treatment.

Therefore, the full molecular mechanisms of DENV pathogenesis

are far from being understood and no comprehensive studies of lipid

and metabolic profiles directed at asymptomatic individuals, exist.

Notwithstanding, given the evidence that lipid receptors seem to be

the main entrance of flaviviruses and that low lipid blood levels

showed to be associated with disease severity (Biswas et al., 2015;

Leier et al., 2018; Alcalá et al., 2022; Alcalá and Ludert, 2023), we

might speculate that asymptomatic individuals have lower lipid

receptor expression levels and higher blood lipid concentrations

than symptomatic. Studies involving asymptomatic individuals and

models are needed to clarify the expected protective role of lipids

and receptors.

5.2.4 Host immune response
The study of the host immune factors underlying asymptomatic

and subclinical arboviral infections is highly challenging, since

many factors, such as differences in the host immune status and

in the viral load between symptomatics and asymptomatics, can

make inferences complex. In DENV infections, three main

approaches have been used for this purpose, namely the

comparison of gene expression profiles, cytokine serum levels,

and in vitro stimulation of PBMCs between symptomatics

and asymptomatics.

A few studies compared the gene expression profile of key

molecules involved in the immune response of asymptomatic or

symptomatic infections. Yeo et al. (2014) found a broad

downregulation of host defense genes in asymptomatic infections

when compared with symptomatic, and an up-regulation of a few

specific genes. However, the patients analysed in this study were

already in the convalescent phase, with undetectable viremia. The

results are, therefore, more likely to correspond to feedback

mechanisms aiming to restore homeostasis, with little direct

contribution to the knowledge about host immune factors

influencing the clinical outcome. On the other hand, Simon-

Lorière et al. (2017) compared the gene expression profiles and

serum levels of inflammatory cytokines in viremic asymptomatic

and symptomatic children, considering their viral load. Although

the asymptomatic group was quite small (n=9), no major

differences were found between the two studied groups for genes

involved in innate immune pathways such as antiviral immunity,

activation of pattern recognition receptors, or IL-8 signalling.

Accordingly, in Raghupathy et al. (1998), serum concentrations of

the inflammatory cytokines IL-6, IL-8, IL-15, CCL3, and CCL4 were

not different between viremic asymptomatic and clinical dengue

patients, with the main observed differences being associated with

dengue severity. In contrast, the pathways involving antigen

presentation and activation of T and B cells were differentially

expressed between the two groups studied by Simon-Lorière et al.

(2017). In particular, these authors observed an up-regulation of

genes involved in the antigen-presentation pathway, and in

dendritic cell maturation in viremic asymptomatic children.

Serum concentrations of IL-12 and IL-23, both indicative of

antigen-presenting cells activation, were also increased, while the

CD86 co-stimulatory molecule was significantly down-regulated in
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both CD14+ monocytes and Lin−CD11c+ dendritic cells. In

addition, several T cell co-stimulatory pathways such as ICOS-

ICOSL signaling in T helper cells, CD28/CTLA4 signaling in

cytotoxic T lymphocytes, and expression of CD69 (an early

activation marker of T cells), were up-regulated in asymptomatic

children. In this same study, the serum concentration of IL-2, a

cytokine associated with T cell activation and proliferation, was also

increased, and the IL-2 signaling pathway was up-regulated in this

group. Furthermore, immune response feedback mechanisms were

also increased in the asymptomatic group (Simon-Lorière et al.,

2017). In fact, higher activation of T cells has been previously

associated with asymptomatic DENV infection when comparing in

vitro stimulated PBMCs from healthy individuals, who

subsequently developed either asymptomatic or symptomatic

secondary DENV infections (Hatch et al., 2011; Friberg et al.,

2018). Using this approach, the authors found a generally higher

frequency of DENV-specific TNFa, IFNg, and IL-2-producing T

cells in the group that later developed secondary asymptomatic

infections (Hatch et al., 2011), and a significantly lower secretion of

IL-12, IL-2R, MIP-1a, RANTES, GM-CSF, and TNFa by PBMC

from subjects who developed symptomatic infection (Friberg et al.,

2018). In sum, asymptomatic DENV infections, at least secondary

ones, seem to be associated with increased T cell activation and

antiviral cytokine production coupled with proper immune

response regulation.

Interestingly, a few studies addressing the symptomatic

outcomes indicate that T cell activation may contribute to the

pathogenesis of DENV infection through the production of

inflammatory cytokines, leading to an exacerbated response

(Chaturvedi et al., 2000; Mathew and Rothman, 2008; Rothman,

2011). However, other authors suggested that T cells, including

CD8+ and CD4+ cytotoxic T cells, may play an important role in

protection against severe dengue, allowing an efficient elimination

of the virus without excessive immune activation and, consequently,

without causing severe disease (Weiskopf and Sette, 2014; Weiskopf

et al., 2015). It is possible that asymptomatic primary infections lie

at the extreme of this response, with a higher anti-viral T cell

activation coupled with proper control mechanisms, allowing viral

clearance without leading to clinical symptoms. A limitation of the

above-mentioned studies is that none was carried out in primarily

infected populations and thus, the pre-existence of memory T cells,

cross-immunity to different serotypes, and window of antibody

clinical protection may have influenced the results. More recently,

based on a study involving primary and secondary infections,

Rouers et al. (2021) suggested that the outcome of a dengue

symptomatic infection may result from an individual propensity,

genetically and/or environmentally determined, to produce

particular adaptative cell phenotypes. It is likely that the baseline

adaptative cellular profile of an individual may also contribute to

the asymptomatic outcome. This may be true not only for the

adaptative immune cells phenotypes but also for the innate immune

cells, as a consequence of the trained immunity.

Mouse models have been important for understanding the

mechanisms of infection in many infectious diseases. Although it is

difficult to establish a single model capable of reproducing every

aspect of DENV natural infection in humans, wild-type, genetically
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engineered, and humanized mouse models have been shown to

reproduce at least one or more features of the infection (reviewed

in Chen and Diamond, 2020 and Coronel-Ruiz et al., 2020). Many of

the existing models, such as AG129 (IFN a/b/g R-/-) and A129 (IFN

a/b R-/-) mice, were designed to overcome the type I IFNR signaling,

which is known to be central for the natural resistance of mice to

DENV infection (Yauch and Shresta, 2008). However, primary

DENV infections in these models usually result in severe disease or

even death (Shresta et al., 2005; Tang et al., 2011; Sarathy et al., 2015;

Milligan et al., 2017). As for knockout mouse models lacking other

specific molecules in the IFN cascades, despite being viremic, these do

not show evident signs of disease and, thus, may allow to dissect the

protective mechanisms against disease. For instance, using STAT1-/-

mice, Shresta et al. (2005) demonstrated that clearing of the initial

viral load happens in a STAT1-dependent way. Still, the resolution of

infection and protection against disease are based on STAT1-

independent responses, and thus independent of the early control

of viral replication. Other deficient mice such as Cardif-/- (Perry et al.,

2009) and STAT2-/- (Perry et al., 2011), as well as wild-type mice

transiently treated with MAR1-5A, an IFNAR1-blocking and non-

cell-depleting antibody (Wilken et al., 2023), were shown to develop

non-lethal viremia, together with no apparent signs of illness.

Another interesting approach involved the conditional knockout of

IFNAR expression in specific cell subsets of the mouse model. For

instance, mice lacking IFNAR expression on either CD11c+ dendritic

cells or LysM+ macrophages were susceptible to infection but also

sufficiently immunocompetent to allow self-resolving viremia

associated with a strong and fast CD8+ T cells response (Züst et al.,

2014). Nevertheless, as far as we know, none of the above models

have thus far objectively addressed the study of asymptomatic

infections and therefore, deserve to be revisited or further

manipulated in this context. Furthermore, in some studies, the

interpretation of results regarding the asymptomatic outcome is

made more difficult by the lack of a detailed description of disease

signs or their absence, accompanied by the interchangeable use of the

terms “protection against disease”, “protection against infection”, and

the paucity of information regarding viremia in animals

without symptoms.

Among many features of the disease pathogenesis, the above

models also contributed to understanding the importance of the

IFN signaling in resistance to infection. Therefore, it is possible that

homologous genes in these pathways contribute to disease

resistance in human populations, by limiting viremia at the early

stage of infection. Other models, including humanized mice, may

also be explored since they are likely better at mimicking human

disease (Yauch and Shresta, 2008; Mota and Rico-Hesse, 2009), and

thus may contribute to identifying and further elucidating the

mechanisms of the adaptive response (Jaiswal et al., 2009; Jaiswal

et al., 2012) possibly involved in the asymptomatic outcome.

It is noteworthy that using mouse models to study differences in

the immune response between symptomatic and asymptomatic

DENV infections requires the model to cover this full spectrum

of infection outcomes. For this purpose, the recently described

model using immunocompetent mice in which IFNAR1 is

transiently blocked to allow infection (Wilken et al., 2023),

appears to be promising. We can envisage that varying inoculum
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doses may result in different symptomatic versus asymptomatic

outcomes, allowing to compare the underlying mechanisms of

immune response.

5.2.5 Host genetics
In the last decades, there has been increasing evidence that

human genetic polymorphisms play a role in the activation of

different immuno-pathological mechanisms involved in DENV

infection and, therefore, in its different outcomes. However, most

studies focused on identifying host genetic factors correlated to

disease severity (Coffey et al., 2009; Lan and Hirayama, 2011;

Xavier-Carvalho et al., 2017; reviewed in Cahill et al. (2018)),

while the genetic determinants of asymptomatic DENV infection

have been largely disregarded.

Garcıá et al. (2010) and Mohsin et al. (2015) accessed the

contribution of the FcϒRIIa-H131R (rs1801274) polymorphism to

the clinical manifestations of dengue in Cuban and Pakistani

populations, respectively. In these studies, the 131H allele was

found to increase the odds of developing clinical dengue, while

131R seems to confer protection against the clinical forms of the

infection. FcϒRIIa is an Fc receptor, which binds to the Fc

component of the IgG antibodies, and this SNP is known to

change the affinity of the Fc receptor to different IgG subclasses.

FcϒRIIa-131R receptors bind efficiently to IgG1 and IgG3 (Van

Sorge et al., 2003), which are the predominant immunoglobulins

during DENV infection (Koraka et al., 2001). Their interaction with

opsonized DENV activates phagocytes, leading to a more efficient

control of viral dissemination (Forthal and Moog, 2009). On the

other hand, FcϒRIIa-131H receptors seem to preferentially interact

with IgG2 (Clark et al., 1991), thus favoring viral dissemination by

ADE (Moi et al., 2010). Surprisingly, Noecker et al. (2014) suggested

a protective role for FcϒRIIa-131H in Mexicans, while associating

FcϒRIIa-131R with symptomatic dengue. According to the authors,

the observed reverse association when compared to the findings of

Garcıá et al. (2010) may be explained by differences between

populations and study groups, either in other unstudied

interacting genetic factors, age distribution, history of infection

(data absent in Garcıá et al. (2010)), and/or viral serotype (DENV4

in Cuba and DENV1 in Mexico).

Several candidate genes of the type I IFN response pathway

were analyzed by Silva et al. (2010) in Brazilian symptomatic DHF

and DF and asymptomatic DENV infections. Two polymorphisms

located at the 5’ end of JAK1 gene were identified as the most

significant. JAK1 is one of the first components of the type I IFN

signaling pathway, known to control the response to flavivirus in

mouse models (Perelygin et al., 2002). The associated SNPs may

exert regulatory effects in JAK1 expression and, thus, lead to the

under-expression of type I IFN-induced genes, already described in

severe dengue (Simmons et al., 2007). The work of Silva et al. (2010)

focused mainly on the effect of genetic variants on disease severity,

by comparing SNP frequencies of DHF with DF, but the authors

claim that the association remains true, though weaker, when

comparing DHF against asymptomatics (data not shown).

SNP haplotypes in MBL2 have been significantly associated

with dengue severity in Brazilian children with severe dengue when

compared to asymptomatic DENV IgG-positive controls (Ornelas
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et al., 2019). This gene encodes for the mannose-binding lectin

(MBL), a pattern-recognition receptor that acts in the first-line

response to DENV, by triggering complement activation to

promote viral neutralization (Avirutnan et al., 2011). In silico

prediction has suggested that these SNPs act as expression

regulators (Ornelas et al., 2019), likely resulting in the deficiency

of MBL already observed in severe dengue (Alagarasu et al., 2012;

Figueiredo et al., 2016).

Polymorphisms in the IL4R and IL6R cytokine receptors were

also pinpointed as risk factors for clinical dengue in Colombian

children (Useche et al., 2019), as these may introduce changes in the

T cells signal transduction, and thus alter the activation of Th

subtypes in dengue. The upregulation of IL4R has been previously

described in asymptomatic DENV infection, when compared to

clinical dengue (Yeo et al., 2014), suggesting its protective role. The

IL6R-358Ala allele may result in lower expression of its soluble form

sIL-6R on CD4+ T cells and monocytes (Ferreira et al., 2013), with

consequent low activation of Th2 response and decreased

recruitment of leukocytes, likely impairing an efficient antiviral

response against DENV. Note, however, that Useche et al. (2019)

based their conclusions on the comparison between DENV IgG-

positive symptomatics and a control group lacking symptoms, but

not tested by serology. As the study was conducted on a dengue-

endemic region, both asymptomatic and non-infected individuals

may have been included in the control group, certainly biasing

the results.

The hypothesis-free GWAS by Sierra et al. (2017) highlighted

polymorphisms in OSBPL10 and RXRA as protective factors against

DHF in Cubans with African ancestry, when compared with

asymptomatics and population controls. Both genes are involved

in the LXR/RXR activation pathway, which integrates lipid

metabolism and immune functions, and are thus key players in

viral entrance and replication, and in cytokine production. Their

expression study in Cuban DHF cases and the analysis of a Thai

dengue transcriptome dataset showed that both these genes are

differentially expressed along disease progression. For the top-

associated OSBPL10 SNPs, the authors have then determined the

most common haplotypic combination in European and African

(mostly sub-Saharan) reference populations from 1000 Genomes

(1000 Genomes Project Consortium et al., 2012), and analyzed their

expression based on the available datasets from the 1000 Genomes

transcriptome (Lappalainen et al., 2013). In brief, the expression

data suggests that the OSBLP10 haplotype affects its mRNA

expression, with significantly lower levels (by half) in Nigerian

Yoruba as compared to European and European-ancestry reference

populations. Lastly, an in vitro knockdown of OSBPL10 assay,

followed by DENV2 infection, revealed a significant reduction of

viral replication, thus providing functional proof that the low

expression of this gene likely contributes to the natural resistance

against clinical dengue. While the results cannot be extended to all

African populations, an approximation can be made to the genetic

profile of Central and Western African populations and African-

American descendants from transatlantic slavery.

The results of some of the above-mentioned studies remain

discrepant, while others lack functional evidence for their positive

associations. Differences in the studies’ design and data analyses
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exist, many times without clear biological reasoning. For instance,

the influence of genetic polymorphisms in dengue severity is often

assessed by comparing their frequencies in the severe forms DHF/

DSS against those in asymptomatic DENV infections, instead of

comparing symptomatic groups with different outcomes. In our

understanding, the genetic mechanisms influencing dengue severity

may be distinct from those underlying the clinical protection in

asymptomatic DENV infection. Moreover, we recognize another

important limitation: most studies were undertaken in dengue-

endemic regions and, as retrospective studies, were unable to

distinguish between primary and post-primary infections. This

will surely hinder the study of natural, genetically-conferred

clinical protection in primary infections.
6 Concluding remarks

As for many flaviviral infections, DENV asymptomatic

infections represent the unseen part of the iceberg. Likewise,

arthropod-borne viral infections caused by non-flaviviruses can

also result in asymptomatic outcome, even on those in which

humans act as dead-end hosts. For instance, infection by

Crimean-Congo Hemorrhagic Fever or the Rift-Valley Fever

viruses, both Bunyaviruses, and Chykungunya, Western-, Eastern-

and Venezuelan Equine Encephalitis, or Sindbis viruses, all of them

alphaviruses, are known to result in an asymptomatic outcome in 4

to 96% of infected humans (Laine et al., 2004; Bodur et al., 2012;

Thiberville et al., 2013; Phelps et al., 2017; Wright et al., 2019). It is,

therefore, crucial to understand their real impact on the spread of

the pathogenic agent and its persistent circulation during

interepidemic periods, as well as their contribution to herd

immunity. However, asymptomatics are unlikely to play a major

role in viral transmission on infections in which humans act as

dead-end hosts. Nonetheless, all human arthropod-borne viral

infections resulting in asymptomatic outcome may share common

features with asymptomatic DENV infections. It is equally

imperative to determine the individual immune status induced by

asymptomatic DENV infections, the risk of long-term sequalae, and

if secondary heterologous infections pose an increased susceptibility

of asymptomatics to more severe forms of the disease, as widely

described for symptomatics. Although not an arbovirus, the very

recent example of the SARS-CoV-2 illustrates how challenging it

can be to understand these aspects. In fact, the perception of the

impact of asymptomatic infections in viral transmission and

individual health changed across the pandemic.

For a clearer picture, it is also essential to study the biological

mechanisms likely conferring protection against clinical

manifestations (resumed in Figure 2), observed in many flaviviral

diseases. Why do some people become ill with a primary infection,

while others are tolerant to the disease and capable of clearing the

virus without changing their health status? Most studies

concentrated their efforts on the determinants of severe versus

mild infections, while asymptomatic infections remain disregarded.

Furthermore, and especially in endemic areas, immunity acquired

through a previous DENV infection can lead to clinical protection

in a subsequent infection. This factor hinders the identification of
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biologically-defined asymptomatics and must be accounted for in

the study design, since the mechanisms leading to the absence of

symptoms within a window of immune protection are surely

different from those underlying asymptomatic primary infections.

Additional evidence from adequately designed genetic and

functional studies that objectively address asymptomatic

infections is demanded, preferably in populations with unique

epidemiological situations such as a primary infection by a single

DENV serotype. These may strongly contribute to a better

understanding of the mechanisms of disease, by evidencing genes,

cellular pathways, and lipid profiles contributing to the natural

protection against dengue. Hence, comprehensive knowledge of

the physiological and immunological processes balancing the

control of the flaviviral agent and the health status of the human

host, in asymptomatic infections, can be crucial for the rational

design of effective therapies, and are likely common to other

infectious diseases.
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